Forest Resource Modelling in the Netherlands and Europe

18 November 2020

Mart-Jan Schelhaas, Bas Lerink, Gert-Jan Nabuurs, Geerten Hengeveld, Anjo de Jong, Igor Staritsky, Louis Konig, Joao Paulo

VERIFY

Wageningen University
Knowledge Base programme:
Circular and Climate Neutral Society

With contributions from:

Esther Thürig, Brigitte Röhner, Giorgio Vacchiano, Jordi Vayreda, John Redmond, Jarosław Socha, Jonas Fridman, Stein Tomter, Heino Polley, Susana Barreiro, Aleksi Lehtonen, Helena Hentotonen, Tom Pugh, Adriane Esquivel-Muelbert, Nike Krajnc, Áine Ní Dhubháin, Cristian Temperli, Uwe Kies, Emil Cienciala, Andrzej Talarczyk, Thierry Palgen, Leen Govaere, Igor Buksha, Dejan Stojanović, Saša Orlovic,

Clear need for policy support with regards to the role of forests, now and in future, at national and European scale

- Bioeconomy
- Climate change mitigation
- Biodiversity conservation
- Impact of climate change
- Protection of soil, water, infrastruction
- Provisioning of (wood) products,
- ...

National forest projection tools

Table 3 Data inputs, simulation details, growth model type and spatial scale of the simulation tools currently used in Europe. NFI National Forest Inventory, SFI Standwise Forest Inventory, PP Permanent plots

	Data Inputs			Simulation				Growth module							Spatial scale				
	NFI	SFI	PP	Projection time-span (year)	Rotation		Time-step (year)	Yield table	Empirical		Process- based		Distance dependent		Climate sensitive		Stand	Landscape	Region
					One	Several			Tree	Stand	Tree	Stand	Yes	No	Yes	No			
MELA	x			30	x		5		x					x		x	x	x	x
AVVIRK2000	x			100		x	10			x				x		x	x	x	x
HUGIN	x		x	100		x	5		x					x	x		x		x
RegWise	x		x	100		x	5		x					x	x		x		x
DK Simulator	x			100-500		x	1	x						x		x		x	x
Icelandic Simulator	x			120		x	1		x					x		x	x		x
FORECAST		x		80		x	1	x		x				x			x		
ForGEM	x			20-30			Month				x		x		x		x		
EFISCEN	x			50-60	x		5			x				x				x	x
PROGNAUS	x			10-200			5		x					x		x	x	x	x
CALDIS	x			10-200			1		x					x	x		x	x	x
Matrix Age-class	x			20-30		x	1			x				x	x			x	x
Matrix Diameter-class	s x			20-30		x	1-5		x					x	x			x	x
WEHAM	x			40	x		5		x					x		x		x	x
MASSIMO	x		x	100		x	10		x					x		x		x	x
KUPOLIS	x	x		100		x	1-20			x				x		x	x	x	
SIMPLOT	x			100		x	1		x	x				x	x				x

European forest projection tools

Empirically based (EFISCEN, CBM-CFS3, EFDM):

- Spatially aggregated
- Simple (even-aged management, monocultures), but robust
- Sometimes relying on (old) yield tables

Process-based (Orchidee, LPJ-Guess)

- Assume steady state
- Only starting to include forest management

Hybrids

Combine these approaches: EFISCEN Space

- Empirically based
- Continental parameterisation
- Able to deal with mixed and multi-layered stands
- Spatially explicit/higher resolution

Approach:

Model diameter distribution of (NFI) plots over time

Needed:

- Tree-wise observations from NFIs
- A set of explanatory variables

Piece	O V CI CIII		m # ;	4 2 2 2 2 2 2	8 E E
- direction	2800			Class	Grain
to the	b /// (3	Structure	Plot
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41	Weather	25 km grid
Physical Property of the Parket			43	Climate	1 km grid
			10	Soil	1 km grid
2			3	Deposition	25 km grid
E	/3 · /	h # h	1		
* **			4		
		7			

Initialisation based on NFI plot data

25/11/2020

Annual time step: transition to higher dbh class based on European wide increment functions,

sensitive to climate, soil, forest structure

Management: based on patterns observed on repeated NFI plots

Outputs

- State, mortality and harvest by dbh classes
- Regional conversion to volume using simple equations derived from NFI data
- Estimate of costs, revenues and labour for harvesting
- Great potential to expand (forest structure indices, biomass, carbon, deadwood, etc.)
- Successfully applied in wood mobilisation study in 9 European regions, Forest Reference Level for the Netherlands, effect of national mitigation measures

Conclusion

- We made great progress towards a new generation of EU-scale models
- Still many challenges ahead
- A great opportunity to study spatial patterns beyond the national data!
- Uncertain how far east we can go with current data
- Can work on all types of data sources that deliver initial diameter distributions (NFI, stand-wise inventories)

Thank you!

Acknowledgements:

- Simwood project
- Verify project
- TreeMort project
- Alterfor project
- Profound Cost Action
- Wageningen University
- Knowledge Base programme:
- Circular and Climate Neutral Society
- NFIs from all countries
- Field crews

