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Abstract
Despite ongoing loss of diversity in freshwater ecosystems, and despite mitigation measures to halt
this loss, it is still not clear what ecological drivers underlies lotic biodiversity. A complicating
factor is that two of the main drivers, oxygen and temperature, are correlated, and hence studies
towards drivers of lotic diversity are confounded. Here, we undertook a systematic review,
consisting of both qualitative and quantitative analyses, to disentangle these two drivers. We
accessed two literature repositories and assessed papers for eligibility using a set of predetermined
criteria. For the qualitative part of this systematic review, we used results on patterns of taxonomic
richness and multivariate ordination analyses to expose effects of temperature and dissolved
oxygen concentration on biodiversity. For the meta-analysis, we could only use raw data of a few
papers in generalized linear models. The qualitative analysis did not show strong consistent effects
of either dissolved oxygen concentration or temperature on diversity. However, the meta-analysis
showed that taxonomic richness is positively related with dissolved oxygen concentration. Inversely
a negative correlation with temperature was found, but adding temperature to a model which
already included dissolved oxygen content did not significantly improve the model. These results
show the strength of a systematic review and meta-analysis over a conventional review without a
meta-analysis; we found no pattern with the qualitative analysis, but a strong pattern with the
quantitative analysis.

1. Introduction

Understanding the relative importance of temperat-
ure and dissolved oxygen for aquatic biodiversity is
urgent, because human activities alter the abiotic con-
ditions of aquatic systems worldwide. Many rivers
are still threatened by organic pollution in the form
of run-off fertilizers and pesticides from intensive
agriculture (Foley et al 2005, Valle et al 2015), dis-
charge from saw mills (Davies and Nelson 1994),
paper pulp factories (Karrasch et al 2006), potato
or cassava starch companies (Arimoro et al 2008),
and urban sewage (Couceiro et al 2007, Wen et al
2017). Many developed countries manage to reduce
the organic loading of freshwater systemswith extens-
ivewater treatment facilities and regulations. Further-
more, organic loading is generally low in developing

economies. Discharge into rivers is, however, less
under control in countries like China, India and
Brazil (the so-called newly-industrialized countries)
(Wen et al 2017). Apart from the loading of rivers
with organic material, the flow rates of many rivers
are slowed down because of barriers to the water
flow in the form of dams and barrages (Nilsson et al
2005), which can increase temperature (Kokavec et al
2018), decrease oxygen solubility (Verberk et al 2011),
and further lower river dilution potential of organic
pollutants (Wen et al 2017). Furthermore, climate
change may add severity to these threats (Durance
and Ormerod 2007, Allen et al 2010). To protect and
restore lotic ecosystems (i.e. actively moving fresh
water ecosystems) to the best extent, it is important
to know how oxygen concentration (which is negat-
ively affected by organic loads) andwater temperature
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(whichmay increase due to climate change) influence
macroinvertebrate biodiversity.

The effect of water temperature and oxygen con-
centration on macroinvertebrate diversity is worth
investigating, because aquatic macroinvertebrates
form a large and diverse taxonomic group of organ-
isms with widely differing ecological needs and key
roles in food webs (Rosenberg et al 1997, Rempel
et al 2000). Many aquatic invertebrates are directly
or indirectly affected by both variables and as such
of importance for monitoring the effects of both cli-
mate change and of (organic) pollution. Because they
are ectothermic organisms, the metabolism of inver-
tebrates is directly affected by temperature (Van der
Have and De Jong 1996, Have 2002, De Jong and Van
der Have 2009, Verberk et al 2011). Also, most lotic
macroinvertebrates are directly dependent on dis-
solved oxygen, as they frequently possess gills or other
underwater respiratory systems (Verberk et al 2016).
Other macroinvertebrates are not directly dependent
on this dissolved oxygen for their respiration, because
of specialized structures that allow them to breath or
store oxygen from the water surface (Lock et al 2013).
The former group would be expected to be more
affected by lower dissolved oxygen concentrations
than the latter (Lock et al 2013, Leiva et al 2019).

Dissolved oxygen concentration and water tem-
perature are two closely related variables. It is well
understood that higher water temperatures have a
lower capacity for the uptake of dissolved oxygen
(Verberk et al 2011). Dissolved oxygen concentration
is however dependent on a variety of other factors,
like: salinity, altitude, water flow, organic pollution
and oxygen consumption by aquatic organisms (Ver-
berk et al 2011). Furthermore, increased concentra-
tions of raw organic material lead to a high oxygen
demand by micro-organisms that break down these
organic materials. This, in turn, lowers the oxygen
concentration (Foley et al 2005).

Water temperature and dissolved oxygen con-
centration are often measured in studies into the
effect of various environmental variables on the biod-
iversity of lotic macroinvertebrates. However, des-
pite the great wealth of articles, clear consistent pat-
terns between temperature or dissolved oxygen and
macroinvertebrate biodiversity remain to be estab-
lished.Many researches do not find a significant effect
of either temperature or dissolved oxygen on biod-
iversity (e.g. Boon et al 2016, Reis et al 2017), whereas
others find contrasting effects. For example, it was
found that increased temperatures could reduce the
number of rarer taxa (Durance and Ormerod 2007)
and the diversity of specific functional groups such as
‘shredders’ (Salmah et al 2014). However, in another
study the number of insect orders and families was
found to be positively related to temperature (Jac-
obsen et al 1997). Results were mixed for oxygen
concentration, with biodiversity found to be highest
at high (e.g. Wittman et al 2013), intermediate (e.g.

Docile et al 2016) and even at low levels of oxygen
(e.g. Couceiro et al 2010). Also, in most statistical
models, measurements of either dissolved oxygen
or water temperature are merely treated as random
factors, without further addressing their effects (e.g.
Xu et al 2014, Valle et al 2015, Docile et al 2016). The
only review that looks at the effects of various abi-
otic variables on lotic macroinvertebrate biodiversity
is inconclusive on the effect of temperature, does
not mention dissolved oxygen, and is already over
20 years old (Vinson and Hawkins 1998). Another
review that specifically looks at the effect of dissolved
oxygen on macroinvertebrate richness points to a
positive relation between dissolved oxygen concen-
tration and macroinvertebrate richness (Verberk et al
2011). However, the four data sets that were used in
this review are all from studies performed in high alti-
tudinal ranges in the Americas, which is too limit-
ing a context to show worldwide patterns. Moreover,
to date no comprehensive and systematic literature
search has been performed.

For these reasons, we chose to perform a sys-
tematic review, including a meta-analysis, to examine
whether and to what extent water temperature and
dissolved oxygen concentration influence macroin-
vertebrate biodiversity. The quantitative part of a sys-
tematic review combines raw data of a multitude of
articles, which allows for synthesizing a combined
dataset with data on different geographical localities
and contexts.

2. Methods

2.1. Protocol
The protocol for this systematic review is based on
the PRISMA flow diagram (Moher et al 2009). All
steps are elucidated below, but a summary of steps is
presented in the decision tree (figure 1). First, (1) we
chose search terms and inclusion and exclusion cri-
teria. Thereafter, (2) we conducted an article search
and vetting of abstracts on inclusion criteria, followed
by (3) a further examination of the full-text articles
to vet for inclusion of the paper based on the full set
of inclusion and exclusion criteria. We judged papers
that made it past these first steps as ‘eligible, to be
included in the qualitative and quantitative analysis
of this systematic review’. However, (4) for the qual-
itative analysis, authors had to report effects of tem-
perature and/or dissolved oxygen concentration on
biodiversity using either taxonomic richness or mul-
tivariate ordination analyses. Also, (5) we screened
these papers for the availability of data necessary for
inclusion into the meta-analysis. Thus, certain papers
were not useful for the qualitative analysis, but we
could include them in our quantitative analysis. These
authors did not report relevant information within
the published version, but the data on which these
were based were available in a way that allowed inclu-
sion into the quantitative meta-analysis.
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Figure 1. Decision tree of this systematic review and meta-analysis. Above are the two databases with their respective search terms
and number of hits. The next step was the abstract screening, which is given with its four criteria. Thereafter, the full text
assessment with four criteria that had to be met for both the quantitative and the qualitative analysis. At the bottom, the
qualitative and quantitative analyses are given with their respective criteria.

2.2. Electronic search strategy
An iterative process of the selection of search terms
preceded the eventual decisive set of search terms. We
created search terms to include papers of greatest rel-
evance, whilst retaining both a sufficient and work-
able number of total articles. We used two databases
to garner papers (viz., Web of Science and Scopus)
to reduce bias created by selective results from either
database. We created five clusters of search terms,
which all had to be included in either the title or
abstract of the paper. These clusters were: (1) oxygen,
(2) temperature, (3) test-organism, (4) ecosystem,
(5) biodiversity. Cluster (1) was defined by the fol-
lowing two search terms: ‘oxygen∗’ and ‘O2’; cluster
(2) simply by the term ‘temperature’; cluster (3) by
‘macroinvertebrate∗’, ‘invertebrate∗’ and ‘insect∗’, but
excluding ‘insectivorous’; cluster (4) by the terms
‘river∗’, ‘lotic’, ‘stream’ and ‘waterway’; cluster (5)
had the terms ‘biodivers∗’, ‘divers∗’ and ‘communit∗’.
For Web of Science and Scopus we chose to search
for inclusion of the terms in both title, abstract and
keywords. Furthermore, in Scopus we chose to only
include ‘articles’ (excluding reviews) and to only
include articles in the English language. The exact
search terms can be found in figure 1. We accessed

both Web of Science and Scopus through the library
service of Wageningen University.

We searched these databases from 31st of July
to 2nd of August (Web of Science) and on the
3th of August (Scopus) 2019. This search resul-
ted in a total of 295 articles on Web of Science
and 220 articles on Scopus. We chose not to con-
tact any authors to identify additional studies or to
ask for supplementary material (available online at
stacks.iop.org/ERL/16/023002/mmedia), because of
unforeseeable biases as one may assume that not all
authors would react to requests. We only judged pub-
lished, peer-reviewed research articles, regardless of
journal impact factors.

2.3. Abstract screening and removal of duplicates
We evaluated the abstracts to make sure the
papers mentioned research in which samples of
(macro)invertebrates were taken to assess biodiversity
in rivers, and that also dissolved oxygen and tem-
perature were measured along with these samples.
When these four criteria—invertebrates, river, dis-
solved oxygen, temperature—were met, the article
was included in the full-text screening step (figure 1).
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We discarded any duplicate articles and took notice
of the number of duplicates (figures 1 and A1).

2.4. Judging of full texts
Our judging of the full texts of research papersmainly
hinged on the materials & methods and results sec-
tions of the papers. We avoided reading the intro-
duction and discussion sections as much as pos-
sible to steer clear of the authors’ interpretations of
their results. We judged texts for several qualitat-
ive and operational criteria, and some information
was noted. Firstly, we demanded that sampled inver-
tebrates had to come from at least three different
orders or higher taxonomic levels. In that way we
ensured that observed patterns of differences in biod-
iversity could be established on a broad taxonomic
scale. We recorded the orders (or higher taxonomic
scale, whenever applicable) of the invertebrates repor-
ted in the research. Secondly, diversity had to have
been assessed at family or lower taxonomic levels. We
recorded the taxonomical levels assessed within the
research. We made several exceptions on this rule for
certain widely accepted groups like nematodes and
oligochaetes, as these groups had often not been iden-
tified to family or lower taxonomic levels. This was
mainly due to either the absence of taxonomic keys or
the high expert knowledge necessary for these groups
(Couceiro et al 2010, Rađa and Puljas 2010, Dohet
et al 2015, Sabater et al 2016). Thirdly, at the min-
imum, diversity had to have been assessed using taxo-
nomic richness, defined as the number of taxa found
within a sample; or multivariate ordination had to
be used to assess patterns in invertebrate assemblages
and figures given. We judged this latter method as a
good method to assess diversity, as it considers both
taxonomic richness and abundance of separate taxa
(Barrantes and Sandoval 2009). Fourthly, the sample
size had to have been given and had to have been
higher than six, to ensure adequate replication in each
study. If one or more clearly defined treatments or
groups had been compared in the published study,
then each group should have had a sample size of at
least six. We also recorded minimum and maximum
temperatures as published in each selected study. Fur-
ther, we found it essential for each study that we
included in our systematic review that information on
study location (country/climate/geographic details),
research period and a clear description of the statist-
ical methods that had been used to analyse the rela-
tion between richness and temperature and/or dis-
solved oxygen were reported. We used all articles that
passed these four criteria for the qualitative analysis
of this systematic review. However, in the next step
we also judged these articles for their applicability in
the quantitative meta-analysis (figure 1).

2.5. Qualitative analysis
We qualitatively assessed the effect of dissolved oxy-
gen and temperature on biodiversity for separate

studies in two ways. Firstly, we analysed the rela-
tion between richness and dissolved oxygen and
temperature in articles that used taxonomic richness
as a measure for biodiversity. We assessed if these
studies mention correlations between the variables of
interest and taxonomic richness and classified them
based on their findings: ‘positive’ (p < 0.05), ‘neut-
ral’ (p > 0.05) and ‘negative’ (p < 0.05), or ‘not men-
tioned’.

However, taxonomic richness was regularly not
used as a measure for diversity or authors did not
elaborate on the effect of temperature or dissolved
oxygen on diversity. Therefore, we also included art-
icles in which the authors explained their results using
multivariate constrained analyses (CCA and RDA)
that combined data on taxa abundance with envir-
onmental parameters and presented biplots or trip-
lots to visualise their results. For this purpose, we
first drew a line extending the vector of a variable of
interest (temperature or dissolved oxygen). Secondly,
for CCA’s, we drew lines perpendicular to the arrow
at distances equal to component scores of 0.3 on the
ordination axis, both on the positive and the negative
side. Hereafter we classified taxa based on where they
fell in relation to the two perpendicular lines: taxa
abundant at high (outside the perpendicular lines, on
the arrow side), intermediate (inside the perpendic-
ular lines) and low (outside the perpendicular lines,
opposite of the arrow side) values of the variable of
interest. For RDA’s, we drew lines at an angle of 45◦

on both sides of the line over the vector. Within RDA
plots, correlation coefficients can be calculated using
the cosine of the angle between these vectors, thus an
angle of 45◦ equals roughly a correlation coefficient
of 0.7. Taxa that fell within those lines on either of
the side were considered as either positively or neg-
atively correlated to the variable of interest, whereas
taxa that fell outside of those lines were considered
as having no significant correlation with the variable
of interest.

Lastly, the number of species falling in the differ-
ent categories were counted per study and analysed
using chi-square tests. Diversity was considered to be
correlated to the variable of interest when the chi-
square analysis indicated significantly higher counts
of taxa correlated with either high or low values of
the variable of interest (for CCA). Diversity was also
considered to be correlated to the variable of interest
when the chi-square analysis indicated significantly
higher counts of taxa correlated either positively or
negatively with the variable (for RDA).

2.6. Quantitative meta-analysis
For the quantitative meta-analysis, we chose to only
include articles that provided raw data on temper-
ature, dissolved oxygen and taxonomic richness on
each site. This data could have been included within
the article or added as supplementary material. Taxo-
nomic richness did not have to be given as such
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but could also be supplied in the form of extens-
ive lists of the taxa found per site, or otherwise; as
long as taxonomic richness could be derived from
the data. For the meta-analysis, taxonomic richness
was considered as the number of invertebrate fam-
ilies found within the research. Whenever data was
on lower taxonomic levels, we deduced the family
level. Furthermore, we only included articles in the
quantitative meta-analysis when the broad group of
macroinvertebrates was considered, and there was
no preliminary selection on certain groups within
the research (e.g. ‘insects’, ‘crustaceans’, ‘non-insect
invertebrates’).

We used generalized linear models (GLM) with a
Poisson distribution to analyse the data. Taxonomic
richness was used as dependent variable; dissolved
oxygen (inmg l−1) and temperature (in ◦C) as quant-
itative variables; and a factor for ‘study’ as a cat-
egorical variable. We chose to add a variable for
the specific study, or whenever applicable per group
or treatment within a study, to account for context
dependent variability within different studies. Also,
we included the squares of both temperature and dis-
solved oxygen in the analyses, to test if these vari-
ables had a quadratic effect on taxonomic richness.
Lastly, we investigated the interaction between tem-
perature and oxygen. We tested all possible models
using the above-mentioned variables and gathered
corrected Akaike Information Criterion (AICc) val-
ues to find the best fitting models. We also noted
down the p-values of each applicable variable for each
model separately.

3. Results

3.1. Article search
We identified a total of 515 articles through database
searching, of which 372 were unique articles. After
judging the abstracts according to the predetermined
criteria, we excluded 180 articles, and judged 192
articles eligible for full-text assessment. From these
192 articles, we excluded 81 articles since they did
not meet the criteria. From the 111 remaining art-
icles, 27 were useable for the qualitative analysis as
they presented results in a desirable way (either using
richness or a multivariate approach for the analyses).
Another nine articles were useable for the quantit-
ative analysis, of which six were also used for the
qualitative analysis. Thus, from the grand total of
192 articles that we fully assessed, 27 were useful for
the qualitative analysis and only eight for the quant-
itative analysis. This synthesis of eligible articles is
also given in figures 1 and A1, the choice for eli-
gibility of each article that was fully judged is given
in table A1.

3.2. Geographical range
The geographical range of the 31 articles that were
used for both the qualitative and quantitative analyses

was as follows: nine in Europe, ten in South-America,
six in Asia, two in North-America, one in Oceania
and three in Africa (figure 2). From the six stud-
ies performed in Asia; one was performed in the
Middle-East, one in Tibet and the other four through-
out South-East Asia. The most northern study repor-
ted on samples taken in Scotland (viz., Boon et al
2016), whereas the three most southern studies were
sampled close to the border betweenChile andArgen-
tina (viz., Brand and Miserendino 2015, Subiza and
Brand 2018) and in New-Zealand (viz., James and
Suren 2009).

3.3. Qualitative analysis
A total of 15 articles were eligible for the qualit-
ative analysis of the effect of temperature and dis-
solved oxygen on diversity using multivariate ana-
lyses (table 1). Another 14 articles, of which two that
we also used for the former analysis, were eligible to
assess the effect of temperature and dissolved oxygen
on taxonomic richness (table 1). The results show that
diversity and dissolved oxygen concentration were
positively correlated in one out of 14 eligible articles
(only during autumn in Banagar et al 2018). All 14
articles did not show a significant correlation between
diversity and dissolved oxygen (including the other
seasons in Banagar et al 2018) (table 1). For temper-
ature, three out of 15 articles showed a negative cor-
relation (including autumn and summer in Banagar
et al 2018) and 13 articles showed no correlation at all
(including spring and winter in Banagar et al 2018)
(table 1).

Richness showed a similar pattern for both tem-
perature and oxygen; most studies did not show any
correlation. For temperature, one of the 14 studies
showed a significantly negative correlation between
richness and temperature. Two studies showed a sig-
nificantly positive correlation. Six studies showed no
correlation at all, and two studies did not comment on
a possible correlation between temperature and rich-
ness. Dissolved oxygen was positively correlated with
richness in three of the 14 studies and negatively cor-
related in another three studies. Dissolved oxygen did
not show any correlation with richness in six stud-
ies. The remaining two studies did not mention hav-
ing tested the effect of dissolved oxygen on richness
(table 1).

3.4. Quantitative analysis
Amultitude of articles describe a research set-up that
would have suited the quantitative analysis, but most
articles did not provide the necessary raw data either
within the article or as supplementary material. So,
eight articles remained for the quantitative analysis.
From these eight articles, we distinguished 12 groups:
the data from most articles were considered as one
group per article (namely, Collier et al 1998, Jacobsen
and Marín 2008, Wittman et al 2013, Xu et al 2014,
Reis et al 2017), the data from two articles was split
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Figure 2.Map with the locations of all studies that were used for either the quantitative or qualitative analyses. Dots show studies
that only sampled locally, whereas polygons indicate the sample area of studies that were performed over larger geographic scales.
Colours indicate for which part the studies were eventually used in this systematic review: papers used for the quantitative analysis
(purple), papers used exclusively for the qualitative analysis (blue). Whenever a paper was used for both the quantitative and
qualitative analyses it was included within the purple dots.

into two distinct groups recognised within the article
(viz., Docile et al 2016, Echelpoel et al 2019), and the
data of one article was split into three groups (viz.,
Boon et al 2016). Next, we considered these groups
as blocks in the generalized linear models (GLM)
and used them as qualitative factor, hereafter named
‘STUDY’.

Considering the AICc values, the best fitting
model was found to be one that solely included
(1) dissolved oxygen concentration and ‘STUDY’
(table 2). However, three other models also scored
similarly to this first model (∆AICc < 6). In all three
models the variables of model (1) were incorpor-
ated, but with the addition of one to three other vari-
ables. In order of lowest AICc value: (2) also incor-
porated the squared value of dissolved oxygen (DO2),
which on its own was not significant (P = 0.058);
(3) incorporated temperature (T) and the interaction
between dissolved oxygen concentration and temper-
ature (T∗DO), here all variables were significant pre-
dictors (P < 0.007); lastly (4) incorporated temperat-
ure without the interaction between temperature and
dissolved oxygen, here temperature was not a signi-
ficant predictor of variation in taxonomic richness.
We would however argue that the most parsimoni-
ous model is model (1) as it includes both the low-
est number of variables, whilst also having the lowest
AICc value.

4. Discussion

Our quantitative meta-analysis showed that
macroinvertebrate richness correlates weakly with

temperature and strongly with dissolved oxygen. The
qualitative analysis, on the other hand, did not show
a clear effect of either temperature or dissolved oxy-
gen on richness or biodiversity (table 1). This shows
that separate investigations might not be able to dis-
tinguish patterns that only become apparent in com-
bined data sets of studies from various geographical
contexts. Without the meta-analysis, we would not
have been able to distinguish a clear pattern between
oxygen concentration and taxonomic richness. This
systematic review also exposes the dearth of raw data,
as many authors still do not publish these. The field
of ecology should become more transparent, so that
future authors of systematic reviews will be better
able to uncover overarching ecological patterns.

The outcome of our systematic review shows that
any model without oxygen had a markedly lower
explanatory value. Adding temperature as an extra
variable can slightly enhance the explained variation,
but temperature on its own is a poor predictor of
taxonomic richness. Hence, most of the effect of tem-
perature is likely mediated through the availability
of oxygen. This is in accordance with physiological
research on aquatic macroinvertebrate heat resistance
in differentially oxygenated systems. For example,
Verberk et al (2016) found that two species of gill-
breathing mayflies could withstand higher temperat-
ures when placed in hyperoxic waters, whereas lower
temperatures were already lethal in hypoxic waters.
Furthermore, a general trend is that air-breathing
aquatic invertebrates can withstand higher temper-
atures than water-breathing invertebrates, which is
to be expected if oxygen is the main driver of
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Table 1. The effect of temperature and dissolved oxygen on diversity using results from multivariate analyses; and diversity using
correlations with richness. A ‘0’ indicates no correlation between the variable of interest (temperature or dissolved oxygen) and diversity
was found, a ‘+’ indicates that significantly more species were positively related than negatively correlated (RDA) or significantly more
species were related with higher values (CCA) or p < 0.05 (correlation with richness), a ‘−’ indicates that significantly more species were
negatively correlated than positively correlated (RDA) or significantly more species were related with lower values (CCA) or p < 0.05
(correlation with richness), ‘N/A’ indicates that effect of the variable of interest could not be deduced from the article. ‘∗’ indicates that
the variable of interest was not included into the triplot after forward selection of explanatory variables. Number of studies with either a
positive or negative response for each variable and method of deducing diversity is given at the bottom. For an explanation of the
‘correlation regions’ and the use of multivariate ordinations, see Materials & Methods—Qualitative analysis.

Correlation Temperature Correlation Dissolved O2

Study Multivariate Richness Multivariate Richness

(Subiza and Brand 2018) N/A 0 N/A 0
(Niba and Sakwe 2018) 0 N/A 0 N/A
(Kokavec et al 2018) 0 N/A 0∗ N/A
(Banagar et al 2018) (winter) 0 N/A 0 N/A
(Banagar et al 2018) (Autumn) − N/A + N/A
(Banagar et al 2018) (Summer) − N/A 0 N/A
(Banagar et al 2018) (spring) 0 N/A 0 N/A
(Fumetti et al 2017) 0 0 0∗ 0
(Krolak et al 2017) N/A + N/A −
(Reis et al 2017) N/A 0 N/A 0
(Sabater et al 2016) N/A 0 N/A N/A
(Obolewski et al 2016) 0∗ N/A 0 N/A
(Mwedzi et al 2016) 0 N/A 0 N/A
(Lehotský et al 2016) 0 N/A 0 N/A
(Docile et al 2016) − N/A 0∗ N/A
(Chase et al 2016) − N/A N/A N/A
(Boon et al 2016) 0 N/A 0 +
(Prommi and Payakka 2015) N/A 0 N/A −
(Fu et al 2015) 0 N/A 0∗ N/A
(Brand and Miserendino 2015) N/A 0 N/A N/A
(Hrovat et al 2014) 0 N/A 0 N/A
(Wittman et al 2013) N/A N/A N/A +
(Rawi et al 2013) 0 N/A 0 N/A
(Rocha et al 2012) N/A 0 N/A 0
(Früh et al 2012) 0 N/A 0 N/A
(Arimoro et al 2011) 0 N/A 0 N/A
(Couceiro et al 2010) N/A 0 N/A −
(Jacobsen and Marín 2008) N/A − N/A 0
(Jacobsen 2008) N/A + N/A 0
(Couceiro et al 2007) N/A 0 N/A +
Total positive 0 2 1 3
Total negative 4 1 0 3
Total response 18 12 17 12

survival (Leiva et al 2019). A similar pattern was
found for altitude and biodiversity (Verberk et al
2011). Verberk et al (2011) showed that altitudinal
patterns in taxonomic richness might also be due
directly to differences in oxygen concentration—
or more precisely differences in organism oxygen
availability—that are indirectly affected by altitud-
inal differences in oxygen pressure (Prins et al 2017).
In turn, macroinvertebrate richness might be pos-
itively related to dissolved oxygen concentration as
these organisms aremainly limited byminimumoxy-
gen concentrations, but not so much by a maximum
oxygen concentration that would occur in nature
(Lock et al 2013).

Given the importance of oxygen for aquatic
macroinvertebrate richness, ongoing human impact

on aquatic systems—typically leading to reduced
oxygen—is worrying. Water pollution, organic load-
ing and water flow impediments could all negatively
impact oxygen concentration (Nilsson et al 2005,
Valle et al 2015, Kokavec et al 2018), but also increase
the concentration of other solubles with negative con-
sequences for biodiversity (Wen et al 2017). Avoid-
ing (organic) water pollution through water treat-
ment, reducing organic loading and increasing water
flow in rivers might help improve oxygen availability.
Furthermore, these types of measures can be under-
taken or enforced by more local governmental bod-
ies. Measures that improve water quality could also
lead to reduction of other pollutants that might affect
biodiversity, like heavy metals, pesticides and indus-
trial effluents. Hence, we infer that rechannelling of
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Figure 3. The effect of dissolved oxygen (a) and temperature (b) on family richness. (a) Scatterplot of dissolved oxygen
concentration in mg l−1 and richness. (b) Scatterplot of temperature in ◦C and richness. Colours indicate different studies or
groups within studies.

rivers with glacial origin into subtropical rivers might
be less of a worry, like which is currently happening
in Nepal with the tunnelling through the mountains
to link the Bheri river with the Babai river; and is
being planned for several major rivers on the Tibetan
plateau. Perhaps more worrisome is the channelling
of water into irrigation systems all over the world. In
these irrigation channels there is an increased chance

that oxygen concentrations will be lowered because of
agricultural practices (Foley et al 2005).

We think that the sample sizes of separate articles
were generally not sufficient to detect strong asso-
ciations between macroinvertebrate biodiversity and
either temperature or dissolved oxygen. Articles that
were both judged eligible and presented results in a
desirable way—either using richness or multivariate

9
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analyses—were rare. This resulted in a small group of
useful articles with an even smaller set of articles that
showed some significant correlation. The trend with
these articles also seemed to be that there was a pos-
itive correlation between biodiversity and dissolved
oxygen, but no consistent pattern between temper-
ature and biodiversity seemed to exist. These results
show the advantage of the combination of systematic
review andmeta-analysis, over a conventional review;
merely looking at the results of separate studies would
not have led to new insights (Vinson and Hawkins
1998), whereas analysing data from separate studies
as one dataset did.

The eligible papers that were used for either
quantitative or qualitative analyses came from all over
the world, with every continent represented by at
least one paper. To our opinion the examined stud-
ies cover a sufficient geographic scope to account
for different altitudinal contexts. Slight biases were
apparent for South-America and Europe. Further-
more, from the map (figure 2) it becomes appar-
ent that mainly drier areas—like the Sahara and
Sahel, Middle-East, Central Asia, Central Australia,
and the Western USA and Mexico—are under-
sampled. Also, high latitude areas are under-sampled,
as we could not identify studies in Canada, Scand-
inavia or Russia that met our criteria for the sys-
tematic review. We would expect that macroin-
vertebrates in lotic ecosystems in dry areas with
high temperatures might still be mainly limited
by the markedly lower oxygen concentration in
these waters (Verberk et al 2016). However, macroin-
vertebrates inhabiting areas at high latitudes and
under extreme colds might actually be limited more
by these low temperatures. We do however like
to point out that close to zero temperatures do
not necessarily have to show reduced macroin-
vertebrate biodiversity. In their research in the
Tibetan plateau, Xu et al (2014) found a relat-
ively high taxonomic richness compared to other
studies and from their results no apparent effect
of temperature becomes apparent, whereas taxo-
nomic richness in this study does seem to follow
a positive trend for dissolved oxygen concentration
(figure 3).

Authors must have a wealth of data, but most
of it appears to be ‘sealed away’. We urge authors to
make their data more readily available, to increase
transparency within the field of ecology and to allow
for more analysis of available data. Indeed, in eco-
logical research habitually many variables are meas-
ured and a variable that is not of interest for the
researcher herself might be of interest for others
who desire to carry out a meta-analysis. A gener-
ally accessible data depository (as geneticists already
do with GenBank and movement ecologists do with

MoveBank) would improve the chances of discover-
ing patterns that help tomanage the world’s resources
better. Perhaps uploading data in the Dryad Digital
Repository (https://datadryad.org/) or a similar one
like DANS (https://dans.knaw.nl/en/about) ought to
become compulsory when a manuscript is accep-
ted for publication. Furthermore, efforts could be
made to make data available retroactively for papers
that have already been published. More readily avail-
able data would already open up a wealth of data
that can be used in more meta-analyses in the
future.

5. Conclusion

We provide evidence that in free-flowing freshwater
ecosystems reduced oxygen concentration has amajor
impact on aquatic biodiversity. In our review we also
investigated whether there is a direct effect of tem-
perature on macroinvertebrate richness. We believe
that the systematic review that we conducted points
more into the direction of a direct effect for oxygen
than for temperature, at least for low and middle lat-
itudinal ranges. Our reviewmay indicate that worries
about the temperature effects of climate change are
perhaps less justified than worries about major land
use changes that happen today (Sala et al 2000). As
such, we call on major funders of large infrastruc-
tural works that impede flow rates of rivers or increase
organic loads (like the World Bank, the Asian Devel-
opment Bank, the African Development Bank, and
the China Development Bank, etc) to increase their
vigilance against negative impacts on biodiversity of
the works they finance.
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Figure A1. Prisma 2009 flow diagram for this systematic review. Under each step of the flow diagram the number of articles is
given. No additional records were identified through other sources, hence the n= 0 underneath. The articles included in the
qualitative and quantitative analysis are not mutually exclusive, and studies in the quantitative analysis are not necessarily used in
the qualitative analysis. Adapted fromMoher et al (2009). CC BY 4.0.
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Figure A2. Visual representation of the approach to assess oxygen/temperature vs. diversity relationships using CCA (a) and RDA
(b) plots. (a) The black line illustrates the direction of the variable of interest. We grouped the plot in three plot sections,
indicated by the green lines perpendicular to the black line. Classification: taxa associated with high (green), intermediate
(yellow), and low (pink) values for the environmental variable of interest. Reproduced from Niba et al (2018). CC BY 4.0. (b) The
black line illustrates the direction of the environmental variable of interest (either temperature or oxygen). The green lines form
angles of 45◦ to the black line. The taxa that fall within these two lines on the black line side have a correlation coefficient of 0.7 or
higher with the variable of interest. Classification: positive correlation (green boxes), no correlation (yellow boxes), and negative
correlation (pink boxes). In each section we counted the number of taxa. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature. Biologia. Monitoring and Assessment of Water Quality in the Haraz River of Iran, Using
Benthic Macroinvertebrates Indices. Banagar et al. Copyright © 2018, Institute of Zoology, Slovak Academy of Sciences. (2018).
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Table A1. A table with all articles of which the full text was screened, whether it was accepted for use in either the qualitative analysis
and/or meta-analysis, and the reasoning behind exclusion if this was the case. Whenever ‘Data not available’ was given as reason for
exclusion, the research was performed in an eligible way for the meta-analysis if the data was available. The (∗)-sign means that an
article could have been useful for the meta-analysis, but data was not supplemented in the desired manner. ‘Results not presented in
desirable way’ was a broad term for articles that did not give results in such a way that they could be used for qualitative analysis, despite
that the research would have been eligible.

Article # Used for
Qualitative
Analysis

Used for
Meta-
Analysis

Reason for exclusion

(Echelpoel et al 2019) 1 No Yes Results not presented in desirable way.
(Suane et al 2019) 2 No No∗ Results not presented in desirable way. Data

not available.
(Macneil 2019) 3 No No Only two macroinvertebrate orders.
(Li et al 2019) 4 No No∗ Results not presented in desirable way. Data

not available.
(Karaouzas et al 2019) 5 No No∗ Results not presented in desirable way. Data

not available.
(Silva Tronco Johann et al 2019) 6 No No∗ Results not presented in desirable way. Data

not available.
(Jabbar and Grote 2019) 7 No No∗ Results not presented in desirable way. Data

not available.
(Ferronato et al 2019) 8 No No∗ Results not presented in desirable way. Data

not available.
(Tas-Divrik and Kirgiz 2018) 9 No No∗ Results not presented in desirable way. Data

not available.
(Subiza and Brand 2018) 10 Yes No∗ Data not available.
(Ridl et al 2018) 11 No No Only one macroinvertebrate order.
(Niba and Sakwe 2018) 12 Yes No∗ Data not available.
(Mendes et al 2018) 13 No No Only one macroinvertebrate order.
(Marshalonis and Larson 2018) 14 No No∗ Results not presented in desirable way. Data

not available.
(Li et al 2018) 15 No No∗ Results not presented in desirable way. Data

not available.
(Kokavec et al 2018) 16 Yes No∗ Data not available.
(Gunawardhana et al 2018) 17 No No∗ Results not presented in desirable way. Data

not available.
(Chessman 2018) 18 No No Water temperature not measured.
(Banagar et al 2018) 19 Yes No∗ Data not available.
(Zagarola et al 2017) 20 No No Sample size too low.
(Yao et al 2017) 21 No No Taxonomic accuracy too low.
(Fumetti et al 2017) 22 Yes No∗ Data not available.
(Vincent Nakin et al 2017) 23 No No Dissolved oxygen not measured.
(Vilenica 2017) 24 No No Only one macroinvertebrate order.
(Saulino et al 2017) 25 No No Only one macroinvertebrate order.
(Riis et al 2017) 26 No No Macroinvertebrate diversity not measured.

Sample size unclear.
(Northington and Webster 2017) 27 No No Macroinvertebrate diversity not measured.
(Sor et al 2017) 28 No No∗ Taxonomic accuracy unclear. Data not avail-

able.
(Shafie et al 2017) 29 No No Sample size too low.
(Martins et al 2017) 30 No No∗ Results not presented in desirable way. Data

not available.
(Krolak et al 2017) 31 Yes No∗ Data not available.
(Kazanci et al 2017) 32 No No Only one macroinvertebrate order.
(Jia et al 2017) 33 No No Only one macroinvertebrate order.
(García-García et al 2017) 34 No No Only one macroinvertebrate order.
(Reis et al 2017) 35 Yes Yes
(Abbaspour et al 2017) 36 No No∗ Results not presented in desirable way. Data

not available.
(Schuwirth et al 2016) 37 No No Sample size unclear.
(Sabater et al 2016) 38 Yes No∗ Data not available.
(Ríos-Pulgarín et al 2016) 39 No No∗ Results not presented in desirable way. Data

not available.
(Pardo and García 2016) 40 No No Sample size unclear.
(Pakulnicka et al 2016) 41 No No Only one macroinvertebrate order.
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Table A1. (Continued)

Article # Used for
Qualitative
Analysis

Used for
Meta-
Analysis

Reason for exclusion

(Obolewski et al 2016) 42 Yes No∗ Data not available.
(Mwedzi et al 2016) 43 Yes No∗ Data not available.
(Lehotský et al 2016) 44 Yes No∗ Data not available.
(Kelly et al 2016) 45 No No∗ Results not presented in desirable way. Data

not available.
(Fu et al 2016) 46 No No∗ Results not presented in desirable way. Data

not available.
(Edia et al 2016) 47 No No∗ Results not presented in desirable way. Data

not available.
(Docile et al 2016) 48 Yes Yes
(Crespo-Pérez et al 2016) 49 No No Only one macroinvertebrate order.
(Chase et al 2016) 50 Yes No∗ Data not available.
(Boon et al 2016) 51 Yes Yes
(Barros et al 2016) 52 No No Sample size too low.
(Valle et al 2015) 53 Yes No∗ Data not available.
(Serna et al 2015) 54 No No Only one macroinvertebrate order.
(Prommi and Payakka 2015) 55 Yes No∗ Data not available.
(Fu et al 2015) 56 Yes No∗ Data not available.
(Dohet et al 2015) 57 No No∗ Results not presented in desirable way. Data

not available.
(Dida et al 2015) 58 No No Results not presented in desirable way. Not ‘all’

macroinvertebrates measured
(Chessman 2015) 59 No No∗ Results not presented in desirable way. Data

not available.
(Brand and Miserendino 2015) 60 Yes No∗ Data not available.
(Barman and Gupta 2015) 61 No No Sample size unclear.
(Aazami et al 2015) 62 No No∗ Results not presented in desirable way. Data

not available.
(Xu et al 2014) 63 No Yes Results not presented in desirable way.
(Szlauer-Lukaszewska 2014) 64 No No Only one macroinvertebrate order.
(Salvarrey et al 2014) 65 No No Water temperature not measured. Taxonomic

accuracy unclear. Sample size unclear.
(Salmah et al 2014) 66 No No Results not presented in desirable way. Data on

DO and T not given per sample
(Sakelarieva and Varadinova 2014) 67 No No Taxonomic accuracy unclear.
(Rosa et al 2014) 68 No No Only two macroinvertebrate orders.
(Rezende et al 2014) 69 No No Taxonomic accuracy unclear.
(Rada and Santic 2014) 70 No No∗ Results not presented in desirable way. Data

not available.
(Pinto et al 2014) 71 No No Taxonomic accuracy unclear.
(Loayza-Muro et al 2014) 72 No No Only one macroinvertebrate order. Sample

size too low. Macroinvertebrate diversity not
measured.

(Knee and Encalada 2014) 73 No No∗ Results not presented in desirable way. Data
not available.

(Kilonzo et al 2014) 74 No No Water temperature not measured.
(Hrovat et al 2014) 75 Yes No Not ‘all’ macroinvertebrates measured
(Djiríeoulou et al 2014) 76 No No Only one macroinvertebrate order.
(Cunha et al 2014) 77 No No Taxonomic accuracy too low.
(Coffey et al 2014) 78 No No Sample size unclear.
(Wittman et al 2013) 79 Yes Yes
(Wahl et al 2013) 80 No No Taxonomic accuracy too low.
(Villamarín et al 2013) 81 No No∗ Results not presented in desirable way. Data

not available.
(Takhelmayum et al 2013) 82 No No Sample size unclear.
(Sternecker et al 2013) 83 No No Sample size unclear.
(Rawi et al 2013) 84 Yes No∗ Data not available.
(Lujan et al 2013) 85 No No Taxonomic accuracy unclear.
(Linares et al 2013) 86 No No∗ Results not presented in desirable way. Data

not available.
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Table A1. (Continued)

Article # Used for
Qualitative
Analysis

Used for
Meta-
Analysis

Reason for exclusion

(Capderrey et al 2013) 87 No No∗ Results not presented in desirable way. Data
not available.

(Bowles et al 2013) 88 No No Sample size too low.
(Alvarez-mieles et al 2013) 89 No No Sample size too low.
(Rocha et al 2012) 90 Yes No∗ Data not available.
(Pokorny et al 2012) 91 No No Taxonomic accuracy unclear.
(Murakami et al 2012) 92 No No Taxonomic accuracy too low.
(Mori et al 2012) 93 No No Results not presented in desirable way. Not ‘all’

macroinvertebrates measured.
(Miserendino et al 2012) 94 No No Sample size unclear.
(Khoza et al 2012) 95 No No Sample size too low.
(Früh et al 2012) 96 Yes No Not ‘all’ macroinvertebrates measured
(Arco et al 2012) 97 No No Sample size too low.
(Wesener et al 2011) 98 No No∗ Results not presented in desirable way. Data

not available.
(Simanonok et al 2011) 99 No No Sample size too low. Taxonomic accuracy too

low.
(Shin et al 2011) 100 No No Sample size too low.
(Shilla and Shilla 2011) 101 No No Sample size too low. Taxonomic accuracy too

low.
(Poquet and Mesquita-joanes 2011) 102 No No Only one macroinvertebrate order.
(Patrick and Swan 2011) 103 No No∗ Results not presented in desirable way. Data

not available.
(Davies-colley et al 2011) 104 No No Taxonomic accuracy unclear.
(Collier and Clements 2011) 105 No No Taxonomic accuracy too low.
(Bio et al 2011) 106 No No∗ Results not presented in desirable way. Data

not available.
(Arimoro et al 2011) 107 Yes No∗ Data not available.
(Wiseman et al 2010) 108 No No Taxonomic accuracy unclear.
(Rađa and Puljas 2010) 109 No No∗ Results not presented in desirable way. Data

not available.
(Orzetti et al 2010) 110 No No Sample size unclear. Taxonomic accuracy too

low.
(Miliša et al 2010) 111 No No∗ Results not presented in desirable way. Data

not available.
(Mesa 2010) 112 No No∗ Results not presented in desirable way. Data

not available.
(Lefcort et al 2010) 113 No No Taxonomic accuracy unclear.
(Couceiro et al 2010) 114 Yes No∗ Data not available.
(Comte et al 2010) 115 No No∗ Results not presented in desirable way. Data

not available.
(Al-Shami et al 2010) 116 No No Only one macroinvertebrate order.
(Schmidt et al 2009) 117 No No Taxonomic accuracy too low.
(Katano et al 2009) 118 No No∗ Results not presented in desirable way. Data

not available.
(Jonker et al 2009) 119 No No∗ Results not presented in desirable way. Data

not available.
(James and Suren 2009) 120 No No∗ Results not presented in desirable way. Data

not available.
(Ellison et al 2009) 121 No No Sample size unclear. Taxonomic accuracy too

low.
(Durance and Ormerod 2009) 122 No No∗ Results not presented in desirable way. Data

not available.
(Carter et al 2009) 123 No No∗ Results not presented in desirable way. Data

not available.
(Camara et al 2009) 124 No No Only one macroinvertebrate order.
(Bae and Park 2009) 125 No No∗ Results not presented in desirable way. Data

not available.
(Jacobsen and Marín 2008) 126 Yes Yes
(Jacobsen 2008) 127 Yes No∗ Data not available.
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Table A1. (Continued)

Article # Used for
Qualitative
Analysis

Used for
Meta-
Analysis

Reason for exclusion

(Zampella et al 2008) 128 No No∗ Results not presented in desirable way. Data
not available.

(Zaikowski et al 2008) 129 No No∗ Results not presented in desirable way. Data
not available.

(Hall and Lombardozzi 2008) 130 No No Taxonomic accuracy too low.
(Brisbois et al 2008) 131 No No Taxonomic accuracy unclear.
(Couceiro et al 2007) 132 Yes No∗ Data not available.
(Hall et al 2007) 133 No No∗ Results not presented in desirable way. Data

not available.
(Dewson et al 2007b) 134 No No∗ Results not presented in desirable way. Data

not available.
(Dewson et al 2007a) 135 No No∗ Results not presented in desirable way. Data

not available.
(Daufresne et al 2007) 136 No No∗ Results not presented in desirable way. Data

not available.
(Cooksey and Hyland 2007) 137 No No∗ Results not presented in desirable way. Data

not available.
(Collins et al 2007) 138 No No∗ Results not presented in desirable way. Data

not available.
(Carlisle et al 2007) 139 No No∗ Results not presented in desirable way. Data

not available.
(Bond et al 2007) 140 No No∗ Results not presented in desirable way. Data

not available.
(Kaller and Kelso 2006) 141 No No Sample size too low.
(Camur-Elipek et al 2006) 142 No No Taxonomic accuracy too low. Sample size too

low.
(Sylvestre and Bailey 2005) 143 No No∗ Results not presented in desirable way. Data

not available.
(Overmyer et al 2005) 144 No No Sample size too low.
(Mccreadie et al 2005) 145 No No Only one macroinvertebrate order.
(Baillie et al 2005) 146 No No Sample size too low.
(Ndaruga et al 2004) 147 No No Taxonomic accuracy too low.
(Morais et al 2004) 148 No No Sample size too low.
(Colon-Gaud et al 2004) 149 No No Taxonomic accuracy unclear. Sample size too

low.
(Wymer and Cook 2003) 150 No No Taxonomic accuracy unclear. Sample size too

low.
(Olsen and Townsend 2003) 151 No No Sample size too low.
(Jacobsen et al 2003) 152 No No Opinion paper.
(Grandjean et al 2003) 153 No No Sample size too low.
(Davis et al 2003) 154 No No Sample size too low.
(Collier and Smith 2003) 155 No No Sample size too low. Taxonomic accuracy

unclear.
(Chessman 2003) 156 No No∗ Results not presented in desirable way. Data

not available.
(Ferreira et al 2002) 157 No No∗ Results not presented in desirable way. Data

not available.
(Schleiter et al 2001) 158 No No∗ Results not presented in desirable way. Data

not available.
(Fowler and Death 2001) 159 No No Taxonomic accuracy unclear
(Angradi et al 2001) 160 No No∗ Results not presented in desirable way. Data

not available.
(Shieh and Yang 2000) 161 No No Sample size too low.
(Phiri 2000) 162 No No∗ Results not presented in desirable way. Data

not available.
(Crespin de Billy et al 2000) 163 No No Sample size too low.
(Schleiter et al 1999) 164 No No Sample size unclear. Taxonomic accuracy

unclear.
(Bachmann and Usseglio-Polatera
1999)

165 No No Sample size unclear. Taxonomic accuracy
unclear.
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Table A1. (Continued)

Article # Used for
Qualitative
Analysis

Used for
Meta-
Analysis

Reason for exclusion

(Selong and Helfrich 1998) 166 No No Taxonomic accuracy too low.
(Kefford 1998) 167 No No∗ Results not presented in desirable way. Data

not available.
(Collier et al 1998) 168 No Yes Results not presented in desirable way. Data

available.
(Camargo and Voelz 1998) 169 No No Sample size too low.
(Storey and Cowley 1997) 170 No No Sample size too low.
(Pozo et al 1997) 171 No No∗ Results not presented in desirable way. Data

not available.
(Battegazzore and Renoldi 1995) 172 No No Sample size too low.
(Camargo 1994) 173 No No Sample size too low.
(Camargo 1992) 174 No No Sample size too low.
(Boulton and Lake 1992) 175 No No Sample size too low.
(Storey et al 1991) 176 No No Sample size too low.
(Camargo and de Jalon 1990) 177 No No∗ Results not presented in desirable way. Data

not available.
(Boulton and Lake 1990) 178 No No Sample size too low.
(Tuch and Gasith 1989) 179 No No Sample size too low. Taxonomic accuracy too

low.
(Bunn et al 1986) 180 No No∗ Results not presented in desirable way. Data

not available.
(Harrel 1985) 181 No No Sample size too low. Taxonomic accuracy

unclear.
(Mayack and Waterhouse 1983) 182 No No Water temperature not measured at each site
(Rooke and Mackie 1982) 183 No No Sample size too low. Taxonomic accuracy

unclear.
(Siegried et al 1980) 184 No No∗ Results not presented in desirable way. Data

not available.
(Cook 1976) 185 No No∗ Results not presented in desirable way. Data

not available.
(Wayne Minshall 1968) 186 No No∗ Results not presented in desirable way. Data

not available.
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Kuzmanovic M, Petrovic M, Picó Y, Ponsatí L, Tornés E and
Muñoz I 2016 Shared effects of organic microcontaminants
and environmental stressors on biofilms and invertebrates in
impaired rivers Environ. Pollut. 210 303–14

Sakelarieva L and Varadinova E 2014 Water quality and ecological
state assessment of the blagoevgradska bistritsa river
(South-West Bulgaria) based on macrozoobenthos collected
by two sampling standards Biotechnol. Biotechnol. Equip. 27
3787–90

Sala O E et al 2000 Global biodiversity scenarios for the year 2100
global biodiversity scenarios for the year 2100 Science 287
1770–4

Salmah R C, Al-shami S A, Hassan A A, Madrus M R and
Huda A N 2014 Distribution of detritivores in tropical forest
streams of Peninsular Malaysia: role of temperature, canopy
cover and altitude variability Int. J. Biometeorol. 58 679–90

Salvarrey A V B, Kotzian C B, Spies M R and Braun B 2014 The
influence of natural and anthropic environmental variables
on the structure and spatial distribution along longitudinal
gradient of macroinvertebrate communities in Southern
Brazilian Streams J. Insect Sci. 14 1–23

Saulino H H, Leite-Rossi L A and Trivinho-Strixino S 2017 The
effect of small reservoirs on chironomid diversity and trait
composition in Savanna Streams: evidence for serial
discontinuity concept Hydrobiologia 793 109–19

Schleiter I M, Borchardt D, Wagner R, Dapper T, Schmidt K D,
Schmidt H H and Werner H 1999 Modelling water quality,
bioindication and population dynamics in lotic ecosystems
using neural networks Ecol. Modell. 120 271–86

Schleiter I M, Obach M, Borchardt D and Werner H 2001
Bioindication of chemical and hydromorphological habitat
characteristics with benthic macro-invertebrates based on
artificial neural networks Aquat. Ecol. 35 147–58

Schmidt S I, König-Rinke M, Kornek K, Winkelmann C,
Wetzel M A, Koop J H E and Benndorf J 2009 Finding
appropriate reference sites in large-scale aquatic field
experiments Aquat. Ecol. 43 169–79

Schuwirth N, Dietzel A and Reichert P 2016 The importance of
biotic interactions for the prediction of macroinvertebrate
communities under multiple stressors Funct. Ecol. 30 974–84

Selong J H and Helfrich L A 1998 Impacts of trout culture effluent
on water quality and biotic communities in Virginia

21

https://doi.org/10.1080/02705060.2018.1431969
https://doi.org/10.1080/02705060.2018.1431969
https://doi.org/10.1126/science.1107887
https://doi.org/10.1126/science.1107887
https://doi.org/10.1111/fwb.12898
https://doi.org/10.1111/fwb.12898
https://doi.org/10.30638/eemj.2016.139
https://doi.org/10.30638/eemj.2016.139
https://doi.org/10.1046/j.1365-2427.2003.01097.x
https://doi.org/10.1046/j.1365-2427.2003.01097.x
https://doi.org/10.1111/j.1752-1688.2009.00414.x
https://doi.org/10.1111/j.1752-1688.2009.00414.x
https://doi.org/10.1016/j.envpol.2005.02.006
https://doi.org/10.1016/j.envpol.2005.02.006
https://doi.org/10.1051/kmae/2016027
https://doi.org/10.1051/kmae/2016027
https://doi.org/10.1016/j.scitotenv.2016.05.218
https://doi.org/10.1016/j.scitotenv.2016.05.218
https://doi.org/10.1899/09-169.1
https://doi.org/10.1899/09-169.1
https://doi.org/10.2989/160859100780177677
https://doi.org/10.2989/160859100780177677
https://doi.org/10.2175/106143014X13975035526220
https://doi.org/10.2175/106143014X13975035526220
https://doi.org/10.1002/rra.1474
https://doi.org/10.1002/rra.1474
https://doi.org/10.1111/j.1365-2427.2010.02511.x
https://doi.org/10.1111/j.1365-2427.2010.02511.x
https://doi.org/10.1002/(SICI)1099-1646(199701)13:1&lt;57::AID-RRR427&gt;3.0.CO;2-W
https://doi.org/10.1002/(SICI)1099-1646(199701)13:1&lt;57::AID-RRR427&gt;3.0.CO;2-W
https://doi.org/10.1673/031.014.54
https://doi.org/10.1673/031.014.54
https://doi.org/10.5038/1827-806X.39.2.7
https://doi.org/10.5038/1827-806X.39.2.7
https://doi.org/10.1046/j.1365-2427.2000.00617.x
https://doi.org/10.1046/j.1365-2427.2000.00617.x
https://doi.org/10.1371/journal.pone.0097072
https://doi.org/10.1371/journal.pone.0097072
https://doi.org/10.1007/s00027-017-0536-1
https://doi.org/10.1007/s00027-017-0536-1
https://doi.org/10.1016/j.jaridenv.2012.04.001
https://doi.org/10.1016/j.jaridenv.2012.04.001
https://doi.org/10.1080/02705060.1982.9664060
https://doi.org/10.1080/02705060.1982.9664060
https://doi.org/10.1007/s10661-014-3965-5
https://doi.org/10.1007/s10661-014-3965-5
https://doi.org/10.1111/jfb.12885
https://doi.org/10.1111/jfb.12885
https://doi.org/10.1016/j.envpol.2016.01.037
https://doi.org/10.1016/j.envpol.2016.01.037
https://doi.org/10.5504/BBEQ.2013.0019
https://doi.org/10.5504/BBEQ.2013.0019
https://doi.org/10.1126/science.287.5459.1770
https://doi.org/10.1126/science.287.5459.1770
https://doi.org/10.1007/s00484-013-0648-9
https://doi.org/10.1007/s00484-013-0648-9
https://doi.org/10.1673/031.014.13
https://doi.org/10.1673/031.014.13
https://doi.org/10.1007/s10750-016-3013-2
https://doi.org/10.1007/s10750-016-3013-2
https://doi.org/10.1016/S0304-3800(99)00108-8
https://doi.org/10.1016/S0304-3800(99)00108-8
https://doi.org/10.1023/A:1011433529239
https://doi.org/10.1023/A:1011433529239
https://doi.org/10.1007/s10452-007-9155-6
https://doi.org/10.1007/s10452-007-9155-6
https://doi.org/10.1111/1365-2435.12605
https://doi.org/10.1111/1365-2435.12605


Environ. Res. Lett. 16 (2021) 023002 L Croijmans et al

headwater streams Progress. Fish-Culturist
60 247–62

Serna D J, Tamaris-Turizo C E and Gutíerrez Moreno L C 2015
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