
A COMMON, OPEN SOURCE INTERFACE

BETWEEN EARTH OBSERVATION DATA

INFRASTRUCTURES AND FRONT-END

APPLICATIONS

Deliverable 07
Version 1.0 from 2018/03/27

Proof of Concept (Python)

D07: Proof of Concept

Change history

Issue Date Author(s) Description
0.1 2018/03/07 Jeroen Dries,

VITO
First draft

0.2 2018/03/14 Dainius Masiliu-
nas, WUR

First general review

0.3 2018/03/16 Jeroen Dries,
VITO

Updated draft

0.4 2018/03/22 Dainius Masiliu-
nas, WUR

Review

1.0 2018/03/27 Matthias
Schramm,
TU Wien

Final review and creation of final version

For any clarifications please contact openEO@list.tuwien.ac.at.

Number of pages: 12

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 776242. Any dissemination of results
reflects only the author’s view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© openEO Consortium, 2018

This deliverable contains original unpublished work except where clearly indicated other-
wise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

openEO
Grant agreement No 776242 Page 2 of 12

mailto:openEO@list.tuwien.ac.at

D07: Proof of Concept

Table of Contents

1 Executive Summary 5

2 openEO Proof Of Concept: Compositing 5
2.1 Plotting the result . 6
2.2 Retrieving a time-series for a point . 7

3 API docs 8
3.1 Main Interface . 9

4 References 12

openEO
Grant agreement No 776242 Page 3 of 12

D07: Proof of Concept

List of Acronyms

API Application Programming Interface

EO Earth Observation

NDVI Normalized Difference Vegetation Index

openEO
Grant agreement No 776242 Page 4 of 12

D07: Proof of Concept

1 Executive Summary

This proof of concept is provided in the form of a Jupyter notebook [1]. This notebook demon-
strates how a user can interact with an openEO back-end, using a Python interface. It shows
this by writing an algorithm that first computes the NDVI parameter based on radiometric bands,
and then generates a composite of these images.

The results of this computation are then retrieved as a GeoTiff and a time-series. By doing so,
the core concepts of openEO, and the Python client API, are illustrated. A video explaining this
notebook step-by-step can be found here: https://www.youtube.com/watch?v=qtIp9OC0qHY

The source code of the Python client API can be found in the GitHub repository: https://github.
com/Open-EO/openeo-python-client

The full API documentation is published here: https://open-eo.github.io/openeo-python-client/

2 openEO Proof Of Concept: Compositing

This notebook explains and demonstrates the openEO client API, as well as some concepts
of the core API. More information on the client API can be found in the documentation: https:
//open-eo.github.io/openeo-python-client/.

The openEO client API is distributed as a lightweight Python module. The dependencies of this
module are limited to a set of well known modules such as numpy and pandas. This should
allow it to run in different environments, and as part of larger workflows. To get started, we
import openEO, and set up standard Python logging.

In [1]: import openeo
import logging
logging.basicConfig(level=logging.INFO)

To connect with an openEO back-end, we create a session. Each openEO back-end has a
different endpoint, metadata and credentials. A session object contains this information, and is
the starting point for subsequent calls.

In [2]: session = openeo.session("nobody", "http://openeo.vgt.vito.be")

Our first use case is to create a composite image by taking the maximum pixel value over a
time-series of images. To do this, we first need to select input data. Each openEO endpoint
exposes it’s own list of image collections. For instance: http://openeo.vgt.vito.be/openeo/data.

Preferably, these layers and their descriptions and metadata can be browsed online, so
a user can discover data that suits his needs. In this example, the collection id is
‘S2_RADIOMETRY_V101’, which corresponds to Sentinel 2 10M resolution bands over Bel-
gium.

In the client code, the user can create an image collection quite easily. This is just an empty
object on which further operations need to be defined:

In [3]: s2_radiometry = session.imagecollection("CGS_SENTINEL2_RADIOMETRY_V101")
s2_radiometry

Out[3]: <openeo.rest.imagecollection.RestImageCollection at 0x7fe15c142438>

openEO
Grant agreement No 776242 Page 5 of 12

https://www.youtube.com/watch?v=qtIp9OC0qHY
https://github.com/Open-EO/openeo-python-client
https://github.com/Open-EO/openeo-python-client
https://open-eo.github.io/openeo-python-client/
https://open-eo.github.io/openeo-python-client/
https://open-eo.github.io/openeo-python-client/
http://openeo.vgt.vito.be/openeo/data

D07: Proof of Concept

As the image collection can be quite large, a first step is usually to define a spatial and temporal
subset on which we want to operate. This can be done by specifying a date range and a
bounding box:

In [4]:
timeseries = s2_radiometry\
.date_range_filter("2017-10-14","2017-10-17")\
.bbox_filter(left=761104,right=763281,bottom=6543830,top=6544655,srs="EPSG:3857")
timeseries

Out[4]: <openeo.rest.imagecollection.RestImageCollection at 0x7fe0ea4ed128>

In [5]: bandFunction = lambda cells,nodata: (cells[3]-cells[2])/(cells[3]+cells[2])
ndvi_timeseries = timeseries.apply_pixel([], bandFunction)

Now we’re all set to compute the composite, the max_time function allows us to specify the
function that needs to be applied, but does not yet compute a result:

In [6]: %time composite = ndvi_timeseries.max_time()
composite

CPU times: user 11 µs, sys: 14 µs, total: 25 µs
Wall time: 38.4 µs

Out[6]: <openeo.rest.imagecollection.RestImageCollection at 0x7fe0ea4ed198>

Up to this point, the openEO back-end has not yet received a request for computation. We
have only specified what is called a ‘process graph’ in openEO terms. We can do a few things
with a process graph, let’s start with downloading its result as a GeoTiff:

In [7]: %time composite.download("./openeo-ndvi-composite.geotiff","geotiff")

CPU times: user 184 ms, sys: 90 ms, total: 274 ms
Wall time: 14.9 s

The debug logging shows us that this call has sent our ‘process graph’ to: /openeo/execute.
This particular composite took only 48 seconds to compute over a time-series of about 5 months
worth of input data. This shows one of the key points of openEO: the algorithm gets distributed
over processing resources close to the data, which can greatly speed up processing.

The next step will be visualising the result.

2.1 Plotting the result

Using rasterio, we can load and plot our downloaded file.

In [8]: import rasterio
%matplotlib inline

In [9]: from rasterio.plot import show
from matplotlib import pyplot

composite_local = rasterio.open("./openeo-ndvi-composite.geotiff")
ndvi_map = composite_local.read(1)
composite_local.close()

pyplot.set_cmap("YlGn")

openEO
Grant agreement No 776242 Page 6 of 12

D07: Proof of Concept

fig, (ndvi) = pyplot.subplots(1,1, figsize=(21,7))
image = show(ndvi_map,ax=ndvi,title="S2 NDVI")
fig.colorbar(image.images[0])

Out[9]: <matplotlib.colorbar.Colorbar at 0x7fe0d5a4dc88>

<Figure size 432x288 with 0 Axes>

2.2 Retrieving a time-series for a point

Instead of reducing our time-series of images into a composite, we can also request each value
for a given geographical coordinate. For this call, we use the ‘S2_FAPAR’ image collection,
which has a longer time-series available:

In [10]: %time point_timeseries = session.imagecollection("S2_FAPAR") \
.bbox_filter(left=761104,right=763281,bottom=6543830,top=6544655,srs="EPSG:3857") \
.timeseries(6.84638,50.56302,srs="EPSG:4326")
point_timeseries.json()

CPU times: user 13.7 ms, sys: 15.7 ms, total: 29.4 ms
Wall time: 14.3 s

Out[10]: {'2015-07-06T00:00:00+00:00': [nan],
'2015-07-26T00:00:00+00:00': [nan],
'2015-07-30T00:00:00+00:00': [nan],
'2015-08-09T00:00:00+00:00': [nan],
'2015-08-12T00:00:00+00:00': [37.0],
'2015-08-19T00:00:00+00:00': [nan],
'2015-08-22T00:00:00+00:00': [84.0],
'2015-08-25T00:00:00+00:00': [nan],

...
'2016-07-30T00:00:00+00:00': [nan],
'2016-08-03T00:00:00+00:00': [nan],
'2018-02-10T00:00:00+00:00': [nan],
'2018-02-12T00:00:00+00:00': [40.0],

openEO
Grant agreement No 776242 Page 7 of 12

D07: Proof of Concept

'2018-02-15T00:00:00+00:00': [nan],
'2018-02-17T00:00:00+00:00': [nan],
'2018-02-20T00:00:00+00:00': [nan],
'2018-02-22T00:00:00+00:00': [89.0],
'2018-02-25T00:00:00+00:00': [nan],
'2018-02-27T00:00:00+00:00': [85.0],
'2018-03-02T00:00:00+00:00': [nan],
'2018-03-04T00:00:00+00:00': [79.0],
'2018-03-07T00:00:00+00:00': [nan],
'2018-03-09T00:00:00+00:00': [nan],
'2018-03-12T00:00:00+00:00': [nan],
'2018-03-14T00:00:00+00:00': [nan]}

In [11]: %matplotlib inline
import pandas as pd
series_df = pd.DataFrame.from_dict(point_timeseries.json(), orient="index")
series_df.index = pd.to_datetime(series_df.index)
import seaborn as sns

series_df.dropna().plot()

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe0c78acfd0>

3 API docs

Python Client API for openEO back-ends. This client is a lightweight implementation with limited
dependencies on other modules. The aim of openEO is to process remote sensing data on
dedicated processing resources close to the source data.

openEO
Grant agreement No 776242 Page 8 of 12

D07: Proof of Concept

This client allows users to communicate with openEO back-ends, in a way that feels familiar for
Python programmers.

Basic example

import openeo
import logging

#enable logging in requests library
logging.basicConfig(level=logging.DEBUG)

#connect with EURAC back-end
session = openeo.connect("nobody", "http://saocompute.eurac.edu/openEO_WCPS_Driver")

#retrieve the list of available collections
collections = session.list_collections()
print(collections)

#create image collection
s2_fapar = session.imagecollection("S2_L2A_T32TPS_20M")

#specify workflow and download result as netcdf
s2_fapar \

.date_range_filter("2016-01-01","2016-03-10") \

.bbox_filter(left=652000,right=672000,top=5161000,bottom=5181000,srs="EPSG:32632
↪→") \

.max_time() \

.download("/tmp/openeo-wcps.nc",format="NetCDF")

3.1 Main Interface

openeo.session(userid=None, endpoint: str = ’https://openeo.org/openeo’)
This method is the entry point to openEO. You typically create one session object in your
script or application, per back-end, and re-use it for all calls to that back-end. If the back-
end requires authentication, you should set your credentials.

Parameters endpoint (str) – The http url of an openEO endpoint.

Return type openeo.sessions.Session

class openeo.sessions.Session
A Session class represents a connection with an openEO service. It is your entry point to
create new Image Collections.

imagecollection(image_collection_id: str) → ope-
neo.imagecollection.ImageCollection

Retrieves an Image Collection object based on the id of a given layer. A
list of available collections can be retrieved with openeo.sessions.Session.
list_collections() .

Parameters image_collection_id (str) – The id of the image collection
to retrieve.

openEO
Grant agreement No 776242 Page 9 of 12

D07: Proof of Concept

Return type openeo.imagecollection.ImageCollection

list_collections() → dict
Retrieve all products available in the back-end. :return: a dict containing product
information. The ‘product_id’ corresponds to an image collection id.

class openeo.imagecollection.ImageCollection
Class representing an Image Collection.

aggregate_time(temporal_window, aggregationfunction) → ope-
neo.imagecollection.ImageCollection

Applies a windowed reduction to a time-series by applying a user defined function.

Parameters

• temporal_window – The time window to group by

• aggregationfunction – The function to apply to each time window.
Takes a pandas time-series as input.

Returns An ImageCollection containing a result for each time window

apply_pixel(bands: typing.List, bandfunction) → ope-
neo.imagecollection.ImageCollection

Apply a function to the given set of bands in this image collection.

This type applies a simple function to one pixel of the input image or image collection.
The function gets the value of one pixel (including all bands) as input and produces
a single scalar or tuple output. The result has the same schema as the input image
(collection) but different bands. Examples include the computation of vegetation
indexes or filtering cloudy pixels.

bbox_filter(left: float, right: float, top: float, bottom: float, srs: str) → ope-
neo.imagecollection.ImageCollection

Specifies a bounding box to filter input image collections.

Parameters

• left (float) –

• right (float) –

• top (float) –

• bottom (float) –

• srs (str) –

Returns An image collection cropped to the specified bounding box.

date_range_filter(start_date: typing.Union[str, datetime.date],
end_date: typing.Union[str, datetime.date]) → ope-
neo.imagecollection.ImageCollection

Specifies a date range filter to be applied on the ImageCollection

Parameters

• start_date – Start date of the filter, inclusive.

openEO
Grant agreement No 776242 Page 10 of 12

D07: Proof of Concept

• end_date – End date of the filter, exclusive.

Returns An ImageCollection filtered by date.

download(outputfile: str, bbox=”, time=”, **format_options)
Extracts a binary raster from this image collection.

max_time() → openeo.imagecollection.ImageCollection
Finds the maximum value of time-series for all bands of the input dataset.

Returns An ImageCollection without a time dimension.

min_time() → openeo.imagecollection.ImageCollection
Finds the minimum value of time-series for all bands of the input dataset.

Returns An ImageCollection without a time dimension.

reduce_time(aggregationfunction) → openeo.imagecollection.ImageCollection
Applies a windowed reduction to a time-series by applying a user defined function.

Parameters aggregationfunction – The function to apply to each time
window. Takes a pandas time-series as input.

Returns An ImageCollection without a time dimension

send_job() → openeo.job.Job
Sends the current process to the back-end, for batch processing.

Returns Job: A job object that can be used to query the processing status.

tiled_viewing_service() → typing.Dict
Returns metadata for a tiled viewing service that visualises this layer.

Returns A dictionary object containing the viewing service metadata, such
as the connection ‘url’.

timeseries(x, y, srs=’EPSG:4326’) → typing.Dict
Extract a time-series for the given point location.

Return type Dict

Parameters

• x – The x coordinate of the point

• y – The y coordinate of the point

• srs (str) – The spatial reference system of the coordinates, by default
this is ‘EPSG:4326’, where x=longitude and y=latitude.

Returns Dict: A timeseries

class openeo.job.Job(job_id: str)
Represents the result of creating a new Job out of a process graph. Jobs are stored in
the back-end and can be executed directly (in batch), or evaluated lazily.

download(outputfile: str, outputformat: str)
Download the result as a raster.

openEO
Grant agreement No 776242 Page 11 of 12

D07: Proof of Concept

4 References

[1] J. Dries, “Openeo proof of concept notebook.” [On-
line]. Available: https://github.com/Open-EO/openeo-python-client/blob/
3d00f56f4365fa732bc6bbe8c8a877a4e412cddd/examples/notebooks/Compositing.ipynb

openEO
Grant agreement No 776242 Page 12 of 12

https://github.com/Open-EO/openeo-python-client/blob/3d00f56f4365fa732bc6bbe8c8a877a4e412cddd/examples/notebooks/Compositing.ipynb
https://github.com/Open-EO/openeo-python-client/blob/3d00f56f4365fa732bc6bbe8c8a877a4e412cddd/examples/notebooks/Compositing.ipynb

	Executive Summary
	openEO Proof Of Concept: Compositing
	Plotting the result
	Retrieving a time-series for a point

	API docs
	Main Interface

	References

