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Abstract

Running complex geophysical models takes a long computation time. Examples of this are the general cir-
culation models, that are used to study the global climate system. These models run at low horizontal res-
olution (150-400km), because of their computational demand. Hydrological models require high-resolution
meteorological data, and often rely on downscaling techniques to obtain high-resolution data from the low-
resolution model output data of the general circulation models. In this research, we test a new statistical
downscaling method: downscaling using deep neural networks. This method overcomes many of the prob-
lems that the currently used downscaling techniques face, and therefore has great potential in downscaling
model output data. We built, trained and tested a deep convolutional auto-encoder to see the potential
of this technique to downscale model output data, by downscaling meteorological (reanalysis) data as a
case study. As a test, we used the downscaled data as input for a hydrological model of the Rhine. We
present a general method outline and focus points for super-resolution neural networks to downscale model
output data. Since the downscaling methodology still has some room for improvement, we also suggest
improvements for the model structure, optimization and training data.

Keywords
Downscaling, statistical downscaling, deep learning, neural network, auto-encoder, reanalysis data, precip-
itation, hydrology, model performance
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1| Introduction

1.1 Problem description

As model complexity increases, the computation
time increases. With more and more high-resolution
data becoming available, new models arise to make
use these sources of high-resolution data. On the
other side, when models run at high-resolution,
the models behind the model creating input data
either have to run on the same high-resolution, or
a downscaling step is required. A good example of
this are the General Circulation Models (GCMs),
that are used to create meteorological input
data for hydrological models. GCMs are coupled
numerical models that include physical processes
of the atmosphere, oceans, cryosphere and land
surface (IPCC, 2013). The GCMs can be used to
study the response of the global climate system to
an increase of greenhouse emissions, for example
to study how precipitation patterns change in the
future. To study how the climate has changed in
the past decades, large reanalysis datasets exist
that contain information of multiple meteorological
variables. These climate reanalyses datasets are
produced by combining past observations with a
general circulation model (e.g. Dee et al. (2011);
Saha et al. (2010)). The horizontal resolution of
GCMs range between 150-400 km, due to their
computational demands (Tran Anh et al., 2019).
The resolution of reanalysis datasets is higher, but
in most cases still not high enough to directly use
it as input for hydrological models (Gao, 2013).
Therefore, both studies that want to predict the
future hydrological regime (climate impact studies)
or analyse the past (reanalyses projects), rely
on downscaling techniques to obtain sub-grid
information.

There are two main downscaling categories,
namely dynamical downscaling (DD) and statis-
tical downscaling (SD). Dynamical downscaling
methods use regional climate models (RCMs) to
produce higher resolution outputs (Maraun et al.,
2010; Hwang et al., 2013; Giorgi et al., 2001).
Dynamically downscaled reanalysis datasets include
non-linear mesoscale features that were absent
in the raw large-scale reanalysis datasets. RCMs
can be applied to produce reanalysis datasets at
10-50km resolutions (Hwang et al., 2013). The
most important drawbacks of this technique is
that the model is region specific (cannot be used

for other regions) and computationally intensive
(Fowler et al., 2007). Statistical downscaling
methods establish empirical relationships between
large-scale atmospheric variables (predictors) and
local or regional variables of interest (predictands)
(Bafio-Medina et al., 2020; Goodess et al., 2012).
Statistical downscaling is computationally efficient
and can easily be applied to different regions
(Ahmed et al.,, 2013). The results do however,
strongly depend on the choice of predictors (Fowler
et al., 2007). Furthermore, statistical downscaled
variables can give a poor representation of the
observed variance and extremes of the downscaled
variable (Wilby et al., 2004; Gao, 2013).

Detailed and reliable precipitation estimates are
key for hydrological model performance. Hydro-
logical models are used as a tool for decision
making on water management, so higher model
performance supports optimal decision making.
Several studies have evaluated and/or compared
dynamical and statistical downscaling techniques
based on the hydrological model performance
(Bastola and Misra, 2014; Hay and Clark, 2003;
Werner and Cannon, 2016; Hwang et al., 2013;
Chen et al., 2018). Bastola and Misra (2014);
Wilby et al. (2000) both concluded that the use
of a downscaled reanalysis dataset, improved
the hydrological model performance compared to
the model performance with the raw reanalysis
dataset. This highlights the importance of having
accurate downscaling techniques to downscale
reanalysis (i.a. precipitation) data for hydrological
applications.

Deep learning techniques have recently been intro-
duced as a promising new statistical downscaling
approach. The deep learning approaches make
use of convolutional neural networks (CNN) or
generative adversarial networks (GAN). This tech-
nique has become quite popular in the computer
graphics field, where this technique is referred as
"super-resolution" or "upressing". In this field,
it is used to generate high-resolution images or
videos from low-resolution images and videos (Shi
et al., 2016; Dong et al., 2016; Karras et al.,,
2018; Goodfellow et al., 2014). Next to creating
super-resolution images, it can also be used for
sharpening patterns in an image. Xie et al. (2018)



used GANs to generate high-resolution images and
videos of fluid flow (both smoke and liquid), were
the outline of the fluid flows were sharper after
the downscaling. For this application, not only
spatial but also temporal patterns are resolved by
the neural network. The neural network learns
from the temporal information, to increase the
downscaling performance of sequential data.

Using a neural network to downscale meteorologi-
cal/climatic data could overcome the limitations of
the already excising downscaling techniques. After
a neural network is trained to learn the difference
between high and low-resolution maps, it takes
less computation time for the neural network to
downscale large GCM outputs compared to using
a RCM. Furthermore, the neural network can be
used to downscale the meteorological/climatic
variable at all places, instead of a specific region of
the RCM. Since the network learns the difference
between the high and low-resolution map, the
downscaling is independent of predictands (unlike
other statistical downscaling techniques). These
advantages make this new downscaling technique
interesting to use for other applications.

The use of deep learning techniques for down-
scaling of geophysical data is still rather limited.
It is applied in the field of remote sensing, for
example to improve land-use classification by
generating super-resolution images (Xiong et al.,
2020). Furthermore, it has been applied to obtain
super-resolution climate and weather forecast
images for specific regions (Cheng et al., 2020;
Rodrigues et al., 2018). For these specific regions,
the downscaling results using a neural network were
promising. Using a neural network to downscale
climatic/meteorological datasets of the whole
world has not been done yet. One of the main
limitations of neural networks is that it requires a
lot of training data. Reanalysis datasets have a
large history, and both coarse and fine resolution
reanalysis datasets are currently available. This
offers the great opportunity to test the potential
of neural networks as downscaling technique for
climatic/meteorological data, by trying it out on
these reanalysis datasets. Hydrological models
can profit from these downscaled datasets. For
example, we could generate high-resolution data
for periods were only coarse reanalysis data are
available. In this way, past hydrological events can

be studied at higher resolution using the generated
high-resolution inputs.

1.2 Aim

The aim of this research is to set up and train a
(deep) neural network to generate high-resolution
data from low-resolution model output data.
This study focusses on statistical downscaling,
dynamical downscaling methods fall outside the
scope of this research. To test the potential of
neural networks for hydrological applications, we
downscaled reanalysis data with a neural network
as a case study. Our study focusses on downscaling
precipitation data, but the technique could also be
used to downscale other meteorological variables.
Lastly, downscaled precipitation data are used as
input for a high-resolution distributed hydrological
model to see if model performance improves
compared to model performance using the raw
precipitation data (before downscaling) as input.

1.3 Research questions

The main research question is:
What is the potential of neural
downscale model output data?

networks to

This question will be answered by conducting a case
study, of which the goal is to set up a neural network
to downscale reanalysis data. The following ques-
tions will be answered:

1. How do the downscaled results using a neural
network differ from/resemble the downscaled
results using interpolation?

2. To what extent does the performance of hydro-
logical models improve using the downscaled
data as input compared to using the raw re-
analysis data?

3. What are the changes in method needed to
apply, when using a super-resolution neural
network for downscaling (reanalysis) data in-
stead of pictures?

1.4 Structure report

The structure of this thesis report is as follows.
The data used to train and test the neural network
is described in chapter 2. Furthermore, the study
area (catchment area hydrological model) and input
variables of the hydrological model are discussed.
In chapter 3, we elaborate the method of data pre-
processing, the neural network used (design, tech-



nical details and training) and the method of test-
ing the downscaling performance. In chapter 4 we
discuss the results, both the output of the neural
network and of the hydrological model. In chapter
5, we discuss the results, compare our research with
related work and give recommendations on improv-
ing the downscaling methodology. Chapter 6 con-
cludes the findings of this research, were the poten-
tial of neural networks to downscale model output
data will be discussed.



2 | Data and study area

2.1 Reanalysis data

To answer the research question: What are the
(dis)advantages of using a neural network to down-
scale data for hydrological applications, we need to
downscale a relevant forcing dataset. Qualities that
needed for this research are:

- Dataset that is currently used for hydrological
applications

- Long time span, since a lot of training data are
needed for the neural network

- Pre-computed high and low-resolution pairs

- Publicly assessable

Based on these qualities, we decided to use the
ERA5 and ERA-20C reanalysis datasets, pro-
duced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). The ERA5 reanal-
ysis dataset contains high-resolution data and the
ERA-20C coarse-resolution data, both datasets are
currently used for hydrological applications. The
datasets have an overlap in their time span, namely
between 1979-2010. These thirty years of data are
used for this research. The next two paragraphs
contain background information of ERA5 and
ERA-20C, in table 2.1, you can find the details of
both datasets.

The ERA-20C was the first century-long reanal-
ysis dataset produced by ECMWEF. For creating
ERA-20C, only surface pressure and marine wind
observations were used. The timestep is one day,
for each day observations are combined with a
background (prior estimate), obtained from the
model forecast of the previous day. (Poli et al.,
2016)

ERADS is the fifth generation of reanalysis datasets,
produced by the ECMWEF. The improvements of
ERA5 are the increased resolution, new develop-
ments in the model and data assimilation, hourly
resolution and more output parameters. Leading
to an increase of the global-mean correlation with
monthly mean precipitation (GPCP) data from
67% to 77%. In 2020, ERA5 for 1950-present is ex-
pected to become available. (Hersbach et al., 2020)

The ERA5 and ERA-20C both have global spatial
coverage. We trained and tested the neural

network with precipitation data of the whole
earth. ERA5 and ERA-20C both contain several
atmospheric variables: wind, pressure, temper-
ature, dewpoint temperature and precipitation.
Pressure and temperature can be downscaled using
standard linear methods (GLM) or interpolation
with DEM (Digital elevation model), though for
precipitation these methods do not give a good
result (Bafio-Medina et al., 2020; Tran Anh et al.,
2019). Therefore, in this research precipitation
fields will be downscaled using neural network.

2.2 Study area

The neural network is trained with precipitation
data sampled across the whole globe, to see if a
trained neural network can be used to downscale
precipitation irrespective of geographical locations.
To see the potential of this downscaling method
for hydrological applications, precipitation maps
of Europe are downscaled and used as input for
a distributed hydrological model of the Rhine
catchment (Imhoff et al., 2020). A map of the
Rhine catchment can be found in figure 2.1. The
catchment area of the Rhine equals approximately
160.000 km?. To evaluate the hydrological model
performance, the discharge of the Rhine and its
tributaries is studied at several locations: Basel,
Andelfingen, Cochem, Plochingen, Frankfurt,
Menden, Grolsheim and Lobith. These locations
are indicated on the map (next to some other
cities), see figure 2.1.

The hydrological model used to model the Rhine
discharge is wflow_sbm. Wflow is an open source
distributed hydrological model platform developed
by Deltares. wflow_sbm is a high-resolution dis-
tributed hydrological model, and was parametrized
for the Rhine basin by Imhoff et al. (2020).
Improvements for the river network, slope and
river slope are derived using Eilander et al. (2020).
Distributed models have as an advantage over
lumped models that they can use high-resolution
gridded datasets as their inputs. The model
requires three meteorological input variables:
temperature, potential evapotranspiration and
precipitation. We used ERA5 temperature data,
multiple input datasets for precipitation (ERA20C,
ERA5 and downscaled data, see section 3.7). The



Table 2.1: Technical details ERA5 and ERA-20C

Properties ERA-20C ERA5

Model Coupled Atmosphere/ Integrated Fore-
Land-surface/Ocean-  cast System
waves model

Spatial resolution ~ 125x125 km 30x30 km
Time resolution 3-hourly Hourly
Period 1900 - 2010 1979 - present
< Das Rheineinzugsgebiet

Le basin du Rhin
Stroomgebied van de Rijn

bl [rn—
=" Baresemist fis Gredsedende, Kotvent

Figure 2.1: Catchment area of the river Rhine
(Belz, 2010)

potential evapotranspiration is derived from ERA5
reanalysis radiation fluxes, 2m temperature and
surface pressure, using the method of De Bruin
et al. (2016).



3 | Methods

3.1 Pre-processing data for neural network
To train and test the neural network, low- and
high-resolution images are used. In the previous
chapter, we selected the ERA datasets that provide
both high and low-resolution precipitation fields.
In this section, we describe how these datasets are
transformed to images that are suitable for the
neural network models. The image pre-processing
consists of several steps, an overview of all
pre-processing steps can be seen in figure 3.1.
For one of the pre-processing steps, we made
use of Google Earth Engine (GEE). GEE offers
functions needed for pre-processing the data, e.g.
creating image tiles, regridding and exporting
images as TFRecord files. Furthermore, GEE made
a lot of public geospatial datasets available to
view/access online, among which ERA5. ERA-20C
was not available on GEE. We downloaded the
ERA-20C data from the ECWMF site using a
web API. ECWMF daily total precipitation data
are the accumulated precipitation between 6AM
and 6AM. The grid of the downloaded ERA-20C
netcdf dataset is 1°/1° ( 111km). This resolution
differs from the resolution of the original ERA-20C
dataset (125km), the data are interpolated to
the grid using MIR (Meteorological Interpolation
and Regridding) (Malardel et al., 2016). After
a calculation step to determine the total daily
precipitation (between 12PM and 12PM ), the
NetCDF file is converted to GeoTIFF format and
then uploaded to a storage bucket (google cloud
platform), from where it is uploaded to Google
Earth Engine.

In Google Earth Engine, image tiles are cut out of
the world precipitation map. The smaller image
patches used as input for the neural network are
cut out of these bigger image tiles at a later stage.
The image tiles overlap, to prevent the neural
network from coupling precipitation to a certain
location instead of coupling it to the low-resolution
image precipitation. The padding dimension is
added to the patch dimension to have image tiles
that overlap with their neighbours with the padding
dimension, see figure 3.2. For this research, the
padding dimension is set to be half of the patch
dimension, therefore the tile size is two times the
number of pixels of the image patches. Ten tiles
in total are needed to cover the whole world map,

& ECMWF

E2ab? pUbhc dataset Download data, calculate
ER‘”"‘EPC . daily total precipitation sum
precipitation data and upload data to GEE

Google Earth Engine (GEE) =X
ERAS (already in GEE) ERA-20C ~—g
30 x 30 km 125 x 125 km

High resolution data Low resolution data

Create image tiles of high and low resolution precipitation
maps, export image tiles to Google Cloud Platform

as TFRecord files

Open TFRecord files in Colab, cut out image
patches, normalize data, divide images in
train/test/validation datasets

Google Cloud Platform (GCP)
TFRecord files ERAS
TFRecord files ERA-20C

Neural Network

Figure 3.1: Steps of image pre-processing

see figure 3.2. The dimension of image tiles is
the patch dimension plus two times the padding
dimension. For the ERA-20C this equals 128x128
pixels and for the ERA5 512x512 pixels in total for
one image tile. The coverage of the high-resolution
image tile should be equal to the coverage of the
low-resolution image tile, so the number of pixels
times the resolution should give the same tile size.
The resolution of the ERA5 is set at 30 km and
the resolution of the ERA-20C dataset at 120 km
(setting of export function in GEE). The image
tiles were saved as TFRecord files, a format used
for large datasets for neural networks, and stored in
a storage bucket on Google Cloud Platform, see 3.1.
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Figure 3.2: Illustration of image tile creation in GEE

The TFRecord files, containing the precipitation
tiles, are split into train, test and validation data.
To make sure the downscaling performance is inde-
pendent of the temporal changes of the data qual-
ity and characteristics, every first two years of each
decade are set apart for validation. We divided the
rest of the images in train (80%) and test data
(20%), as described in (Bowden et al., 2002; Maier
and Dandy, 2000). The training images are used to
train the neural network, the test images are used
as a measure how well the model learned from the
training images. The validation images are down-
scaled with the trained/tested network, and used as
input for the hydrological model.

The TFRecord files are processed in Colab and
Jupyterlab.  First, calculations were conducted
on Colab. For better connection to our stor-
age bucket and faster computations Jupyterlab was
used to do most of the calculations. For the
training/testing dataset, we cut out 17 patches
(64x64 and 256x256) of the 10 image tiles (128x128

and 512x512). The 17 patches cover almost the
whole world map and have overlap with each other.
For the validation years, we downscale one of the
17 patches that contains Europe. Next to these
patches, we cut out an extra patch with Europe in
the middle of the patch, so this patch location dif-
fers from the training patches. Therefore, we have
two datasets with patches containing Europe for the
validation years.

Neural networks work best for data ranging
between 0 and 1. Therefore, the precipitation
patches are normalised. Data normalisation helps
accelerating the calculations of algorithms inside
the neural network (Thara et al, 2019). A
few training sessions showed that rescaling the
precipitation with a MinMaxScaler(feature range
= [0,1]) was not enough for the model to learn
from the training data. Precipitation data has a
lot of zeros and values close to zero, and only
some larger values (extremes, e.g. thunderstorms
in the tropics, monsoon rainfall). Therefore, the
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data rescaling consist of another step, namely by
elevating the data to the power of 0.2. This shifted
the data, from all data close to zero (a,b in figure
3.3), to a more normal distribution, but still skewed
to the right (c,d in figure 3.3). The normalised
and rescaled images that are used as input for the
neural network can be seen in figure 3.7. In the
next section, the neural network is elaborated.

3.2 Neural network:
auto-encoder

Deep convolutional

For this study, we use a deep convolutional auto-
encoder to downscale the precipitation images.
To explain the structure of this neural network,
first auto-encoders and its layers will be described,
thereafter the technical details of the neural
network are specified.

Auto-encoders are feed forward neural networks
(information is going one-way), trained to recon-
struct its input data to its output (Rodrigues et al.,

2018). Low-resolution images (precipitation maps)
are fed into the auto-encoder, high-resolution im-
ages are created from these images and compared
with the 'true’ high-resolution images, see figure
3.4.

The auto-encoder consists of two parts: an encoder
and a decoder. The encoder maps the input data
on a latent (hidden) feature, this latent feature
represents the most important features of the
input data (Hinton and Salakhutdinov, 2006;
Yeung, 2017). The decoder is trained to recreate
the input using the latent feature (Goodfellow
et al.,, 2014). Three types of layers are included
in the auto-encoder: convolutional layers, pooling
layers and upsampling layers. These layers will be
explained below.

Convolutional layers are used in neural networks to
extract features of image. Multiple convolutional
layers can be implemented in a neural network (the
auto-encoder) to extract image features at multiple



levels (Chen et al., 2016). In this way, the model
learns the underlying spatial structure of precipita-
tion maps. Local features are extracted in the con-
volutional layer, by applying a filter of weights on
the input data. The filter 'shifts’ over the input im-
ages, and computes the sum of the weighted inputs
for each patch, see figure 3.5. A bias is added to the
weighted sum, and the final value is activated with
an activation function o (to make it non-linear). Al
outputs are mapped on an activation map. (Zhang
et al., 2020)

oc(WTX +) (1)

With W being the weight matrix, T the number of
filters, X the matrix values of the patch input and
b the bias.

In the pooling layers, the size of the activation
map is reduced, by taking either the average
or maximum value of a block of values of the
activation layer, see figure 3.6. The pooling layers
reduce the dimension (size of the image), see the
Bottleneck in figure 3.4.

To recreate an image with the same resolution
as the high-resolution image, the image needs
to be upsampled. This is done with upsampling
layers in the decoder. The upsampling layers
do the exact opposite of the pooling layers, i.e.
increase the size of the output map. The data are
upsampled using an interpolation method (nearest
or bilinear), see section 3.3. The final upsampled
image is compared with the 'true’ high-resolution
image. The auto-encoder eventually learns,
by processing a lot of images, what the most
important features are of the low-resolution im-
ages and maps these features at a higher resolution.

3.3 Details model structure

We used a modified version of the Deep De-
noiseing Super Resolution convolutional network
(DDSRCNN), proposed by Mao et al. (2016).
An overview of the whole model can be seen
in appendix A. The neural network is build in
Jupyterlab, using Tensorflow (software for machine
learning). The first layer is the input layer, where
the low-resolution images (64x64 pixels) are fed
into the model. The encoder exist of two blocks.
One block consists of two convolutional layers
and a pooling layer. The images are grouped in
batches, therefore the input (7,64,64,1) contains a

question mark, this question mark stands for the
batch size. The last number stands for the number
of channels, in this case 1 (e.g. RGB would be
three channels). A filter of 3x3 is applied in the
convolutional layers. When the original image is
nxn and the filter fxf, this results in an image of
(n—f+1)x(n— f+1) pixels. So in this case,
the output of the first convolutional layer would
be 62x62 pixels (64 — 3 + 1). To have the same
output size as the input size, padding (adding a
border of zeros) is done.

Rectified linear unit (ReLU) is chosen as activation
function, this function is commonly used as acti-
vation function in the last few years (Lecun et al.,
2015) . The ReLU formula is quite simple, namely
f(z) = max(0,x), f(x) is zero when z is less than
zero and f(x) is equal to x when x is above or
equal to zero. The number of filters shifting over
the input layers differs for the convolutional layers,
see Appendix A. The number of filters increases
when the dimension is reduced, and decreases
again for the convolutional layers in the decoder.
In the pooling layers, the maximum value of 2x2
blocks are mapped on the output map. This means
that with every pooling layer, the dimension is
reduced by half the size of the input map. After
the two blocks, the dimension of the original input
image is reduced four times, so at the botteleneck,
the dimension of the map is 16x16. The last
layer of the encoder is a convolutional layer with
128 filters shifting over the map to extract features.

The decoder consist of four blocks. In every block,
there is one upsampling layer and two convolutional
layers. For the upsampling layers, nearest neighbour
is used as interpolation technique. After the four
blocks, the image is 256x256 pixels, four times dou-
bled in size compared to the output image of the
encoder (16x16).

3.4 Experimental
structure

To define the optimal model structure of the deep

convolutional auto-encoder, several model struc-

tures were tested. This includes:

setup:  defining model

e Changing the number of convolutional blocks
e Adding dense layers (fully connected layers)

e Using convolutional transpose layers instead of
the upsampling layers



Bottleneck Layer
Input Image

Encoder

Decoder

Output Image

Figure 3.4: Visualization auto-encoder in neural network (Kala, 2020)
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e Varying the number of convolutional filters
(between 32 and 512)

Next to these structural changes, we also tried both
bilinear and nearest interpolation for the upsam-
pling layers. The final model structure was chosen
based on the validation loss, which will be discussed
in the next section.

3.5 Experimental
network
The neural network learns by minimizing its loss
function. The mean squared error (MSE) is a com-
monly used loss function for super-resolution net-
works (Ledig et al., 2017). The MSE is the mean
squared difference between the model output and
the 'true’ high-resolution image (equation 2) . This

setup:  training neural

10

is visualised in figure 3.7, where the model tries to
minimize the difference between the middle row of
images (generated high-resolution images) and the
last row (true high-resolution images).

LS - S )2 2)

L(W)= o
With n being the number of images, y; the true
high-resolution image and f(x;, W) the generated
image by the neural network, given its weights W.

The optimal weights to minimise the loss function,
are determined by the Adam optimizer proposed by
Kingma and Ba (2015). According to Kingma and
Ba (2015), the method is computationally efficient,
requires little memory and works well for problems
that deal with large amounts of data/parameters.

Beforehand of training the model, you need to de-
fine the number of epochs that you want to train the
model. In each epoch, the whole training dataset
is used to train the neural network. So the number
of epochs says how many times the model iterates
through the entire training dataset (Zhang et al.,
2020). The model weights are updated after each
batch of training images. There are 32 images in
one batch. The training loss (loss function) is up-
dated after each batch of images. After each epoch,



Figure 3.7: First row: Normalised (and rescaled) model input images, second row: model output images,
third row: normalised and rescaled 'true’ resolution images.

the validation loss is defined, which is the same as
the training loss but then for the test dataset. The
lower the final validation loss, the better the model
performance.

The model performance is dependent on hyper-
parameters. Hyper-parameters are parameters that
control the learning process like the learning rate
and the number of epochs that the model is trained
for. The learning rate determines the degree of
change of the model when new model weights are
defined at the end of each batch. Determining the
right value for hyper-parameters is important, train-
ing too slow can make the training process take
forever, training too many epochs can cause over-
fitting of the model, training with a too high learn-
ing can cause the model to jump over the mini-
mum loss. We chose the right values for the hyper-
parameters by trial and error and by looking at the
loss function. As long as both the training and test-
ing loss go down, the neural network can train for
another epoch. When the testing loss goes up, it
is an indication that the model is overfitting. An

Ei(W) =

overfitted model means that the model becomes to
specific for the training images and works less well
on images that it hasn't seen before, i.e. the testing
data (Zhang et al., 2020).

While training the neural network with the MSE as
loss function, it appeared that the model predicted
values between 0-0.7 (normalised/rescaled precip-
itation) quite well, while it predicted less well for
higher values (>0.7). Therefore, we defined and
trained our model on a custom loss function, to
make the neural network eager to minimize the er-
ror in the prediction of higher values. Our custom
function includes the MSE, with a multiplication
factor of three for values (>0.7), so errors for val-
ues at the higher end have more weight.

if y; < 0.7

— f (s, W))2
{(yz flraW <07 g
if y; =>0.7

3% (yi — flai, W))?

L) = 23 E(w) (4)



In equation 3, y; refers to the true high-resolution
image and f(x;, W) the generated image by the
neural network, given its weights W. In equation
4, the n refers to the number of images and E;(W)
the error of each image retrieved from equation 3.
The final neural network used for prediction was
trained for 18 epochs with an learning rate of
0.0001. In one epoch, 3840 batches of 32 images
were used for training, so in total 122.880 images
are used to train the neural network. After each
epoch, 960 batches of testing data (30.720 images
in total) are used to define the testing loss.

3.6 Downscaling performance: downscaled
patches

When the neural network is build, trained and
tested, the model can be applied to downscale
the two validation datasets. After training the
model, we noted that the model could predict
better for images that have the same location
as one of the training patches, than on a new
location. Therefore, we downscaled both options
for evaluation and comparison. The downscaled
outputs are compared with interpolated coarse
ERA-20C images.  The performance of both
methods is tested by comparing the downscaled
output with the 'true’ high-resolution output. We
calculated the RMSE (root mean squared error) to
measure the performance of both techniques.

RMSE = \/i *> (yi— flzi,W))2 (5)

With n being the number of images, y; the true
high-resolution image and f(x;, W) the generated
image by the neural network, given its weights W.
The RMSE is a quantitative method to describe
the quality of the downscaled images. You can also
evaluate the downscaling performance on percep-
tual qualities, i.e. does the downscaled result look
good? Baart (2013) listed features that make peo-
ple have trust in a forecast. Some of these fea-
tures can also be applied the downscaled results,
because they can also be seen as a forecast of the
high-resolution precipitation map. Therefore, we
will also evaluate the results on the following crite-
ria:

e Predictive: does the forecast correlate with
measurements?

e Sharpness: does the forecast predict uncom-
mon events?
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e Face: does the forecast appear to predict what
it should?

e Spatial: does the forecast predict the event at
the correct location?

o Skill: does the forecast do better than a refer-
ence forecast?

e External: does the forecast system predict in
new situations?

Another commonly used measure for the quality of
images and videos is the structural similarity index
measure (SSIM). Where the MSE looks at the
absolute error of pixel values, the structural error
takes into account pixel dependencies and looks
at batches of pixels (batch size is defined with the
filtersize) of images. Wang et al. (2003) proposed a
new variant of the SSIM, the multi-scale structural
similarity index measure (MS-SSIM). According to
(Wang et al., 2003), the MS-SSIM correlates much
better with the perceived quality of images than
the MSE. An MS-SSIM of 1 means two identical
pictures, a MS-SSIM of 0 means no similarity thus
very poor image quality. We tested this measure
on part of our results and compared the outcome
with the other two measures.

3.7 Downscaling performance:
model performance
To see if neural networks have potential to down-
scale meteorological forcing data for hydrological
applications, the downscaled precipitation maps
are used as input for the wflow_sbm model of
the Rhine. The downscaled patches that were
not in training dataset, had Europe in the middle
of the patch. The discharge modelled with this
data is further mentioned as Qdown. The patches
used for training had Europe on the right side,
the discharge modelled with this data is further
mentioned as Qtrain. Both discharges (Qdown and
Qtrain) are compared with the discharge modelled
using the fine ERA5 data (Qhigh) and coarse
ERA-20C data (Qlow). wflow_sbm runs at 1 km
resolution, so regardless of the inputs’ resolution,
all maps are further interpolated. Precipitation
and ET maps are further interpolated using nearest
neighbour. Temperature maps are interpolated
with closest distance, making use of the lapse rate.
When Qdown/Qtrain resembes Qhigh better than
Qlow does, it is a first indication that downscaling
(precipitation) maps with a neural network can be

hydrological



used to improve hydrological model performance.

An overview of all the processes and fluxes included
in the wflow_sbm model can be found in figure
3.8. The model includes multiple modules to model
snow melt, glaciers, lakes, (interception) evapora-
tion and leakage. Schellekens (2019) documented a
detailed description of the model. A kinematic wave
module describes flow routing for river, surface, and
subsurface lateral flow. The kinematic wave ap-
proach assumes that topography is the dominant
factor controlling water flow. The model is run with
a 24h time step. Both the saturated and unsatu-
rated stores are modelled, and the exchange fluxes
between the two. The soil is modelled with four
layers. In the Alpine region some larger lakes are
included in the model. These lakes are represented
in wflow_sbm by a reservoir module and requires
the locations, surface areas and initial water levels
of all lakes and reservoirs. We evaluate the model
performance with the Kling-Gupta efficiency (KGE)
and the Nash—Sutcliffe efficiency (NSE), using the
discharge modelled with ERA5 as reference (Gupta
et al., 2009; Nash and Sutcliffe, 1970).

(6)

With r being the correlation coefficient between
Qhigh and the discharge that is being compared
with ERA5, ERA-20C or downscaled ERA-20C
(represented by x). The o and the p are the
standard deviation and the mean of the discharges
that are being compared.

The Nash-Sutcliffe efficiency (NSE) is calculated
next to the KGE, to help interpret results where
the NSE<O0, in that case the model is less predic-
tive than the observed mean, i.e. mean modelled
discharge of ERA5 (Gupta et al., 2009). The NSE is
obtained by dividing the MSE of the discharge that
is being compared with ERA5, ERA-20C or down-
scaled ERA-20C (represented by x), by the variance
of the observed (Qhigh) discharge, and subtracting
this ratio from 1:

MSE,

2
OQHigh

NSE=1- (9)
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Figure 3.8: Overview of all processes and fluxes
included in the wflow model (Schellekens, 2019)

_ 1)2
Open water (river)
runoff and
evaporation
]
Infiltration or |
saturation 1
excess :
I
Kinematic |
wave for | 3
overland flow ! |
routing

t

Open water

(I

4 subsurface flow 3

13

]
1
]
|
]
and) runoff :
1
]
[
]
]

Kinematic



3.8 Scaling factor

The first trial of running the hydrological model
using the downscaled data (not presented here),
showed us that the modelled discharge did not re-
semble the reference discharge (ERA5). The to-
tal sum of precipitation after downscaling for the
catchment area was too low. To account for this,
a scaling factor was introduced that is the total
sum of precipitation for the low-resolution patch
times a factor to account for the difference in scale
((120/30)% = 16), divided by the total sum of pre-
cipitation for the downscaled patch:

Z Li low * 16
== (8)
Z CC'L,down
This factor was defined for all patches and multi-

plied with the downscaled patches, to have a precip-
itation sum that is closer to the true precipitation.

F
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4 | Results

4.1 Results case study: downscaled precipi-
tation
In this section, we present and interpret our down-
scaled precipitation maps using a neural network.
This regards the first research question about
how the downscaled results differ from/ resemble
interpolated precipitation. The final training and
testing loss of the neural network are 0.0151 and
0.0153, respectively. In figure 4.1, we present
the downscaled patches that were on a different
location than the training patches. To start, we
want to point out that the difference between
ERA-20C and ERAS5 is not only the resolution, but
the reanalysis datasets are produced by different
models. Some rainfall features in the fine ERAS
map do not appear in the coarse ERA-20C and
the other way around. An example of this is the
rain in the yellow squares a and b in figure 4.1,
where in both cases the coarse ERA-20C predicts
rain in contrast to ERA5. In the case of b, the
downscaled maps predicted less rain than the ERA-
20C and interpolated map, getting closer to the
high-resolution map. The rainfall in ¢ in figure 4.1
is clearly present in the ERA5 map, but not in the
coarse ERA-20C, downscaled and interpolated map.

The median RMSE of the downscaled and interpo-
lated patches are in table 4.1. The RMSE of the
downscaled images is lower than the RMSE of the
interpolated images, so based on the RMSE the
downscaled images get closer to the high-resolution
map. The RMSE is a measure for how Predictive
the downscaled precipitation is for the 'true’ high-
resolution dataset. When we base our judgements
on the Sharpness of the images, the downscaled
result would not do good since it is quite vague
compared to the high-resolution image, the rainfall

Table 4.1: Median RMSE of the downscaled and
interpolated patches, for both the downscaling
sets for the period 2000-2001

seemed to be smoothed out a bit. In general, the
downscaled precipitation maps contain the right
rainfall features on the right locations, so Spatial
features are forecasted well. However, when we
base our judgement on Face validity, we do miss
some important high-resolution details in the
downscaled image like rainfall maxima and some
detailed rainfall patterns, like for d in figure 4.1.
In some cases, the interpolated images even seem
to do better based on Face validity. The forecast
Skill, using the interpolated precipitation map
as a reference, scores higher for the downscaled
image than the reference when using the RMSE
as measure. However, the Multi Scale Similarity
Index Measure (MS-SSIM) leads to a different con-
clusion. We calculated the MS-SSIM for the year
2000. The average MS-SSIM of the downscaled
and interpolated patches was 0.652 and 0.654,
respectively. So according to the MS-SSIM, the
quality of the downscaled and interpolated images
is almost equal. For 183 out of the 365 days, the
downscaled patches had a MS-SSIM equal to or
higher than the interpolated patches. Contrasty,
for the same year, the RMSE was higher or equal
for 358 out of the 365 days.

In figure 4.2, we present the downscaling results
of the patches on the same location as one of
the training patches. Based on the Face validity,
these downscaled images look better than the
downscaled images in figure 4.1. For example,
when we look at the yellow squares b and c in
figure 4.1, we see that the downscaled image
even learned a high-resolution detail that was not
included in the coarse ERA-20C.

Interpolated Downscaled
Patch not in | 1.59 1.47
training data
Patch in training | 1.48 1.37
data
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Figure 4.1: The rows show 5 random patches drawn from validation dataset, were the location of the
patch was different from the training patches. The columns show the low-resolution map, the downscaled
map, the interpolated map, the high-resolution map and a difference map between the high-resolution
and downscaled map for each patch. The precipitation is rescaled back to the range of the high-resolution

data in [mm].
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Figure 4.2: The rows show 5 random patches drawn from validation dataset, were the location of the
patch matched with one of the training patches. The columns show the low-resolution map, the
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high-resolution data in [mm].
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Spatial features in the downscaled images in 4.2
are again on the right locations, noticeably better
than the downscaled images in 4.1. This is best
visible in the last column of images that show the
difference between the high-resolution precipitation
map and the downscaled precipitation map, where
the area where the prediction is forecasted right
(white) is more prone in figure 4.2. The rainfall
extremes in ERA5 for the yellow square a in figure
4.2 are not captured in the downscaled image, so
on high-resolution details, there is still some room
for improvement.

The downscaled images in figure 4.2 are more Pre-
dictive than the interpolated images for the high-
resolution precipitation map, based on the RMSE
and Face validity. The downscaled images are
blurry like the downscaled images figure 4.1, so the
Sharpness could have been better. The forecast
Skill of the downscaled images in figure 4.2 is higher
than the images in figure 4.1. Furthermore, high-
resolution details like rainfall maxima are better pre-
dicted. But still, not all high-resolution details are
learned by the neural network. Taking into account
the forecast criteria mentioned till this point and
the RMSE, we can say something about the last
forecast criteria External. The high-resolution fore-
cast predicts well for new years (validation years not
used for training). However, the model predicts less
well for new locations, as the downscaled images
in figure 4.2 score on most points better than the
downscaled images figure 4.1.

4.2 Results case study: hydrological model

The second part of our results are the results of
the hydrological model. One of the advantages of
downscaling model output could be that it is better
suitable to use in a hydrological model simulation.
In figure 4.3 and 4.4, you can see the discharge
of the Rhine and its tributaries for the year 1981
and 1991. As was described in the method section,
the first two years of every decade have been used
for validation. We show the discharge of the sec-
ond year, the first year is used as spin up period,
to get the model running with minimal influence of
boundary conditions. The discharge are modelled
using different precipitation inputs: ERA5, ERA-
20C and the two downscaled datasets: Down and
DownTrain. In the text these will be described by:
Qhigh, Qlow, Qdown and Qtrain. Where Qdown
stands for the discharge modelled with the down-
scaled patches on a different location as the training
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patches, and Qtrain the discharge modelled with
the patches that had the same location as one
of the training patches. The model performance
is evaluated for two locations of the Rhine river
(Basel, Lobith) and for six tributaries (Thur, Mosel,
Jagst/Neckar, Main, Ruhr, Nahe). In table 4.2, 4.3
and 4.4, you can find all NSE's and KGE's for the
years 1981, 1991 and 2001.

We hypothesised at the start of this research that
Qdown would fall in between Qlow and Qhigh.
This would mean that the neural network learned
high-resolution features, and an increased hydro-
logical model performance as a result. However,
even with the scaling factor to correct for the
precipitation loss, Qdown and Qtrain still fall below
Qhigh and Qlow in most cases. Frankfurt and
Grolsheim are an exception, where the discharge
is overestimated by Qdown. The discharges of
1981 are more peaky than for 1991. This resulted
in lower KGE's and NSE’s for Qlow, Qdown and
Qtrain since peak discharges of ERA5 are less well
represented in the other discharges.

Qlow has a higher KGE and NSE than
Qdown/Qtrain for most of the locations, the
highest NSE and KGE values for each location are
indicated with bold letters in table 4.3, 4.3 and 4.4.
Following from this, Qlow resembles Qhigh better
than Qdown/Qtrain. Qtrain performs better than
Qdown in most cases based on the NSE and KGE.
Remarkable is the small difference between Qdown
and Qtrain, where a larger difference was expected
when looking at the downscaled precipitation
patches. For Cochem and Frankfurt, Qdown does
well at predicting some of the peaks, were other
peaks are clearly overestimated. While the model
performance of some locations is quite high, others
are very low, there is a large spread in KGE and
NSE values.

The modelled discharge of the Rhine at Basel and
Lobith have a similar good correlation of Qdown
and Qtrain with Qhigh (spearman correlationco-
efficient >0.9), which means they follow Qhigh
very well and have the peaks and low discharge
at the same time. However, the mean Qdown
and Qtrain is too low, this is also evident when
comparing the NSE and KGE. The NSE becomes
negative when the MSE is larger than the squared
variance of Qhigh, in that case you are better of
using the mean Qhigh as discharge estimate than



Qdown/Qtrain. The decomposed NSE has three
components, representing the bias error (difference
mean observed and simulated), variance error and
correlation of the observed (Qhigh) and simulated
discharge. These components don't have equal
weight, reason for Gupta et al. (2009) to propose
the KGE as better measure for model performance,
where in the KGE these three components have
equal weight. Accordingly, the KGE's are higher
than the NSE's, because in the NSE the bias error
(underestimation discharge) has more weight than
the correlation coefficient relatively.

For the NSE, the benchmark to distinguish good
and bad models is NSE=0. For the KGE this
benchmark is less clear, as discussed by Knoben
et al. (2019), where negative values do not neces-
sarily mean that the model performs worse than the
mean discharge. This is the reason why we present
both the NSE and KGE values. For Andelfingen
and Basel, the NSE is negative for 1981 and
1991, indicating that you can better use the mean
of the Qhigh, which is in line with the figures
where it is clearly evident that Qdown and Qtrain
underestimate the discharge. Nonetheless, the
KGE's are positive because of the good correlation
between Qhigh and Qdown/Qtrain.
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Figure 4.3: Modelled discharges for the year 1981 using the following precipitation datasets: ERADB,
ERA-20C, downscaled ERA-20C on a location different from the training patches (Down), and
downscaled ERA-20C on the same location as a training patch (DownTrain). Modelled Rhine discharge
for Basel, Andelfingen, Cochem, Plochingen, Frankfurt, Menden, Grolsheim and Lobith.
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Figure 4.4: Modelled discharges for the year 1991 using the following precipitation datasets: ERADB,
ERA-20C, downscaled ERA-20C on a location different from the training patches (Down), and
downscaled ERA-20C on the same location as a training patch (DownTrain). Modelled Rhine discharge
for Basel, Andelfingen, Cochem, Plochingen, Frankfurt, Menden, Grolsheim and Lobith.
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Table 4.2: KGE's and NSE's for the modelled discharge at several locations using the interpolated (Qlow)
and downscaled precipitation patches (Qdown and Qtrain) as input, and the discharge modelled with
ERADb as a reference, for the year 1981. Qdown: different location than training patches, Qtrain: same
location as training patch.

Qtrain

Location River NSE KGE NSE KGE NSE

Basel Rhine -0,71 0,07 -3,48 0,19 -2,60
Andelfingen Thur -0,27 -0,02 -1,33 0,05 -1,02
Cochem Mosel 0,57 0,75 0,66 0,48 0,34
Plochingen Jagst, Neckar 0,74 0,71 0,73 0,60 0,63
Frankfurt Main 0,60 0,76 0,60 0,72 0,74
Menden Ruhr -0,31 0,11 -0,27 -0,05 -0,73
Grolsheim  Nahe 0,65 0,50 0,17 0,76 0,63
Lobith Rhine 0,20 0,68 0,29 0,51 -0,36

Table 4.3: KGE's and NSE's for the modelled discharge at several locations using the interpolated (Qlow)
and downscaled precipitation patches (Qdown and Qtrain) as input, and the discharge modelled with
ERADbS as a reference, for the year 1991. Qdown: different location than training patches, Qtrain: same
location as training patch.

Qtrain

Location River NSE

Basel Rhine -0,95
Andelfingen Thur -0,95
Cochem Mosel 0,84
Plochingen Jagst, Neckar 0,80
Frankfurt Main 0,92
Menden Ruhr 0,20
Grolsheim  Nahe 0,76
Lobith Rhine 0,42

Table 4.4: KGE's and NSE's for the modelled discharge at several locations using the interpolated (Qlow)
and downscaled precipitation patches (Qdown) as input, and the discharge modelled with ERAS as a
reference, for the year 2001. Qdown: different location than training patches (no Qtrain available for this

period)

Location
Basel

River
Rhine

Andelfingen Thur

Cochem
Plochingen
Frankfurt
Menden
Grolsheim
Lobith

Mosel

Jagst, Neckar

Main
Ruhr
Nahe
Rhine
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5 | Discussion

5.1 Downscaling performance

First, we will discuss the downscaling performance
measures used. As was mentioned in the results,
our downscaling results score well with the RMSE
metric. The MS-SSIM metric showed to be more
positive about the interpolated images for the
patches that were on a new location compared to
the RMSE. The MS-SSIM corresponds better with
our perceptual assessment, consistent with the
conclusion of Wang et al. (2003). This shows the
importance of having a good performance metric.
An important remark is that the model was trained
to minimize the MSE, hence it was not trained
to perform good on performance metrics other
than the RMSE/MSE. To have a higher similarity
index, it should be included in the loss function.
In addition, whether a perceptually better results
is truly a better result first has to be confirmed
by an improvement in the hydrological model
performance.

The RMSE is lower for the downscaled patches
that were on the same location as the training
patch, than for the patches that were on another
location. However, the RMSE of the interpolated
images is also lower, see table 4.1. This could mean
the difference in RMSE of the downscaled images
is not only because of a difference in downscaling
performance, but that there is another factor. The
datasets are exported from GEE, were a bounding
box had to be defined. For the training dataset,
the bounding box covered the whole Earth, were
for the downscaling dataset, only Europe was cut
out. To have the right number of pixels (64x64
and 256x256), the bounding box for Europe was a
bit different for the high and low-resolution data.
This can have caused the datasets to be shifted
from each other by one pixel, and associated to
this, a larger error for both the interpolated and
the downscaled patches.

Vagueness is a side effect of using MSE as loss
function to optimize the neural network, so this
explains why the downscaled images do not score
well on Sharpness (Ledig et al., 2017). Even
though MSE is commonly used as loss function
for super-resolution networks, its ability to capture
details that are perceptually relevant is limited
(Ledig et al., 2017). The MSE loss function
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encourages finding pixel averages of plausible
solutions, causing a smoothed image as result.
This can be explained as follows: when there is
a possibility that there is a rainfall feature in the
high-resolution image, the MSE will cause just
a little bit of rain, since the error is lowest in
both cases (yes or no rain). For b in figure 4.1,
this resulted in a lower amount of rainfall than
the low-resolution image, getting closer to the
high-resolution image. In addition, the MSE as loss
function can have caused underestimation of high
rainfall amounts for the same reason. The model
is very good at predicting rain in the middle range,
but performs less well on the lower and higher end
of the spectrum.

The downscaled images in figure 4.2 score better
on Spatial features and Face validity based on
high-resolution details. This proves that the model
is trained specific for the locations of the training
patches, and coupled rainfall patterns to locations.
The 17 patches were not random enough, an
irregular pattern of cutting out images of the tiles
would have been better to have a model that
predicts well irrespective of geographical locations.
We used precipitation images of the whole world to
have a large training dataset, and to have a model
that works for the whole world. We did not expect
the model to couple rainfall patterns to locations,
but it doesn’t sound unreasonable, since rainfall
distribution is influenced by topography, land use
and land-sea distribution (Lukas, 1992; Smith,
1979; Ter Maat et al., 2013; Saavedra et al., 2020;
Fick and Hijmans, 2017). Furthermore, it shows
that if you want to create a model to downscale
data of a specific region, it is good to train on that
area specifically.

Comparing the downscaled ERA-20C with ERA5
is not completely 'fair’, since the datasets are pro-
duced by different models. Due to this difference,
some rainfall features appear in the ERA5 map but
not in ERA-20C map and the other way around.
These differences result in a volume bias, which
affects the downscaling performance. Part of the
RMSE can be explained by the difference in models,
so this has to be taken into account when evaluat-
ing the potential of neural networks to downscale
model output data. The case study does show



that the trained neural network could map some
low-resolution features at high-resolution, which
was exactly to goal of this research. The have a
'fair’ evaluation of this downscaling technique, you
can use upscaled ERA5 as input data instead of
the coarse ERA-20C, and see if the neural network
can downscale the upscaled ERA5 back to the
original ERAbL precipitation map. Another test
would be to use this model to downscale ERA-20C
data. In that case, there is no volume bias during
training. It would be interesting to see whether a
model trained in upscaled ERA5 data, would do
good in downscaling ERA-20C.

We compared our results with interpolation, we
could also have chosen for a more advanced tech-
nique to really 'challenge’ our downscaled precipi-
tation. This choice may have influenced our result
and part of the conclusion. For the downscaled re-
sults, there is still a lot of room for improvement.
We started with a simple model and using standard
options of Tensorflow like the MSE loss function.
Therefore, we compared our results with interpola-
tion as a first indication of the downscaling perfor-
mance.

5.2 Hydrological model performance

As explained in section 3.8 a scaling factor was
introduced to account for precipitation losses in
the downscaling procedure. The choice of this
scaling factor influences the modelled discharge and
therefore also the hydrological model performance.

Now the question is, where did the precipitation
got lost? We expect the MSE loss function to have
cased the biggest loss of precipitation. The MSE
has a smooting effect, which leads to an under-
estimation of high rainfall amounts. Furthermore,
it leads to a underestimation of rain for spatial
features that are a possibly in the high-resolution
map. We expect that applying a similarity index
or perception loss partly solves the problem of
losing precipitation. In addition, to ensure no
precipitation gets lost a volume loss penalty could
be introduced in the loss function. This means that
in the loss function, an extra term that equals the
difference in total sum of the low-resolution map
(x16 to account for different scales) and the output
of the neural network times a factor increasing as
the difference increases (for a positive difference).
This will make the network indirect more keen to
conserve the volume of rain. The total volume of
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rain was larger for ERA5 than for ERA-20C, so
you could also include the total high-resolution
sum in the loss function. For the scaling factor we
deliberately used the low-resolution total, since we
want to obtain high-resolution from low-resolution.

Next to the precipitation loss during the downscal-
ing procedure, part of the discharge underestima-
tion of the downscaled precipitation is related to
the total precipitation volume bias between ERAbH
and ERA-20C. For most locations, the ERA-20C
discharge lies below the ERAbB discharge. According
to Kim et al. (2018), ERA-20C underestimates
rainfall intensity. This is also visible when looking
at the precipitation maps in figure 4.1 and 4.2,
where in some cases the rainfall intensity is clearly
underestimated. This leads to a difference in total
precipitation volume, resulting in a lower discharge.

We have chosen one scaling method to
rescale/normalize both the high and low-resolution
data between 0-1. You could also make two scalers,
one for the high and one for low-resolution data.
In that case, the rescaled low-resolution data are
rescaled with the high-resolution scaler after being
downscaled. This choice probably has influenced
the results, how the results will change when using
two scalers is hard to predict. We fitted the scaler
on the high-resolution precipitation, in contrast
to the low-resolution data, this dataset included
values larger than 0.04. Therefore, the rescaled
input image does not include values larger than
0.8, this is different when you fit the scaler on the
low-resolution data. There is a possibility that our
choice has caused part of the loss of precipitation
volume.

Even though we used a scaling factor to correct
for the loss, the modelled discharge still underes-
timates the ERA5 discharge. This again shows
the importance of having a mass conservative loss
function to optimize you neural network. The large
difference in model performance between locations
can be related to the scaling factor. All pixels
are multiplied with a certain factor to have the
same total precipitation sum as the low-resolution
patch. This can have caused an overestimation
of rain for the locations were rain was predicted,
but still an underestimation of rain for areas
where no rain was predicted (on locations were
ERAGS did have precipitation), because after multi-



plication with the scaling factor there is still no rain.

5.3 Applying super-resolution neural net-
works on model output data

The case study exposed some of the challenges
that are faced when downscaling model output
data. To start with, the resolution was not the only
difference between the two reanalysis datasets,
but they also differ in model physics and data
assimilation methods. This highlights the difficulty
of having a neural network learning all these
differences. Another challenge is to have a good
downscaling performance metric and including this
metric in the loss function to optimize the model
based on your own defined quality measure.

To downscale model output data, changes are
needed in the methodology when downscaling data
instead of pictures, regarding the last research
question. Starting with the input data, two model
outputs are needed with resolution difference that
is a multiple of two, since neural networks are
designed to work with images that have a size of
64,128,256,512 etc. Furthermore, special attention
has to be paid on the coordinate references.
During the pre-processing there are a lot of steps,
important is to make sure that the final training
patches spatially match. An extra step in the
pre-processing is needed, namely rescaling and
normalizing the data between 0-1 (see section 3.1).
Our results show that there is still some room for
improvement. In section 5.6, we propose some
alterations to the method that we used in this
research based on the results of the case study.

The case study proves that a neural network can
learn high-resolution patterns and preform bet-
ter than interpolation based on the RMSE, which
shows the potential of this technique to downscale
all kinds of model output data. Some of the chal-
lenges also go together with opportunities. For ex-
ample, the importance of the performance metric
shows that the downscaled results can be steered
to a specific direction. This means the model can
be optimized for a specific goal, e.g. to predict
maxima or minima. This feature can be used as an
advantage for many applications. Another advan-
tage is that the model only has to be trained on
GPU once, and thereafter can be applied for down-
scaling model output data. The actual downscaling
goes very quick and therefore this method is compu-
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tationally efficient and cheap. In this research, we
chose to use a deep convolutional auto-encoder. In
the next section, we discuss two alternative network
structures that are commonly applied for super-
resolution. Both are originally applied to colour im-
ages but can also be applied to downscale model
output data with some alterations.

5.4 Alternative model structures

The first alternative to the deep convolutional
auto-encoder used in this research is the variational
auto-encoder.  The concept of the variational
auto-encoder was proposed by Kingma and Welling
(2014), it is a probabilistic variant of the tradi-
tional auto-encoder. The auto-encoder finds the
distribution of a latent feature given the input,
and the decoder finds a distribution of possible
outputs given a latent feature (Yeung, 2017). The
VAE network structure has already been applied
for creating super-resolution images Ma et al.
(2019); Huang et al. (2018). Since the output is
a generated image from a distribution, you can
explore the variations of the output images of the
model. You could therefore create multiple possible
high-resolution forecasts and in this way create
new (artificial) data. We expect the downscaling
Skill to be comparable with the Skill of the
deep-convolutional auto-encoder that we used in
this research.

The second alternative would be to use a Generative
Adversarial Network (GAN) structure. The GAN
framework was introduced by Goodfellow et al.
(2014). GANSs consist of two convolutional neural
networks. The first network is the generator, and
is trained to generate high-resolution images that
The

look like the 'true’ high-resolution images .

Figure 5.1: Left: 'true’ normalised high-resolution
map, right: downscaled precipitation map using a
GAN.



second, the discriminator, is trained to tell whether
an image is 'true’ or 'fake’ (generated by the gener-
ator) (Xie et al., 2018). The disadvantage of GANs
is that they are originally made to create super-
resolution colour images with three bands. The
precipitation data has only one band. The GAN
network can still be used, by creating an image
with three same bands (of precipitation data). We
tested this using our precipitation images and it
does look promising, figure 5.1 shows our result.
An alternative would be to use a DEM map and
pressure/temperature map as the second and third
band (all normalised between 0-1). Because GANs
are trained to replicate rainfall features and patterns
of the high-resolution map, it might result in a bet-
ter downscaling performance than auto-encoders.

5.5 Related work

Downscaling precipitation data using a neural
network has been done before. The most impor-
tant difference is the input data. Where we used
one coarse precipitation map as input, others used
multiple coarse precipitation forecasts (Mendes
and Marengo, 2010; Rodrigues et al., 2018). Ro-
drigues et al. (2018) applied a deep convolutional
network to downscale precipitation using multiple
precipitation forecasts from the Coupled Model
Intercomparison project Phase 5 (CMIP5). The
downscaling performance was measured by the
RMSE and was lower for the downscaled precip-
itation using the neural network than for linear
regression of the coarse precipitation forecasts.
Similar to our research, they show the potential
of neural networks for generating high-resolution
data from low-resolution data. Instead of multiple
precipitation maps as input, you can also used
multiple other input variables. Vu et al. (2016)
trained a neural network to downscale future
precipitation estimates of Bankok, using multiple
predictors defined with a principal component
analysis.  They conclude that choosing appro-
priate predictors is very important, because the
downscaling results strongly depend on the choice
of predictors. Next to the other meteorological
variables (e.g. temperature, pressure), you can also
use DEM or landuse as model input. Gerlitz et al.
(2015) combined large-scale atmospheric dynamics
with local topographic characteristics to downscale
ERA interim precipitation. This could be a way to
have a global downscaling model, since the neural
network is trained to couple rain to elevation, and
can therefore predict better for new locations. The

26

goal of this research was to create high-resolution
data from low-resolution data, using only the high
and low-resolution data and a neural network.
Using more predictors could result in a better
downscaling performance, yet we started with a
'simple’ model to look at the potential of neural
networks rather than having a complex model with
a lot of predictors.

In this research, we chose the MSE as loss func-
tion since it is commonly used for super-resolution,
and because it was already included in the Ten-
sorflow software. Ledig et al. (2017) proposed
a super-resolution generative adversarial network
(SRGAN) with an alternative loss function for the
MSE, the perceptual loss function. Their work
builds on the work of Johnson et al. (2016), who
proposed the perceptual loss function. The percep-
tual loss function is named as solution to have a
perceptually better result compared to the MSE.
Where the MSE calculates per pixel similarities and
the SSIM the similarity of batches of pixels, the
perception loss is based on high-level image fea-
ture representations extracted by a pre-trained con-
volutional neural network (Johnson et al., 2016).
Whether a perceptual better result goes together
with a better high-resolution precipitation forecast
has to be seen. This can be measured by using
both downscaled results, trained on MSE and on
SSIM/perception loss, as input for wflow_sbm and
compare the hydrological model performances.

5.6 Recommendations

The recommendations are split in two lines of
thinking: keep the one variable model or create a
multi-variable model. In this research, we trained
our model solely on high- and low-resolution pre-
cipitation data. We think this one-variable model
has quite some unexplored potential. Therefore we
will first propose several things that could improve
the downscaling performance of this model.

We think the largest gain in model performance
can be achieved by using a different loss function.
Training on pixel similarity results in a blurry
image, as we have seen for the downscaling results.
We propose to use an image structure similarity
measure or perceptual loss as alternative loss
function to have a higher Face validity. When
it appears that precipitation still gets lost using
one of the two loss functions, you can include
a penalty function (see section 5.2). Including



temporal coherence in the neural network could
also improve the forecast, since next to spatial
patterns, rain also has temporal patterns. This can
be done by including recurrent neurons in a fully
connected layer. The recurrent neurons in the fully
connected layer give as output a weighted sum of
the current input and last output value. Because
the last value is used for calculating the new value,
the network learns long-term dependencies in the
dataset (temporal coherence). Lastly, a GAN
model structure can be used as alternative for
the deep convolutional auto-encoder. The results
show that a location specific model works better
when using precipitation as only input to train
the model. In case you want to downscale data
of the whole globe, you can either cut the world
map in several pieces and train a separate model
on each region. Another way to go would be to
split the training data based on climate zones, and
have separate trained models for each climate zone.

For a global model, we expect that a multi-variable
model is needed to improve the downscaling perfor-
mance. This means using multiple meteorological
variables as input (e.g. dewpoint temperature,
pressure or convective available potential energy
(CAPE)) and possibly also land use and DEM
(digital elevation model).

After creating a more advanced model, it is better
to also evaluate the results with a more advanced
precipitation interpolation method like WorldClim.
WorldClim is an interpolation technique that uses
satellite-derived data, covariables and a smoothing
spline algorithm to downscale climate variables
(Fick and Hijmans, 2017).
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6 | Conclusion

Here we present an approach to use a super
resolution neural network to convert coarse model
output to higher resolution model output. We
have put this approach to the test by evaluating
its performance on a real world use case, by
downscaling reanalysis precipitation data. First,
we evaluated the downscaled precipitation data
and compared it with interpolated coarse ERA-20C
data. Based on the RMSE, the downscaled map
get closer to the fine ERA5 map than the inter-
polated patches. In contrast to interpolation, the
downscaled map showed high-resolution features
learned by the neural that were not present in
the coarse ERA-20C map. The model could
predict well for new years (validation years), but
less well for a new location. Using the MSE as
loss function showed to have to negative side
effects, the downscaled images are smoothed and
precipitation maxima are underestimated. The
perceptual quality of the downscaled images can
still be improved, its therefore important to define
a good evaluation metric for the quality of the
forecast. Next to optimizing this evaluation metric,
the loss function should also include a term to
conserve the total volume of precipitation, as the
results showed that precipitation got lost in the
downscaling process. In addition, you can try
including recurrent neurons in your network for
temporal coherence or use a GAN network structure
to improve the downscaling performance. Part of
the error between the downscaled precipitation and
the fine ERA5 precipitation was due to differences
between ERA5 and ERA-20C (coarse reanalysis
data). The models do not only differ in resolution,
but also have differences in model physics and data
assimilation methods.

The second evaluation of our results was done with
a hydrological model of the Rhine, wflow_sbm. The
modelled discharges of the Rhine and its tributaries,
are compared based on the NSE and KGE for 8 lo-
cations. From the results we can conclude that
the downscaled precipitation inputs do not improve
the model performance of wflow_sbm in compari-
son with using coarse ERA-20C interpolated to the
grid of wflow_sbm. Although a scaling factor was
introduced to solve the problem of the volume pre-
cipitation loss, the results still show that the mod-
elled discharge underestimates the ERA5 discharge
in most cases.

28

The networks used for generating super-resolution
images cannot directly be used to downscale
geophysical model output data. For example,
GANs are specifically designed for colour images
with three bands, yet they can be applied for
downscaling data with some modifications. First
of all, you need two model outputs with resolution
difference that is a multiple of two and having the
same coordinate references. Before creating the
training dataset from the pair of model output
data, decide on making a global or location
specific model. To have a model that works well
for the whole world, we recommend to spend
extra attention on randomizing the training data
and using multiple input variables/datasets. The
next important difference in method is the data
normalisation between 0-1. For colour images this
simply means dividing all pixel values by 255. For
downscaling geophysical data, you need to look at
the data distribution (normal, skewed) and think
of a smart way to rescale the data between 0-1.
The data distribution after rescaling influences the
model output. Lastly, it is better to use a custom
loss function instead of a standard loss function
like te MSE.

Even though the results show that the quality of
downscaled data is not high enough to improve
the hydrological model performance, we still
think neural networks have potential to downscale
geophysical data. The neural network learned high-
resolution features. Furthermore, super-resolution
neural networks for pictures improve fast, we can
benefit from this for our application. A great
advantage is the wide-applicability of this down-
scaling technique, it can be applied to many kinds
of model output data, e.g. morphology, hydroge-
ology, climate forecasts, drought/flood forecasts.
Furthermore, neural networks are computationally
efficient and can be optimized for a specific goal.
Moreover, the model output resolution can be
increased without the need of having knowledge
on underlying processes. This research contributes
to the development of the right method for
downscaling geophysical model output data with
a neural network by presenting a general method
outline and focus points. Based on our suggestions,
follow up research can further investigate and apply
neural networks for downscaling model output data.
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Figure 8.1: Network design, with the blue blocks ¥

and orange blocks showing the encoding and
decoding blocks, respectively. The layer names are
shown, as well as the shape of the input and
output of every layer and the number of output
layers (7 (batch size), shape, shape, number of
layers).
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