

From Plant to Plastic: Synthesis of Renewable Polyamide-15 Building Block

<u>D. Franciolus</u>, F. van der Klis, R. Blaauw Wageningen Food & Biobased Research, Wageningen, The Netherlands

Introduction

A valuable route to obtain nitrogen-containing molecules is via the crossmetathesis of acrylonitrile with olefins.¹ Recently, the cross-metathesis of fatty acid derivatives with acrylonitrile – which has become a sustainable raw material² - has been demonstrated.³ This cross-metathesis is a key reaction for the synthesis of linear amino acid derivatives, synthesized via hydrogenation of the intermediate a,ω -unsaturated cyano-acids or -esters. These linear amino acid derivatives can be used as renewable building blocks for the synthesis of polyamides.

Fig. 2: Metathesis reaction set-up

The cross-metathesis of technical erucic acid, a fatty acid found in the *Crambe abyssinica*, and acrylonitrile was studied. Via this route, the C_{15} ω -amino acid methyl 15aminopentadecanoate is accessible (fig. 1), which is a sustainable building block for polyamide-15.⁴

Fig. 1: 15-aminopentadecanoic acid

Different reaction conditions for the cross-metathesis of methyl erucate and acrylonitrile (Scheme 1) were explored. The main objective was to synthesize the ester **3** with high selectivity.

Cross-metathesis

Table 1: Cross-metathesis of methyl erucate with acrylonitrile

Fatal ACN Catalyst Desing time Conversion Viold

	Entry	1 (mmol)	ACN (eq.)	Catalyst (mol%)	Dosing time (min)	Conversion (%)	Yield ^a 3/7
	1	0.8	2.1	1.0	30	>99	97.3/2.6
	2	7.8	2.4 ^b	1.0	60	>99	94.1/5.5
	3	15.9	2.5 ^b	1.0	90	>99	89.8 (83.3)/9.5
	4	15.8	2.5 ^b	0.5	90	99.0	87.2/11.8
	5	15.8	2	0.5	90	>99	84.0/15.1
	6	15.8	2.1	0.5	30	>99	86.1/13.1

Reaction conditions: Toluene (0.05 M solution of substrate), Grubbs-Hoveyda 2nd generation catalyst, 100°C, 30 min additional stirring after catalyst addition; a) Calculated according to GC analysis; isolated yield in parentheses. b) Reaction started with 1 equivalent of acrylonitrile present, the remaining acrylonitrile was dosed by hand in 30 min.

1	Grubbs 2 nd (1)	20	80	24	39.0/61.0
2	Grubbs 2 nd (3)	20	80	24	97.9/2.1
3	3 Grubbs 2nd (1)		140	24	98.5/1.5
4	$[RuCl_{2}(PPh_{3})_{3}](1)$	50	80	24	4/96
5	$[RuCl_{2}(PPh_{3})_{3}](3)$	50	140	24	58.5/27.8
6 ^b	[Ru(cod)methylallyl) ₂] /DPPF (1.0)	50	140	24	38.8/61.2

Reaction conditions: toluene (20 mL), *t*BuOK (10-30 mol%), catalyst, H_2 ; a) Calculated according to GC analysis with the peak areas of **9** and **10**; b) 10 mol % NH₄Cl was added

Time (min) **Fig.5:** Crude GC after hydrogenation (table 2,entry 3) 15-aminopentandecanoate

Conclusion

- Optimal conditions for metathesis reaction are in agreement with reported literature procedures
- Selectivity becomes lower upon upscaling

• Hydrogenation of a, ω -unsaturated cyano-acid can be performed using the Grubbs 2nd generation catalyst (1 mol%, 140°C, 24h)

• Methyl 15-aminopentadecanoate was succesfully isolated

Wageningen University & Research P.O. Box 17, 6700 AA Wageningen Contact: david.franciolus@wur.nl T + 31 (0)317 48 13 08 www.wur.eu/wfbr

A. J. Vernall, Aldrichimica Acta, **2003**, *36*, 93;
 J.-L. Dubois, US 20100048850, **2010**;
 C. Bruneau, Eur. J. Lipid. Sci. Technol., **2010**, *112*, 3;
 M.A.R Meier, Green Chem., **2014**, *16*, 3335.