
1. Introduction
Shallow cumulus clouds are the most abundant cloud type over the tropical oceans (Johnson et al., 1999), 
but result from many interacting processes and scales. This combination makes them the most uncer-
tain aspect of how clouds will feed back onto a warming climate (e.g., Bony & Dufresne, 2005; Schneider 
et al., 2017). Several mechanisms that govern this feedback have recently been uncovered (Bretherton, 2015; 
Klein et al., 2017; Rieck et al., 2012). However, the origins and sensitivity of the rich spectrum of spatial pat-
terns exhibited by shallow cloud fields has remained rather unexplored (Nuijens & Siebesma, 2019). Such 
spatial patterns alter precipitation distributions in cloud resolving simulations of deep convection in warm-
er conditions (Muller & Held, 2012; Tobin et al., 2012). Recent research indicates that spatial patterning may 
influence the low cloud climate feedback too (Bony et al., 2020). Establishing this effect and its underlying 
physics are therefore important research objectives.

The first step of such research is to classify or quantitatively measure any characteristic of the horizontal di-
mension of a shallow cloud field. Two comprehensive, complementing approaches were recently proposed: 
Expert visual inspection, which returns subjective, but interpretable classes of patterns (Stevens et al., 2019) 
and unsupervised machine learning, which is challenging to interpret, but gives more objectively inferred 
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pattern measures (Denby, 2020). A third, more traditional approach is to compute one or more human-de-
fined metrics; these are both interpretable and objective and are therefore considered in this paper.

Cloud patterns are often associated with a quantity called “organization.” This term has consequently tak-
en on numerous interpretations. It is often synonymous with “aggregation” in studies of deep convection 
(Holloway et al., 2017; Tobin et al., 2012; White et al., 2018), sometimes characterized as the regular, random 
or clustered structure of nearest-neighbor distances of cloud objects (Seifert & Heus, 2013; Tompkins & 
Semie, 2017; Weger et al., 1992), or connected to cloud scale (Bony et al., 2020; Neggers et al., 2019). How-
ever, cloud field organization has also been defined by metrics of fractal analysis (Cahalan & Joseph, 1989), 
directional alignment (Brune et al., 2018), subcritical percolation (Windmiller, 2017), or spatial variance (de 
Roode et al., 2004; Wood & Hartmann, 2006). While this makes it difficult to objectively define and discuss 
organization, all these interpretations share the same aim: Quantifying cloud patterns. Hence, this diversity 
can potentially also be harnessed to distinguish between different patterns.

The aim of this study is therefore to systematically extract the independent information encapsulated by the 
set of metrics associated with “cloud field organization” in literature, and to use this information to describe 
and interpret cloud patterns as effectively as possible. We first compute 21 diverse metrics for 5,000 satel-
lite observations of mesoscale cloud fields in the trades and synthesize these in a multivariate distribution 
(Section 2). Next, we show that the metrics vary primarily along four Principal Components (PCs), allowing 
drastic dimensionality reduction (Section 3.1). Analysis of these main PCs results in a pattern description 
that is remarkably effective, in addition to being objective and interpretable (Section 3.2). We then highlight 
several approaches to approximate the PCs that balance the description’s complexity and accuracy (Sec-
tion 3.3). Finally, we demonstrate and discuss our description’s ability to characterize previously diagnosed 
and novel pattern regimes (Section 3.4), before concluding (Section 4).

2. Constructing a Cloud Pattern Distribution
2.1. Data

Following Stevens et al. (2019) and Bony et al. (2020), we concentrate on shallow, subtropical clouds in the 
North Atlantic Ocean east of Barbados (20°–30°N, 48°–58°W), which are representative for the entire trades 
(Medeiros & Nuijens, 2016). Our cloud fields stem from the MODIS instrument borne by NASA’s Aqua and 
Terra satellites. Specifically, we sample daytime overpasses during December–May 2002–2020 and directly 
use the level 2 cloud water path (CWP), cloud top height (CTH), and cloud mask products at 1 km resolu-
tion (Platnick et al., 2015) as basis for our metrics. By comparing the multivariate metric data set to a corre-
sponding data set constructed using coarse-grained cloud products (Loudin & Miettinen, 2003), Figure S1 
verifies that our results are not overly sensitive to instrument resolution. We only interpret pixels classified 
as “confidently cloudy” by the cloud mask algorithm as cloud.

Our data points are scenes of cloud fields, which are 512 × 512 km subsets sampled within the 10° × 10° 
observation region. To boost the size of our data set, scenes are allowed to overlap 256 km. We attempt to 
minimize the impact of errors and biases in remotely sensed cloud products by rejecting scenes with (i) high 
clouds such as cirrus, if more than 20% of the clouds' tops lie above 5 km, (ii) overly large sensor zenith 
angle, if this angle exceeds 45°, following, for example, Wood and Field  (2011) and (iii) sunlight errors, 
manually excluding scenes where these are visually found to influence the cloud mask. A set of 5,004 scenes 
remains.

2.2. Metrics and Dimensionality Reduction

To appropriately capture the body of existing organization metrics, we require them to meet either of the 
following two criteria: (i) Are they perceived to capture a unique aspect of the patterns? or (ii) do they 
frequently recur or recently first appear in literature? Additionally, they must be easy to interpret. This 
procedure (see Table S1 for details) diagnoses 21 metrics, which broadly divide into three methodological 
categories: Statistical moments of physical cloud field properties, object-based metrics, and attributes of 
scale decompositions. The metrics are briefly introduced below, visually presented in Figure 1 and further 
detailed in Text S1.
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Figure 1. Visualization of scenes ordered by metrics derived from three methodological categories (text color), sampled at linear intervals. Bright backgrounds 
stem from sunlight, which is accounted for in metric computations.
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Statistical moments of cloud field properties comprise measures of typical cloud mass and area: The cloud 
mask's coverage fraction (cloud fraction), the CWP's scene integral (cloud water) and standard deviation 
(σ(CWP)) and the variance ratio for “mesoscale aggregation” of moisture proposed by Bretherton and Blos-
sey (2017) (CWP var. ratio), here applied only to cloud water. Furthermore, this class contains measures 
of the clouds’ vertical extent: The mean and standard deviation of cloud top height (CTH and σ(CTH) 
respectively).

Object-based metrics measure size, shape, and relative positioning of individual cloud segments, which 
are identified from cloud mask fields by connecting cloudy pixels that neighbor each other vertically 
and horizontally (4-connectivity labeling). To avoid artifacts at the resolution scale, objects of a smaller 
dimension than four times the instrument resolution are ignored. Our results are not sensitive to the 
chosen connectivity scheme or minimum object size (Figure S1). The resulting metrics further divide 
into two categories: Scene statistics of individual object properties and measures of the spatial distribu-
tion of the objects. The first category includes the mean and maximum object length (mean length, max 
length), the number of objects (cloud number) and the mean object perimeter (perimeter); the second 
comprises the Simple Convective Aggregation Index (SCAI) (Tobin et  al.,  2012), Convective Organi-
zation Potential (COP) (White et al., 2018), the peak of the average radial distribution function (Rasp 
et al., 2018) (max RDF), the degree variance (degree var) of the cloud objects’ nearest-neighbor network 
representation (Glassmeier & Feingold,  2017) and the Organization Index (Iorg) (Weger et  al.,  1992), 
of which we include two versions. The first, most commonly applied form, compares the cloud field 
Nearest-Neighbor Cumulative Density Function (NNCDF) to a Weibull distribution. The second variant 
( *

orgI ) compares it to an NNCDF that accounts for object size and therefore is less likely to erroneously 
predict regularity in the cloud fields (Benner & Curry, 1998). This metric is similar to that introduced 
by Pscheidt et al. (2019).

We compute four metrics from scale decompositions: The size exponent of the cloud object size distribution 
modeled as a power law (size exponent), the box-counting dimension of cloud boundaries in the cloud mask 
field (fractal dim.), the spectral length scale as defined by Jonker et al. (1999) and the deviation of variance 
from the mean in the horizontal, vertical or diagonal orientations of the cloud water field’s stationary wave-
let spectrum (WOI3) (Brune et al., 2018). In this paper, we use these metrics as discriminators between indi-
vidual cloud fields, not to measure their cumulative scaling properties. Finally, we introduce a novel metric: 
A scene’s largest, rectangular, contiguous cloud-free area (clear sky), as a simple measure of lacunarity, the 
degree to which continuous areas without clouds dominate a scene.

We describe patterns as a linear combination of the computed metrics. To weight each metric equally, we 
first standardize them by setting their mean to zero and variance to one. Since many metrics in Figure 1 
strongly correlate (see Figure S2), we conduct a Principal Component Analysis (PCA, e.g., Abdi & Wil-
liams,  2010). This transforms the metrics to an orthogonal basis whose components (principal compo-
nents—PCs) explain the maximum variance in the data set. If a small number of PCs (orthogonal dimen-
sions) can accurately capture the metric set’s variance, these form an effective pattern description.

3. Describing Patterns
3.1. A Four-Dimensional Pattern Distribution

Figure 2 shows uni- and bivariate kernel density estimates on planes spanned by the first four PCs of the 
distribution of metric values, annotated with the fractional variance of the data set explained by each PC 
(explained variance ratio—EVR). It reveals that multiple PCs (dimensions) are needed to capture the mul-
tivariate distribution’s cumulative EVR (CEVR) appropriately. However, the first PC is by far the most in-
fluential (EVR = 0.49—widest distribution). Furthermore, the CEVR of the first two PCs already rises to 
0.66, while including 3 and 4 of the 21 original dimensions explains 75% and 82% of the data set’s variance, 
respectively. After the fourth PC, EVR quickly deflates to 0.04, 0.03, 0.03, 0.02, 0.02 for PCs 5–9, dropping 
below 0.01 after the tenth PC (Figure S3). These statistics show that four PCs effectively capture the infor-
mation in all 21 metrics. Therefore, we reduce our 21-dimensional metric set to four PCs.
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Of course, truncating the PCA after precisely four components remains somewhat arbitrary. Yet, this 
choice strikes a useful balance between including enough dimensions to effectively describe patterns and 
sufficiently few dimensions to interpret them. This claim is visually supported by Figures 3a and 3b: Combi-
nations of PC1 and PC2 (Figure 3a) consistently and coherently position visually similar (different) scenes 
close to (far from) each other. PC3 and PC4 (Figure 3b) distinguish between additional, independent charac-
teristics of the scenes. Finally, Figure S4 shows that a four PC model respects the fundamental expectation 
that scenes with overlapping information should be translated to similar positions in PC space. Hence, 
linear combinations of four PCs form an effective pattern description.
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Figure 2. Univariate (diagonal, density on y-axis) and bivariate (off-diagonal, density in color) Gaussian kernel density estimates of the first four principal 
components (PCs) of the pattern distribution. The annotations EVR and CEVR denote the individual and cumulative explained variance ratio of each PC, 
respectively. Bandwidths for the Gaussian kernels are computed using Scott’s rule (Scott, 1992). EVR, explained variance ratio; CEVR, cumulative explained 
variance ratio.
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3.2. An Interpretable Pattern Description

Our four-dimensional pattern description is not only effective; by relating the PCs to their underpinning 
metrics, it can also be interpreted. This interpretation is facilitated by Figures 3c and 3d, which show nor-
malized metric values (filled contours) and mean gradients (arrows) of metrics that predominantly vary in 
the planes depicted in Figures 3a and 3b, respectively. To further aid the interpretation, we identify “mean-
ingful directions” (arrows in Figures 3a and 3b), by manually grouping similarly varying metrics and com-
puting their mean gradient. Using these meaningful directions, we name the PCs and relate them to several 
common interpretations of organization.

Strikingly, 17/21 metrics mainly describe variations in the first two PCs (Figure 3c, see also Figure S3). 
These metrics derive from all three methodological categories (statistical moments, object metrics and scale 
decomposition metrics) and have a rather continuous spectrum of orientations, such that remarkably many 
meaningful directions can be used to interpret Figure 3a:
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Figure 3. Top: Images of scenes projected onto planes spanned by the first and second (a) and third and fourth (b) PCs of the metric distribution, overlaid by 
arrows oriented along the mean gradient of several metric groups (see main text). Bottom: Filled contours of standardized metric values that have in excess of 
50% of their variance explained by the first (c) and second (d) plane, constructed by piecewise linear barycentric interpolation and overlaid by an arrow with 
direction and length set by each metric’s in-plane mean gradient orientation and magnitude.
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1.  Coverage (arrow in Figure 3a represents the mean gradient of cloud fraction, max length, and cloud 
water)

2.  Space filling (fractal dim., *
orgI )

3.  Characteristic length (spectral length scale, size exponent, mean length)
4.  Void size (clear sky)
5.  Aggregation or clustering (Iorg, SCAI, cloud number, max RDF), as commonly associated with deep con-

vective organization (Tobin et al., 2012; Tompkins & Semie, 2017)

We adopt the two meaningful directions that best align with the PCs as names for our pattern description’s 
first two dimensions: Characteristic length and void size. We find it both intuitive and beautiful that these 
two dimensions, which respectively measure the typical scale of clouds and the complementary clear sky 
space between them, naturally emerge from our approach.

Linear combinations of the first two PCs can construct different meaningful directions. For instance, clus-
tering/aggregation differs only subtly from characteristic length, assigning slightly more importance to 
voids between cloud clusters. Space filling weights voids even more heavily. Finally, coverage distinguishes 
itself from void size by assigning marginally more importance to characteristic length. Hence, the same 
aspects of the patterns in Figure 3a can be described with different pairs of meaningful directions.

Several such pairs are already indirectly recognized as central traits of “organization.” For instance, Seifert 
and Heus (2013) suggest that both a spectral length scale (characteristic length) and Iorg (clustering) may 
be needed to discriminate between various modes of organization; Neggers et al. (2019) identify organiza-
tion as a combination of maximum cloud size (coverage) and typical nearest-neighbor distances between 
smaller clouds (space filling); chapter 5 of van Laar (2019) distinguishes “cloud field characteristics” (cloud 
fraction, maximum cloud size—coverage) from “organization parameters” (Iorg, SCAI, COP—clustering) 
and Bony et al. (2020) span their 2D description of organization with mean length (characteristic length) 
and Iorg (clustering). With so many valid interpretations of “organization,” a consistent understanding of the 
term predicates on an awareness of how the various interpretations relate. The arrows in Figure 3a provide 
exactly these relationships, and can therefore advance such understanding.

Our four-dimensional pattern description also goes beyond the common, two-dimensional interpretations 
of organization. Figure 3d shows that PC3 quantifies variations in the degree to which clouds are direction-
ally aligned (WOI3), a characteristic that strongly correlates to the cloud water variance in a scene’s largest 
scales (CWP var ratio). PC4 distinguishes between scenes with different horizontal variance of vertical 
cloud development (σ(CTH)). Hence, variations in PC3 and PC4 can be understood as combinations of 
directional alignment and cloud top height variance.

In conclusion, the 4 PCs of our cloud pattern description have meaningful interpretations: Characteristic 
length, void size, directional alignment and cloud top height variance. In combination with the description’s 
effectiveness, this leads us to recommend using the PCs of a large metric set to describe cloud patterns.

3.3. Metric Subset Approximations

While we need only a few metrics to interpret our four PCs, computing them still requires a full loading 
matrix, with input from all metrics. Since one may not always want to compute as many metrics as we 
do here, this section investigates how well one can approximate our original PCs with a smaller subset of 
contributing metrics. Unfortunately, techniques which optimize a cost function that explicitly balances 
the accuracy of the approximate PCs with how many metrics contribute to them, such as sparse PCA (Zou 
et al., 2006), prove unable to robustly indicate metric subsets (see Figure S5). Hence, it is not obvious that a 
clearly optimal metric subset exists.

One practical way to compose a subset nonetheless is to choose one metric that most closely correlates to 
each PC (Cadima & Jolliffe, 1995). This approach (see Figure S3) selects spectral length scale, clear sky, 
WOI3 and σ(CTH) (CEVR = 0.59, computed using the approach from Zou et al., (2006)) and is a reasonable 
approximation of the four PCs (CEVR = 0.82). If one’s primary interest is in the first two dimensions of 
the pattern distribution, several roughly orthogonal metric pairs competently estimate the plane in Fig-
ure 3a. Examples include spectral length scale and clear sky (CEVR = 0.31), cloud fraction and fractal dim. 
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(CEVR = 0.31) or perimeter and *
orgI  (CEVR = 0.30). All three pairs sacrifice explained variance compared 

to two PCs (CEVR = 0.66). Yet, they capture far more information than various metric combinations con-
sidered in literature, for example, mean length and Iorg (Bony et al., 2020, CEVR = 0.18), Iorg and fractal dim. 
(Denby, 2020, CEVR = 0.20), spectral length scale and Iorg (Seifert & Heus, 2013, CEVR = 0.19) or Iorg, SCAI, 
COP, and max RDF (van Laar, 2019, CEVR = 0.26). Using the metric subsets identified here can therefore 
already promote the orthogonality, variance capture and ultimately the effectiveness of subset approxima-
tions, even if they remain substantially less expressive than our four PCs.

3.4. Regimes of Patterns

Asking how many dimensions cloud patterns possess, is not equal to asking how many fundamental types 
of cloud patterns exist. Dividing clouds into distinct classes (e.g., cumulus or cirrus) is a classical approach, 
which recently inspired efforts to also classify shallow cloud patterns, using both the human eye (Stevens 
et al., 2019) and metrics (Bony et al., 2020). We search for these classes (“sugar,” “gravel,” “fish,” and “flow-
ers”) in our four-dimensional pattern description by segmenting it into k-means clusters (Figure 4). When 
we set k = 7, four of these clusters roughly match the proposed classes, as indicated by the lettered labels 
in Figure 4a.

Scenes arguably dominated by “sugar” and “gravel” reside in clusters 5 (brown) and 3 (maroon). These 
patterns should, in the terminology from Section 3.2, be understood as small-scale with rather small voids 
(or disaggregated/unclustered); “gravel” distinguishes itself through its higher cloud top height variance 
and low directional alignment (see also left side of Figure 3b). Cluster 1 (navy) comprises i.a. “fish,” which 
share gravel’s void size, but have larger characteristic lengths, cloud top height variance and directional 
alignment. Finally, one may see “flowers” in cluster 7 (blue), as large-scale, aggregated structures with little 
directional alignment and low cloud top height variance.
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Figure 4. Seven regimes of the 4D pattern description, identified as k-means clusters of different color:(a) Scenes scattered over planes defined by the first 
four PCs, each normalized to unit variance, named using the convention from Section 3.2. Pluses and crosses indicate the distribution’s mean and mode, 
respectively. S, G, Fi, and Fl suggest typical locations for the “sugar,” “gravel,” “fish” and “flowers” patterns diagnosed by Stevens et al. (2019), in the two planes 
shown in Figure 3, determined by eye. Figure (b) shows seven examples of scenes in each regime.
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The fact that sugar, gravel, fish, and flowers occupy different regimes of our systematically constructed dis-
tribution is encouragingly consistent with human pattern classification (Stevens et al., 2019) and solidifies 
Bony et al. (2020)’s conclusion that these patterns can be objectively identified. However, even in an unreal-
istic scenario where all scenes in the four clusters discussed in the previous paragraph could unambiguously 
be labeled sugar, gravel, fish, or flowers, they would contain only 52% of the observations in our data set. 
Figure 4 indicates several other regimes that differ in important regards. For instance, many scenes possess 
vast voids (cluster 6, sea green). In this regime, clouds likely affect the region’s climate much less than sugar, 
gravel, fish or flowers, which all have higher cloud cover. Comprehensive analyses of the climate sensitivity 
of cloud patterns should consider this and other different regimes too.

In fact, pattern classification is itself an approximation. The pattern distribution is unimodal and continu-
ous (Figure 2), and therefore does not inherently possess multiple “classes,” “clusters,” or “modes.” Break-
ing the continuum into four classes or seven clusters is thus rather arbitrary and neglects subtly different 
patterns within a cluster. For instance, the band-like subregime at high directional alignment in Figure 3b 
falls within cluster 4 (peach) in Figure 4, even if this subregime is visually distinct from all displayed scenes 
in cluster 4. To capture such subtleties, we recommend shifting focus from regimes, classes or clusters of 
patterns to a more fitting, continuous representation.

Finally, many of the human-identified patterns (sugar, flowers) appear on our distribution’s extremes (see 
also Figures 3a and 3b). While this may explain why they are most easily distinguished by humans, they lie 
far from the distribution’s statistical mean and mode (indicated by pluses and crosses respectively in Fig-
ure 4a) and are thus not typical. Instead, the modal pattern tends toward intermediate characteristic scales 
and voids, which are characteristics of scenes with shallow, cold-pool dominated convection (clusters 3, 5) 
or clouds of a wide range of scales (cluster 4); this space may be most relevant to the climatology of patterns.

4. Conclusion and Outlook
Research on the climate feedback of patterns in shallow trade-wind cloud fields requires a consistently 
understood description of those patterns. In this study, we have systematically developed such a description 
for square, 500 km2 satellite-observed cloud fields east of Barbados. By projecting one new and 20 previously 
developed organization metrics onto a set of PCs, we show that cloud patterns can be effectively described 
as a four-dimensional, linear combination of characteristic length, void size, directional alignment and 
cloud top height variance. This description is objective and interpretable, in contrast to direct unsupervised 
machine learning (objective, not usually interpretable) or human pattern identification (interpretable, not 
objective). It also demonstrates that patterns follow a continuous, unimodal distribution without distinct 
classes and that visually striking patterns are extreme, rather than typical. Future studies of the physics 
behind and climate impact of shallow cloud patterns can therefore rely either on our PCs or, if accuracy is 
less important, on metrics that correlate closely to them.

The effectiveness of our approach may well extend to descriptions of deep convective organization. Many 
relationships between our metrics are consistent with those found for deep convective cloud fields (Brueck 
et al., 2020; Rempel et al., 2017), suggesting that an effective, low-dimensional description of deep convec-
tive organization is attainable. Our pattern description could also be used for forecast verification (Jolliffe 
& Stephenson, 2012), using the pattern distribution’s dimensions as matching criteria between model and 
observation in similar fashion to, for example, the criteria developed by Wernli et al. (2008). In turn, the 
forecast verification community may offer useful insights to descriptions of cloud patterns.

Finally, our approach can itself be refined in several regards. First, using predefined metrics to describe 
patterns leaves potentially undiscovered information from the description. Therefore, it may be fruitful to 
compare our approach to fully unsupervised machine learning (e.g., Denby, 2020). However, the complete-
ness of a pattern description should ideally be assessed in terms of how fully the underlying processes are 
separated. This requires process-resolving numerical simulations and/or temporally evolving observations, 
which link the evolution of a pattern to that of the atmospheric state. Next, our conclusions are tied to our 
observation scales (1–500 km), meaning that we may inadequately capture this scale window’s extremes 
and cannot capture pattern formation processes on much larger scales. Furthermore, we treat this scale 
window in an integral sense and ignore patterns that appear on one scale, but may be canceled by another 
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(Nair et al., 1998). Hence, a further refinement could be to consider pattern distributions on a per-scale 
basis. Lastly, some subjectivity will likely remain in how different researchers interpret “organization.” This 
attests the richness of the underlying patterns, which we hope remains appreciated.

Data Availability Statement
The Aqua and Terra MODIS Clouds 5-Min L2 Swath 1 km products, which contain the cloud mask, cloud 
water path, and cloud top height products used in this study, were extracted from NASA’s Level-1 and 
Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) (http://
dx.doi.org/10.5067/MODIS/MYD06_L2.061; http://dx.doi.org/10.5067/MODIS/MOD06_L2.061). All 
download, preprocessing, metric computation and analysis was done using Python and its Numpy (van 
der Walt et al., 2011), Pandas (McKinney, 2010) and Scipy (Virtanen et al., 2020) libraries. Field processing 
and segmentation is done with Scikit Image (van der Walt et al.,  2014), PCA and clustering with Scikit 
Learn (Pedregosa et al., 2011), sparse PCA with Ristretto (Erichson et al., 2020) and plots with Matplotlib 
(Hunter, 2007) and Seaborn (Waskom & the seaborn development team, 2020). The integrated code, along 
with detailed instructions on how to run it, are available in a living GitHub repository (https://github.com/
martinjanssens/cloudmetrics). The code’s frozen image at the time of submission can be found at https://
doi.org/10.6084/m9.figshare.12687731.v1; the metric dataset it produced for this study is stored at https://
doi.org/10.6084/m9.figshare.12687302.v1.
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