
Received January 12, 2021, accepted January 25, 2021, date of publication February 5, 2021, date of current version February 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057582

Systematic Approach for Generation of Feasible
Deployment Alternatives for Microservices
ISIL KARABEY AKSAKALLI 1, TURGAY CELIK2, AHMET BURAK CAN 3, (Member, IEEE),
AND BEDIR TEKINERDOGAN 4
1Department of Computer Engineering, Erzurum Technical University, 25050 Erzurum, Turkey
2MilSOFT Software Technologies Corporation, 06800 Ankara, Turkey
3Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey
4Information Technology Group, Wageningen University and Research, 6706 Wageningen, The Netherlands

Corresponding author: Isil Karabey Aksakalli (isil.karabey@erzurum.edu.tr)

ABSTRACT Microservice architectures rely on the development of modular and independent software
units, which typically address a single task and communicate with other microservices via well-defined
interfaces. This has several benefits such as easier maintenance and update of services. However, deploying a
microservice-based application is often more complicated than a monolithic application. While a monolithic
application can be deployed one at a time on a group of similar servers behind a load balancer, a microservice-
based application consists of different microservices and each microservice usually has more than one
runtime instance that needs to be configured and deployed. For a small number of microservices and
applications, the deployment could be done manually. However, a large number of microservices are
frequently observed in practice. In such cases, the deployment becomes cumbersome and error-prone and
does not scale with the increased number of services. To cope with this problem, we present a systematic
approach and the corresponding tool support for enabling the deployment of microservices to resources that
have limited capacity. Hereby, we model and define the design space given the deployment parameters and
automatically derive the feasible deployment solution. The approach is validated using a taxi-hailing system
case study inspired by Uber which has spread all over the world in recent years.

INDEX TERMS Automated deployments for microservices, capacitated task assignment problem (CTAP),
deriving feasible microservice deployments, optimization algorithms.

I. INTRODUCTION
Cloud computing enables efficient and flexible use of
IT resources, including well-configured computing power,
unlimited storage, network capabilities, and managed ser-
vices such as databases and messaging queues. With the use
of cloud computing, infrastructure development and man-
agement costs can be substantially reduced by deploying
software applications to remote cloud servers and using man-
aged services for different needs such as object storage, mes-
saging queues, and load balancing. In this way, companies
can focus more on developing functional capabilities and
dealing with architectural issues such as scalability and fault
tolerance instead of spending effort on building and operating
on-premise infrastructures. Although cloud platforms usually

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

have a lower cost than on-premise systems, the cost of cloud
resources still needs to be taken into account. To minimize
unnecessary resource usage and reduce the cost, the cloud
facilities should be used as efficiently as possible. On the
other hand, the application on the cloud server needs to be
scaled with the increased demand.

Despite the benefits of cloud computing, migrating mono-
lithic applications to cloud appeared to be problematic in
practice. Due to the lack of modularity, applications often
need to be scaled entirely, which leads to unnecessary
resource usages and increased cloud bills. To overcome
the limitations of monolithic applications, microservice
architecture has been proposed that decomposes applica-
tions into loosely-coupled modular services, which are
highly independent, focus on realizing a single functional
service, and can be separately maintained. The use of
microservice architecture substantially supports scalability

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 29505

https://orcid.org/0000-0002-4156-9098
https://orcid.org/0000-0002-0101-6878
https://orcid.org/0000-0002-8538-7261
https://orcid.org/0000-0003-3264-185X


I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

in case of increased application workload and performance
fluctuations.

Before microservices architectures arose, the tiered
monolithic architectures were widely adopted. However,
as the system grows and more developers work on a sin-
gle code base, the architecture becomes complex and the
software development life cycle iterations have begun to
slow down. In addition to scalability, other different aspects
such as keeping development and deployment iterations
short, managing large databases, adding new features to
the system, and dealing with fluctuating traffic become
difficult, risky, and problematic in the monolithic archi-
tectures. All these problems forced some large corporate
companies such as Netflix, Amazon, Uber, and Etsy to adapt
to cloud-based microservice architectures. Today, Netflix’s
microservice architecture-based solution handles approxi-
mately two billion API endpoint requests processed by more
than 500 microservices [33].

The microservice architecture design has obvious bene-
fits with the increased modularity of services. On the other
hand, the interactions of fine-grained services with a single
functionality and complex configurations of runtime environ-
ments complicate microservices-based systems. Microser-
vice interactions are generally designed to be asynchronous
for the sake of scalability and have complicated invocation
chains. For instance, Netflix has five billion service invoca-
tions per day and 99.7% of these calls result in cascading
invocations of other microservices. Similarly, Amazon has
hundreds of microservice invocations to render a page [38].
Besides, a microservice typemay have thousands of instances
running on different resources. Deploying these microser-
vice instances with a feasible deployment configuration at a
minimum cost is vital for using cloud resources more effi-
ciently. Therefore, the deployment configuration of a large
number of microservices on a group of available resources
is a significant obstacle [24]. Deployment configuration of
the services heavily affects the communication cost among
services and utilization of computing power. The deployment
configuration can be carried out using a team of human
experts. However, in large systems, the number of microser-
vice instances can dramatically increase to a scale that is
not tractable by human experts, which makes deriving the
most feasible deployment configuration harder. Furthermore,
while a team responsible for creating and running a set of
microservices is usually aware of the communication and
computation costs of their services, it is difficult to estimate
the impact of a change in a service on the other related
services in practice [24]. For example, a change in amicroser-
vice can create additional communication overhead on other
services that are consuming outputs of this service and may
cause these services to have scalability problems.

In the literature, the scalability and design challenges of
transitioning from a monolithic application to a microservice
architecture have been widely addressed. However, to the
best of our knowledge, the feasible deployment of microser-
vices to cloud resources has not been explored in detail.

In practice, deployment of microservices and configuration
operations are manually performed by human experts, even
with the use of some popular container technologies like
Kubernetes [23], Docker Swarm [14], Apache Mesos [1].
However, as explained above, finding a feasible deployment
is not a trivial task. If the deployment cannot be performed
according to the given configuration, reconfiguration takes
a long time depending on the size of the system. To cope
with this problem, more systematic and formal approaches
are needed to find feasible deployment alternatives.

This study provides an approach that systematically
derives feasible deployment alternatives from applica-
tion design and available resources by using Capacitated
Task Assignment Problem (CTAP) solver algorithms. The
approach derives feasible deployments of defined microser-
vices on physical resources that have different memory
capacities and computation powers. Initially, the microser-
vice types, themodel for data exchange amongmicroservices,
and available physical resources to deploy the microservices
are designed. This design is then used for defining sam-
ple runtime execution configurations that provide dynamic
properties of the system such as the number of instances
of each microservice type and update rate of specific data
for each producer/publisher service. After designing the
Microservice Runtime Execution Configuration Model and
the Microservice Infrastructure Model containing physical
resources, deployment alternatives for the microservices are
derived algorithmically. The approach is realized with a tool
that supports the automatic generation of feasible deployment
alternatives. The proposed approach is validated using an
industrial case study simulating a taxi-hailing system inspired
by Uber’s microservice architecture [35].

The contributions of this proposed approach are described
as follows:
• The proposed approach provides a set of deployment
alternatives to the development team with different total
communication and execution costs at the early design
phase before the system is fully developed and deployed.

• Since the cost of change increases exponentially in later
phases of the development lifecycle, the approach pro-
vides foreseeing the design problems such as excessive
service interactions, high memory requirements, etc.
at early design phase.

• As the constraints of deployment operation, communi-
cation costs between services, execution costs of ser-
vices on servers, the memory capacity of services, and
servers are taken into consideration. After adapting
these constraints to the well-known Capacitated Task
Assignment Problem (CTAP) [29], the approach enables
utilizing different solvers for generating alternative
deployment models at the design phase. Finding a
deployment alternative using this approach is completed
in a much shorter time than expert judgment in a system
consisting of thousands of microservices.

• A toolkit that supports the realization of each
step of the approach including microservice design,

29506 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

analysis of the generated deployment model, compar-
ison of alternative deployment approaches is designed
and developed. Furthermore, the toolkit supports manual
deployment models to enable a performance comparison
of a human-designed deployment model with automati-
cally generated deployment models.

• The toolkit allows porting different CTAP solvers to
derive feasible deployment alternatives. We ported the
genetic algorithm proposed by Mehrabi et al. [27] to the
tool as a sample CTAP solver.

The rest of the paper is structured as follows. Section II
provides background and context. Section III describes the
case study to be used in successive sections. Section IV
gives the problem statement. Section V explains the approach
and detailed algorithmic solutions for evaluating alternative
deployment options. Section VI briefly describes the tool
support for the approach. Section VII summarizes the studies
in the literature that address the deployment approaches for
microservices, and finally, Section VIII concludes the paper.

II. BACKGROUND AND CONTEXTS
In this section, the necessary information for understanding
and supporting the proposed approach is given. In Part A,
several alternative microservice deployment patterns are
explained. Part B defines the reference architecture for the
deployment pattern that we focused on in this paper.

A. MICROSERVICE DEPLOYMENT PATTERNS
There are several methods for the deployment of microser-
vices to nodes that represent computation resources such
as a virtual or physical server machine. These methods are
(1)‘‘Multiple service instances per node’’, (2) ‘‘One service
instance per node’’ and (3) ‘‘Serverless deployment’’ [31].

In multiple service instances per node, more than one
service instance is deployed on each physical or virtual
server. Instances of each service can run on one or more
servers with a known set of reserved I/O ports. This approach
reduces overall communication costs since multiple commu-
nicating instances share the same environment. The most
important disadvantage of this model is that it has little or
no isolation of service instances with respect to the shared
resources. This might cause security or reliability problems
in case of service misbehavior or malfunction.

To avoid the isolation problems, ‘‘one service instance
per node’’ approach has been proposed. In this model, each
service instance runs separately on its node to enable service
isolation. This model is specified in two forms: one service
instance per Virtual Machine (VM) and one service instance
per container. In one service instance per virtual machine
model, each service is packaged as a VM image such as an
Amazon EC2 AMI [2], and each service instance is initial-
ized using the VM image. Each service instance has isolated
memory space and CPU, and it is executed independently.
It provides better security and reliability in comparison with
the multi-service per node approach since a security exploit
or malfunction in a service is isolated in the corresponding

node. The major disadvantage of this model is resource usage
efficiency since each service instance incurs the overhead of
the entire VMwith the OS. Moreover, VMs are also typically
slow to start/restart due to the same reason. The structure of
the ‘‘one service instance for per VM’’ is shown in Figure 1a.

Due to the disadvantages of VMs, ‘‘one service per con-
tainer’’ has emerged as a more lightweight virtualization
alternative. In this deployment model, each service instance
runs within its own container. A container is a virtualization
mechanism that runs at the operating system level. Containers
have their own port namespace and root filesystems.Memory,
CPU, and I/O resources of containers can be limited. The
advantages of the containers are similar to VMs. It isolates
the service instances from each other and enables easy moni-
toring of resources consumed by each container. Container
technologies generally provide a container management
API to manage container instances [31]. Containers also
encapsulate the technology that is used to implement services
and provides a secure environment like VMs. Nevertheless,
unlike VMs, containers are lightweight technologies, and cre-
ating and initializing a container image is often very fast. The
structure of the ‘‘one service instance per container’’ is shown
in Figure 1b.

In addition to all these microservice deployment strate-
gies, there is a relatively new approach named the serverless
deployment model. This approach prevents the user from
having to choose between service delivery on a container
or virtual machines. For example, AWS Lambda [4] is one
of the serverless platforms that support developing micro
applications with different languages like Node.js, Java, and
Python. While deploying a microservice, the service is pack-
aged as a ZIP file and uploaded to the AWS Lambda plat-
form. AWS Lambda automatically scales up and down the
number of microservice instances according to load. The
user is billed according to the number of handled requests.
Although it reduces deployment problems for developers,
unsuitability for long-running services, forcing stateless and
idempotent design of services, vendor lock-in on the avail-
able technologies are some disadvantages of the serverless
deployment [31].

B. MICROSERVICES REFERENCE ARCHITECTURE
Among the microservice deployment models in the literature,
we focus on ‘‘one service instance per container’’ model since
it is more lightweight and popular than one service/multiple
services per VM approach, and the serverless architecture
is not suitable for all kinds of services as explained in the
previous section. Figure 2 shows the reference architecture
for one service instance per container approach. Despite our
focus on the ‘‘one service instance per container’’ model,
the proposed approach is also applicable to ‘‘one service
instance per VM’’ model.

At the highest level, a microservice-based distributed sys-
tem consists of several interconnected physical servers/VMs.
Each physical server/VM hosts one or more containers. Each
container hosts onemicroservice instance with a well-defined

VOLUME 9, 2021 29507



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 1. a) One service instance per VM b) One service instance per container.

FIGURE 2. Microservices reference architecture.

interface. The servicesmust be packaged as a container image
in a ‘‘one service instance per container’’ model. A container
image is a file that consists of an image of applications and
libraries which are necessary to run the service. After the

service is packaged as a container image, one or more
containers can be initialized. Generally, multiple containers
run on each physical or virtual server. Some cluster man-
agers such as Kubernetes [23], Docker Swarm [14], and

29508 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

Marathon [25] can also be used to manage containers. A clus-
ter administrator treats servers as a resource pool. It decides
where each container should be deployed depending on the
provided configuration.

Microservice instances communicate and exchange data
with each other via their interfaces which can be based on
different protocols such as RESTful services [39], gRPC [19],
publish/subscribe communication channels such as OMG
DDS [40], Amazon SNS [41] and message queues pro-
tocols such as Apache Kafka [42], Amazon SQS [43],
RabbitMQ [44], ActiveMQ [45], Java Messaging Ser-
vice [46], etc. Besides, both synchronous and asynchronous
communication patterns can be used between services
according to needs [47]. In fact, this hybrid communication
architecture is one of the biggest advantages of the microser-
vice approach compared to the plain Service-Oriented
Architectures. By using synchronous communication meth-
ods such as HTTP, gRPC, and REST, a service sends a
request to another service and waits until the corresponding
service responds. When the data is needed immediately,
the request/response communication patterns are suitable.
However, there may be situations where the requested
service is not available or can’t respond immediately.
In this case, to prevent delays that may cause scalabil-
ity issues, non-blocking asynchronous communication can
be preferred among services by using a message queue or
publish/subscribe pattern. Hereby, both synchronous and
asynchronous communication patterns can be utilized by
using different communication protocols within the same
system at microservice architecture.

III. CASE STUDY- TAXI HAILING SYSTEM
In this section, we present a case study describing a
taxi-hailing system inspired by Uber [35] to illustrate the
problem statement and evaluate the proposed approach. Just
like most of the organizations, Uber [35] initially developed
this system using a monolithic architecture [30]. Since it was
used for one city at the time, a monolith built from a single
code base could solve Uber’s fundamental business prob-
lems. The monolithic taxi-hailing system has a REST API
that provides passengers and drivers to be connected. When
booking a taxi, three different adapters used with this API
enable billing, payments, and email/message services [30].
The system stores all data in a single database. Thus, all
features such as passenger management, driver management,
notification features, payments, trip management, and driver
management are provided by a single application.

As Uber’s taxi-hailing system begins to expand world-
wide, a single monolithic codebase caused scalability and
CI (Continuous Integration) problems [30]. For instance,
to update a single feature in a monolithic architecture, all
features must be rebuilt, tested, and deployed repeatedly.
Additionally, finding the source and fixing of bugs in a
single repository becomes difficult for a developer. Further-
more, concurrent updates of existing features or adding new

features by different developers requires serious coordina-
tion. Besides the development problems, operation of mono-
lithic applications is also hard. For example, scaling a feature
on demand requires scaling up all features together which
increase the scalability costs in the monolithic architectures.
Because of these problems, Uber [35] decided to change
its architectural style and adopted microservice architecture
by following other popular companies like Netflix [26],
Amazon [5], Twitter [28], etc. Figure 3 shows Uber’s
taxi-hailing system [35] designed with microservice architec-
ture. This architecture connects eight different microservices
including billing, payments, passenger management, driver
management, notifications, trip management, passenger Web
UI, and driver Web UI through an API Gateway. Since every
service is isolated asmuch as possible, a change in one service
requires deploying only that service, and also each service can
be scaled individually.

The number of service instances varies according to the
instant requests to these services. For example, since the num-
ber of taxi seekers is higher than the number of taxi bookers
and payers, the number of microservice instances in different
services also varies according to the demand. This situation
requires the number of passenger management instances to
be more than the number of payment instances. Besides,
the frequency of communication among the services varies
according to the number of instant requests and different
communication types can be used between services. When
a user requests a trip, the following steps will be triggered:
Firstly, the Trip Management service is notified via the API
gateway. The Trip Management service requests passenger
information from the Passenger Management service with
the request/response synchronous communication type. After
obtaining this information, Trip Management notifies the
Dispatcher about trip details. Then, the Dispatcher finds an
available driver and notifies both Passenger Management
and Driver Management services simultaneously through the
pub/sub communication channel. Finally, PassengerManage-
ment and Driver Management services request the Notifica-
tion service to inform the passenger about payment and trip
details [48].

We used the system described above to define a case
study to validate the approach that we propose. We defined
the number of microservice instances as shown in Table 1.
Besides, the memory requirements of nodes and microser-
vices, the execution costs of the microservice instances on the
nodes, and the frequency of communication with each other
are defined by the designer.

IV. PROBLEM STATEMENT
One of the key issues affecting the performance of
microservice-based software in a cloud environment is the
allocation of microservices to available resources. For small
or medium-sized applications with a limited number of
services and nodes, service deployment can be efficiently

VOLUME 9, 2021 29509



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 3. Microservice architecture of a taxi hailing system [35].

TABLE 1. Sample scenario for a taxi-hailing system with defined number
of instances per microservice.

performed by a human expert who knows the overall system
very well. However, existing software systems that migrate to
microservice architectures are often large-scale and require a
large number of services and nodes. This makes it difficult
to perform a feasible deployment process manually for the
human expert. Additionally, as the system expands, find-
ing the minimum cost for the deployment process becomes
impossible. Considering many parameters such as mem-
ory capacities of nodes and services, communication costs
between services, and execution cost of services on nodes,
various deployment alternatives can be derived for a sam-
ple scenario. For example, a deployment alternative for the
taxi-hailing system can be defined with driver instances, pas-
senger instances, and billing instances as shown in Figure 4.
In this case, six different types of microservices with a total
number of 23 instances are deployed to three separate nodes.
In this case, the communication cost among driver instances
is assumed to be zero, as well as the cost of other instances
on the same node. If there is a high frequency communication
between two microservice instances deployed on different
nodes (e.g., the driver and passenger), the deployment should
be re-evaluated in terms of performance and must be com-
pared with different alternatives.

FIGURE 4. A deployment alternative by grouping the same type of service
instances.

The second example deployment alternative is shown
in Figure 5. Here, eight different types of microservices with
a total number of 28 instances are deployed evenly among
4 nodes. This means that two different types of services are
allocated to each node. Although this deployment approach
is simple and easy to understand, the two services assigned
to the same node may not communicate frequently with each
other, or the services assigned to different nodes may often
need to communicate with each other. Another problem is the
efficient use of resources. For example, fully utilizing a node
with lowmemory or under-utilization of a high capacity node
may adversely affect the system performance and operation
cost. Therefore, this deployment alternative may not be fea-
sible in terms of minimizing total communication cost and
efficient use of memory capacity.

29510 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 5. Second deployment alternative by grouping services evenly.

Like the deployments given in Figure 4 and Figure 5, var-
ious other deployment alternatives can be derived by taking
into account different parameters such as number of available
nodes, number of services to deploy, communication costs
among services, execution costs of microservices on each
node. It is hard to obtain optimal performance among these
alternatives manually. It is also evident that each deploy-
ment alternative can be generated differently in terms of
many quality considerations, such as logical allocation for
understandability, overhead optimization, and increased use
of physical resources. Therefore, a more systematic and
formal approach is needed for the automatic generation of
deployment alternatives that are very difficult to determine
by human experts. Additionally, the automatic comparison of
these alternatives with each other is needed in terms of perfor-
mance. As a deployment approach, container technologies are
often used for the deployment of microservice applications in
the industry. However, these technologies need configuration
files prepared by the user to define the deployment config-
uration. Obviously, there is no clear approach for guiding
the deployment of microservices and resource allocation to
optimize the performance in the design phase. Moreover, it is
seen that no qualified approach or tool support is proposed
in the literature for the selection of deployment alternatives.
In the following sections, we describe our approach and
tool support for deriving feasible deployment alternatives for
microservice-based applications.

V. APPROACH FOR DERIVING AUTOMATED FEASIBLE
DEPLOYMENT ALTERNATIVES FOR MICROSERVICES
In this study, we present a concrete approach to iden-
tify and evaluate feasible deployment alternatives for
microservice-based systems. The proposed approach can
be used in the early design phase before the coding and

development of the system. Generating alternative deploy-
ment models according to runtime scenarios and analyzing
the overall system performance at the design phase helps to
avoid further deviations and re-work at the following devel-
opment activities such as detailed design, implementation,
testing, and operation, etc.

A. PROCESS STEPS FOR DERIVING FEASIBLE
DEPLOYMENT ALTERNATIVES FOR MICROSERVICE
APPLICATIONS
Wedefined a high-level process for feasible deployment alter-
native generation as follows:

1) DATA EXCHANGE MODEL DESIGN
As the first step, the team extracts a model defining the data
types and object sizes to exchange data between microser-
vices during communication.

2) DECOMPOSING THE SYSTEM INTO MICROSERVICES
At the second step, the team decomposes the system into
microservices and assigns requirements to these services.
It should be noted that not all the services have to be new
services. Generally, the team has some legacy services that
can be ported to the new architecture. The team needs to
define both new and legacy microservices in the design tool
to enable feasible deployment generation.

3) COMMUNICATION PATTERN DESIGN
In this step, the team decides the communication pattern
among the microservices defined in the second step and the
data exchange objects between microservices designed in the
first step. As we mentioned before, all of the microservices
do not have to use the same communication protocol for data
exchange, but we defined a superset data model to assess
communication cost in a uniform manner. We are going to
give more detail about this uniform data model in the further
sections of the paper.

4) DEFINING THE PHYSICAL RESOURCES
In this step, the team defines available resources on the design
tool. The physical/virtual servers are defined by means of
CPU and memory power and network connection among
them.

5) DESIGNING SAMPLE EXECUTION SCENARIOS
In this step, the team defines runtime scenarios according to
themicroservices and data exchangemethods/objects defined
in the first two steps. Runtime scenarios define the instance
count of each microservice and data update/fetch rates
for each communication channel among services. Besides,
the execution costs of microservice instances on available
resources are defined.

6) GENERATING THE FEASIBLE DEPLOYMENT ALTERNATIVES
After the design of microservices, the data exchange objects,
the communication protocols, and the physical infrastructure,

VOLUME 9, 2021 29511



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 6. Business Process Model and Notation (BPMN) diagram of the proposed approach.

the tool automatically extracts deployment model generation
algorithm parameters from the design, executes the CTAP
(Capacitated Task Assignment Problem) solver algorithm,
and generates the feasible deployment alternatives.

7) ANALYZING THE RESULTS AND COMPARING THE
GENERATED MODELS WITH EACH OTHER
At this step, the tool generates a benchmark report for the gen-
erated deployment alternative exposing intrinsic information
such as the services that generate high traffic load. At this
step, the tool also provides the capability to compare two
deployment alternatives which can be generated by the same
algorithmwith different runs, another algorithm or an expert’s
judgment.

The BPMN diagram of the proposed approach is shown
in Figure 6. Firstly, a Microservice Data Exchange Model
is designed to define data objects and object sizes. Then,
microservices are designed and communication protocols are
defined by using the identified Microservice Data Exchange
Model. In addition, the communication channels that the
microservices will interact with are determined and these
channels are modeled in the communication protocols model.
Besides these models, the Microservice Infrastructure Model
that will host the services can be created independently from
theMicroservice Data ExchangeModel, microservice defini-
tion, and communication protocols.

Once the design phase of the system architecture is com-
pleted, the generation of a feasible deployment alternative
phase begins with the definition of the Microservice Run-
time Execution Configuration Model. This model defines the
instance count for eachmicroservice and the data update rates
for each communication channel among services by using the
artifacts defined in the architecture design phase. After all the
models are developed, input parameters are generated from
these models to feed the feasible deployment model gener-
ation process. If the system cannot find a feasible deploy-
ment alternative according to given parameters, it directs the
designer to the initial steps of the process for updating the
models. The designer can modify the data objects, split or
merge them, remove unnecessary communication channels
among microservices, or even merge/split microservices for
better cohesion and low coupling. If a deployment alternative
is found, the system generates a deployment model based on
the output of the deployment model generation algorithm and
presents this alternative to the designer.

Deployment modeling part of the proposed approach rep-
resents the seventh process step for analyzing and comparing
the generated deployment models. In this part, the system
generates a deployment model analysis report that repre-
sents insights such as most communicating services and the
amount of exchanged data for each communication channel.
The system also enables the automatic comparison of differ-
ent deployment alternatives in terms of communication and

29512 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

execution costs. This allows designers to analyze the gener-
ated deployment models with comparison reports. According
to the results of these reports, the designer decides whether
the generated model is acceptable or not. If the designer
thinks that there are still issues for updating the design or
physical resources to further improve the communication and
execution costs, he/she can return to the beginning of the
design phase and repeat the process.

From a general perspective, finding a feasible deploy-
ment alternative for a multi-task system is a combinatorial
optimization problem handled in the optimization branch of
mathematics. This problem overlaps with the Capacitated
Task Assignment Problem (CTAP) in the literature. To imple-
ment the task assignment problem, firstly, the input parame-
ters must be clearly defined. These parameters are extracted
from the system design, including memory capacities of the
available processors, the execution costs on the processors
of each task, and the communication costs between tasks.
In the proposed approach, tasks correspond to microservices
and processors correspond to resources or nodes. Once the
necessary parameters are extracted, the tool that supports the
approach generates feasible deployment models using the
optimization algorithms. Then, the feasibility of the gener-
ated deployment models is evaluated in the next step. If the
generated deployment models are not satisfactory, an itera-
tion step will be required for analyzing the system design
and correcting it according to the feedback provided by the
proposed tool. The feasible deployment alternative is deter-
mined by minimizing the total cost for the deployment model
(e.g., communication and execution costs) without violating
the memory capacities of each deployment node. Finding
feasible deployment models may require many iterations of
the operation steps. The initial deployment model is real-
ized during the development and integration/testing activities,
the results are reported back to the designer, the design is
revised until a satisfactory alternative is obtained.

In the following sections, the concrete activities defined for
the implementation of the proposed approach are described.
In each section, the design of the metamodels required for the
approach is addressed. Additionally, the relationship between
the metamodels that depend on each other is explained.

B. DESIGN MICROSERVICE DATA EXCHANGE MODEL
The Microservice Data Exchange Model defines the data
model required to exchange data between microservices.
Microservices need to communicate with each other to
exchange data. When communication protocols for microser-
vices are investigated, it is seen that there are many com-
munication infrastructures such as gRPC [19], REST [13],
graphQL [14], publish/subscribe [6]. In the proposed
approach, the data model of the most comprehensive com-
munication infrastructure for microservices is investigated to
ensure the applicability of all communicationmethods. In this
context, the gRPC protocol has been implemented since it has
the most comprehensive data type set.

The gRPC protocol developed by Google, known as
the high-performance remote procedure call, is a modern
open-source RPC framework that can execute in any envi-
ronment [19]. With plug-and-play support for load balanc-
ing, monitoring, health control, and authentication, it can
effectively connect services within and across data centers.
gRPC can use protocol buffers as both in the Interface
Definition Language (IDL) and the basic message exchange
formats [49]. In proto3, the latest version used in the gRPC,
Message Type is used to define the call request inmessage for-
mat and the class defined with the variable types in the.proto
file is called the Scalar Value Types. Therefore, variable types
such as float, int32, uint32, sint64 defined in the Design
Microservice Data Exchange Model are extended from the
ScalarValue class. Furthermore, like other communication
protocols, the Enumerated Data Types can be defined in this
protocol. Other different data types such as ReservedValue,
NullValue, Map, and ArrayDataType are also extended from
the DataType class. ObjectModelElements inherits some fea-
tures such as Struct, Any, and Oneof. Struct represents any
JSON object with the Message Type, Any allows a user to
send messages as embedded types without.proto definitions
and Oneof feature is used in a place where only one field can
be set at the same time in a message with many fields. A part
of the ecore diagram of the Microservice Data Exchange
Model is shown in Figure 7. The full ecore diagram of this
model is shown in Appendix A.

C. DESIGN MICROSERVICE DEFINITION MODEL
TheMicroservice DefinitionModel consists of microservices
defined as application participants. Microservices are impor-
tant artifacts that must be designed for the whole system to
work. In the scenario given in Figure 4 and Figure 5, services
such as PassengerManagement, DriverManagement, Billing,
Payment,Notification, etc. aremicroservices. Sincemicroser-
vices communicate with each other using various commu-
nication protocols, the components (Microservice,Microser-
viceType, Version,MicroserviceRepository) of this model are
defined in the Microservice Communication Model shown
in Figure 8.

D. DESIGN MICROSERVICE COMMUNICATION MODEL
The Microservice Communication Model contains the
connection channels which are established for the com-
munication of microservices based on data exchange. The
microservices defined in the Design Microservice Defini-
tion Model communicate with each other using the data
objects defined in the Design Microservice Data Exchange
Model. The ecore diagram of the microservice communica-
tion model with various communication patterns is shown
in Figure 8.
As shown in Figure 8, common communication methods

described for microservices are divided into four groups
named RestOperation [13], graphQL [18], gRPC [19], and
pub/sub relation [6]. Among these communication meth-
ods, gRPC [19] is the most comprehensive communication

VOLUME 9, 2021 29513



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 7. A part of the microservice data exchange metamodel.

FIGURE 8. Microservice communication metamodel.

protocol in means of data type variation. When many
microservices are built in different technologies and program-
ming languages, it is very important to define the service
interfaces in a standardizedmanner in the underlyingmessage
exchange format. gRPC is a powerful communicationmethod
for standardizing service communications using protocol
buffers. Therefore, we extracted the gRPC data metamodel
to define data exchange of microservices communication.
Publish/subscribe (pub/sub model) is another widely

adopted communication method. Pub/Sub model defines an

asynchronous communication protocol among loosely cou-
pled distributed services [6]. In a pub/sub model, any pub-
lished message is delivered to all services that subscribed
to that topic. The pub/sub model is suitable for microser-
vices with event-based architecture. The model can also
be used to decouple applications to improve performance,
reliability, and scalability [6]. For example, considering
the pub/sub relationship given through the case study, the
PassengerManagement microservice can become a mem-
ber of the Passenger object and subscribes to the Driver

29514 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 9. Microservice infrastructure metamodel.

object. Similarly, the DriverWebUI microservice publishes
the Driver object while subscribing to the Passenger
object.

E. DESIGN MICROSERVICE INFRASTRUCTURE MODEL
The Microservice Infrastructure Model defines the process-
ing power and memory capacities of the available nodes and
network connections among them.

As an example of physical resources designed to build
the Microservice Infrastructure Model, one or more nodes
can be defined to have specific parameters in which
microservices can be deployed and executed. The properties
of these nodes can be updated according to requirements. For
instance, we can create a node that has a memory capac-
ity of 1024 MB, 2048 MB, etc, 2.3 MHz frequencies, four
cores, and two processes. All nodes can be connected to
a common local network to establish a homogeneous con-
nection network for communication between nodes. It is
also possible to design a heterogeneous connection model
by defining the local area and wide area networks with
different communication performances and deploying the
nodes to different points of the network by designing nodes
with different frequency, number of cores, and memory
capacities.

The design of the metamodel is shown in Figure 9.Micro-
PhysicalResourceModel is the main class representing the
physical infrastructure of microservices architecture. Node
class represents one or more physical resources with dif-
ferent attributes. This class has two attributes: name and

powerFactor. While the name represents the identity infor-
mation of the node, powerFactor defines the processing
power of the node relative to other nodes. The Processor
class defines one or more processors of the node. In this
class, a processor unit can be created with a name, frequency,
and coreCount properties. The name represents the symbolic
name of the processor unit, coreCount allows to define the
number of cores the processor unit has, and frequency shows
the frequency of the processor in MHz. Each node can have
a different memory capacity. Thus, similar to the Processor
class, the value attribute inMemoryCapacity class defines the
memory amount of the node in MegaBytes.

In the Microservice Infrastructure Model, CustomNode-
Property class is used for the defined attributes depending on
user demand (such as disk capacity) besides the character-
istics of the processor power and memory capacity assigned
to each node. In this class, name-value pairs are represented
by name and value attributes. For example, the disk capac-
ity of a node can be defined by the name ‘‘diskCapacity’’
and the value ‘‘240GB’’. The Network class in the meta-
model is the abstract ancestor class of LocalAreaNetwork
(LAN) and WideAreaNetwork (WAN) classes. One or more
network definitions can be done in a physical infrastructure.
Since the LocalAreaNetwork is faster than theWideAreaNet-
work, the speedFactor attribute added to the WideAreaNet-
work class determines how slow the network is compared
to LAN. The LANConnection class defines the connection
of a node to a local area network, while the Router class
defines routers used to connect networks to each other.

VOLUME 9, 2021 29515



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 10. Microservice runtime execution configuration metamodel.

The LANRouterConnection class connects a local area net-
work to a router, while the RouterNetworkConnection class
connects a router to a network.

F. DESIGN MICROSERVICE RUNTIME EXECUTION
CONFIGURATION MODEL
The structural features of the system are defined by the
establishment of a Microservice Data Exchange Model,
a Microservice Definition Model, a Microservice Commu-
nication Model, and a Microservice Infrastructure Model.
In addition to these structural definitions, we also need to
know how many components will be presented in the sys-
tem, how often the data model elements of the components
are updated (update rate), and the execution costs of each
element on each target node to be able to derive deployment
alternatives. In this context, defining the runtime execution
configuration activity is an important part of the proposed
approach and it requires all the models explained in the pre-
vious sections. For example, the user can design a microser-
vice named DriverManagement to update the Vehicle object
five times per second. Depending on the processing power,
the execution cost for each DriverManagement instance can
be defined as 5 out of 10 for one node and 8 out of 10 for
another node.

The metamodel containing the elements necessary to
model the runtime execution configurations are shown
in Figure 10. Here, the MicroRuntimeExecutionModel class
is the root class of the metamodel and defines an execution
configuration. A runtime execution configuration consists of
Metadata and a group of MicroserviceInstance instances.
The Metadata class contains the name, version, creator,
and creationDate attributes that define the configuration of
execution. MicroserviceInstance represents an instance of a
microservice defined in the Microservice Definition Model.

Since the execution cost of each microservice instance on
different nodes may be different, estimatedExecutionCost
attribute has been defined in the MicroserviceInstance class.
The requiredMemory, which is another attribute of the
MicroserviceInstance class, represents the estimated amount
of memory the microservice instance needs during execution.
Similar to the execution cost, the requiredMemory attribute
can also be estimated at design time. Most probably, there
will be more than one instance of the same microservice in
an execution scenario. For example, in a taxi hailing system
there will be hundreds of taxis. The naive modeling approach
is to force the designer to add a MicroserviceInstance to the
execution model for each instance, but it is obviously not a
user friendly approach. We defined a class named MultiMi-
croserviceInstance class that has an instanceCount attribute
that defines the number of instances in the runtime execution
configuration. The designer can add one MultiMicroservi-
ceInstance class to the scenario with instanceCount set to
100 instead of adding 100 MicroserviceInstance classes one
by one.

The RelatedMicroservice relationship also represents the
relationship between a Microservice defined in the Design
Microservice Definition Model and the MicroserviceIn-
stance. The MicroserviceInstance has zero or more com-
munication classes representing the update rate. The updat-
eRate property in the communication classes represents the
number of times a microservice instance is updated in
one second.

1) ESTIMATING RUNTIME EXECUTION PARAMETERS OF
MICROSERVICES
The presented approach can be used early in the soft-
ware life cycle to determine the feasible deployment design
alternatives early on. However, the approach can also be

29516 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

adopted later in the life cycle to enhance the deployment
architecture of the system.

This also includes the later phases such as integration
and testing where the services are already developed and
their memory and CPU requirements can be measured with
high accuracy by actually running the services. Indepen-
dent of the stages in which the presented approach is used,
it is a good practice to use estimated the CPU and mem-
ory requirements of service at requirements based on the
expected workload and service characteristics. To estimate
resource requirements of the microservices before the ser-
vice is actually developed require a comprehensive analysis
including:

• The detailed use case and usage analysis based on busi-
ness analysis.

• Determination of service quality requirements by anal-
ysis of business requirements.

• The specific costs and characteristics of computing,
space, and networking.

• Past experiences obtained from the previous deployment
patterns for similar case studies.

Resource requirements of the services should be con-
tinuously measured and monitored during the development
lifecycle. Since continuously measuring and monitoring
resource usage of the services manually is not tractable in
means of effort and schedule, the measurement and mon-
itoring process should be automated and integrated into
CI/CD process as early as possible by using automated test
frameworks.

G. GENERATING INPUT PARAMETERS FOR RESOURCE
ALLOCATION ALGORITHM
The design of the application environment is completed by
defining the structural characteristics, the preparation of the
physical infrastructure environment, and execution config-
urations of the application participants as explained in the
previous sections. This section describes the allocation of
microservice instances into the designed nodes by taking
into account constraints defined in the design such as mem-
ory requirements, execution costs of microservice instances
on each node, communication costs between microservices,
and processing power. Within the scope of the study, it is
seen that this allocation problem matches the Capacitated
Task Assignment Problem (CTAP) [29] as we mentioned
before.

1) CAPACITATED TASK ASSIGNMENT PROBLEM (CTAP)
The problem of finding the feasible allocation is mentioned
in the literature as a Capacitated Task Assignment Prob-
lem (CTAP) [29]. In CTAP, there are m tasks and the
ith task requires mi unit memory. There are n non-equivalent
processors in the environment, processor p has a totalMp unit
memory and Cp unit processing capacity. The execution cost

of task i on processor p is Xip. Similarly, the total commu-
nication cost between tasks i and j is cij. When calculating
communication costs, the frequency of inter-task communi-
cation should be taken into account in addition to the size of
the transmitted data. High communication frequency between
tasks i and j will result in higher communication costs cij.
The goal of the optimization problem is to deploy tasks in
processors with minimal communication and execution costs
without exceedingmemory and processing power constraints.
The decision variable of the problem is: aip = 1, if i is
assigned to processor p, otherwise it is 0. According to this
definition, the CTAP can be expressed mathematically as an
optimization problem with binary decision variables, as seen
in the algorithm space part of Figure 11.

The adaptation of CTAP parameters extracted from design
to algorithm space is shown in Figure 11. The corresponding
CTAP parameters for the proposed approach are described as
follows: The microservices defined in Design Microservice
Definition Model correspond to task classes. Each microser-
vice instance defined in the Design Microservice Runtime
Execution Configuration Model corresponds to a task. The
instanceCount attribute of a microservice represents the num-
ber of tasks (m) for a microservice. Each node defined in
the DesignMicroservice Infrastructure Model corresponds to
a processor. The memoryCapacity attribute of each node p
defined in the Design Microservice Infrastructure Model
corresponds to the Mp memory capacity of processor p.
The powerFactor attribute of node p defined in the Design
Microservice Infrastructure Model corresponds to the pro-
cessing power of processor p. The cost attribute of Exe-
cutionCost class defined in the Design Microservice Run-
time Execution Configuration Model represents execution
cost for node p which corresponds to the cost of executing
task i on the processor p (Xip). This class is linked to the
Node class defined in the Design Microservice Infrastructure
Model to identify the costs of each microservice instance
on each Node p. The last parameter is cij that defines the
communication cost for task i and j. In our approach, the com-
munication cost is calculated by multiplying the size of the
data exchange object defined in the Design Microservice
Data Exchange Model and the updateRate of the publica-
tion defined in the Design Microservice Runtime Execution
Configuration Model. The pseudocode of the calculation
of execution costs and communication costs is detailed in
Appendix B.

The problem definition for the proposed approach is for-
mulated in Figure 12. Like CTAP definition, there are µc

microservices and µi denotes the ith service, which mi unit
memory and has ki instances in total, and µ

j
i denotes j

th

instance of i. There are Pc non-equivalent nodes (processors)
in the environment, node p has a total Mp unit memory and
Cp unit processing capacity. The execution cost of i on node
p is xip. The total communication cost between microservices
i and j is cij if they are allocated on different nodes. The
goal of the optimization problem is to deploy microservices

VOLUME 9, 2021 29517



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 11. The mapping between design and algorithm spaces for the proposed approach.

in nodes with minimal communication and execution costs
without exceedingmemory and processing power constraints.
The decision variable of the problem ajip equals 1 if µ

j
i is

assigned to node p, otherwise, it is 0.
The objective of the M mathematical model can be

explained as follows: ‘‘Assign microservices to nodes (pro-
cessors) to minimize the sum of the total execution cost and
the total communication cost. If two services are assigned
to the same node, the communication cost between them is
assumed to be zero.Whenmaking the assignments, make sure
that the total memory requirement of the services assigned to
each node does not exceed the amount of node memory and
the total processing power requirement does not exceed the
processing power of the node. This problem is known to be
NP-hard in the literature so the optimum solution cannot be
found in linear time. For this reason, different optimization
algorithms that generate feasible but not guaranteed to be best
deployment alternatives are defined to solve this problem.
With the help of these algorithms, it is aimed to deploy

microservices that have high communication costs to the
same nodes as much as possible. Within the scope of this
study, the list of the parameters mentioned above, and the
parameters used in the application environment are given
in Table 2.

Themost explicit difference of the proposed approach from
the basic CTAP problem is the definitions of microservices
and their instances. Since different numbers of instances from
a microservice can be defined, it must be expressed that
how many microservice instances for a microservice type are
defined using ki parameter. Accordingly, the execution and
communication costs of each instance µ

j
i on the node p are

calculated using the value of ajip parameter.

H. GENERATE DEPLOYMENT CONFIGURATION
After the physical resource and structural model of the system
designed, runtime execution configuration models defined,
parameters extracted and deployment model is generated

29518 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 12. The adaptation of CTAP parameters to our approach.

FIGURE 13. Design MicroDeployment metamodel.

with CTAP solvers, it is time to generate the deployment
model according to algorithm output. The CTAP solvers
generate task-processor mapping as output. In the MicroDe-
ployment metamodel, there is a one or many relationship

(1..*) between the Node (from Microservice Infrastructure
Model) and the Member class. This represents the transfer
of one or more members to one of the nodes. Moreover,
one or more microservice instances defined in the Design

VOLUME 9, 2021 29519



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

TABLE 2. Deriving CTAP adaptation parameters from the design.

Runtime Execution Configuration Model can be deployed on
a Member. The illustrated MicroDeployment metamodel is
shown in Figure 13.

VI. TOOL SUPPORT AND CASE STUDY
In this section, the Micro-IDE tool, a development environ-
ment that combines the metamodels described in the previous
sections is presented. The MicroDeployment model is devel-
oped on the Eclipse platform and allows the realization of
all the metamodels and CTAP algorithms as plugins. It also
allows for adding different optimization algorithms as plugins
without modifying the original tool.

The taxi-hailing application, inspired by Uber system [35],
is tested on the case study described in detail in Table 1. For
this purpose, all structural definitions are conducted includ-
ing the Microservice Data Exchange Model, Microservices
Definition Model, Microservice Communication Model, and
Microservice InfrastructureModel (which is assumed to have
10 heterogeneous nodes with different memory capacities
and processors). After these operations, the number of pre-
viously identified microservice instances is determined in
the Microservice Runtime Execution Configuration Model.
After all necessary model designs are made, the designer
runs the Deployment Model Generator tool and selects the
Microservice Runtime Execution Configuration Model and
the Microservice Infrastructure model. Since the Microser-
vice Runtime Execution Configuration Model refers to other

TABLE 3. Time to generate values according to microservice instances
and number of nodes using CTAP algorithm.

structural definition models (Microservice Data Exchange,
Microservice Definition, etc.), the designer is not forced
to select these models again. Additionally, the designer
selects the algorithm that will be used for generation of the
feasible deployment alternative. In this study, the genetic
algorithm proposed by Mehrabi et al. [27] is implemented
and integrated into the tool as a sample CTAP solver. After
the algorithm parameters extracted from the design and
CTAP solver is executed, results of the algorithm which
is a task-processor assignment table is used for generat-
ing the deployment design. The steps summarized above
for the feasible deployment model generation is presented
in Appendix B as a pseudocode. The main method of
the pseudocode, GENERATE_FEASIBLE_DEPLOYMENTS
met-hod uses two parameters, (1) phy_resources that
represent the Microservice Infrastructure Model and (2)
exec_config represents the Microservice Runtime Exe-
cution Configuration Model. EXTRACT_PROCESSORS
method extracts the properties of the processor specified
for each node in the Microservice Infrastructure model.
EXTRACT_TASKS method extracts the execution cost of
microservices on nodes and the cost of inter-service com-
munication obtained from the Microservice Runtime Execu-
tion Configuration Model. The outputs of these two meth-
ods are taken as a parameter in the EXECUTE_CTAP
method. According to the cost information obtained from
these methods, the assignment of microservices to pro-
cessors is recorded in the assignment_tables. Finally,
more than one deployment alternatives are generated with
the CREATE_DEPLOYMENT_MODELS method using the
parameters in the assignment_tables.

Figure 14 shows a sample deployment model generated
using this algorithm after applying the sample scenario
in Table 1. After running the algorithm, 550 microservice
instances are automatically deployed to ten nodes. The num-
ber of microservice instances is indicated in parentheses near
the name of microservices. Services not specified in paren-
theses are assigned as one.

Table 3 shows the deployment model generation times
obtained by applying the Micro-IDE tool on the nodes in a
different number of microservice instances. Experiments are
carried out on a computer that has Intel Core i7-6700HQ
CPU, 2.60 GHz, and 16 GB RAM. In this experiment,
the estimated execution cost of all microservice instances,

29520 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

FIGURE 14. Generated feasible deployment alternative including 550 microservice instances using the genetic algorithm.

the memory and communication costs required for the
operation are kept constant and the time taken for the deploy-
ment model generation is evaluated. As a result of the exper-
iments performed on different numbers of nodes and service
instances, it is seen that the generation time increases as the
number of service instances increases. However, the time
required for the generation process is often much lower than
expert judgment. Therefore, we can say that the proposed
approach generates a deployment model in a reasonable time.
When the generated deployment model is examined (see
Figure 14), the algorithm gives the priority to deploying the
service instances that are in frequent communication with
each other on the same node. For example, in the performed
scenario, two microservice instances that have the highest
communication costs are DriverManagementInstance and
PassengerManagementInstance. Therefore, the allocation of
these service instances on the same nodes decreases the

communication cost to negligible values when comparedwith
communication over the network. It is also observed that
the memory capacity of the instances assigned to the nodes
does not exceed the memory capacity of the nodes. When the
memory capacity of the node is exceeded, service instances
are deployed to other nodes. Furthermore, the total execution
cost of the microservices on the nodes is also aimed to be
minimized algorithmically.

In addition to analyzing time to generate a deployment
model, a detailed benchmark report is provided to the devel-
oper. The benchmark report includes various evaluations such
as the total communication and execution costs, the memory
utilization rates of each node, and the communication cost
between each service pair. Hereby, it enables the developer to
choose a feasible deployment alternative over the generated
deployment alternatives or to update the design to improve
resource usage.

VOLUME 9, 2021 29521



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

When analyzing the feasibility of the deployment models
two approaches can be used. The first approach is to intu-
itively examine deployment alternatives by an expert who
knows the architecture well. In this approach, the feasible
deployment alternative for the architecture is evaluated man-
ually by the expert. Most intuitive manual evaluation strategy
is that the expert checks if the frequently communicating
microservices are deployed to the same resource. From the
overall performance improvement perspective, this judgment
strategy is not so healthy since some microservices need to
be deployed to different resources even if they are frequently
communicating. Hence we need a more holistic deployment
model analysis approach, which can be achieved with tool
support. The second approach is to generate deployment
models automatically using algorithmic approaches and com-
pare deployment alternatives automatically in terms of com-
munication and execution costs and total memory capacities
of the assigned services in the nodes. Our proposed approach
and tool support provide the needed holisticmodel for the sec-
ond approach.

The communication and execution costs of each microser-
vice instance for the deployment model generated with the
genetic algorithm and manual deployment by the expert
are listed in Table 4. The communication cost refers to
the total communication cost between microservices defined
in the architecture. The size of the data exchange object
and the frequency of communication between services are
taken into account when deriving the total communica-
tion cost. The execution cost refers to the total execu-
tion cost of microservices running on the nodes. The last
column for each cost shows the improvement rate for
the results of the genetic algorithm according to expert
deployment.

When the deploymentmodel generated by the genetic algo-
rithm and the expert deployment are compared, it is seen that
the expert deployment shows relatively lower performance
in terms of communication and execution costs, as seen at
the last row of the Table 4. When the communication costs
are examined, the costs of the PaymentInstance, Notification-
Instance, and TripManagementInstance services are stated
as zero. Because a single communication cost is calculated
between two services that exchange data with each other,
this value is only shown in the service of the publisher.
For example, in the specified scenario for the case study,
TripManagementInstance service subscribes to ManageTrip
message (the object where the start and end of the trip
location are stored), while BillingInstance publishes this
message. Therefore, the cost of this data exchange is only
charged to the publisher (BillingInstance).

While some communication and execution costs of the
microservice instances using expert deployment seems to be
better than the genetic algorithm, the aim of the proposed
approach is to achieve minimum total execution and com-
munication cost of the system algorithmically. Besides the
2.06% improvement of the total execution cost, the genetic
algorithm improves the total communication cost by 1.51%.

The result of the improvement rates varies according to
the developed architecture, the case study, and the selected
CTAP solver algorithm. The aim is to obtain close or bet-
ter results to expert judgment. Furthermore, as the service
instances increase, it becomes difficult for the expert to
find feasible deployments. For this reason, the algorithmic
approach is advantageous compared to expert judgment as
it offers multiple deployment alternatives to the developer
in a shorter time. In this experiment, we used a genetic
algorithm to compare with human expert performance. Please
note that our approach and tool are both algorithms agnostic
and different CTAP solvers can be integrated into the system
hassle-free. A key future work for our study is to implement
and integrate other CTAP solver algorithms, analyze and
compare their performance for different cases in means of
performance optimization and time to generate a deployment
result.

VII. RELATED WORK
Microservice architectures contribute to the Continuous Inte-
gration and Continuous Deployment by enabling isolated
update of application services, providing a modular appli-
cation design and enabling use of diverse technology stacks
for service development. One of the main technical problems
for microservices is the allocation of microservices in limited
resources as close to optimum as possible. In addition to
this requirement, the deployment of services should be fast,
reliable, and cost-effective. The rapid, reliable, cost-effective
deployment of each service to the available resources is
reflected in the literature as one of the challenges of microser-
vice architectures.

When the studies in the literature are examined, it is seen
that a deployment approach considering the communication
parameters of microservices, memory capacities, execution
costs on nodes is not available. In [10], conducted by an
author involved in our study, a deployment approach has been
proposed for parallel and distributed systems, and tool sup-
port [9] to examine this approach has been developed. This
approach has also been implemented for Data Distribution
Service-based systems [34].

When the other tools proposed in this field are searched
in the literature, it is seen that special components and
infrastructures are used rather than algorithmic approaches.
For instance, Gabbrielli et al. [15] report that microservices
have a suitable architectural structure for the development
of distributed systems in the cloud, but due to the dynamic
nature of these services, appropriate methods are required for
their automatic deployment. In their study, they proposed a
tool called JRO written in Jolie for the automatic and opti-
mized deployment of microservices. JRO tool offers an API
to access all data related to services and platforms running
on the managed system, deploy, start, terminate and remove
services, as well as monitor resource consumption and per-
formance. While this tool reconfigures the service deploy-
ment of already developed systems on runtime, we focus

29522 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

TABLE 4. The communication and execution costs values for the algorithmic and manual approach.

on optimizing the resources and deployment of microser-
vices during the early design phase when the system is not
developed yet and the cost of change is lower. In another
study, Wan et al. [36] formulated the application deployment
problem by examiningDocker’s features, microservice-based
application requirements, and available resources in cloud
environments. Then, they proposed a framework and devel-
oped an algorithm for container placement and task assign-
ment. In the developed framework, application requests are
processed as microservices on Execution Containers (ECs).
Resource allocation and resource management for applica-
tions are performed on Microservice Controllers (MCs). The
authors design a communication-efficient framework while
performing an efficient usage of resources. However, this
framework focuses on container placement rather than
deployment of microservices and it cannot inform the
developer while designing the communication patterns of
microservices or the memory requirements of the resources
and services.

Ciuffoletti [11] provides the automatic deployment of
microservices with a machine implementing the monitoring
infrastructure. The application consists of two multi-threaded
Java applications that implement two components. The appli-
cation is implemented on the Docker hub. The contribution
of the study is defined as the identification of all steps
from the model defining the infrastructure to the machine
deploying the probes in the design of a demand-based mon-
itoring service. In the ‘‘monitoring as a service’’ methodol-
ogy proposed in this study, communication costs between
microservices during deployment are not taken into account
while only the metrics of the resources given by a container
is measured. In another study dealing with the deployment
problem of microservices, Zheng et al. [37] propose a new
platform called BigVM to separate SaaS developers from
deployments and close the gap between best practices and
real-world applications. BigVM provides SaaS developers
with microservice-focused deployment kits to enable the cre-
ation, customization, and deployment of SaaS solutions on a
multi-tier microservice-based form. Similarly, this platform
focuses only on the optimized use of resources in terms of
CPU workload and file I/O operations.

Some studies in the literature address the deployment
challenges in transitioning from monolithic architectures
to microservices and compare these architectures in terms
of deployment performance. Berger et al. [8] success-
fully implemented the Docker-based containerized software
paradigm for both software development and deployment
of the software by converting their monolith architectures
into microservices. Considering the experiences in the devel-
opment and deployment process of containerized software,
it is seen that the development of containerized software in
the automotive industry is much more successful than the
monolithic configuration due to its deployability, automation,
and traceability features. In this study, existing technologies
are used as a deployment strategy rather than proposing
an algorithmic approach and it is stated only that Docker
records have an important role in accelerating the deploy-
ment procedure in the web environment. Similarly, Singh and
Peddoju [32] deploy their proposed architecture on Docker
containers and test it using a social networking applica-
tion. The authors analyzed the difficulties that occur during
the continuous integration and deployment of microservices
and proposed an automated system that helps the deploy-
ment and continuous integration of microservices to cope
with these challenges. The experiments are compared with
the monolithic approach in terms of parameters such as
response time, throughput, and deployment time. As a result
of the experiments, the deployment with the proposed design
reduces the time and effort for the deployment and con-
tinuous integration of the microservices. At the same time,
due to the low response time and high bit flow, it has been
found that the microservice-based application outperforms
the monolithic design. In this study, rather than the opti-
mal deployment of microservices to servers, a deployment
approach has been developed to overcome the challenges
of service discovery, continuous integration, and continuous
delivery.

In another study, the process of migrating the core business
software of MGDIS SA software company from a mono-
lith to a web-based microservice application is discussed.
Gouigoux and Tamzalit [17] have emphasized three impor-
tant questions for a successful transition to the Web-oriented

VOLUME 9, 2021 29523



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

architecture during this transformation: (1) How to split
a monolith architecture into the most appropriate granular
microservices communicating via APIs, (2) How to deter-
mine the best deployment and (3) most efficient orchestration
of microservices. In the study, it is observed that the Quality
Assurance (QA) effort decreases as the granular structure
increases in the transition from monolith to microservices,
and the deployment cost increases linearly in the absence of
any automation, and asymptotically in the case of automa-
tion. In this study, no optimization has been performed to
achieve the minimum deployment cost in a microservices
architecture.

Guo et al. [20] proposed a new Cloudware PaaS platform
called CloudwareHub based on microservice architecture
and lightweight container technology. CloudwareHub is a
platform that provides users and developers with tools for
developing, testing, deploying, and executing software in
the cloud. Authors are able to deploy traditional software
that provides services to users via a browser directly on this
platform without any changes. Additionally, this platform
supports scalability, automatic deployment, disaster recovery,
and elastic configuration thanks to microservice architec-
tures. Since this platform performs automatic deployment
over existing technologies such as Docker, Docker Swarm,
etc., and does not propose a deployment generation approach
taking into account the deployment cost, it differs from our
approach.

Leitner et al. [24] introduced a graph-based approach to
model deployment costs, including computational I/O costs
during the deployment of microservice-based applications to
the public cloud. The model called CostHat supports ser-
vices that use new cloud programming paradigms such as
microservices deployed to traditional IaaS and PaaS clouds,
and AWS Lambda [4]. Based on a network model, CostHat
includes tools to alert costly code changes in the Integrated
Development Environment (IDE). The CostHat platform
does not present automatic deployment alternatives, it only
offers to developers the opportunity to evaluate the deploy-
ment cost during development of the microservice-based
applications.

VIII. CONCLUSION
Independent deployment of microservices to cloud resources
enables efficient use of resources by scaling high-demand
services. At this point, the feasible deployment of
microservices on cloud servers becomes an important
problem. In the current microservice deployment approaches,
the generation of the deployment model is performed either
by expert judgment or postponed to the deployment phase.
Although expert judgment can be sufficient up to a cer-
tain problem size, the expert needs to know the system
very well and the manual deployment process becomes
time-consuming and not tractable in large systems. Fur-
thermore, postponing the deployment model design and

evaluation negatively affects the development process and
requires returns to the design phase of the project lifecycle
to find feasible deployment alternatives. For these reasons,
we proposed an algorithmic approach to enable automated
feasible deployment of microservices to limited capacitated
resources at early design phase. To find feasible deploy-
ment alternatives, we developed a method for extracting
parameters from the design and converting the problem to
the well-known and extensively studied CTAP problem, and
generating deployment models according to outputs of the
CTAP solvers. One of the most important benefits of this
approach is the early analysis of the system design to deter-
mine feasible deployment alternatives and update the system
architecture in the design phase. Changing the deployment
model in the development or later phases instead of the
early design phase is exponentially more expensive since
this will lead to rework in the product lifecycle elements
such as architectural design, detailed design, implementation,
testing elements, and documentation. These reworks will
increase the project cost and may even lead to schedule
delays.

In order to validate and evaluate the proposed approach,
a tool environment based on the Eclipse framework is devel-
oped. Themodel allows defining the resources, microservices
to work on them, interactions among the microservices, and
runtime scenarios to define the expected service instances
and dynamic traffic among them. To illustrate the approach,
a taxi-hailing system inspired by Uber is selected as a case
study. To implement the case study, the following models are
designed: the Microservice Definition Model that defines the
microservices, the Microservice Data Exchange Model that
defines the data structures used by the services, the Microser-
vice Communication Model that identifies the communi-
cations among the microservices, the Microservice Infras-
tructure Model that defines the servers, and the Microser-
vice Runtime Execution Configuration Model that defines
microservice instances and traffic load among them. Based on
thesemodels, the parameters required for the CTAP algorithm
are extracted from the design models to generate feasible
deployment alternatives. Experimental results show that gen-
eration times of the deployment alternatives are reasonable
for evaluation at the design phase. The tool also supports
comparison and benchmarking of the generated deployment
models.

The goal of this study was to present a systematic approach
for deriving the automated deployment configuration alter-
natives using algorithmic solutions. Yet, an interesting study
would be to investigate the use and performance of the
implementation of other optimization approaches for CTAP,
such as evolutionary computation, linear programming, and
expectation-maximization algorithms. Additionally, dynamic
parameters of runtime execution environment can also be
investigated to create further approaches, which consider load
balancing of nodes, changing user demand, and network
traffic.

29524 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

VOLUME 9, 2021 29525



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

29526 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

VOLUME 9, 2021 29527



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

REFERENCES
[1] (2019). Apache Mesos. Accessed: Jul. 31, 2019. [Online]. Available:

http://mesos.apache.org/
[2] (2019). AWS. Accessed: Sep. 9, 2019. [Online]. Available: https://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
[3] (2019). AWS Fargate. Accessed: Sep. 9, 2019. [Online]. Available: https:

//aws.amazon.com/tr/fargate/faqs/
[4] (2019). AWS Lambda. Accessed: Sep. 13, 2019. [Online]. Available: https:

//aws.amazon.com/tr/lambda/
[5] (2019). AWS Lambda. Accessed: Sep. 13, 2019. [Online]. Available:

https://docs.aws.amazon.com/en_us/whitepapers/latest/microservices-on-
aws/introduction.html

[6] (2019). AWS. Accessed: Sep. 12, 2019. [Online]. Available: https:
//aws.amazon.com/tr/pub-sub-messaging/

[7] (2019). AWS. Accessed: Sep. 9, 2019. [Online]. Available: https://
docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

[8] C. Berger, B. Nguyen, and O. Benderius, ‘‘Containerized development
and microservices for self-driving vehicles: Experiences & best practices,’’
in Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017,
pp. 7–12.

[9] T. Celik and B. Tekinerdogan, ‘‘S-IDE: A tool framework for optimizing
deployment architecture of high level architecture based simulation sys-
tems,’’ J. Syst. Softw., vol. 86, pp. 2520–2541, Oct. 2013.

[10] T. Çelik, B. Tekinerdogan, and K. M. Imre, ‘‘Deriving feasible deployment
alternatives for parallel and distributed simulation systems,’’ ACM Trans.
Model. Comput. Simul., vol. 23, no. 3, pp. 1–24, Jul. 2013.

[11] A. Ciuffoletti, ‘‘Automated deployment of a microservice-based mon-
itoring infrastructure,’’ Procedia Comput. Sci., vol. 68, pp. 163–172,
Jan. 2015.

[12] (2019). Consul. Accessed: Sep. 13, 2019. [Online]. Available: https://
www.consul.io

[13] S. Daya, N. Van Duy, K. Eati, C. M. Ferreira, D. Glozic, V. Gucer,
M. Gupta, S. Joshi, V. Lampkin,M.Martins,Microservices From Theory to
Practice: Creating Applications in IBM Bluemix Using the Microservices
Approach. New York, NY, USA: IBM Redbooks, 2016. [Online]. Avail-
able: https://www.redbooks.ibm.com/redbooks/pdfs/sg248275.pdf

[14] (2019). Docker Swarm. Accessed: Jul. 31, 2019. [Online]. Available:
https://docs.docker.com/engine/swarm/

[15] M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi, ‘‘Self-
reconfiguring microservices,’’ in Theory and Practice of Formal Methods.
Cham, Switzerland: Springer, 2016, pp. 194–210.

[16] (2019). Google Kubernetes Engine. Accessed: Sep. 9, 2019. [Online].
Available: https://cloud.google.com/kubernetes-engine/

[17] J.-P. Gouigoux and D. Tamzalit, ‘‘From monolith to microservices:
Lessons learned on an industrial migration to aWeb oriented architecture,’’
in Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW), Gothenburg,
Sweden, Apr. 2017, pp. 62–65.

[18] (2019). GraphQL. Accessed: Sep. 12, 2019. [Online]. Available: https://
graphql.org/

[19] (2019). gRPC. Accessed: Sep. 12, 2019. [Online]. Available: https://
grpc.io/

[20] D. Guo, W. Wang, G. Zeng, and Z. Wei, ‘‘Microservices architecture
based cloudware deployment platform for service computing,’’ in Proc.
IEEE Symp. Service-Oriented Syst. Eng. (SOSE), Oxford, U.K., Mar. 2016,
pp. 358–363.

[21] (2019). Haproxy. Accessed: Sep. 9, 2019. [Online]. Available: http://
www.haproxy.org

[22] (2019). Jenkins Accessed: Sep. 12, 2019. [Online]. Available: https://
www.jenkins.io

[23] (2019). Kubernetes. Accessed: Jul. 31,2019. [Online]. Available: https://
kubernetes.io/

[24] P. Leitner, J. Cito, and E. Stöckli, ‘‘Modelling and managing deployment
costs of microservice-based cloud applications,’’ in Proc. 9th Int. Conf.
Utility Cloud Comput., Shanghai, China, Dec. 2016, pp. 165–174.

[25] (2019). Marathon. Accessed: Oct. 27, 2019. [Online]. Available:
https://mesosphere.github.io/marathon/

[26] (2019). T. Mauro. Accessed: Oct. 30, 2019. [Online]. Available: https://
www.nginx.com/blog/microservices-at-netflix-architectural-best-
practices

[27] A. Mehrabi, S. Mehrabi, and A. D. Mehrabi, ‘‘An adaptive genetic algo-
rithm for multiprocessor task assignment problem with limited memory,’’
in Proc. World Congr. Eng. Comput. Sci., San Francisco, CA, USA, 2009,
p. 115.

[28] M. Neppelenbroek, M. Lossek, R. Janssen, and T. de Boer. (2011). Twitter
an Architectural Review. Accessed: Nov. 4, 2019. [Online]. Available:
http://www.timdeboer.eu/paper_publishing/Twitter_An_Architectural_
Review.pdf

[29] T. Pirim, ‘‘A hybrid metaheuristic algorithm for solving capacitated task
allocation problems asmodifiedXQXproblems,’’ Ph.D. dissertation, Univ.
Mississippi, Oxford, MS, USA, 2006.

[30] (2015). E. Reinhold. Accessed: Sep. 8, 2019. [Online]. Available:
https://mesosphere.github.io/marathon/

[31] (2016). C. Richordson. Microservices From Design to Deployment,
in: NGINX. Accessed: Sep. 8, 2019. [Online]. Available: https://www.
nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx/

[32] V. Singh and S. K. Peddoju, ‘‘Container-based microservice architecture
for cloud applications,’’ in Proc. Int. Conf. Comput., Commun. Autom.
(ICCCA), Greater Noida, India, May 2017, pp. 847–852.

[33] SmartBear. (2015). Why You Can’t Talk About Microservices Without
Mentioning Netflix. Accessed: Sep. 8, 2019. [Online]. Available: https://
smartbear.com/blog/develop/why-you-cant-talk-about-microservices-
without-ment/

[34] B. Tekinerdogan, T. Çelik, and Ö. Köksal, ‘‘Generation of feasible deploy-
ment configuration alternatives for data distribution service based sys-
tems,’’ Comput. Standards Interfaces, vol. 58, pp. 126–145, May 2018.

[35] (2015). Uber. Accessed: Jul. 31, 2019. [Online]. Available: https://
www.uber.com

[36] X. Wan, X. Guan, T. Wang, G. Bai, and B. Y. Choi, ‘‘Application deploy-
ment using microservice and Docker containers: Framework and optimiza-
tion,’’ J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct. 2018.

[37] T. Zheng, Y. Zhang, X. Zheng, M. Fu, and X. Liu, ‘‘BigVM: Amulti-layer-
microservice-based platform for deploying SaaS,’’ in Proc. 5th Int. Conf.
Adv. Cloud Big Data (CBD), Aug. 2017, pp. 45–50.

[38] A. Deb. (2016).Application Delivery Service Challenges inMicroservices-
Based Applications. Accessed: Dec. 10, 2020. [Online]. Available:
http://www.thefabricnet.com/application-delivery-servicechallenges-in-
microservices-based-applications/

[39] E. Wilde and C. Pautasso. (2011). REST API Tutorial. Accessed:
Dec. 15, 2020. [Online]. Available: https://restfulapi.net/

[40] (2020). Omg, Omg-DDS. Accessed Dec. 15, 2020. [Online]. Available:
https://www.omg.org/omg-dds-portal/omgwiki

[41] Amazon. (2019). Amazon Simple Notification Service.
Accessed: Dec. 15, 2019. [Online]. Available: https://aws.amazon.
com/sns/

[42] (2019). Apache, Kafka. Accessed: Dec. 15, 2019. [Online]. Available:
https://kafka.apache.org

[43] Amazon. (2019). Amazon Simple Queue Service. Accessed: Dec. 15, 2019.
[Online]. Available: https://aws.amazon.com/tr/sqs/

[44] (2019). RabbitMQ. Accessed: Dec. 15, 2020. [Online]. Available:
https://www.rabbitmq.com/

[45] (2020). Apache, Activemq. Accessed: Dec. 15, 2020. [Online]. Available:
http://activemq.apache.org/

[46] (2020). Java, Oracle. Accessed: Dec. 15, 2019. [Online]. Available:
https://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

[47] Y. Niu, F. Liu, and Z. Li, ‘‘Load balancing across microservices,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), 2018, pp. 198–206.

[48] (2020). Ngnix. Accessed: Dec. 20, 2020. [Online]. Available: https://www.
nginx.com/blog/building-microservices-inter-process-communication//

[49] (2020). Language Guide (Proto3). Accessed: Dec. 20, 2020. [Online].
Available: https://developers.google.com/protocol-buffers/docs/proto3

ISIL KARABEY AKSAKALLI graduated from
Gazi University, in 2013. She received the M.Sc.
degree from Atatürk University, in 2015. She
is currently pursuing the Ph.D. degree with
Hacettepe University. She started to work as
a Research Assistant with Atatürk University,
in 2014. Shewas appointed as a ResearchAssistant
with Erzurum Technical University. Her research
interests include microservice architecture, opti-
mization methods, distributed systems, machine

learning, and deep learning techniques.

29528 VOLUME 9, 2021



I. K. Aksakalli et al.: Systematic Approach for Generation of Feasible Deployment Alternatives for Microservices

TURGAY CELIK received the B.S., M.Sc., and
Ph.D. degrees in computer engineering from
Hacettepe University, Turkey, in 2003, 2005, and
2013, respectively. From 2003 to 2005, he served
as a Research Assistant with Hacettepe University.
Since 2005, he has been a Lead Software Engineer
with MilSOFT Inc., Turkey. He has ten years of
professional experience in software engineering
research and software development. His research
interests include distributed systems, infrastruc-

ture and middleware technologies, modeling and simulation, software archi-
tecture modeling, model-driven software development, software design opti-
mization, and software performance profiling and optimization.

AHMET BURAK CAN (Member, IEEE) received
the B.S. and M.S. degrees in computer science and
engineering from Hacettepe University, Turkey,
and the Ph.D. degree in computer science from
Purdue University, West Lafayette, IN, USA. He is
currently affiliated with the Department of Com-
puter Engineering, Hacettepe University. His main
research interests include computer vision, dis-
tributed systems, and network security.

BEDIR TEKINERDOGAN received the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Twente, Netherlands, in 1994 and 2000,
respectively. He is currently a Full Professor and
the Chair of the Information Technology Group
with Wageningen University, The Netherlands.
He has more than 25 years of experience in soft-
ware/systems engineering. He has been active in
dozens of national and international research and
consultancy projects with various large software

companies, whereby he has worked as a Principal Researcher and leading
software/system architect. He is the author of more than 300 peer-reviewed
scientific articles.

VOLUME 9, 2021 29529


