

D4.4: Analysis of Imaging

Approaches

Hendrik de Villiers, Rick van de Zedde, Ruud Barth, Tony Pridmore | 31 December 2019

 2

Abstract

Plant phenotyping experiments are increasingly generating vast amounts of data. The question of

how to organize this data quickly arises. However, choosing a means of organizing such data is a

non-trivial matter, as many solutions are possible. This has led to a lack of standardization in the

field. This hampers the use and reuse of data, as users of a dataset have to write/adapt their own

code to account for the particular structure of a new dataset. Furthermore, often dataset formats

do not enable the detailed recording of metadata such as provenance information, potentially

leading to a lack of transparency around the activities and structures within which the dataset was

collected.

In this document, we consider the question of dataset organization within the context of plant

phenotyping, with a special emphasis on computer vision data. A mapping/gapping analysis is

presented based on summaries of interviews with the imaging experts involved in setting up/

controlling the imaging pipeline within phenotyping research infrastructure in Europe, to

understand their way of working and their expectations from EMPHASIS-PREP.

Subsequently, we discuss PHIS (Phenotyping Hybrid Information System), a prominent community

effort specialized in the organization of plant phenotyping datasets. The discussion includes core

semantic web concepts, as well as an overview of PHIS’ approach to organizing information.

Annexes are included which further expand on the information presented in the main matter,

allowing the interested reader to learn more and experiment with using PHIS. This includes the

uploading of a case study dataset containing hyperspectral image data. In addition, we consider the

question of how to best preserve PHIS’ ability to capture provenance metadata while connecting the

system to subsequent machine learning workflows (with a special emphasis on deep learning).

3

Acknowledgements

The following individuals and groups are thanked for their contribution to the creation of this

document:

• INRAE Montpellier groups for initial testing VM, scripts and running a workshop on PHIS.

• Jean-Eudes Hollebecq (INRA) for feedback on the manuscript.

• Aneesh Chauhan, Esther Hogeveen, Gerrit Polder and Don Willems as project leaders
supporting case study development.

• Aneesh Chauhan for advice on the tutorial code, as well as coordination between projects.

• Esther Hogeveen for provision of the initial development dataset.

• Gerrit Polder for provision of the final case study dataset.

• Don Willems for contributing to the material on semantic web standards.

• Ruud Barth, a former WR-colleague, for contributing to the chapter on data structuring
patterns in computer vision.

• Sven Warris for feedback and contributing material on compute considerations to the
section on machine learning with PHIS datasets.

• Aneesh Chauhan, Sven Warris, Don Willems and Hajo Rijgersberg for participating in internal
discussions on PHIS usage and deployment.

• Peter Roos for feedback on the manuscript.

• The NPEC (Netherlands Plant Eco-phenotyping Centre), KB DDHT (Data-driven and High-tech
program KB38-001-003/007) and HUMISTATUS projects for supporting this case study
development.

4

Table of Contents
Abstract .. 2

Acknowledgements ... 3

1. Introduction .. 7

2. Mapping/ Gapping analysis ... 11

2.1.Interviews and Responses ... 11

2.2. Analysis .. 13

2.3. Expectations .. 18

3. Dataset Structuring Patterns in Computer Vision .. 20

3.1. Positioning Phenotyping in Computer Vision .. 20

3.2. General benchmark datasets .. 21

3.3. Benchmark Datasets in Agriculture and Phenotyping .. 23

3.4. Suggestions for Phenotyping Dataset Organization and Management 27

4. Dataset Management .. 29

4.1. Introduction ... 29

4.2. FAIR Principles for Dataset Stewardship ... 30

4.3. Conclusion ... 31

5. Representing experiments and measurements using PHIS .. 32

5.1. Semantic data representation ... 32

5.2. Data representation in PHIS .. 34

5.2.1. Ontology of Experimental Scientific Objects (OESO) 35

5.2.2. Ontology of Experimental Events (OEEV) .. 35

5.3. The PHIS software ecosystem .. 36

5.4. PHIS Dataset Structure .. 38

5.5. Conclusion ... 40

6. Machine Learning with PHIS Datasets .. 41

6.1. Structure of machine learning datasets .. 41

5

6.2. Challenges to automating machine learning dataset assembly from PHIS 43

6.3. Trace-based Tensor Assembly and Provenance Capturing 45

6.4. Roadmaps towards incorporation of trace-based provenance in PHIS 49

6.5. Compute considerations .. 50

6.6. Trace-based tensor description using JSON ... 51

6.7. Roles in data science workflows... 55

6.8. ML-Schema .. 57

6.9. Trained machine learning model interchange .. 58

6.10. Summary and conclusion ... 60

7. Summary and Conclusion ... 61

References .. 63

Document information .. 64

1. Executive Summary .. 66

Introduction ... 66

Summary... 66

Recommendations ... 68

Annex 1: Check list .. 70

Annex 2: Further Semantic Web Concepts .. 71

2.1. Controlling representations .. 71

2.2. Examples of graph-based dataset representation .. 74

2.2.1. Tabular data .. 74

2.2.2. Time series .. 77

2.3. The semantic web: IRIs and shared ontologies ... 78

2.3.1. Unique identification of entities and their properties 79

2.4. RDF and Triples ... 81

2.5. Queries on triple stores using SPARQL ... 82

2.6. Conclusion ... 83

Annex 3: An Introduction to PHIS ... 84

6

3.1. REST services for software developers ... 84

3.1.1. Identifying web services using URLs .. 85

3.1.2. Kinds of HTTP request ... 85

3.1.3. Passing Information to a Web Service .. 86

3.1.4. Server responses to HTTP requests ... 87

3.1.5. Examples of web requests supported by PHIS .. 87

3.2. A First Example in Python .. 89

3.3. Using Swagger Documentation to Explore the PHIS API 91

3.4. Conclusion ... 96

Annex 4: Dataset Capturing in PHIS: A Case Study .. 97

4.1. Case study dataset ... 97

4.2. Using the example code .. 98

4.3. Projects .. 99

4.4. Experiments .. 107

4.5. Sensors .. 109

4.6. Provenance ... 111

4.7. Scientific Objects ... 113

4.8. Uploading Data .. 115

4.8.1. Point data .. 115

4.8.2. Bulk data ... 117

4.8.3. Cross-referencing between data subsystems ... 118

4.8.4. Uploading the case study data: Ground truth labels 118

4.8.5. Uploading the case study data: Image data .. 123

4.9. Conclusion .. 124

7

1. Introduction

In the scientific community, but also in the corporate world, data management and organisation is a

very splintered phenomenon. There is a wide variety of ways the information can be stored and

handled. This is coming forth from the premise that data objects and their properties are actually

very simple constructs for which there is no obvious, single logically intuitive way of storing and

organising them. On the one hand, this leads to a multitude of implementations each specific for

their application, serving as input for proprietary processes. On the other hand, usually any data

format can also be transformed to others using simple scripts (given the data and their properties

are similar and from the same domain, e.g. stock data cannot meaningfully be translated to image

data.)

Plant phenotyping experiments often collect vast amounts of data, yet typically the format in which

this data is stored is particular to the given project. In addition, metadata enabling the

understanding of the data by third parties is often not recorded. This means that such data is not

easily reusable by other groups, perhaps even within the same organization. While there are some

common structuring patterns for datasets, easy interoperability between systems using data

collected in different experiments is usually not expected. Even if the need for later reuse is

discounted, the lack of standardization means that researchers have to rewrite the same kind of

processing script for each project, which is both wasteful and can lead to unnecessary error.

In this document, a mapping and gapping analysis is presented based on summaries of interviews

with the imaging experts involved in setting up/ controlling the imaging pipeline within phenotyping

research infrastructure in Europe, to understand their way of working and their expectations from

EMPHASIS-PREP. Digital images are central to plant phenotyping, for a variety of reasons. Many

traits of interest are visible to the eye, suggesting that they can in principle be recovered

automatically from appropriately captured and processed image data. Though images of plants

present new challenges, image analysis, and the broader field of computer vision, have provided a

wide variety of techniques and tools which have the potential to achieve this. Moreover, most

imaging devices produce broad-field data which is open to multiple interpretations; once an image

is captured it can be analysed in different ways, by techniques which focus on different areas of the

visual field. An image initially captured to support e.g. wheat ear counting can later be analysed to

extract leaf traits, or provide improved ear counts when new methods become available.

8

Subsequently, current standards for data set management for image data are investigated. From

this, suggestions are made for organizing phenotyping data. It must be noted that the results are

highly biased towards current best practices in computer vision. Given that machine learning,

notably Deep Learning, is the current state-of-the-art, this forms the suggested data set

organisation. Furthermore, because the field is moving extraordinary fast, changes in managing the

data should be expected in the near future already. Hence this document comes from a very

specific perspective in both domain and time. One take home message is that the methods applied

to the data dictate the data format and organization and less so the other way around. Choosing

flexible data formats can help storage approaches adapt with changing methods of data processing.

It must also be said that even within this domain, there is a large variance of type of data objects

and their properties and relations. For example, some images are annotated with only bounding

boxes, others on a per-pixel level, others in a time-series from frame to frame, or even with sub-

components with abstract spatial links.

Recently, efforts have been made towards enabling easy reuse and interoperability of plant

phenotyping datasets. One prominent effort is the ongoing PHIS (Phenotyping Hybrid Information

System) project (Neveu et al., 2019). This system is currently in development and evolving through

feedback from the community. While a variety of resources exist describing the principles and

application of this approach to dataset creation, this information is (generally speaking) distributed

across a number of sources.

A further aim of this document is to provide a guide to the most important aspects of using PHIS to

record experimental design and measurements. High-level aspects of PHIS’ organization are

discussed in the main text, while in the annexes a more thorough overview of the practicalities of

interacting with PHIS is provided. The overview is intended to be as self-contained as possible,

while citing useful resources for further study. Practical examples are provided, including source

code where applicable. Source code examples are in the Python language, since this is a commonly

used language in data science. However, we will take care to help users transfer these concepts to

their own working languages where possible. In particular, PHIS implements interaction with user

code via REST services, which can be called the vast majority of programming languages. No

previous experience of interacting with REST services will be assumed on the part of the reader.

9

Where necessary, we make proposals for encoding aspects of machine learning experiments in a

way which complements existing PHIS facilities.

Chapter 2 presents a mapping and gapping analysis based upon a set of one-to-one structured

interviews with platform staff identified as closely involved in image analysis and the recent,

relevant trends in the image analysis and computer vision literature.

Chapter 3 relates the domain of plant phenotyping within the domain of computer vision, and gives

an overview of current approaches to structure commonly used vision datasets. Furthermore, key

plant phenotyping datasets which use these formats are identified and discussed.

In Chapter 4, we discuss the challenges inherent in recording experimental design and

measurements in a truly reusable and interchangeable way. The FAIR guidelines for management

and curation of datasets are presented as a key set of criteria to enable such reuse. We review a

selection of methods attempting to address these issues, with special focus on the approach taken

by PHIS and related projects.

PHIS relies heavily on representing knowledge using the approach taken by the semantic web.

Therefore, Chapter 5 provides a compact overview of the most important concepts underlying the

semantic web. The chapter will also introduce the various subcomponents of PHIS. While knowledge

representation is a significant part of PHIS, other subcomponents enable users to access or alter this

knowledge with a variety of methods. We will focus on portions of the system which are needed to

begin using PHIS, and provide references for using the more specialist aspects of the system. To

support the material on PHIS, annexes 2 through 4 provide additional technical information, as well

as a worked example of the uploading of a case study dataset to PHIS. This includes uploading

scripts in the Python language.

Chapter 6 considers how to extract information from a PHIS dataset for use in training and testing of

machine learning models. PHIS attempts to provide a detailed representation of an experiment’s

design and measurements. This representation is meant to provide a single, definitive record of

events that occur during an experiment. However, machine learning researchers would likely not do

training and testing directly based on the PHIS dataset. Multiple teams may be modelling different

subsets of the larger dataset. Machine learning methods, particularly deep learning, are dependent

on so-called “tensors”. Assembling such tensors from the appropriate subset of data in a PHIS

10

dataset is important, but it is also important that information about how the tensors were

assembled is retained. We make proposals for representing such assembly procedures in a way

which complements PHIS. In this way, reproducibility of machine learning experiments can be

enhanced.

Machine learning models, particularly deep neural networks, can take a long time to train, and are

themselves valuable research outputs. Such models are often reused by other groups on novel tasks.

In the last portion of Chapter 6 we discuss ways in which models may be stored for reuse and

possible dissemination (focusing mainly on deep neural networks).

In Chapter 7, we conclude the text with a discussion and suggestions for further reading to deepen

the material covered.

11

2. Mapping/ Gapping analysis

The first EMPHASIS-PREP survey of phenotyping platform operators addressed a variety of topics

spanning all of EMPHASIS’ pillars and goals. This attempt to create a single, comprehensive survey

provided much useful information, but inevitably also raised questions that required deeper

analysis. To clarify and build upon the understanding gained of the image analysis approaches and

used across the consortium, and to identify opportunities for improvements and areas needing

greater attention, a series of interviews were conducted with staff members identified as closely

involved with image analysis in their platforms. It is upon these interviews and observations of the

recent relevant literature that this analysis is based.

2.1.Interviews and Responses

A set of twelve interviews were conducted by representatives of the EMPHASIS Core Group’s

facilities. EMPHASIS-PREP partners were asked to identify individuals they considered their

imaging/image analysis experts, those who were closely involved in setting up and maintaining the

image analysis component of the installations they operate. It was made clear that interviewees

should have the deepest technical understanding of the methods and tools being used that was

available at the platform.

Interviews were conducted by Rick van de Zedde and Tony Pridmore by telephone, skype or similar

web conferencing tools over a period of some 10 months. Initial contact with the interviewees made

it clear that EMPHSIS-PREP’s goals in this were to understand both the image analysis facilities

employed and their way of working with them, as well as seeking some knowledge of their

expectations from EMPHASIS-PREP. A set of questions was drawn up around which the interviews

were structured, though the varying backgrounds of the interviewees meant that individual

conversations inevitably varied somewhat. The questions were organised into four clusters:

• General: These sought to clarify the respondent’s background, providing useful context for

the remainder of the discussion, and the nature of the platform with which he/she is

associated. Specific questions asked were: What is your role/responsibility in the facility?

What part of you is a biologist/ data scientist/ technology developer (in percentages).

What is your background/professional profile? Please describe your platform.

• Imaging and Image analysis: These questions were selected to provide information on both

the methods and tools in use, and the platform staff’s relationship to them. The latter is

12

key, as EMPHASIS services must match the needs and abilities of installation operators.

Specific questions asked were: Can you describe the imaging pipeline you use, i.e. what

sequence of processes is applied to the initial image? Do you know which specific

algorithms are employed (e.g. Otsu or Rosin thresholding)? Which software tools and/or

programming languages do you use? What degree of control do you have over the pipeline?

Can you set camera positions, individual algorithms’ parameters? How many cameras are

involved, of what type? What relevant functionalities do you use? How/what do you

calibrate, and how do you verify your system?

• The Team: This section aimed to clarify the amount of support available within the platform

for the installation, maintenance, operation and development of imaging and image analysis

functionality. Specific questions asked were: Can you describe your technical development

team? Do you have a particular image analysis specialist who you work with? How do you

gain new knowledge on new imaging developments (sensors/ software/ data analytics)? And

are you able to integrate that into your systems/ imaging pipeline?

• Data and Computational Services (previously e-Infrastructure): The final section of each

interview focussed on the data produced, and how it was stored, managed and further

analysed. Specific questions asked were: Which tools do you use for data handling and

storage? Are you using external services for data sharing? Do you use a standardized

identification system? Do you use standardized protocols? Are these metadata organized

with standardised languages? Have you designed a long term archiving capacity? Are you

using a proprietary information system for sorting and handling data? Are data generated

on your platform available through web services? Which tools are you currently using for

data handling and storage (e.g. file based, hard drive, CSV file)? What is the storage

capacity of your computer infrastructure?

Each interview ended with a final, overarching question: What are your expectation concerning

EMPHASIS in relation to these components of your operation?

Interviews were organised with colleagues from Belgium, UK, Netherlands, Germany, Austria, Italy

and France. Figure 1 shows the number of interviewees from each country. These were drawn from

10 distinct institutions: ALSIA, INRA, IPK Gatersleben, JPPC, Rothamsted Research, Universite

Catholique de Louvain, University of Nottingham, VBCF, VIB and Wageningen University. Most

contributed a single interview, with the wider range of facilities available at INRA, Universite

13

Catholique de Louvain and Wageningen University leading them to contribute 3,2 and 3 interviews

respectively.

Figure 1: Number of interviewed experts in the different countries.

Comprising a total of 27 questions, each interview represented a more detailed investigation of the

platform’s imaging, image analysis, data and computational services than was elicited by the initial

EMPHASIS-PREP survey. Each interview lasted 40-60 minutes, with written notes being captured by

the interviewer.

2.2. Analysis

The interviews were structured to allow a natural conversational progression, and so proceeded

from general discussion of the interviewee’s background and skills, through the tasks they perform

and tools they use to the human and computational support they receive. When mapping the image

analysis landscape it is, however, more informative to follow a different path. In what follows we

focus on the hardware and software tools and methods in use within the community and discuss

platform staffs’ capabilities in regard to them.

2.2.1. Imaging and image analysis

Number of cameras: Figure 2a summarises the range of imaging devices (and so image data) found

in platforms operated by the EMPHASIS core group. Standard colour cameras dominate, reflecting

14

their generality and low cost. Figure 2b summarises the number of cameras found in phenotyping

platforms. Those with lower numbers of cameras tended to be either specialist installations relying

heavily on e.g X-ray CT or Lidar. Those with 4+ devices typically employed a variety of imaging

modalities, though again RGB cameras were the most common. Though the question was not

explicitly asked, interview responses suggest that in most cases multiple cameras are used to

provide coverage of multiple plants or growth environments: only three interviewees mentioned the

use of multiple cameras to recover 3D information. A majority of image analysis performed within

these installations is two dimensional; measurements are made on the image plane. Those that do

recover 3D information are more likely to use specialist hardware to do so. Similarly, those

employing multiple camera types tended to describe them independently; there is little evidence

here that sensor fusion methods are currently being used in plant phenotyping.

Mapping: RGB cameras and independent 2D analysis of the resulting images dominates current

practice.

Gapping: More might be made of the combination of multiple RGB images, and of images obtained

from different types of imaging device.

a. b.

Figure 2. Histograms summarising a) the type and b) the number of cameras used per group in

phenotyping platforms operated by the EMPHASIS Core Group.

Calibration of cameras: Two-dimensional image analysis can provide a great deal of information

regarding viewed objects, but requires the camera(s) used to be calibrated. Unless the relationship

15

between real world dimensions (e.g. mm) and image plane measurements (made in pixels) is

known, any change in camera settings or position will disrupt the data provided.

Figure 3: Calibration methods used in Core Group facilities.

Figure 3 summarises the calibration methods used in the platforms surveyed. A large proportion

employed a standard camera calibration target and software tools to recover camera parameters,

giving them full control over the calibration process. Two more used image-based methods, in

which they manually compared pixel measurements with corresponding plant dimensions to

compute a relationship. Only 4 relied upon manufacturer’s methods or did not calibrate at all, but

these included installations which relied upon more specialist devices such as X-ray CT, for which

this is appropriate. During the conversations only 3 platform operators expressed concerns about

the calibration methods available to them. A variety of tools and targets are, however, in use, and

calibration is performed with varying frequency.

Mapping: Appropriate calibration tools are and processes are in place in a large majority of

platforms.

Gapping: There is an opportunity for greater standardisation of calibration methods and frequency.

All the methods described are internal to the given platform; no mention was made of calibration

against other platforms producing similar data.

Imaging analysis tools: Phenotyping installations gather images of a wide variety of plant species

and organs in controlled environments, glasshouses and fields. They seek to provide phenotyping

data at the cell, organ whole plant and plot scales to support the recovery of a wide variety of

16

traits. It is therefore to be expected that there will be significant variation in the image analysis

techniques, tools, and particularly pipelines employed. These pipelines might be supplied by

commercial concerns, built in-house or obtained from other platforms and phenotyping research

groups. A key question, given the variation between platforms’ needs, is how much knowledge and

understanding of the underlying methods do platform staff have, and how much control can they

exert?

a. b.

Figure 4: a) Sources of image analysis software within the Core Group and b) perceived degree of

control over the image analysis pipeline by platform staff

Figure 4a gives a histogram showing the frequency with which image analysis software within the

Core Group is obtained from the available sources. Figure 4b summarises interviewees’ response to

the question of how much control they feel they have over their pipelines. All state that they have

full control, in the sense of being able to manipulate what they consider to be the key parameters.

Approximately half also have access to source code, and so could make structural and detailed

changes to the processes applied, as well as having full knowledge of the operations being applied.

Over 80% of those interviewed were able to describe the pipelines used in their platforms to a high

level of technical detail, citing specific algorithms and showing clear understanding of the

interactions between them. The pipelines described during the interviews, however, shared a

common feature: all were based upon classical image analysis operations such as noise removal,

thresholding, segmentation, mathematical morphology, etc. All were also straightforward linear

processing chains, in which the output of one operation becomes the input of the next. The

technology which has had the greatest effect on the wider computer vision community in recent

years – deep machine learning – was conspicuous by its absence. Though most platforms are able to

17

process their images with their own software tools, we expect that flexibility in these tools towards

new plants/new situations is limited and that deep learning will offer significantly increased

flexibility (with explanation) without requiring significant re-design of the tools concerned.

Mapping: Phenotyping platform staff have a high degree of understanding of and control over the

image analysis pipelines they oversee. The pipelines described rely exclusively on classic image

analysis operations.

Gapping: The degree of control and widespread use of home-grown and open source software means

that there is little/no standardisation in the software tools used, raising the possibility of the

EMPHASIS community developing shared approaches. The most significant technological gap the lack

of exploitation of recent advances in deep learning, which requires access to sizeable annotated

data sets. We return to this below.

2.2.2. Data and Computational Services (e-Infrastructure)

Interviewees’ responses to the questions probing e-infrastructure suggest a community in transition.

A significant majority are currently using straightforward data storage techniques, in many cases

storing images and trait data in everyday formats such as csv on local machines, organising the data

only by constructing an appropriate folder hierarchy. Some 15-20% reported going a little further

and using standard database tools such as SQL. The systematic use of standardised identifiers for

plants and other objects is comparatively rare, and very few reported use of application-specific

data management software. Approximately half of the interviewees, however, described partial use

of more advanced methods and/or an intention to adopt them in the future. Several were part-way

through installation of PHIS at the time of the interview, and others stated an intention to use

either PHIS or PIPPA.

Mapping: Current techniques are predominantly local, and rely on standard file structure and

database methods. There is however, evidence of a move towards more systematic representation,

storage and management of image and related data.

2.2.3 Individuals and Teams

Within this set of platforms all but one of the interviewees reported having some training or

experience of engineering, computer or data science, usually along with some biological

qualifications. Those that were primarily biologists all reported having easy access to staff with the

18

required technical knowledge. All those interviewed either stated or implied that they work with

image analysis and computer vision experts within their own facilities, rather than external groups.

It is noted that the interviews only included members of the EMPHASIS-PREP Core group, who may

have a greater interest in and motivation for technical development, and so employ a wider range

of staff than institutions more tightly focussed on experimentation. Should this be the case,

however, the Core Group staff remain a significant resource, with potential for technology

development and transfer across the wider community.

When asked how they obtain new knowledge, interviewees listed standard academic mechanisms

such as via journal and conference papers, workshops and tutorials. Only a few conferences (e.g.

CVPPP) were mentioned by name, but again there was little standardisation or commonality in the

sources used.

Mapping: Phenotyping platform staff span a range of disciplines and are a significant resource.

Gapping: There no evidence of commonality in the sources of information they use, which may limit

information flow across the community.

2.3. Expectations

The final question of each interview addressed respondents’ expectations of EMPHASIS, in the

context of imaging, image analysis and the resulting data. The most common expectations were

related to data; with the development and provision of open data standards the most frequent and

often first response. Data sharing was the second most common topic raised. This referred to image

and trait data, but it seems reasonable to assume that EMPHASIS members will come to expect the

network to also support access to the annotated images needed when training deep learned

solutions.

In terms of processing techniques, only shared libraries were mentioned, and not shared pipelines.

This may be a result of the high level of internal development of classic pipelines currently seen,

and/or the variety of tasks performed across the community: members do not think of pipelines as

being transferable, but are interested in libraries from which they can construct their own. Given

the emphasis placed on pipelines and workflows in other ESFR projects such as Elixir, this is

surprising. Workshops, training events and other information exchange methods were also

highlighted as desirable.

19

Mapping: Current expectations focus more on data than processes.

Gapping: There was little discussion of representation and sharing of pipelines, which should

perhaps be addressed.

20

3. Dataset Structuring Patterns in Computer Vision

3.1. Positioning Phenotyping in Computer Vision

Before it can be suggested how to shape phenotyping data, first it needs to be roughly positioned in

the computer vision domain. The scope of datasets in computer vision is very wide. Below a limited

short list from different sub-domains. It shows already the diversity that can be expected in potential

organizing data in each domain:

• Low-level Vision

• Optical Flow

• Video Object Segmentation

• Change Detection

• Image Super-resolutions

• Intrinsic Images

• Material Recognition

• Multi-view Reconstruction

• Saliency Detection

• Visual Tracking

• Visual Surveillance

• Visual Recognition

• Scene Understanding

To pinpoint the most relevant scope for phenotyping, first needs to be estimated where phenotyping

for the most part resides. For this, it is required to get a common understanding or definition of what

phenotyping with images actually entails:

Plant Phenotyping

The observable physical characteristics of a plant.

The domain of Visual Recognition is the field where from image data is recognized what is where.

This highly overlaps with phenotyping, where from images it needs to be derived where the plant

(parts) are and thereafter, with use of some additional processing steps, link the location of those

parts to physical characteristics, for example by using 3D reference images.

Other domains, such as multi-view reconstruction or scene understanding might also be relevant for

phenotyping, albeit those are more application specific.

Visual recognition can be further sub-divided into the fields in the following table, from a higher-

level recognition, to a fine-grained lower-level recognition: image classification, object detection

and semantic segmentation.

21

3.2. General benchmark datasets

For image data in each of these sub-domains, the community has several benchmark datasets that

existed over a decade 1. With these datasets, new methods of learning are tested and compared to

the state-of-the-art. The dataset management and organization of these datasets remained

relatively stable, although they got extended when new techniques required new and different

input formats.

Sub-Field Example Benchmark Datasets

Image Classification

Estimate what the image is

mainly about.

• The PASCAL Visual Object
Classes (VOC) Dataset.

• ImageNet Large Scale Visual
Recognition Dataset

Object Detection

Pin-point where objects are in

the image with bounding-boxes.

• The PASCAL Visual Object
Classes (VOC) Dataset.

• ImageNet Object Detection
Dataset.

• Microsoft COCO Dataset

Semantic Segmentation

Determine for every pixel to

which object class it belongs.

Depending on the methods may

also include object instance

detection.

• The PASCAL Segmentation
Dataset

• Microsoft COCO Dataset

It is these datasets that define also the current standards in dataset management and encoding. For

phenotyping applications, it is key that plant (parts) are segmented on a per pixel-level and moreover

1 A comprehensive list of datasets can be found here: https://www.datasetlist.com/

https://www.datasetlist.com/

22

different instances can be discerned. Hence the sub-field within visual recognition of semantic

instance segmentation would be the most relevant scope to further expand on.

There are 2 main ways to organize semantic instance segmentation data, coming forth out of the two

benchmark datasets.

The PASCAL Segmentation Dataset

The ground truth label

of each image consists

of a pair of images, one

with color information

and the other with a per

pixel color encoding of

the class of interest,

with a different color

per instance.

Microsoft COCO Dataset

For COCO a different approach was chosen with the benefit that storing and parsing the ground truth

labels is more efficient and lightweight. Instead of storing annotations as additional images, a text

based description is used, which can be extendable

The annotations are stored using JSON (JavaScript Object Notation) which is a lightweight data-

interchange format. It is possible for humans to read and write. It is easy for machines to parse and

generate. It is based on a subset of the JavaScript Programming Language, Standard ECMA-262. JSON

is a text format that is completely language independent but uses conventions that are familiar to

programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and

many others. These properties make JSON an ideal data-interchange format.

Each object instance annotation contains a series of fields, including the category id and segmentation

mask of the object. The segmentation format depends on whether the instance represents a single

object (iscrowd=0 in which case polygons are used) or a collection of objects (iscrowd=1 in which case

23

RLE, or run-length encoding, is used). Note that a single object (iscrowd=0) may require multiple

polygons, for example if occluded. Crowd annotations (iscrowd=1) are used to label large groups of

objects (e.g. a crowd of people). In addition, an enclosing bounding box is provided for each object

(box coordinates are measured from the top left image corner and are 0-indexed). Finally, the

categories field of the annotation structure stores the mapping of category id to category and

supercategory names. See also the detection task.

Below an example is given for the encoding in the JSON file.

annotation{

"id" : int,

"image_id" : int,

"category_id" : int,

"segmentation" : [polygon], e.g. ([[x1 y1 x2 y2], […], …])

"bbox" : [x,y,width,height],

"area" : float,

"hasSomething" : 0 or 1,

"isCrowd" : 0 or 1,

}

3.3. Benchmark Datasets in Agriculture and Phenotyping

The previously mentioned benchmark datasets have a broad general everyday life content with

classes such as cars, trees, humans and pets. There also exist benchmark datasets for agriculture

and phenotyping specifically.

3.3.1. Leaf Segmentation Challenge Dataset

To advance the state of the art in leaf segmentation and to demonstrate the difficulty of segmenting

all leaves in an image of plants, the Leaf Segmentation Challenge (LSC) was created (Minervini,

24

Fischbach, Scharr, & Tsaftaris, 2016). For the challenge a training set was released which contains

raw images and annotations 2.

The format of the challenge is similar to the PASCAL Segmentation Dataset (example data from this

dataset can be seen in Figure 1. Each instance of leaves has a unique color label and a per pixel

annotation is used. Furthermore, there are additional CSV data files that include physical plant

parameters like leaf size, center and bounding boxes. All images were hand labelled to obtain ground

truth masks for each leaf in the scene. These masks are image files encoded in PNG where each

segmented leaf is identified with a unique integer value, starting from 1, where 0 is background. For

the counting problem, annotations are provided in the form of a PNG image where each leaf center

is denoted by a single pixel. Additionally a CSV file with image name and number of leaves is provided.

2 https://www.plant-phenotyping.org/cvppp2014-challenge

Figure 1: Leaf Segmentation Challenge Data

https://www.plant-phenotyping.org/cvppp2014-challenge

25

3.3.2. Sweet-Pepper Dataset

For plant part detection and instance segmentation, a synthetic and empirical (real) dataset was

created3 of a commercially grown sweet-pepper crop. Samples from this dataset can be seen in Figure

2. For each plant, up to 8 classes were annotated.

The synthetic data (top two images, left-hand column of images) was based on distributions of plant

part measurements encoded in a model to procedurally generate plants. These models were then

rendered to obtain photorealistic scenes and corresponding ground truth (Barth, IJsselmuiden,

Hemming, & Henten, 2018). The empirical data (bottom two images, left-hand column of images) was

collected in a greenhouse and manually annotated. Initially the ground truth label format was based

on the PASCAL Segmentation Dataset. However, instances were not included and therefore any

overlapping objects could not readily be discerned. In a later approach, the dataset was expanded to

include bounding boxes and instance segmentation for 3 plant part classes (right-hand square of 4

images). This format was according to the COCO dataset and included a JSON file as annotation.

3 https://data.4tu.nl/repository/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0

https://data.4tu.nl/repository/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0

26

Figure 2: Sweet Pepper Data

27

3.3.3. Annotated Crop Image Database (ACID)

Initially created to manage training sets contructed during development of a series of convolutional

neural net solutions to phenotyping tasks at the University of Nottingham, ACID has now been opened

to the community (https://plantimages.nottingham.ac.uk/). ACID currently contains three datasets:

• Wheat bluepaper provides images and RSML (Root System markup Language) annotations of

wheat seedlings grown hydroponically. RSML provides a full structural description of the root

architecture which has be used to create training images for both image segmentation and

feature detection tasks.

• Wheat 2017 provides images and spike/spikelet localisation, expressed as JSON files, for use

when training localisation algorithms

• Rootnav 2.0 contains mages of hydroponic wheat and oilseed rape and arabidopsis seedlings

grown on gel plates. These images were used to train RootNav 2.0. Images are supplied with

RSML annotations.

ACID includes a search facility which allows users to select data items and form their own collections

from search results. Funded by the UK plant phenomics network, PhenomUK, a new version of ACID

is under construction which will support video, 3D and multi-view datasets and allow used to host

their own plant datasets on ACID if they so wish.

3.4. Suggestions for Phenotyping Dataset Organization and Management

This chapter has provided a concise overview of how datasets and their annotations are managed for

state-of-the-art methods in the computer vision and machine learning domain. These ways of

organizing the data can be an important guideline for how phenotyping data should be structured, as

computer vision is generally the first step in analyzing the physical characteristics of plants.

When phenotyping data is structured in a similar fashion as the mainstream computer vision datasets,

then the power of state-of-the-art algorithms in that domain can become more easily deployed on

phenotyping data. Currently, the COCO dataset structure that combines color images with a JSON file

https://plantimages.nottingham.ac.uk/

28

description seems to be the most suited for phenotyping, as it allows for instance encoding but also

extension of all kinds of physical plant parameters. For example, the center and area of leaves, GPS

location or any other trait can be easily extended in the JSON file.

However, as the spectrum of phenotyping in itself is as broad as the spectrum of computer vision

applications, each goal requires a tailored approach. In turn, this will dictate the dataset

organization.

It is very important to keep following the main field of computer vision and continuously adapt current

and older datasets to newly introduced formats (e.g. Capsule Network might require new formats in

time). This requires that the old formats are already in a shape of the previous state-of-the-art, as

this makes them more easily translatable to the new formats. Hence, dataset management and

organization also should include tools to transfer and interpret the current dataset format. In the

end, dataset organization is ambiguous and fluid, which requires maintenance. There is no golden

standard. The upside is that the underlying data is usually straightforward; an image has objects that

has properties. Hence, a good start, based on previously proven structures is very much suggested.

In the subsequent chapters, we discuss open approaches to representing datasets adapted

specifically to phenotyping data. We consider PHIS as a means of recording and organizing raw data

obtained from measured objects. Needs of machine learning researchers with respect to accessing

this data are considered. Finally, assuming the use of Deep Learning, the dissemination of resulting

deep neural networks is discussed.

29

4. Dataset Management

4.1. Introduction

With every passing year, more plant phenotyping datasets are recorded, with ever increasing size

and complexity. Often, the use of a particular dataset is primarily envisaged to be tied directly to a

given experiment. While ideally the reuse of such datasets would maximize their impact on research

activities, the reusability of datasets is often hampered by a number of factors.

Of particular concern is the general lack of standardization through which datasets are recorded.

Typically, a dataset’s internal structure is unique to the project itself. In certain cases, a dataset

has a similar purpose to another well-known dataset, in which case the well-known dataset’s format

can act as a kind of ad-hoc standard. However, there is generally not an expectation that the

processing code for a given project will be interoperable with another.

The challenge of creating interoperable and reusable data formats for storing measurement data is

not new, and many formats have been proposed to fill this need. However, the requirements of

different problem domains have led to a diverse set of solutions which range from the highly

specialized (such as image data formats) to the highly general (such as XML).

Furthermore, storing measurement data in an interoperable format is not the same as providing a

dataset in an interoperable format, as there is a large amount of metadata and high-level

experimental structure that needs to be encoded to make this measurement data meaningful. For

example, with what hardware and with what settings was a given measurement was performed?

How does a measurement relate to entities being measured, such as individual plants? How do we

associate different kinds of measurements performed on the same entity? The availability of such

metadata improves the reproducibility and subsequent extensibility of results.

Another important example is that of data annotations, which provide information about a aspects

in the data that go beyond the raw measurement and its capture parameters. For example, an

image dataset might contain raw images, but may in addition contain annotations showing where a

particular kind of object, such as individual fruits, are positioned within a given image. In this

example, we can then use the images and their annotations to train a model to predict the location

of fruits within previously unseen images.

30

4.2. FAIR Principles for Dataset Stewardship

In order to facilitate transparency, reproducibility and data reuse, a set of criteria known as the

FAIR principles (Wilkinson et al., 2016) were defined as guidelines for best practices in dataset

curation. FAIR is an acronym for findable, accessible, interoperable and reusable, which are the

four core principles. In the following, we summarize each of these principles (following the

treatment of Wilkinson et al.):

• Findable: Researchers should be able to locate the dataset. To facilitate this, a dataset
must have a unique identifier that will always remain valid. Metadata and data associated
with the dataset should make clear reference to this identifier. In addition, each dataset
must be provided with considerable metadata regarding the activities which resulted in the
dataset. The dataset and its metadata should be stored on a suitably accessible server that
provides adequate facilities to search and retrieve relevant data.

• Accessible: Data and metadata should be accessible by some standardized protocol which is
open, free, and implementable by any party. If necessary, authorization for access to the
data should be part of the system. Metadata should always remain accessible, even if the
data itself has been removed.

• Interoperable: Data and metadata should be represented using a common knowledge
representation approach which is designed with FAIR principles in mind. If necessary, data
and metadata should be allowed to refer to other datasets, with this reference annotated
as necessary.

• Reusable: The metadata should be detailed and accurate to the highest extent possible,
taking into account all factors which help describe precisely how and why data was
acquired. This also includes other aspects of provenance information such as the person
performing the experiment. The conditions for reuse (licensing) of the data should be made
clear and be easy to access. Finally, the data and metadata should conform to generally
accepted standards within the relevant research community.

FAIR principles do not by themselves imply a particular design or implementation choice. Rather,

they are a means by which the relative tradeoffs of different design choices can be evaluated with

respect to their impact on potential users of the dataset.

Possibly the biggest choice facing organizations is at which level of generality should they represent

and make available their data and metadata. Should a software ecosystem be chosen that attempts

to incorporate datasets from a large variety of subject fields? Or, should a system be chosen which

specializes in the kind of information relevant to the organization’s particular focus area?

Choosing a system that is too general means that organizations are left to specialize the system

themselves, leading to a de facto lack of standardization. By contrast, an overspecialized system is

31

only of interest to a small set of organizations, limiting the broader reusability of the data made

available through such a system. In the next section, we consider this question and how it relates to

the field of plant phenotyping specifically.

Plant phenotyping encompasses a broad set of specializations and experimental methods. There is

also great diversity in the kinds of organization operating in this field. Despite these differences,

organizations working in this field share similar kinds of facilities, equipment, workflows, technical

language and objects of study. The combination of a large target community with substantial shared

interests suggests that a knowledge representation system focused on the plant phenotyping domain

is viable.

4.3. Conclusion

In this chapter, we discussed the high-level considerations involved in designing and adopting a

system for dataset representation and sharing. The FAIR principles were outlined, which provide a

framework for evaluating particular dataset management systems and the design choices they

represent. As a prominent community effort in this field, PHIS is selected as the basis for the

discussion in the remaining portion of the document. In the following chapters, the underlying

concepts of knowledge representation in the PHIS system will be discussed, as well as providing

details regarding interacting and manipulating information within a PHIS server.

32

5. Representing experiments and measurements using PHIS

5.1. Semantic data representation

The essential problem of proposing a dataset standard is one of choosing an appropriate means of

representing knowledge in datasets. The choice is dictated both by flexibility with respect to the

kinds of data that can be represented (anticipating future improvements), but also the ability to

impose structure where necessary to ensure compatibility between datasets recording similar kinds

of data.

In PHIS (Neveu et al., 2019) and other systems using semantic web standards, the relationship

between entities and their properties takes the form of a graph. A graph is a structure consisting of

nodes and connections (edges) between nodes. Below is an example of a graph with four nodes and

four edges that connect some of the nodes with each other.

A directed graph is a graph where the connections between nodes have a direction such that each

connection goes from one source node to a target node. In the following example, we take the

previous example graph and make it a directed graph by adding a direction arrow to each edge.

Node A Node B

Node C

Node D

Edge

AB

Edge
AC

Edge
BC

Edge
BD

Node A Node B

Node C

Node D

Edge

A→B

Edge
A→C

Edge
B→C

Edge
B→D

33

Let us say we want to record information about a number of distinct entities such as plants or

fruits. We can represent each entity with an individual node in the graph, labelled with some name

that uniquely specifies the entity. We can then record relationships between entities using edges,

with the edges also labelled to indicate the kind of relationship we are expressing.

For example, we can represent the relationship between plants and their leaves/fruits by creating

nodes for each plant, fruit and leaf. Following this we use directed edges to indicate that a given

fruit or leaf comes from a particular plant. This is illustrated in the following figure.

We can illustrate other kinds of relationships between nodes, however we need a way of clarifying

the kind of relationship each edge then illustrates. For example, while we intuitively think of the

previous figure as showing the leaves and fruits being part of the plant, this need not necessarily

have been the case. For sake of argument, we may be keeping track of the plant over multiple

seasons, and we would like to make a distinction between fruits and leaves currently on the plant,

and formerly on the plant. We can make this relationship explicit by labelling the edge as in the

following example:

Plant

#1

Leaf

#2

Fruit

#1

Leaf

#1

Fruit

#2

hasFormerLeaf hasFruit

hasFormerFruit hasLeaf

Plant

#1

Leaf

#2

Fruit

#1

Leaf

#1

Fruit

#2

34

Seen from this perspective, it is clear that graphs provide a flexible means of representing entities,

their properties and relationships. The question arises though how one should represent graphs

themselves for easy manipulation by machines and also be readily understood by humans. Semantic

web standards (RDF and OWL, discussed in annex 2) make use of an elegant approach that uses the

basic insight that graphs are fully defined by the edges and their associated. We can represent

directed edges from the above example as a series of “triples” as follows:

Plant1 hasFormerLeaf Leaf1
Plant1 hasLeaf Leaf2
Plant1 hasFormerFruit Fruit1
Plant1 hasFruit Fruit2

In this representation, each edge is declared in its own line using three identifiers. The first

identifier is the source node. The second identifier is the edge label (property). The third identifier

indicates the target node.

 Identifiers in real semantic web representations are referred to as URIs (Uniform Resource

Identifiers). These often take a form similar to the URL of a web page (in fact, a URL is a

special case of a URI). For example, PHIS might internally identify a project as

http://www.opensilex.org/opensilex/tomato_mildew . A URI is meant to

refer to a unique entity to ensure that its use always has the same meaning. PHIS

internally names every entity uniquely in this way. We make use of this concept

extensively in the following chapter.

This representation using triples underlies the core of semantic web functionality. Collections of

triples are maintained in so-called “triple stores”. Triple stores can be anything from a file on a disk

to a cloud server instance running a web service. Despite the differences between how triple stores

function, they all fulfil the same function, that of managing a set of triples that represent

knowledge in graph form.

5.2. Data representation in PHIS

In terms of data representation, PHIS provides two core functions. One is a triple store for storing

dataset information using graphs. The second is a facility for storing files, for example images in

PNG format.

http://www.opensilex.org/projects/tomato_mildew

35

The triple store is meant to be the primary means of structuring the data. Towards this, PHIS

employs a set of ontologies specialized in describing experimental methods and plant phenotyping

information. Storage of data as files is used mainly when dealing with data that is bulky and

awkward to represent in a triple store. In addition, it may be desirable to store the original

measurement files obtained from a scientific instrument for archival purposes.

In the following discussion, we will consider some of the core ontologies employed by PHIS and their

respective functions. It is recommended that the reader use a software package such as Protégé

(https://protege.stanford.edu/) to examine and explore the ontologies deeply. However, we

provide links to the WebVOWL visualization tool to facilitate quick exploration of the ontologies.

5.2.1. Ontology of Experimental Scientific Objects (OESO)

Perhaps most core to dataset management is the recording of the types of entities physically

involved in experiments. Such entities might include individual plants or fruits, measurement

devices such as cameras or physical locations such as greenhouses or plots of land. OESO provides a

controlled vocabulary for expressing the relationships amongst such “scientific objects”.

For a more detailed look at the ontology, the reader can make use of the WebVOWL ontology

visualizer:

http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontol

ogy-vocabularies/master/oeso.owl

5.2.2. Ontology of Experimental Events (OEEV)

While OESO describes the physical objects involved in an experiment, OEEV describes interactions

that these objects have over a period of time. Such events could include treatments that plants

undergo (such as potting, irrigation and sampling), physical movement of pots, calibration events of

measurement devices, or undesirable events such as a sensor breakdown.

Like OESO, the OEEV ontology can be visualized using WebVOWL at:

http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontol

ogy-vocabularies/master/oeev.owl .

https://protege.stanford.edu/
http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontology-vocabularies/master/oeso.owl
http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontology-vocabularies/master/oeso.owl
http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontology-vocabularies/master/oeev.owl
http://www.visualdataweb.de/webvowl/#iri=https://raw.githubusercontent.com/OpenSILEX/ontology-vocabularies/master/oeev.owl

36

5.3. The PHIS software ecosystem

While the core function of PHIS is to enable the representation of datasets, the larger system

consists of a larger number of supporting components which enable easier access to the core

functions.

Before commenting on the internals of PHIS, it is important to discuss how the system interacts with

the outside world. This occurs through a layer of web services that PHIS exposes. The web services

abstract complex internal operations into a relatively simple set of operations exposed to the

outside world, accessible over a network. The following figure illustrates this approach.

Figure 3: OpenSILEX/PHIS architecture4

It should be noted that PHIS itself is agnostic towards the kinds of external applications / services

that may interoperate with it. One key example is the PHIS web interface, which we will discuss

4 Source: https://opensilex.github.io/phis-docs-community/ (Boizet et al., n.d.)

https://opensilex.github.io/phis-docs-community/

37

shortly. This interface enables the setup of experiments and the manual uploading of certain kinds

of data (such as spreadsheets). Non-developers would typically make use of this interface.

For more complex operations such as recording sensor output automatically, software developers

can write custom code that interact with PHIS using the web service functionality of their

languages, making the system relatively language independent. We will discuss the basic principles

of performing such operations, using Python as an example language for this purpose.

A more detailed look at PHIS can be found in the following figure:

Figure 4: Division of concerns in PHIS5

5 Source: https://opensilex.github.io/phis-docs-community/ (Boizet et al., n.d.)

https://opensilex.github.io/phis-docs-community/

38

Notice again that clients such as the web interface and programming languages like R or Python

interact with the databases using the exposed REST web services. We will return to the web

services shortly, but note here the internal databases employed by PHIS within which the data is

represented. Until recently, these included PostgreSQL (typically used for storing and manipulating

tabular data), MongoDB (a more freeform “NoSQL” database), and rdf4j (a triple store). At the time

of writing, however, developers report that PostgreSQL is phased out in new versions of PHIS, while

rdf4j is being replaced by GraphDB (http://graphdb.ontotext.com/) as triple store.

The representation of datasets is distributed over these subcomponents, but the clients are

insulated via the web services from dealing with these directly.

5.4. PHIS Dataset Structure

Entering a dataset into PHIS consists of creating a hierarchy of objects, largely in the triple store,

which describe increasingly fine detail of a project’s organization and its associated measurements.

In the subsequent discussion, we describe each level of organization broadly.

The highest level of organization for a project is, naturally, a “project” entity. Project entities are

manipulated using the “projects” web service. Project entities carry metadata such as the name of

the project, whether it is a subproject of another project, its description, its financial support,

running time, and so forth.

Experiments are the next level of organization (although an experiment may be part of more than

one project). The “experiments” web service is used to interact with these entities. Metadata

associated with an experiment includes its objective, location, running time, crop species and

contact persons.

There exist a number of entities types that capture different aspects of a given experiment. These

include, amongst others, “scientific objects”, “sensors”, “vectors” and “actuators”.

Scientific objects are the subjects of study and data measurement, such as plants, fruits and leaves.

To help track scientific objects being measured, it is possible to describe one as being part of

another. For example, a given a set of fruits might be linked to a particular parent plant.

Furthermore, scientific objects can be given a location.

http://graphdb.ontotext.com/

39

Sensors are objects which gather data. Within PHIS, sensor entities are associated with descriptions

of their capabilities. For example, an entry for a camera might note its resolution and frame rate.

Vectors are entities which transport other items. Trolleys and sample trays are possible examples of

transportation vectors. Other examples of vectors are setups which carry sensors. For example, a

robot arm might move a camera around a given plant.

Actuators are items which manipulate the world in some way. Examples might include heating

elements and sprinkler systems.

Ultimately, PHIS is intended to capture data. PHIS makes a distinction between two kinds of data.

The simplest kind of data are files, which are simply uploaded to the database with metadata such

as the item which was measured (usually a particular scientific object). This service is particularly

suited to bulky data, such as images or videos.

It should be noted that, while PHIS allows one to add metadata describing the contents of the file,

PHIS does not, in general, provide interpretive facilities for the contents of such files. Interpreting

files downloaded from the PHIS store is left up to the client application. The web client, for

example, provides some visualization capabilities with respect to image data.

Alternatively, PHIS supports capturing data with a more detailed level of imposed structure.

Examples of such data might include tabular data from a spreadsheet, or continuously submitted

data from a temperature sensor. The aim of this subsystem is to capture data where each

measurement is some single value (a number or a string). Images, for example, are not appropriate

for this subsystem.

PHIS frames this task as one of defining variables for which data may be submitted, capturing

aspects such as the sensor, scientific object and time of measurement. Variables themselves can be

decomposed into the trait being measured (such as weight), the method of measurement (such as a

40

laboratory scale) and the unit of measurement (such as grams). In this way, apart from the actual

value, each measurement carries with it a detailed description of how it was obtained.6

PHIS defines a number of other entities. Users are one such entity type, used both for access

control of the database, but also as metadata regarding who is responsible for a project or

measurement process. Provenance entities record the high-level source of a particular aspect of a

dataset. For example, an experiment might include multiple provenance entities where the

description of what measurements were performed at a particular stage are recorded.

Alternatively, provenance entities may indicate some other source of data, for example a dataset

associated with a paper or the algorithm used to process images into refined data.

5.5. Conclusion

In this chapter, we provided a summary of the semantic web concepts underlying systems like PHIS.

We then discussed the software ecosystem forming part of PHIS. Finally, we provided a high-level

overview of how PHIS structures a given dataset. This provides an intuitive understanding regarding

the nature of the services PHIS provides, as well as the mechanisms via which these services are

implemented. Note that the interested reader may refer to the annexes for a detailed look at PHIS

web services and how to upload a dataset, including an example using a case study dataset. So far,

we have discussed capturing data within PHIS. In the subsequent chapter, we discuss the extraction

of information from PHIS for machine learning purposes, and make suggestions and

recommendations with respect to further expansion of this functionality.

6 At the time of writing, developers report that recent changes to PHIS has changed the trait-method-unit
model of variables to a quality-entity-method-unit model to conform with ontologies of measurement (OM or
QUDT).

41

6. Machine Learning with PHIS Datasets

PHIS aims to provide a single, definitive record of all information generated during the course of

experiments. This includes, for example, metadata meant only for human consumption, and

potentially erroneous data due to sensor malfunction (along with annotations indicating such

problems).

By contrast, machine learning tasks related to such experiments might use only a subset of the

measured data. Part of a machine learning task is to distil the relevant data into a format

convenient for use by machine learning libraries. Data cleaning decisions related to faulty data need

to be made during the process.

For the purpose of reproducibility, it is critical that researchers have access to the original dataset

employed during a machine learning experiment. However, it is clear that there exists a gap

between the relatively complete representation provided by PHIS, and the narrower representation

a particular machine learning task requires.

In the rest of the chapter, we make recommendations around machine learning experiment

reproducibility, based on an already existing PHIS representation of the wider experiment. We begin

the discussion by considering the format requirements of machine learning frameworks, with a

special emphasis on deep learning approaches.

6.1. Structure of machine learning datasets

In this section, we consider how machine learning methods represent training and test data. It

should be emphasized that this discussion is by no means complete, machine learning is enormously

diverse. The approach we discuss is certainly one of the most popular, and is used in approaches

ranging from “classical” machine learning to advanced deep learning models.

The core structure common to most machine learning methods is the tensor. The term tensor is

used synonymously with multi-dimensional array in this context. We begin our discussion by

discussing an example dataset and the role tensors play in representing it. An example from the

well-known Iris dataset follows. In this example, we try to predict the species of Iris from different

42

measurements (in centimetres) taken of a particular flower. Each of these measurements is

referred to as a feature. Each row represents an individual flower (or sample).

Sepal length Sepal width Petal length Petal width Class

5.1 3.5 1.4 0.2 Iris-setosa

4.9 3 1.4 0.2 Iris-setosa

7 3.2 4.7 1.4 Iris-versicolor

6.4 3.2 4.5 1.5 Iris-versicolor

6.3 3.3 6 2.5 Iris-virginica

5.8 2.7 5.1 1.9 Iris-virginica

In order to perform training (and subsequently testing), we represent this dataset in memory as a

matrix and vector respectively. The inputs (which we label 𝑋) we represent as a matrix that has 𝑁

rows and 𝑀 columns, where 𝑁 is the number of samples and 𝑀 is the number of input features.

𝑋 =

[

5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
7 3.2 4.7 1.4

6.4 3.2 4.5 1.5
6.3 3.3 6 2.5
5.8 2.7 5.1 1.9]

The outputs (or class), which we label as 𝑦, is represented as a vector. The class labels are first

converted to integer labels. Which label is assigned to which integer in principle does not matter,

but typically one class has label 0, and others are added in increments of one. Here we choose Iris-

setosa, Iris-versicolor and Iris-virginica should have class labels 0, 1 and 2 respectively.

𝑦 = [0 0 1 1 2 2]

In the preceding paragraphs, we employed two special cases of the tensor, matrices and vectors, to

represent the dataset. Similarly, more complex cases such as image sets, videos and point sets can

be represented using tensors.

• “Spreadsheet” data: As in the case of the Iris dataset, one- and two-dimensional tensors are

commonly used to represent input features and output targets.

43

• Image datasets: For colour images, four-dimensional tensors are commonly used. The four

dimensions correspond to image number, channel number (red / blue / green), pixel X-

position and pixel Y-position. Hyperspectral image sets are similarly represented, except

these have more than three channels.

• 3D voxel models: These can be represented as images, except there is an additional Z-

position. There may or may not be multiple channels, so the tensor may be four- or five-

dimensional.

• Video datasets: Similar to image datasets, five-dimensional tensors may be used where the

frame number is an additional dimension (see the following discussion on ragged tensors).

Tensors typically have a single number describing the number of entries along each dimension. For

example, an image dataset with dimensions 5 × 3 × 100 × 100 may represent 5 images that are 100-

by-100 pixels with 3 colour channels (red, green and blue).

However, particularly in cases such time series, this fixed dimensionality may not always be the

case. For example, an RGB video dataset of 5 videos at resolution 100-by-100 may be stored in an

structure with dimensions 5 × 𝐹𝑛 × 3 × 100 × 100 where 𝐹𝑛 is the number of frames for a particular

video. Depending on the video number (𝑛), the number of entries along the first dimension in the

video tensor, the number of frames 𝐹𝑛 may be different. This is known as a “ragged” tensor.

Standard tensors and ragged tensors account for a vast number of internal representations used in

machine learning tasks. It would therefore be useful to be able to represent how a particular tensor

was derived from a PHIS dataset, since this would aid transparency and reproducibility of results. In

addition, this would allow automated assembly of tensors from such a description, simplifying the

task of sharing and using machine learning datasets. We therefore focus on potential ways of

enabling this functionality in the following sections.

6.2. Challenges to automating machine learning dataset assembly from PHIS

In the creation of a machine learning dataset, workers make a number of decisions in order to adapt

raw data into data ready for training and testing of models. Some aspects that need consideration

include:

• Data points of interest: Which data points are included in the task dataset? How are these

data points partitioned into subsets such as training and test sets?

44

• Data cleaning decisions: Which data points are ignored, and why? What are they replaced

with?

• Correspondence between data points: If an item is measured multiple times at different

dates/times using multiple sensors, how do we associate the correct measurements with

each other? If multiple measurements on one sensor correspond to single measurements on

another sensor, how do we combine the multiple measurements? Or, do we do the reverse

by associating the single measurement to each of the multiple measurements? One example

of this would be to take the average of a number of temperature measurements to obtain a

single daily temperature to correspond with a daily plant height measurement.

At least the following strategies exist for dealing with these needs:

• Make available preprocessing scripts written in a general purpose scripting language such as

Python.

• Store and make available the results of preprocessing in an interchange format such as

HDF5.

• Employ a description language to encode aspects of the early portions of data

preprocessing, allowing automation of tensor generation.

Each of the above strategies, by themselves, have disadvantages.

Preprocessing scripts in general purpose language are not subject to dataset standardization

constraints, leading to the danger of non-standard script outputs. Executing scripts often have

complex behaviour, which may cloud the provenance relationships between the input and output of

the script. Furthermore, scripts in a particular language may be difficult to read and critique by

users not familiar with the language.

Storing the results of preprocessing is convenient, but without further effort this loses provenance

information, since the contents of the tensor are generally not connected back to the raw dataset.

Furthermore, large datasets that use compression (such as large collections of JPEG images) may be

difficult to store and disseminate as raw tensors, since tensor exchange formats do not support all

possible modes of compression.

A special purpose description language is a tempting option. However, while it may be possible to

develop a higher-level representation to clarify dataset assembly in procedural terms, it is still

45

likely that special cases will resist representation in such a scheme. In the worst case, such a

description language would acquire the power of more general purpose programming languages,

leading to the same disadvantages.

However, it may be possible to combine the preceding strategies to obtain a satisfactory solution.

One can allow the use of general programming language scripts, but then have such scripts leave

“traces” that relate the contents of the output tensors to the raw data in the PHIS database. Along

with the scripts, these trace files may be made available, containing both high detail provenance

information and a means to automatically assemble a tensor. In the case where tensors are small

enough for this to be practical, storing the preassembled result in an interchange format such as

HDF5 would be an optional extra step.

The question arises whether PHIS’ existing facilities can be employed for such a scheme. Storing of

scripts and interchange files is trivial using the bulk storage facility. However, the trace information

containing provenance information should ideally form part of the descriptive framework PHIS

provides. In the next sections, we clarify the idea of trace descriptions and we consider options for

storing trace information in a FAIR manner.

6.3. Trace-based Tensor Assembly and Provenance Capturing

Trace-based descriptions are essentially a set of notes describing how a computational process

evolved without actually describing the entire computational process itself. Such traces can be used

to capture the essentials required to map one class of inputs to the more general computational

process’ outputs, without representing the full complexity of the original computation.

One particularly prominent example of such a scheme is the approach of the PyTorch framework to

supporting the ONNX format (a format for describing deep neural networks). Although PyTorch itself

allows the structure of networks to be changed based on arbitrary Python computations, certain

common types of neural networks can be saved in ONNX format through PyTorch “notes” (traces) of

a particular computation. The neural network computation can then be recreated without recourse

to the original Python script. We discuss the ONNX format in a later section of this chapter.

The most important underlying idea is that a more general computation can be replicated by

creating a list of simpler instructions as the general computation takes place. This balances the

46

freedom of general purpose programming languages with the need for simple provenance and

reproducibility information.

In PHIS, a data point is the combination of a value, provenance, scientific object, date/time,

variable. The non-ambiguity is guaranteed by an assigned URI and the traceability by the

provenance. This is elaborated on in Annex 4.8.1. Recall that provenance information is simply

metadata describing the circumstances of the data collection, including (amongst other

considerations) information about the experiment, the person performing measurements and the

procedures followed.

Consider the following example of a simple dataset captured using the PHIS data point storage

facility.

URIs Provenance Scientific Object Date and Time Variable Value

URI1 PROV1 SENSOR1 2020-09-01 01:00 Temperature (˚C) 13

URI2 PROV2 PLANT1 2020-09-01 10:40 Weight (g) 220

URI3 PROV2 PLANT2 2020-09-01 10:42 Weight (g) 200

URI4 PROV1 SENSOR1 2020-09-01 13:00 Temperature (˚C) 20

URI5 PROV1 SENSOR1 2020-09-02 01:00 Temperature (˚C) -80

URI6 PROV1 SENSOR1 2020-09-02 13:00 Temperature (˚C) 23

URI7 CORRECTIONS SENSOR1 2020-09-02 01:00 Temperature (˚C) 21

 PHIS uses the combination of providence, scientific object, date/time and variable to

uniquely identify a data point. Data points currently have URIs, but GET services do not

currently allow searching for data points with specific URIs. Nevertheless, we assume that

data points can be retrieved based on their URIs, as this simplifies the discussion and

would be simple to add in future versions of PHIS.

Consider creating a spreadsheet, and subsequently a tensor, based on this table. Using for the

moment the temperature at 13:00 as the daily temperature, we obtain

Plant Weight (g) Temperature (˚C)

PLANT1 220 20

PLANT2 200 20

47

The tensor containing the weight and temperature features would be the matrix

𝑋 = [
220 20
200 20

]

However, obtaining this tensor would involve making a number of calls to the PHIS web services and

other complex computational operations. However, recalling that a URI uniquely identifies a data

point, one can easily reproduce the above matrix if we store a trace of the source datapoints for

each element in the matrix.

URI2 URI4

URI3 URI4

With this table, it is trivial to automatically obtain the matrix 𝑋, since the individual elements

needed to uniquely identify the source data points are given for each element of the matrix. As an

added advantage, the provenance of each element in the matrix is known explicitly in its entirety,

because all data points have a reference to their provenance.

If a direct one-to-one datapoint mapping is too simple for a particular situation, certain common

multi-datapoint mappings can be defined. For example, taking the average of a daily temperature

of the first day could be represented as

AVG URI1 URI4

A vector of the average daily temperatures could then be represented as

AVG URI1 URI4

AVG URI5 URI6

However, the temperature -80˚C (URI5) in the example is incorrect (highlighted in red). Based on a

decision we replace the value with 20 (inserted as a datapoint in PHIS with URI7), we can indicate

the correction as follows.

AVG URI1 URI4

AVG URI7 URI6

48

Because a special provenance (CORRECTIONS in this case) has been provided, a human readable

accounting for the correction can also be provided attached to the providence entity.7

This example shows that the trace approach is itself simple. The tensor creation script contains all

of the “intelligence”. The script would have had to query for value corrections using the web

services and finding corresponding values from different provenance entities. The simplicity of

traces is intentional, as the end user should be able to easily reconstruct the tensor and trace back

the provenance of values.

The idea of a trace-based description is not to provide facilities for any possible type of

preprocessing, but rather to facilitate tracking of the most fundamental construction of initial data

tensors. While it may seem cumbersome at first, for spreadsheet-type data the amount of extra

storage required is similar to that of the PHIS representation of the data itself (each element in the

trace has a corresponding data point in the PHIS representation). Spreadsheets, however, tend to

be compactly represented, and so doubling of the amount of storage required is likely not a

significant disadvantage.

For bulk data tensors, many of the entries can be handled implicitly by seeing a file in PHIS bulk

storage as a subtensor of the larger tensor, which dramatically lowers the storage requirements for

the most common types of large tensors. For example, the trace representing an image dataset may

be a simple list of URIs referring to images in bulk storage.

Having discussed the essentials of trace-based tensor descriptions, we list important advantages of

such frameworks:

• Trace-based annotations as contemplated above are fundamentally based on references

between entities, which is compatible with semantic web representations. This may aid

incorporation of such structures into future versions of PHIS.

• Because data points are explicit references, rather than implicit queries, a tensor derived

from a trace-based description will never change, without recourse to administrative rights,

given PHIS’ current design. This is because data points or bulk data files in PHIS cannot be

changed once created. Defining tensors implicitly based on queries may hamper

7 Another option would be to define a REPLACE trace operation, which lists a URI, an explicit replacement
value and a human readable comment. However, we proceed from the position that including as much
metadata within PHIS is the preferable solution.

49

reproducibility, because the addition of data points and other queryable entities can change

the result of queries relative to past execution of the same queries. Even if the script that

produced the trace description produces a different trace in future, a stored trace

description can be compared with the new trace, and even subtle changes can be located

exactly with full provenance information.

• After a script in one language has produced a trace-based description, generic tensor

reconstruction scripts in other languages can easily assemble the tensor based on this

description. This is true even if the original script performed complex operations and

queries to form the description. This allows other researchers to easily reuse a tensor in

their language of choice, and also critique its construction through reference to provenance

information. It also avoids potential sources of error by enabling the shared maintenance of

tensor assembly libraries amongst different groups.

6.4. Roadmaps towards incorporation of trace-based provenance in PHIS

It would be technically possible to encode trace-based tensor provenance using existing facilities.

Entities that may prove useful in such an encoding process include provenance, annotation, data

point and bulk data entities. However, such approaches would be awkward given that the PHIS

services have not been designed with trace-based tensor definitions in mind.

Instead, a path towards incorporating trace-based tensor descriptions into PHIS datasets would need

to be adopted. A number of options towards this goal exist.

The most immediate and flexible means of describing tensors is to define a file format for recording

such traces. This path to adoption has the advantage of starting from a clean slate, since direct

integration into PHIS facilities is not required. The disadvantage of such an approach is that this

leaves trace files opaque to PHIS facilities in the near term.

Another path to implementation may be to extend the ontologies related to PHIS. Following this,

specialist web services may be implemented to help with the storage and interpretation of traces.

Such web services may include facilities for serving subtensors to cloud instances working on

separate portions of the training data, which would assist high-performance computing approaches

to deep neural network training. This is, however, substantially more complicated because of

simultaneous work on integration with other PHIS services.

50

Because these facilities would represent a further extension of the PHIS ontologies into the domain

of describing machine learning workflows, it may be advisable to use the opportunity to bridge into

existing ontologies for such workflows. A proposed ontology called ML-Schema has recently been

developed to incorporate a number of separately developed ontologies for this purpose into a single

framework. ML-Schema is discussed later in this chapter.

It should be noted that ML-Schema does not support trace-based tensor descriptors, but does define

concepts such as datasets and feature vectors. Therefore, investigating the viability of using some

of ML-Schema’s facilities might still be a worthwhile avenue of exploration.

6.5. Compute considerations

Trace-based tensors explicitly linking data through URIs will impact the required amount of

compute and storage resources in several ways. URIs are string-based data structures which require

much more storage than the value it represents. In those cases additional storage needs to be

allocated to store the tensor. When the URIs link to full images trace-based tensors will show a

significant drop in required storage where only during computations the (part of) the image is

retrieved and stored in memory.

However, retrieving these data through the PHIS API will result in this API being a bottleneck of the

computations. To facilitate this, two options are available. First, PHIS itself will run on a large

compute node with the underlying databases on their own compute nodes. This way data retrieval

will be distributed across several nodes, making it faster than running everything on a single node.

The second option is to move the required data to a separate instance of PHIS, or even use load-

balancing technologies and running several instances of PHIS. This works very well for data

retrieval: after collection the data and assigning them URIs, the data will not change. Hence is it

irrelevant where the data come from. This load balancing approach is more complicated when we

allow people to add trace-based tensors, although it would be possible to send these requests to a

single instance.

When storing tensors in PHIS it will also become possible to send the tensor calculations to PHIS and

either report the results back to the ML application or add them to PHIS. By following this principle

of sending the computations to the data instead of the other way around much less data will go over

the network. Additional, specific API calls and computational models can be added to PHIS to

51

further speed up the analysis. The API then accepts a ML method and trace-based tensors to start

calculations. Which can be performed on high-performance hardware such as GPUs.

6.6. Trace-based tensor description using JSON

As mentioned earlier, one option towards trace-based tensor description in PHIS is to define a new

file format for interim handling of this functionality. In this section we propose a simple approach

that uses JSON to represent traces. This has the advantage of being easy to generate by scripts in

multiple languages, but are also inherently friendly for future incorporation into web services.

Note that the reader may safely opt to skip this section if implementation details are not of interest

to them.

JSON directly supports the representation of multi-dimensional arrays. For example, the matrix

𝑋 = [
220 20
200 20

]

is represented using nested arrays as

[[220, 20], [200, 20]]

Ragged tensors can also be represented since there is no requirement that nested arrays be the

same length as others on the same level of the hierarchy. The following is an example of a ragged

tensor

[[220, 20], [200, 20, 30]]

To enable the representation of trace-based tensor descriptions, we need three additional features:

• Referring to data points or bulk files in the PHIS database, instead of using literal numeric

values. These can be used to download individual data points as tensor elements, or bulk

data files as subtensors.

• Allow simple operations such as averaging to be performed.

• Attach high-level metadata that applies to the whole tensor or subtensors, such as hints

around tensor dimensionality.

These features can be implemented using JSON objects. A data point8 may be represented as

8 We identify point data using a combination of provenance, scientific object, date/time and variable. As an
alternative, the single data point URI might be used, but recall PHIS web services currently do not support
queries searching by a data point URI.

52

{ "type" : "dataPoint",
 "provenanceURI" : "...",
 "scientificObjectURI" : "...",
 "datetime" : "...",
 "variableURI" : "..." }

Here we specify the type of PHIS data service (point data) and the four elements necessary to

uniquely identify a given data point in PHIS.

A bulk data file can be represented using

{ "type" : "bulkData",
 "dataURI" : "...",
 "loader" : "..." }

Here we specify the PHIS data service (bulk data) and the URI pointing to the bulk data file’s entry.

We also specify a loader function to be used in loading the data. A set of file loaders may be

specified as part of a standard. For example, we might specify "rgbImage", and support automatic

loading of common image formats such as PNG, JPEG and TIFF.

It should be noted that, with this information, the individual data points or bulk data files are trivial

to download from PHIS.

Operations could be specified using a JSON object. For example, the following specifies an

averaging operation over a number of data items

{ "type" : "operation",
 "operation" : "average",
 "tensorData" : [...] }

Finally, we need to be able to specify high-level metadata. We can do this by nesting tensors within

a higher-level JSON object, containing this metadata. For example, at the highest level, we might

have

{ "type" : "metadata",
 "scriptURI" : "URIToScript",
 "scriptExecutionDate" : "...",
 "shapeHint" : [3, 2, 5],
 "tensorData" : [[...], [...], ...] }

53

which contains a URI pointing to where the original script that generated the trace is publicly

available. There is also the time at which the script was executed (this can help in situations where

a script’s output changes between executions). The shape hint would be an optional hint denoting

what the dimensionality of the tensor should be expected (in this case 3 × 2 × 5). There is also a

field for storing the tensor itself, where each data point or bulk data file is stored as a single

element JSON object within the multi-dimensional JSON array.

Often the situation arises where one would like to apply a property to all nested objects in the

hierarchy. Therefore, one could add the property descendentsInherit to specify that a particular

set of properties is inherited by all nested JSON objects within tensorData.

{ ...
 "descendantsInherit" : [...],
 ...
}

This allows us to specify properties such as the provenance within a high-level JSON object, and let

all nested data elements inherit this provenance. Descendants may then optionally override values,

but this allows the bulk of data points to share certain attributes

We now present a worked example showing a possible encoding of a simple point-data tensor. We

reuse the table presented earlier in the chapter (restated here for convenience)

URIs Provenance Scientific Object Date and Time Variable Value

URI1 PROV1 SENSOR1 2020-09-01 01:00 Temperature (˚C) 13

URI2 PROV2 PLANT1 2020-09-01 10:40 Weight (g) 220

URI3 PROV2 PLANT2 2020-09-01 10:42 Weight (g) 200

URI4 PROV1 SENSOR1 2020-09-01 13:00 Temperature (˚C) 20

URI5 PROV1 SENSOR1 2020-09-02 01:00 Temperature (˚C) -474

URI6 PROV1 SENSOR1 2020-09-02 13:00 Temperature (˚C) 23

URI7 CORRECTIONS SENSOR1 2020-09-02 01:00 Temperature (˚C) 21

We wish to represent the following matrix

54

Plant Weight (g) Temperature (˚C)

PLANT1 220 20

PLANT2 200 20

The structure of the resulting tensor was as given below

URI2 URI4

URI3 URI4

We can now represent the above tensor using a JSON object as follows

{ "type" : "tensorDescription",
 "scriptURI" : "http://opensilex.org/opensilex/d00001",
 "scriptExecutionDate" : "2020-10-03T13:15:33.143Z",
 "shapeHint" : [2, 2],
 "tensorData" :

[
[

 { "type" : "dataPoint",
 "provenanceURI" : "PROV2",
 "scientificObjectURI" : "PLANT1",
 "datetime" : "2020-09-01T10:40:00.000Z"
 "variableURI" : "WEIGHT" },
{ "type" : "dataPoint",
 "provenanceURI" : "PROV2",
 "scientificObjectURI" : "PLANT2",
 "datetime" : "2020-09-01T10:42:00.000Z"
 "variableURI" : "WEIGHT" }

],
[

 { "type" : "dataPoint",
 "provenanceURI" : "PROV1",
 "scientificObjectURI" : "SENSOR1",
 "datetime" : "2020-09-01T13:00:00.000Z"
 "variableURI" : "TEMPERATURE" },
{ "type" : "dataPoint",
 "provenanceURI" : "PROV1",
 "scientificObjectURI" : " SENSOR1",
 "datetime" : "2020-09-01T13:00:00.000Z"
 "variableURI" : "TEMPERATURE" }

55

]
]

}

Because this matrix is small, we have not used inherited values, as they are more useful for large

matrices.

Note that each data point entry can be directly queried from the PHIS server, as the information

needed to retrieve a unique data point is available. This makes assembling the resultant texture a

simple matter. At the same time, full provenance information is available for each value.

Bulk data datasets may be even simpler. For example, a tensor descriptor for an image dataset may

consist simply as a list of bulkData elements.

In the next section, we consider where in the machine learning workflow the generation and usage

of the trace file belongs.

6.7. Roles in data science workflows

At least the following roles can be identified in the larger dataset preparation and usage workflow

• Recorders of the raw dataset

• Extractors of tensors suitable for a machine learning experiment

• Modellers using the extracted tensors for modelling purposes

An actor (person or other entity) may be responsible for more than one of these roles.

However, typically in a large experiment the recorders of the dataset are a team of observers and

technical personnel performing measurements and storing them in some format (possibly in a

system such as PHIS). There is usually at least one extractor-modeller, responsible for a first

analysis of some subset of the larger raw dataset. The extractor-modeller writes scripts to process

the raw dataset into tensors suitable for their experiments, and also performs some modelling on

these tensors. Subsequently, if an extractor-modeller shares the tensors in some way (either

explicitly or via scripts/data). Third-party modellers may then perform their own experiments on

the pre-existing tensors, possibly comparing their results afterwards.

56

The FAIR principles place some constraints on how each of these actors fulfil their roles. PHIS

provides an existing framework for dataset recorders, and for the purposes of this discussion, we

presuppose the existence of a PHIS dataset with raw data and provenance information.

Recorders are not the appropriate entities to specify tensors for machine learning purposes, as they

may not be familiar with what subset of data or preprocessing of data that is required for the

machine learning experiment(s). Our discussion focusses instead on the interplay between the roles

of extractor-modeller and third party modellers.

In principle, any third party modeller with access to the PHIS repository and adequate descriptions

of a tensor’s assembly can replicate the process. However, this may not be a simple operation,

especially for large datasets. Furthermore, mistakes made either by the extractor-modeller or the

third party modellers may result in potentially subtle errors in tensor assembly, leading to problems

with reproducibility of experiments.

FAIR principles encourage the minimization of burden on third party modellers. An extractor-

modeller could resolve this by exporting a tensor descriptor as part of their workflow. To facilitate

later sharing of tensor descriptors, a modeller should separate out tensor definition and tensor

usage in their workflow.

PHIS Server
Recorders

Extractor-

Modeler

Third Party Modelers

Tensor

Dissemination

Tensor

Assembly

Raw Data

Gathering

57

By first generating a tensor descriptor, and using that to assemble the tensors for machine learning

purposes, this makes sharing of tensors with third parties simple. It also means that it is guaranteed

that the extractor-modeller’s training and testing scripts and those of third party modellers start

with the same data. Furthermore, this is also to the extractor-modeller’s advantage, as this allows

easy reuse of scripts on different datasets for similar tasks.

In the preceding section, one potential representation of tensors has been discussed. This

representation is not intended to be complete, but to present one potential avenue for exploration

in the dissemination of tensors with full provenance information. In the following sections we

consider other aspects of disseminating aspects of machine learning projects.

6.8. ML-Schema

The focus of the current document is on the storing, annotation and distribution of datasets in a

FAIR compliant way. In the preceding discussion we did, however, note that the needs of machine

learning modelling processes are a key consideration in easing the reuse of datasets. It is therefore

worthwhile to note efforts to easily interchange machine learning experiments themselves.

From a semantic web point of view, ML-Schema (Publio et al., 2018) is probably the most prominent

example of a machine learning ontology, combining several earlier ontologies for modelling aspects

of machine learning. Figure 5 shows a graph visualizing the core concepts captured by this ontology.

58

Figure 5: ML-Schema core vocabulary

As can be seen from the figure, ML-Schema attempts to capture a broad subset of machine learning-

ready data and metadata. This complements PHIS’ approach, which is much more focused on the

raw data and its metadata.

It is important to note that ML-Schema includes facilities for defining datasets, emphasizing the

needs of machine learning experiments. This may be useful in standardizing how machine learning

datasets are extracted from PHIS databases. It is therefore recommended to consider the possibility

of exploiting this overlap in dataset management between PHIS and ML-Schema, to ease the

automated extraction of data from PHIS for machine learning purposes.

However, the current focus of ML-Schema is on tabular data. Therefore some extensions would be

needed to handle the higher-dimensional tensors common in deep learning applications.

6.9. Trained machine learning model interchange

While the FAIR principles mostly revolve around the availability of input data, the parameters of

machine learning models (after training) are also an important kind of data which could be

59

disseminated. In this section, we briefly discuss ONNX or the Open Neural Network Exchange format

(https://onnx.ai/), an interchange format for deep neural networks.

There are a number of deep neural network frameworks in use today, including PyTorch,

TensorFlow, Keras and others. Each of these frameworks has its own internal representation of a

neural network and its parameters. They also usually have their own means of saving these

representations and parameters. In general, the format of the saved networks / parameters are not

exchangeable between frameworks.

ONNX attempts to alleviate this problem by providing a standardized way of representing a large

class of deep neural networks and their parameters. By doing this, it is possible for workers to

exchange neural networks between frameworks. For example, a researcher might experiment in

PyTorch, and transfer the resulting neural network to TensorFlow for final deployment.

Deep neural networks are highly diverse in their operation, but can largely be broken down into

basic building blocks. These building blocks are individual operations on tensors that produce other

tensors. ONNX provides a way of defining which tensor operations are present in a deep neural

network, and how these operations connect with each other to form a network of operations. Such

a network of operations is called a computational graph. A computational graph shows how

information flows through a deep neural network and the operations performed on the information

at each point in the network.

ONNX provides a representation for such computational graphs. It focusses on deep neural networks

where information always flows forward through the network (feedforward neural networks). This

does not cover all neural networks, networks where information can flow backwards (recurrent

neural networks) also exist. However, feedforward neural networks represent a large portion of

state of the art methods. Furthermore, recurrent neural networks can often be “unfolded” into

feedforward networks for particular classes of input. Therefore ONNX can represent an important

subset of deep neural networks.

ONNX has a good level of adoption in industry (including IBM, Amazon, Intel, Nvidia, Facebook,

Mathworks and Microsoft), as well as support for a number of popular deep learning frameworks

(including PyTorch, Caffe2, Matlab, Tensorflow and Keras). This makes ONNX attractive as a format

for adoption for exchange of deep neural networks in plant phenotyping experiments.

https://onnx.ai/

60

6.10. Summary and conclusion

In this chapter, we considered the challenge of exchanging tensor data for machine learning

experiments. Towards this, trace-based descriptors were proposed as a possible vehicle for tensor

exchange, as this combines easy reconstruction of tensors with full provenance information

regarding elements of these tensors. We also noted the possibility of using ML-Schema as a means of

extending the PHIS ontology to handle machine learning dataset considerations in a more explicit

way. Finally, we discussed ONNX as a means of exchanging trained deep neural networks.

61

7. Summary and Conclusion

In this document, we have considered the challenge of dataset management from the perspective of

the plant phenotyping domain.

A mapping/gapping analysis was presented where we found that most systems are able to process

images with their software tools, it is expected that flexibility in these tools towards new plants/

new situations is limited and AI/ deep learning will offer that flexibility. Therefore the main gap in

knowledge how to integrate these AI tools into their data pipeline, and how to prepare datasets to

be able to make use of the rapidly emerging AI tools.

We discussed how plant phenotyping computer vision research is situated within the larger general

computer vision field. In particular, we noted the implications of large, commonly used datasets for

choices made in more specialized fields like plant phenotyping. Examples of such general datasets

were provided, along with corresponding cases within the plant phenotyping field.

Subsequently, we considered foundational principles underlying good dataset management. We

emphasised the FAIR (findable, accessible, interoperable and reusable) requirements as guides for

such management activities.

Following this we discussed PHIS (phenotyping hybrid information system) as a prominent community

effort for dataset management in the plant phenotyping domain. This discussion included a look at

semantic web concepts, as well as the software ecosystem PHIS builds on these standards to represent

data and metadata regarding projects and experiments.

Finally, we considered the interface between PHIS’ representation of data and subsequent use in

machine learning (particularly deep learning) experiments. We noted that tensors are the typical

format expected by such experiments, and made suggestions regarding how one could automatically

assemble tensors from PHIS datasets without losing provenance information while avoiding relying on

general programming language scripts. The possibility of extending PHIS’ internal representations to

include information for machine learning experiments was considered, with lessons learned from

representations such as ML-Schema being one potential source to draw on. Lastly, we discussed ONNX

62

as a means of disseminating trained deep learning models such that the resulting models of deep

learning experiments remain available for reuse and peer review.

Dataset management remains, and will likely remain, an unsolved problem. It is expected that

developments within computer vision and plant phenotyping in particular will continuously place new

requirements on dataset management systems. However, adopting an extensible, standardized

system for performing such management creates a route by which the plant phenotyping community

can share the responsibility of responding to such changes in an interoperable way.

As an existing system specialized in plant phenotyping, PHIS is a particularly attractive option, given

that it has already been used in large-scale experimental facilities. It can therefore be recommended

for adoption and further development by other facilities.

63

References

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist. Semantic Web for

the Working Ontologist. Elsevier Inc. http://doi.org/10.1016/C2010-0-68657-3

Banakar, A., Polder, G., Ruizendaal, J., & Balendonk, J. (2019). SpectralCam evaluation dataset

and experimental report. Wageningen University and Research.

Barth, R., IJsselmuiden, J., Hemming, J., & Henten, E. J. V. (2018). Data synthesis methods for

semantic segmentation in agriculture: A Capsicum annuum dataset. Computers and Electronics

in Agriculture. http://doi.org/10.1016/j.compag.2017.12.001

Boizet, A., Garcia, A., Tireau, A., Charleroy, A., Cabrera-Bosquet, L., Vidal, M., … Migot, V. (n.d.).

PHIS user documentation. Retrieved December 1, 2019, from https://opensilex.github.io/phis-

docs-community/

Malounas, I. (2019). Evaluation of multispectral and hyperspectral cameras for detection of

powdery mildew on tomato plants using convolutional neural networks. Wageningen

University and Research.

Minervini, M., Fischbach, A., Scharr, H., & Tsaftaris, S. A. (2016). Finely-grained annotated datasets

for image-based plant phenotyping. Pattern Recognition Letters.

http://doi.org/10.1016/j.patrec.2015.10.013

Neveu, P., Tireau, A., Hilgert, N., Nègre, V., Mineau-Cesari, J., Brichet, N., … Cabrera-Bosquet, L.

(2019). Dealing with multi-source and multi-scale information in plant phenomics: the

ontology-driven Phenotyping Hybrid Information System. New Phytologist, 221(1), 588–601.

http://doi.org/10.1111/nph.15385

Publio, G. C., Esteves, D., Ławrynowicz, A., Panov, P., Soldatova, L., Soru, T., … Zafar, H. (2018).

ML-Schema: Exposing the Semantics of Machine Learning with Schemas and Ontologies, (1), 1–

5. Retrieved from http://arxiv.org/abs/1807.05351

Vidal, M., Heinrich, G., Migot, V., & Tireau, A. (n.d.). Clients for phis2 web services. Retrieved

August 1, 2019, from https://github.com/OpenSILEX/phis-ws-clients

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Mons, B.

(2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific

Data, 3, 1–9. http://doi.org/10.1038/sdata.2016.18

64

Document information

EU Project N° 739514 Acronym EMPHASIS-PREP

Full title
Preparation for EMPHASIS: European Infrastructure for multi-scale Plant

Phenomics and Simulation for food security in a changing climate

Project website emphasis.plant-phenotyping.eu

Deliverable N° D4.4 Title Analysis of imaging approaches - Mapping and

gapping analysis of imaging approaches in different

PPI

Work Package N° 4 Title e-INFRASTRUCTURES

Date of delivery Contractual 31/January/2020 Actual 1/February/2020

(Feb 20)

Dissemination

level

 X PU Public, fully open, e.g. web

 CO Confidential, restricted under conditions set out in Model Grant

Agreement

 CI Classified, information as referred to in Commission Decision

2001/844/EC.

Authors (Partner)

Responsible

author

Name Hendrik de Villiers Email Hendrik.devilliers@wur.nl

Version log

Issue Date Revision N° Author Change

0.9 1 Hendrik de Villiers

This project has received funding from the European Union’s Horizon 2020 Coordination and support action programme under

grant agreement No 739514. This publication reflects only the view of the author, and the European Commission cannot be held

responsible for any use which may be made of the information contained therein.

mailto:Hendrik.devilliers@wur.nl

65

Contents

Document information ... 2

Documents used in the preparation of this deliverable:

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist. Semantic Web for

the Working Ontologist. Elsevier Inc. http://doi.org/10.1016/C2010-0-68657-3
Banakar, A., Polder, G., Ruizendaal, J., & Balendonk, J. (2019). SpectralCam evaluation dataset

and experimental report. Wageningen University and Research.
Barth, R., IJsselmuiden, J., Hemming, J., & Henten, E. J. V. (2018). Data synthesis methods for

semantic segmentation in agriculture: A Capsicum annuum dataset. Computers and Electronics
in Agriculture. http://doi.org/10.1016/j.compag.2017.12.001

Boizet, A., Garcia, A., Tireau, A., Charleroy, A., Cabrera-Bosquet, L., Vidal, M., … Migot, V. (n.d.).
PHIS user documentation. Retrieved December 1, 2019, from https://opensilex.github.io/phis-
docs-community/

Malounas, I. (2019). Evaluation of multispectral and hyperspectral cameras for detection of
powdery mildew on tomato plants using convolutional neural networks. Wageningen
University and Research.

Minervini, M., Fischbach, A., Scharr, H., & Tsaftaris, S. A. (2016). Finely-grained annotated datasets
for image-based plant phenotyping. Pattern Recognition Letters.
http://doi.org/10.1016/j.patrec.2015.10.013

Neveu, P., Tireau, A., Hilgert, N., Nègre, V., Mineau-Cesari, J., Brichet, N., … Cabrera-Bosquet, L.
(2019). Dealing with multi-source and multi-scale information in plant phenomics: the
ontology-driven Phenotyping Hybrid Information System. New Phytologist, 221(1), 588–601.
http://doi.org/10.1111/nph.15385

Publio, G. C., Esteves, D., Ławrynowicz, A., Panov, P., Soldatova, L., Soru, T., … Zafar, H. (2018).
ML-Schema: Exposing the Semantics of Machine Learning with Schemas and Ontologies, (1), 1–
5. Retrieved from http://arxiv.org/abs/1807.05351

Vidal, M., Heinrich, G., Migot, V., & Tireau, A. (n.d.). Clients for phis2 web services. Retrieved
August 1, 2019, from https://github.com/OpenSILEX/phis-ws-clients

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Mons, B.
(2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific
Data, 3, 1–9. http://doi.org/10.1038/sdata.2016.18

66

1. Executive Summary

Introduction

Plant phenotyping experiments are generating an ever increasing amount of data, and a choice must

be made with respect to how this data is managed. This is an important consideration, because the

efficiency, correctness and transparency of data scientist’s work is directly impacted by such

choices. Furthermore, in cases where it is desirable to share datasets (for example, for

collaboration or openness requirements wrt. funding), the data management approach must

account for the ease by which third parties can make use of the data.

Summary

Chapter 2: Mapping/Gapping Analysis

• Interviews were conducted by Rick van de Zedde and Tony Pridmore by telephone, skype or

similar web conferencing tools over a period of some 10 months.

• For the analysis of these interviews we have focussed on the hardware and software tools

and methods in use within the community and discuss platform staffs’ capabilities in regard

to them.

• Mapping: RGB cameras and independent 2D analysis of the resulting images dominates

current practice. Gapping: More might be made of the combination of multiple RGB images,

and of images obtained from different types of imaging device.

• Mapping: Appropriate calibration tools are and processes are in place in a large majority of

platforms. Gapping: There is an opportunity for greater standardisation of calibration

methods and frequency. All the methods described are internal to the given platform; no

mention was made of calibration against other platforms producing similar data.

• Mapping: Phenotyping platform staff have a high degree of understanding of and control

over the image analysis pipelines they oversee. The pipelines described rely exclusively on

classic image analysis operations. Gapping: The degree of control and widespread use of

home-grown and open source software means that there is little/no standardisation in the

software tools used, raising the possibility of the EMPHASIS community developing shared

approaches. The most significant technological gap the lack of exploitation of recent

advances in deep learning, which requires access to sizeable annotated data sets. We return

to this below.

67

• Mapping: Current techniques are predominantly local, and rely on standard file structure

and database methods. There is however, evidence of a move towards more systematic

representation, storage and management of image and related data.

• Mapping: Phenotyping platform staff span a range of disciplines and are a significant

resource. Gapping: There no evidence of commonality in the sources of information they

use, which may limit information flow across the community.

• Mapping: Current expectations focus more on data than processes. Gapping: There was

little discussion of representation and sharing of pipelines, which should perhaps be

addressed.

Chapter 3: Dataset Structuring Patterns in Computer Vision

• The field of general computer vision has produced a number of extremely popular datasets.

These include datasets for tasks such as finding particular kinds of objects in images. Each

such dataset has its own way of organizing information internally. The MS COCO (Microsoft

Common Objects in Context) dataset is a prominent example of this.

• Because of the popularity of some of these datasets, other datasets are sometimes

modelled after them. Examples include plant phenotyping datasets, as discussed in the

text.

• Dataset formats in general computer vision are constantly changing, but the phenotyping

subdomain needs to keep abreast with these changes, as this allows the reuse of code

written for general problems (such as recognizing cats, cars or tables) on more specific

phenotyping tasks (such as pepper recognition).

Chapter 4: Dataset Management

• Datasets should be Findable, Accessible, Interoperable and Reusable (the FAIR criteria).

That is, researchers should be able to locate and download a dataset. The means by which

the dataset is structured and made available should be standardized and open. The dataset

should contain enough information about itself (metadata) such that a new user can decide

whether or not the dataset is suitable to their needs.

Chapter 5: Representing Experiments and their Measurements in PHIS

• PHIS (Phenotyping Hybrid Information System) is a data management system specially

designed for use in the field of plant phenotyping, and is already in use in large phenotyping

facilities. The system aims to produce one definitive representation of all information

recorded about and during the course of experiments.

• PHIS employs open semantic web standards in its representation of information, and aims to

represent and make available information in a FAIR compliant way.

68

• PHIS does more than simply collect data. It allows the representation of organizations,

projects, experiments and procedures followed during experiments. It enables the

association of data with objects which were involved in producing the data such as

individual plants measured, sensors such as cameras, and fields in which plants grew.

Chapter 6: Machine Learning with PHIS Datasets

• For state of the art deep learning methods, it is important to be able to easily extract

“tensors” (arrays of numbers) from a dataset so that they can be processed rapidly in high-

performance computing environments, using Graphical Processing Units (GPUs) in particular.

• Enabling easy extraction of tensors from PHIS while preserving information about where the

information came from is essential for both the speed at which data scientists can begin

experimenting with a dataset, but also that the work can subsequently be reproduced and

critically evaluated.

• PHIS does not yet internally support description and extraction of tensors, although it does

represent all the information necessary on which to build such facilities.

• A possible approach to this challenge (“trace-based” descriptors) was discussed.

• After a deep learning experiment is complete, it is important to be able to share the

resulting deep neural network. We discussed the ONNX format, which allows the sharing of

neural networks between a number of deep learning frameworks. ONNX enjoys the support

of a number of important players in the deep learning field including NVIDIA, Amazon,

Facebook, Microsoft, IBM and Intel.

Recommendations

• We have found that most installations have their imaging pipeline well organised with

commercial or openly available software tools, more emphasis should be on the data

organisation resulting from these imaging data pipelines in combination with the minimally

required metadata. We have shown in the report the potential of PHIS in this matter and we

recommend users, facilities to analyse their current way of working and tools for data

organisation such as PHIS.

• PHIS is tailored to the specific needs of the plant phenotyping community, and can be

extended for future needs arising in this subdomain in particular. Having already been

demonstrated in large data gathering facilities, it is suggested that PHIS be adopted for

further data management tasks.

69

• Especially the data management of phenotypic experiments demands a common toolset

when researchers want to launch multi-site/ multi-region experiment carried out at

different institutes/ fields and exchange collected data and metadata through local

instances of PHIS, structured similarly.

• PHIS acts as a single repository for all data pertaining to an experiment, but the workflow

for selecting from this information contained in a convenient format for deep learning

experiments could be improved. It is suggested that different approaches (such as “trace-

based” descriptors) be considered to address this challenge.

• Because of its existing level of adoption and support by major corporations, it is suggested

that deep neural networks be disseminated using the ONNX format.

70

Annex 1: Check list

Deliverable Check list (to be checked by the “Deliverable leader”)

 Check list

Comments

B
e
fo

re

I have checked the due date and have planned completion

in due time

Please inform Management Team of any

foreseen delays

The title corresponds to the title in the DOW

If not please inform the Management Team

with justification

The dissemination level corresponds to that indicated in

the DOW

The contributors (authors) correspond to those indicated

in the DOW

The Table of Contents has been validated with the

Activity Leader

Please validate the Table of Content with your

Activity Leader before drafting the deliverable

I am using the EMPHASIS deliverable template (title page,

styles etc.)

Available in “New EMPHASIS Logo, Templates,

CI” on the collaborative workspace

The draft is ready

A
ft

e
r

I have written a good summary at the beginning of the

Deliverable

 A 1-2 pages max. summary is mandatory (not

formal but really informative on the content of

the Deliverable)

The deliverable has been reviewed by all contributors

(authors)

Make sure all contributors have reviewed and

approved the final version of the deliverable.

You should leave sufficient time for this

validation.

I have done a spell check and verified the English

I have sent the final version to the WP Leader and to the

Project coordinator (cc to the project manager) for

approval

Send the final draft to your WPLeader and the

coordinator with cc to the project manager on

the 1st day of the due month and leave 2 weeks

for feedback. Inform the reviewer of the

changes (if any) you have made to address their

comments. Once validated by the 2 reviewers

and the coordinator, send the final version to

the Project Manager who will then submit it to

the EC.

71

Annex 2: Further Semantic Web Concepts

In the following annexes, we elaborate on the technical details of semantic web concepts, as well

as providing a more detailed overview of PHIS. This overview includes examples scripts in the

Python language for the submission of a case study dataset containing hyperspectral images of

tomato plants. These annexes can be used as material for self-study, or as an accompanying text for

a workshop on PHIS.

2.1. Controlling representations

The earlier chapter on semantic web contained the most essential aspects of semantic web

representations. However, semantic web standards go further than this by allowing us to define a

strictly controlled set of possible relationships between nodes. Such a controlled set of relationships

is known as an ontology.

An ontology is, effectively, a controlled vocabulary for talking about entities we are interested in.

This allows us to place sensible restrictions on what users are allowed to enter into a dataset. In

some cases, it also allows us to reason about the dataset itself in a way that answers questions for

which no direct answer is encoded in the database. For example, in our example graph, there is no

direct relationship describing whether fruits come from the same plant, yet we can infer this

indirectly by checking whether the plants connected with them are the same plant.

However, how can we impose this kind of control on relationships in the graph? As an example,

consider the following incorrect graph represented as triples:

Plant1 hasLeaf Leaf1
Plant1 hasLeaf Leaf2
Plant1 hasLeaf Fruit1

A human will quickly spot that the last edge is problematic. However, without further help a

machine would not be able to tell there is a problem. To illustrate, consider that the machine sees

each term in this example as an arbitrary collection of letters and numbers. From this perspective,

the triples could just as well have been:

A B C
A B D
A B E

72

Clearly there is no way of knowing that the last triple is somehow incorrect without further

specification.

Fundamentally, we would like to be able to talk about different kinds of object such as plants or

leaves. We would also like to be able to talk about kinds of relationship, such as hasLeaf or

hasFruit. In order to do this, semantic web standards support the definition of “is-a” type

relationships. Consider an updated version of the example:

Plant1 is-a Plant
Leaf1 is-a Leaf
Leaf2 is-a Leaf
Fruit1 is-a Fruit
hasLeaf is-a Property
Plant1 hasLeaf Leaf1
Plant1 hasLeaf Leaf2
Plant1 hasLeaf Fruit1

Because each entity has now been assigned a type using is-a relationships, the graph representation

includes a means by which we can say things about plants, leaves and fruits as a group of entities.9

Notice that we also defined hasLeaf using a special is-a relationship, asserting that it is a property.

Treating properties as if they are objects in themselves allows us to create rules governing how

properties are used. For example, we could add the following rules

hasLeaf hasDomain Plant
hasLeaf hasRange Leaf

The domain of a property defines what types of objects can be left of the property in a triple.

Similarly, the range of a property defines what types of objects can be right of the property in a

triple. These two rules together state that only plants may have the property hasLeaf, and that

property may only point to a leaf. In our earlier example, a machine would then be able to pick up

that the entry

9 For readers with software development experience, it is should be noted that “is-a” relationships in semantic
web standards are handled in a fully object-oriented fashion. Entities can be defined as being part of a certain
class, and classes may inherit from each other.

73

Plant1 hasLeaf Fruit1

is illegal, since the right hand side is not a leaf. In the same way, the following entry would be

rejected, because hasLeaf may only have a plant as the left-hand side:

Fruit1 hasLeaf Leaf1

It is through similar mechanisms that semantic web standards allow information to be recorded, but

also to enforce constraints on the structure of the data being stored. This enables us to use triple

stores both as a flexible means of recording data, but also enable different groups to standardize

datasets by agreeing on a common set of rules.

In the next section, we will look at some concrete examples of how complex information may be

represented using graphs. Following this, we will look in more detail at the semantic web standards

which allow us to formalize these graphs.

74

2.2. Examples of graph-based dataset representation

In this section, we give some concrete examples of representing common types of data using

directed graphs. It is important to realize that many alternative representations are possible for any

particular data structure, and in this chapter we present options that do not necessarily follow

PHIS’ approach. In a later chapter, we will discuss PHIS’ approach to dataset representation.

2.2.1. Tabular data

One of the most basic approaches to recording experimental results is to use a spreadsheet. While

other kinds of data can be represented in spreadsheet format, the most common use case for this

format is to enter data as a table. Often a sample is recorded as one row in the spreadsheet, with

each column being a specific attribute of the sample. As an example, consider the following table.

Plant ID Measurement Date Height (cm) Number of leaves

P1 2019-04-12 8.0 3

P2 2019-04-12 9.5 4

P1 2019-04-19 10.5 4

P2 2019-04-19 12.0 5

Tabular formats such as in this example are highly intuitive. While not appropriate for all kinds of

data, many kinds of project can use this format successfully for at least some of the attributes

being recorded.

One of the most basic container formats for tabular data is the comma separated value (CSV)

format. These are simple text files where rows correspond to rows in the table, and values in the

columns are separated by commas (although other separators such as tabs may be chosen instead).

The above table rendered as a CSV file would look as follows.

Plant ID, Measurement Date, Height (cm), Number of leaves

1, 2019-04-12, 8.0, 3

2, 2019-04-12, 9.5, 4

1, 2019-04-19, 10.5, 4

2, 2019-04-19, 12.0, 5

75

The advantage of CSV files is that they are easily read by a human (particularly if there aren’t too

many columns). At the same time, it is easy to write a program to create or load such a table. This

simplicity accounts for the format’s popularity.

However, a key aspect not recorded by a CSV file is the type of information stored in each column.

In the previous example, the CSV file doesn’t specify that entries in column 2 must be dates,

column 3 may contain real numbers, and column 4 only integers. Automatic inference of types is

possible in some instances, but there is still the possibility of error. For example, does the date 03-

04-2019 represent the 3rd of April, or the 4th of March? The answer varies according to local

standards or inclination of the dataset creator. Ultimately, manual specification is required to

ensure that types are correctly interpreted.

Spreadsheet applications solve this problem by allowing users to enter the type metadata for each

cell. This type information is stored along with the cell entries in formats such as XLSX (open XML

spreadsheet) and ODS (open document spreadsheet). However, the dataset creator should be

careful to annotate the cells with this information.

Despite this capacity for capturing helpful metadata, spreadsheets still suffer from the problem

that the self-consistency of the format depends heavily on care taken by the individuals adding to

them or altering them. While some restrictions and checks can be encoded in a spreadsheet,

relatively innocent additions like a comment on a particular sample can cause automatic processing

to fail, or worse, silently corrupt part of the dataset. When multiple people are responsible for data

entry, ensuring that everyone involved consistently follows the same entry conventions can be

challenging.

We can overcome these difficulties by, instead, using a graph to represent tabular data, and the

controlled aspect of ontologies to enforce restrictions on items of data. A graph representation for

tables can be quite straightforward. If there is a unique ID of some entity given per row (and each

such ID is used in exactly one row), the representation is particularly simple.

Consider the row for plant P1 in the preceding example. We may render the information in that row

using the following graph:

76

The row can then be written as the following triples:

P1 is-a Plant
P1 hasMeasurementDay 2019-04-12
P1 hasHeight 8.0
P1 hasLeafCount 3

Other rows can be added by simply creating more triples. We can add constraints to limit what can

be in the domain and range of each property.

hasMeasurementDay is-a Property
hasMeasurementDay hasDomain Plant
hasMeasurementDay hasRange Date
hasHeight is-a Property
hasHeight hasDomain Plant
hasHeight hasRange Float
hasLeafCount is-a Property
hasLeafCount hasDomain Plant
hasLeafCount hasRange Integer

These entries define each property and state that only plants may have those properties in this

model. Furthermore, constraints are added such that the measurement day is a date, the leaf count

is an integer, and the height is a real number. In a real semantic web representation, the format of

each of these kinds of values is standardized, which helps make their meaning unambiguous, and

allows certain consistency checks to be performed. For example, the formatting of dates in a

particular XML representation is given at the page:

https://www.w3.org/TR/xmlschema11-2/#date

While it is likely not necessary in this example dataset, we could also encode the order of rows in

the spreadsheet using a structure such as shown in the following figure:

hasMeasurementDay hasLeafCount

hasHeight

P1

8.0

2019-

04-12

3

https://www.w3.org/TR/xmlschema11-2/#date

77

Each row entity above points both to the next row in the series, as well as the plant represented on

each row. The corresponding triple store representation is:

Row1 hasNext Row2
Row2 hasNext Row3
Row1 hasItem P1
Row2 hasItem P2
Row3 hasItem P3

Software developers will recognize this structure as a linked list. This structure can be extended for

any number of rows.

2.2.2. Time series

Suppose that we wish to represent a series of temperature measurements returned periodically by a

temperature sensor. We can represent this by creating an entity for the sensor, then connect it to

individual measurements. The measurements themselves in turn have a value and a time of

measurement. The following figure illustrates such a structure.

hasItem

Row2

P2

hasItem

Row1

P1

hasItem

Row3

P3

hasNext hasNext

78

This figure can be rendered using triples as follows:

Sensor1 hasMeasurement M1
Sensor1 hasMeasurement M2
Sensor1 hasMeasurement M3
M1 hasDateTime 2019-10-30 13:33:02
M1 hasValue 22.4
M2 hasDateTime 2019-10-30 13:53:02
M2 hasValue 24.6
M3 hasDateTime 2019-10-30 14:33:02
M3 hasValue 23.6

PHIS uses a similar structure to the above for representing certain kinds of point data. However, in

addition to the sensor, time and value of a measurement, PHIS also stores provenance information,

the object being measured, and information about the value’s type like its unit of measurement.

Note that, in the above structure, we could also form the measurements into a linked list from the

earliest to the latest. However, since each measurement has a date and time, this ordering is

already implicit in the representation.

2.3. The semantic web: IRIs and shared ontologies

Up until this point, we have considered the representation of knowledge as graphs without

reference to systems which enable the creation and querying of such structures. Fortunately,

extensive standards already exist for this purpose underlying what is known as the semantic web.

hasMeasurement

hasMeasurement

hasMeasurement

hasValue hasDateTime

M1

2019-10-30
13:33:02 22.4

hasValue hasDateTime

M2

2019-10-30
13:53:02 24.6

hasValue hasDateTime

M3

2019-10-30
14:33:02 23.6

Sensor1

79

The semantic web aims to fulfill a similar function for machines what the world wide web provides

for humans.

While the world wide web is meant to be read and navigated by humans, the semantic web enables

the creation of interconnected knowledge bases in a format that is easily read and navigated by a

machine. With each knowledge base added to the semantic web, a new potential foundation for

other knowledge bases is available. Some examples of existing ontologies include:

Ontology Name Function

Friend of a Friend (FOAF) Representation of people, core details about them,

and relationships wrt. other individuals.

Dublin Core Commonly used vocabulary for recording generic

metadata associated with a particular resource.

Examples of such metadata include creator,

description, date and publisher.

Simple Knowledge Organization System

(SKOS)

Vocabulary for describing relationships amongst

concepts. For example, that the concept “elephants”

is narrower than the concept “mammals”, or that the

concept “number” is related to the concept

“counting”.

We will now discuss the core concepts underlying semantic web standards. The goal of semantic

web standards is to formalize the concept of representing knowledge represented as directed

graphs. While extensive facilities exist for advanced use cases, we will focus on those aspects most

relevant for the day-to-day work of data scientists.

2.3.1. Unique identification of entities and their properties

Firstly, we must be able to identify a given entity uniquely. For example, many datasets might

contain a plant labelled PLANT1, but semantic web representations of these datasets should provide

labels unique across the semantic web. Without such unique labels, for example, we may associate

measurements from the wrong plant to another plant, or even associate contradictory information

with these plants.

http://xmlns.com/foaf/spec/
https://www.dublincore.org/
https://www.w3.org/2004/02/skos/
https://www.w3.org/2004/02/skos/

80

Semantic web standards deal with this issue by taking inspiration from URLs (uniform resource

locators) as used in the world wide web. URLs are meant to refer to a unique web page, including

address resolution information which directs a user’s browser to contact the correct web server.

As an example, the World Wide Web Consortium’s index page on semantic web standards can be

found at the following URL:

https://www.w3.org/standards/semanticweb/

Note that the URL encodes a hostname www.w3.org which identifies the host to be contacted,

while the portion “standards/semanticweb” identifies which exact page the user is requesting.

Importantly, a URL only identifies a web page uniquely, the contents (and thus “meaning”) behind

the URL is a separate matter. While it is advisable to form a URL in such a way that it gives a clue

to the contents being accessed, this is not a requirement.

Semantic web standards generalize this idea to URIs (uniform resource identifiers). The function of

a URI is to uniquely identify some sort of resource. URLs are, in fact, a special case of URIs that

specialize in uniquely identifying (for example) websites. Rules for forming URIs are similar to those

of URLs. We can break up our preceding example URL in the following way:

scheme:[//authority]path

The scheme of the url is https, indicating in this case the protocol used to contact the web server

(hypertext transfer protocol secure). The authority portion (www.w3.org) identifies the

organization responsible for the contents of the website via DNS. The path portion

(/standards/semanticweb/) identifies the desired web page uniquely on the web host.

The crucial difference between URLs and other kinds of URIs, is that URLs contain within them all

the information necessary to retrieve the unique resource to which it refers (for example a website

on a particular host). URIs that are not URLs are only meant to function as a unique name for a

particular entity.

https://www.w3.org/standards/semanticweb/
http://www.w3.org/

81

IRIs are a further extension of URIs allowing the use of Unicode characters instead of only ASCII

characters for URIs.

2.4. RDF and Triples

It was realised that knowledge can be expressed in small entities containing a set of three

resources. These sets are triples and contain a subject, a predicate, and an object. A triple is the

smallest irreducible representation of a binary relationship. The subject is the entity about which

the triple says something. The predicate defines what kind of information is given about the

subject, and the object represent the content of what is being said by the triple, which can be

another resource such as the subject, or be a literal (string, number, date, etc.). A set of triples

forms a directed graph in which the subjects and objects are nodes, while the predicates are the

edges. The object of one triple can, of course, be the subject of another triple. The entity that is

used as a predicate can itself also be used as the subject of other triples, allowing to define

information about the property represented by the predicate. The properties of resources in a graph

are represented as predicates in triples so that, for instance, the label of a resource is defined by

creating a triple (entity “has label” label).

W3C has defined a format for triples known as the Resource Definition Framework (RDF), which can

easily be extended. W3C, for instance, also defined the RDF schema ontology, extending RDF by

adding annotation properties such as rdfs:label, and rdfs:comment, to define labels and

descriptions of resources respectively. RDF schema also defines properties for specifying subclass

relations, allowing the creation of class hierarchies such as taxonomies. Another W3C specification

is the Ontology Web Language (OWL), which defines resources and properties needed to create

ontologies. RDF, RDF schema, and OWL are themselves also ontologies defined in RDF (that includes

RDF itself). Other parties can defined their own ontologies. One of our own examples is the

Ontology of Units of Measure (OM), which defines quantitative units and quantities. Publishing these

ontologies as linked open data allows for the reuse of data when they are expressed using publicly

available ontologies.

82

2.5. Queries on triple stores using SPARQL

Once knowledge is represented in a triple store, the need arises to access this knowledge to make

inferences. The SPARQL (SPARQL Protocol and RDF Query Language) language defines a rich set of

operations which can be used to make such inferences. SPARQL fulfills approximately the same role

for RDF triple stores that the SQL language fulfills in relational databases. In fact, SPARQL syntax is

similar to that of SQL (by design), and so existing knowledge of SQL can be helpful when learning

SPARQL.

The full range of SPARQL functionality falls outside the scope of this document. However, it is

instructive to pause and consider how one might use the language to make queries on a phenotyping

dataset.

One query of fundamental interest is to return all items of a particular type from the database, for

example, images.

SELECT ?item
WHERE {
 ?item a :image .
}

Here we ask for all entities that have type :image (assuming that this type has been defined in the

triple store). The keyword a is used to indicate the special is-a relationship which defines an

object’s type. Users of SQL will note the similarity to SQL’s own SELECT statement.

The preceding query will return all images in the database, but we might only want all images from

a particular project. We can restrict the query for this purpose as follows

SELECT ?item
WHERE {
 ?item a :image .
 ?item :capturedForProject :EPPN2020 .
}

Here we assume that each image is connected to the project which gathered it using a

capturedForProject property. The items returned must satisfy both constraints. They must be

both images and captured for the project EPPN2020.

83

We can capture even more elaborate queries by introducing additional variables inside the WHERE

clause. In the following example we ask for all cameras that were used to capture images as part of

the EPPN2020 project. Here we have changed ?item to ?x to emphasize that the select statement

is returning ?cam (cameras), and not ?x (the images).

SELECT ?cam
WHERE {
 ?cam a :camera.
 ?x a :image .
 ?x :capturedForProject :EPPN2020 .
 ?x :capturedUsing ?cam.
}

We can see in this example that it is possible to define “wildcard” entities such as ?x in the

preceding example, and constrain them and their relationships with the entities being selected for.

More elaborate queries can be formulated using SPARQL. For example, constraining images to being

from a particular plot of land, or captured within a particular date range. Time series may be

returned by asking for images of a particular plant over a given date range.

PHIS itself does not directly support general SPARQL queries. Instead, PHIS provides search

mechanisms that handle the most common query use cases. This has the advantage of simplifying

the task of retrieving information from the PHIS server. However, it is possible (though inadvisable

from a software design perspective) to query the triple store indirectly if the RDF4J server is

configured to allow this.

2.6. Conclusion

In this chapter, an overview was provided of knowledge representation using triple stores. While the

general topic of semantic web standards falls beyond the scope of this document, core concepts

were discussed with reference to common patterns of data representation in phenotyping / machine

learning datasets such as spreadsheets and time series. This provides perspective on the internal

representation PHIS utilizes to store and organize experimental data. For a more in-depth text on

semantic web standards, the reader is referred to “Semantic Web for the Working Ontologist”

(Allemang & Hendler, 2011). In the following chapter, we discuss PHIS itself and the general

principles used to submit and retrieve information either manually or in an automated fashion.

84

Annex 3: An Introduction to PHIS

In this and the following chapter, we will provide a walkthrough of setting up an experiment and

inserting data into PHIS. It is important to note that certain tasks in PHIS can be performed using its

web interface. However, the focus of this text is on providing software developers the means of

automating such tasks. For an in-depth look at the web interface’s functionality, the reader is

referred to https://opensilex.github.io/phis-docs-community/ (Boizet et al., n.d.).

3.1. REST services for software developers

Apart from web interface functionality offered for manual editing by humans, PHIS also offers an

interface for interacting with the database from programming languages.

Ideally, a worker writing programs would like a simple set of functions to call, packaged in library

form. Instead of directly defining such a library, PHIS defines a web service that responds to a

number of request types. This adds a level of indirection between the programmer and PHIS.

However, most modern programming languages support such web service requests, meaning that

the programmer is largely free to use their language of choice.

Web services such as provided by PHIS use the functionality of the HTTP protocol that was originally

developed for transferring or posting files and other information related to web pages. The scope of

these operations has broadened as web pages have become more sophisticated. Additionally, since

the protocol provides operations that are useful for networked software other than web browsers,

this has become a standard for providing functionality over a network.

In this section, we discuss conceptually how such web service requests are formulated, and how

they function. In the subsequent section, we use this knowledge to demonstrate such requests

performed in the Python language. It should be clear from this discussion that the principles can be

easily translated to another programming language. Please note that readers confident in the use of

web services may choose to skip the following section until the start of the PHIS API documentation.

https://opensilex.github.io/phis-docs-community/

85

3.1.1. Identifying web services using URLs

The first step in performing an HTTP request is to identify the host which will process the response.

Let’s suppose the PHIS server is the host phis.mywork.com . This server will listen for HTTP requests

on a certain port number such as 8080, although the exact port number is configurable.

One component of the HTTP request is the URL itself, as one would encounter in the navigation bar

of a browser. The primary function of the URL is to identify the web server as well as the particular

service being requested from the server.

As an example, consider the web service PHIS provides for defining and retrieving the parameters of

a particular sensor (e.g. a camera and its resolution). Accessing the service would use a URL similar

to

http://phis.mywork.com:8080/opensilex/rest/sensors/ ...

This URL defines the web server name (phis.mywork.com), the port on which the web server is

listening (8080), and path (opensilex/rest/sensors) which identifies the web service we want to

access. Similarly, the web service for looking up or creating user accounts might be accessed using

http://phis.mywork.com:8080/opensilex/rest/users/ ...

As indicated by the ellipsis dots, the URL’s path component may contain further portions (we will

discuss these shortly).

Note that the address of the web server, the port number, and the path are all configurable and so

depend on the choices made by the PHIS system administrator. However, the names of the web

services (sensors, user, etc.) are fixed by the PHIS implementation itself.

3.1.2. Kinds of HTTP request

HTTP requests come in variants such as GET, POST, PUT, PATCH and DELETE. The type of request

identifies the kind of information retrieval / manipulation that is desired. At the time of writing,

86

the PHIS web API makes use almost exclusively of GET, POST and PUT requests10. Broadly, they have

the following functions:

• GET requests locate resources such as experiments or data files that already exist in the
database. As a special case, when a URL is typed into the navigation bar of a web browser,
the browser begins its interaction with the web server by performing a GET request for that
URL.

• POST requests insert new resources into the database.

• PUT requests update/replace existing resources in the database.

As a concrete example, for the “sensors” web service, PHIS provides a POST call for defining a new

sensor and its specifications, a GET call for retrieving this information and a PUT call for updating

the sensor specifications, should this be necessary.

3.1.3. Passing Information to a Web Service

Whether an HTTP request has type GET, POST or PUT suggests in general terms what kind of

operation is being requested. The URL specifies the web server and the name of the service being

requested. Except in the simplest of cases, we still need to provide the web service with the

information it requires to perform a particular kind of operation.

There are two key ways through which we can convey additional information to PHIS services using

the URL itself. These are path parameters and query parameters.

Path parameters form part of the URL and are typically used to specify a specific resource the web

service should interact with. For example, if the URI of the sensor of interest is already known for a

particular GET sensors request, that URI can be specified as part of the path of the request URI.

http://phis.mywork.com:8080/opensilex/rest/sensors/{sensor-uri}

This causes the service to retrieve that particular sensor’s information (assuming such a sensor

exists in the database).

Query parameters also form part of the URL, but have a special format distinct from that of the

path portion of the URL. Query parameters are often used to perform search functions, although

they can convey other information as well. Query parameters are encoded in the URL starting at a

10 One DELETE request is defined, used for logging out from a given session. Developers are in the process of
adding more DELETE services for use by administrators.

87

question mark (?) character and take the form of parameter name / value pairs separated by

ampersands (&). For example, the following Google search request contains two query parameters.

The first parameter, q, specify the search term (ontologies). The last parameter, lr, specifies the

language preference for the results, Dutch in this case.

https://www.google.com/search?q=ontologie&lr=lang_nl

Apart from the URL, there are two more portions of an HTTP that can be used to convey

information to a web service. These are the header and body of the request. The header is the

starting portion of the information exchanged between the client and server. It contains various

pieces of metadata describing the kind of contents the receiver can expect in the subsequent body.

In addition, it may be used to perform authentication by carrying, for example, a token identifying

a particular user (this is how PHIS manages user sessions).

Following the header, the remainder of the HTTP request constitutes the body of the request. The

body can take a variety of forms. If a binary file is being transferred between the client and server,

this is where the file contents would be encoded. However, most web services defined by PHIS

encode this region in JSON format, which is useful for concisely capturing complex structured data

in a format that is easily readable by both humans and computers.

3.1.4. Server responses to HTTP requests

After a request has been processed, the server may send a response back to the client. This

response contains a status code indicating success or failure. It further contains a header with

additional metadata, followed by a body containing the payload of the response. In a similar fashion

to the request, the response body may contain data such as a file, or structured data in a form such

as JSON.

3.1.5. Examples of web requests supported by PHIS

In this section, we illustrate some illustrative cases of HTTP interacts between a client and PHIS

server. We start with what is typically the first interaction between the client and server,

authenticating the client using a username and password. In this example, the PHIS server is at

address 192.168.56.101 and is accepting requests on port 8080. Let’s begin by examining sections

line-by-line as sent by the client to the server. The first two lines might look as follows

88

POST /opensilex/rest/brapi/v1/token HTTP/1.1
Host: 192.168.56.101:8080

Here the client indicates that we are performing a POST request to the API service

brapi/v1/token11. The client indicates that the protocol being used is version 1.1 of HTTP. The

next line simply notes the host address and port number the client is contacting. The header

metadata continues with the following four lines.

User-Agent: curl/7.64.0
Content-Type: application/json
Accept: application/json
Content-Length: 143

The last four lines indicate the client software name (curl in this case). It indicates that both the

request and expected response bodies should be JSON format. Finally, the number of characters in

the request body is provided.

At this point, the body of the request begins with the following lines.

{ "grant_type": "password",
 "username": "admin@opensilex.org",
 "password": "21232f297a57a5a743894a0e4a801fc3",

"client_id": "string" }

This request body provides a useful introduction to basic JSON notation. Here we are providing

server with a set of key / value pairs separated by commas and enclosed by a pair of curly braces.

Such as set of key / value pairs are referred to as JSON “object” (programming languages often use

terms such as dictionary, map or hash to refer to the same kind of structure).

As can be seen, the preceding JSON object provides both a username and password for the server to

authenticate. The password is technically an MD5 hash of the real password (admin in this case).

Given this request, we now examine a possible response the server may provide. The header of the

response is given below.

11 The service name refers to the BreedingAPI (BrAPI), a plant phenotyping dataset interchange API which PHIS
implements as part of its functionality. Consult https://brapi.docs.apiary.io/# for further information.

https://brapi.docs.apiary.io/

89

HTTP/1.1 200
Location: http://192.168.56.101:8080/opensilex/rest/brapi/v1/token
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: origin, content-type, accept,
authorization
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: GET, POST, PUT, DELETE, OPTIONS, HEAD
Content-Type: application/json
Content-Length: 168
Date: Thu, 10 Oct 2019 11:03:50 GMT

Notice in the first line the protocol (HTTP/1.1) and the response status code 200 (meaning the

request was successful). Also note later in the response header that the body’s content format is

specified as being in JSON format. Following the header, the body might look as follows

{"metadata" : {"pagination":null, "status":null, "datafiles":[]},
 "userDisplayName":"Admin OpenSILEX",
 "access_token":"43852b9c2df4d096695bbda79264bb8f",
 "expires_in":"10763"}

This JSON object contains the access token the client needs under the “access_token” key. In

subsequent calls to PHIS services, the client can use this token to identify the user account

associated with the requests. The token is valid until either the expiration time has run out, or a

corresponding DELETE call is made to invalidate the token. Furthermore, notice under “metadata”

that we can use JSON objects nested inside other JSON objects. Inside the “metadata” entry, we

also use the special value null to indicate missing/empty values. The entry “datafiles” contains the

empty list [] (we will return to lists later).

3.2. A First Example in Python

Modern programming languages usually have inbuilt facilities for performing web service requests.

In this section we illustrate how the token request can be performed using Python. We employ a

redacted and commented version of demonstration code available on the OpenSILEX Github

repository at

https://github.com/OpenSILEX/phis-ws-clients/blob/master/python/images/post.py

Note that, in Python, comments are started by using a hash(#).

https://github.com/OpenSILEX/phis-ws-clients/blob/master/python/images/post.py

90

import requests # The requests library handles HTTP requests.

import json # Handles the conversion to and from JSON notation.

import hashlib # Used to hash the user password as PHIS requires.

First we define the host, port and path to the PHIS web services.

host = 'http://192.168.56.101:8080/opensilex/rest/'

We specify in our headers that both the request and response are

in JSON format.

headers = { 'Content-Type': 'application/json',

'accept' : 'application/json',

}

We specify the body of our HTTP request using a Python dictionary.

Note the use of hashlib to hash the user's password (admin).

data = {

 'grant_type': 'password',

 'username': 'admin@opensilex.org',

 'password': hashlib.md5('admin'.encode('utf-8')).hexdigest(),

 'client_id': 'string'

}

We convert the data from Python dictionary format to JSON format

stored in a string.

json_data = json.dumps(data).encode('utf-8')

We form the URL to the particular web service we would like to use

url = host + 'brapi/v1/token'

Here we make the POST request to the given url, adding the headers

and data defined earlier.

response = requests.post(url, headers = headers, data = json_data)

91

print(response.text + "\n") # We print the response text

We convert the response from JSON and then get the access token

token = response.json()['access_token'];

We print the token.

print ("token : " + token + "\n")

In the preceding listing, the performance of the request was a matter of:

• Importing the libraries which perform HTTP requests, JSON encoding, and password hashing.

• Specifying the hostname, port number and path to the web service.

• Defining the contents of the header and body. The body (in this case) needed converting to
JSON notation.

• Performing the POST request using the appropriate library call.

• Converting the response body back from JSON and look up the token value.

In general, calls to other PHIS web services follow more or less the same procedure.

3.3. Using Swagger Documentation to Explore the PHIS API

PHIS supports a vast array of web service calls, which are also evolving as the software matures. In

order to define and document the API calls, PHIS makes use of a tool named Swagger

(https://swagger.io/). Amongst other advantages, this enables PHIS to provide developers with a

API documentation webpage. This webpage also allows the interactive testing of calls within the

browser itself. This is an excellent tool to obtain a sense of what kinds of interactions are

supported, as well as the style of interaction expected by the various calls.

In the following example, we show part of the Swagger documentation interface for a PHIS server

located at 192.168.56.101 responding on port 8080. A partial list of services can be seen

(provenances, radiometricTargets, scientificObjects, sensors). The last entry, sensors, has been

expanded to show all calls available for that particular service. Note that the function of each call

is briefly described on the right.

https://swagger.io/

92

Clicking on one of the calls will expand the entry to reveal call documentation and an interactive

example, as illustrated in the following screenshot.

93

The entry begins with a description of the call, an example of an expected result, as well as the

content type of the response (with other options if applicable).

Following this, a list appears showing the possible parameters which can be provided to the call.

Each parameter name is shown, along with example values, a description of what the parameter is

for, the type of parameter (path, query, header or body), as well as the type of the data.

94

The parameter list doubles as a set of entry fields for performing test calls using the next part of

the interface. Test calls can be performed by pressing the “Try it out!” button. Responses to the

test call and other information about the exchange are then displayed as in the following

screenshot.

95

 Important: Before any other example calls are made, a POST call must first be made

to the /brapi/v1/token service. This can be done using the same web interface. Once a

valid token has been retrieved with this call, it will be used automatically within all

other API example calls.

Finally, it is worth mentioning that tools exist to automatically generate wrappers of API calls in a

number of languages. For example, Swagger Codegen (https://github.com/swagger-api/swagger-

codegen) supports languages such as (amongst others) C, C++, C#, Java, Perl, Python, Ruby, R. The

reader could consider using such a tool if a wrapper for the PHIS API is not available in their

language of choice. However, automatically generated wrappers may not handle the implicit

expectations of the API correctly (that is, those requirements that do not form part of the formal

Swagger specification). Therefore, generated wrappers should not be assumed to be correct without

further testing.

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen

96

3.4. Conclusion

In this chapter, we took an introductory look at making calls to PHIS web services, and how to make

use of Swagger documentation in order to find more information about specific calls. In the

subsequent chapter, we present a case study example where a hyperspectral image dataset is

uploaded to the PHIS database.

97

Annex 4: Dataset Capturing in PHIS: A Case Study

In this chapter and associated tutorial scripts12, we demonstrate the entry of a pre-existing dataset

into PHIS. The dataset consists of a mixture of tabular and image data, which together help

illustrate some of the most important use cases and provides an overview of key aspects of the API.

We also discuss common pitfalls that users should be aware of.

Having discussed the kind of entities stored in PHIS databases in the main matter of this document,

we will demonstrate the practical aspects of submitting a dataset. Each section will be devoted to a

particular kind of entity or closely related group of entities. In the next section, we begin by

discussing the case study dataset to be entered into PHIS.

4.1. Case study dataset

The case study dataset (Banakar, Polder, Ruizendaal, & Balendonk, 2019; Malounas, 2019) contains

a collection of RGB and hyperspectral images of tomato plants. Certain of the tomato plants are

infected by powdery mildew.

For illustration, consider the following two RGB images taken of a healthy plant and an infected

plant respectively.

12 Note that accompanying scripts are partly based on examples from the OpenSILEX Github repositories at
https://github.com/OpenSILEX/phis-ws-clients/tree/master/python (Vidal, Heinrich, Migot, & Tireau, n.d.).

https://github.com/OpenSILEX/phis-ws-clients/tree/master/python

98

 (a) (b)

Healthy plant (a) Powdery mildew plant (b)

The larger project intended to compare different hyperspectral cameras and their ability to help

classify between healthy and infected plants. For simplicity, we limit the case study dataset to 4

images collected with a Specim FX10. Of these images, 2 are of control (healthy) plants, while the

other 2 are of diseased plants.

In the subsequent sections, we discuss how to create project metadata, track individual plants and

upload the dataset itself.

4.2. Using the example code

To accompany this document, a set of submission scripts written in Python have been created to

illustrate how to access the various PHIS entities and upload the captured data. These are intended

to be explored in conjunction with reading the following sections of this document. These scripts,

along with the demonstration dataset, can be found at:

https://git.wur.nl/villi003/phis-demo-scripts

https://git.wur.nl/villi003/phis-demo-scripts

99

In each section, we will indicate which files in the collection of scripts are relevant to the present

portion of the text, and also discuss what each of these scripts contains.

In the following sections, the discussion will focus on the general aspects of accessing the various

PHIS web services, and what they are used for. Inside the corresponding scripts, concrete examples

are provided and the user will find comments which explain in a step-wise fashion which operations

are being performed and why.

4.3. Projects

Projects are typically the highest level of organization that a project member may administer on an

existing PHIS system. As described previously, project entities capture information such as the

project description, contact person, financial support, running time, and so forth.

Projects may be created in one of two ways. One way is to use the web application, the other is to

use the web service API. In this chapter, we will mostly focus on using the web service API, partly

because it is useful to be able to automate the creation of all entities for a particular project.

However, it is instructive to see how to use the web application for this purpose as well, which we

will now consider.

To create a project using the web application, select “Experimental Organization” and from the

dropdown “Projects”. This will bring up the search page for existing projects. However, just below

the “Projects” heading, there is a “Create Project” button. Pushing this button brings up the

project creation form. This is illustrated in the following screenshot:

100

As can be seen, in the case of projects, using the web interface for project creation is relatively

straightforward, and only needs to be used once during the project lifecycle.

In the following part of the section, we consider adding projects using PHIS web services, and an

example showing the creation of the case study project entity is given in the script

create_project.py .

PHIS defines four web services for interacting with projects:

Web service Description

GET /projects Find projects matching certain criteria and return their attributes.

POST /projects Create new projects with attributes as specified.

PUT /projects Update the attributes of already existing projects.

GET /projects/{URI} Return the attributes of the project with URI as specified in path.

101

We start our discussion with the GET /projects web service. Typical of other GET services without

a URI path parameter in PHIS, this service is used to search for projects matching particular criteria.

It is also possible to use this service to return all projects entries in the database by not specifying

any criteria. In addition, the criteria are usually specified using query parameters (recall that query

parameters are specified in the URL after a question mark).

For example, to search for a project with acronym SCE, a GET request is made with a URL of the

form:

http://phisserver:port/opensilex/rest/projects?acronyme=SCE

Notice here we provide one query parameter, “acronyme”, with the value SCE. If such a project

exists, a possible response from the server may be:

{
 "metadata": {
 "pagination": null,
 "status": [],
 "datafiles": []
 },
 "result": {
 "data": [
 {
 "uri": "http://www.opensilex.org/opensilex/SCE",
 "name": "Spectral Camera Evaluation",
 "acronyme": "SCE",
 "subprojectType": "",
 "financialSupport": "WUR",
 "financialName": "None",
 "dateStart": "2017-12-01",
 "dateEnd": "2018-12-31",
 "keywords": "",
 "description": "The Spectral Camera Evaluation project...",
 "objective": "Establishing the performance of ...",
 "parentProject": "",
 "website": null,
 "contacts": [
 {

102

 "email": "gerrit.polder@wur.nl",
 "firstName": "Gerrit",
 "familyName": "Polder",
 "type":
"http://www.opensilex.org/vocabulary/oeso/#ScientificContact"
 }
]
 }
]
 }
}

Let us take a closer look at the response structure. At the highest level, the response consists of a

JSON object with two key values, “metadata” and “result”, as shown in the following snippet.

{
 "metadata": { ... },
 "result": { ... }
}

We are primarily interested in the JSON object associated with the “result” key. This JSON object

has a single key, “data”, like the following

{
 "data": [...]
}

Notice that the value associated with “data” is a list ([]) rather than an object ({}). This is

because, in general, GET queries such as these may return more than one match. If there is only

one match (as in the current case), we obtain the following structure:

{
 "data": [{...}]
}

However, if there were three matches, the structure would have been as follows:

{

103

 "data": [{...}, {...}, {...}]
}

So, the query is able to return multiple matches, each as a JSON object listed under the “data”

entry. This format is typical of similar GET services in PHIS where the possibility of multiple results

exists.

Finally, we turn our attention to the actual project entry with the structure:

{
 "uri": "http://www.opensilex.org/opensilex/SCE",
 "name": "Spectral Camera Evaluation",
 "acronyme": "SCE",
 ...
}

Here we see each attribute of the given project, along with the value recorded in the database. In

this case, most of the entries are string values such as “SCE”. However, one entry, “contacts”,

actually consists of a list of contact persons (notice the square brackets [] surrounding the contact

details). In this case, there is only one contact person listed.

For completeness, the complete list of query parameters accepted by GET /projects can be found

in the following Swagger documentation.

104

Since many of the other GET services act almost identically to GET /projects, we will discuss

them in less detail. However, the query parameters and returned object keys do vary according to

the kind of entity we are searching for. Therefore, in subsequent discussion we will focus on these

aspects primarily.

 Important note: Often PHIS services perform partial matches when string values are

provided. In such cases, the developer needs to bear in mind that, if they wish to find one

particular matching string, naively searching for that string may return all items that at

least partially contain that string. For example, a query for a project with name

“project_1” may return “project_1”, but also “project_10” (if it exists).

The service POST /projects allows the client to create a new project entry in the PHIS database.

Unlike the corresponding GET service, information is passed to the POST service using a body

parameter. This takes the form of a list of JSON objects. Each JSON object contains the attributes

105

for a new project to be created. An example of such a body parameter is given in the following

snippet:

[
 {
 "name": "projectTest",
 "acronyme": "PT",
 "subprojectType": "subproject type",
 "financialSupport": "European",
 "financialName": "Grant No 382732",
 "dateStart": "2015-07-07",
 "dateEnd": "2016-07-07",
 "keywords": "keywords",
 "description": "description",
 "objective": "objective",
 "parentProject": "http://www.opensilex.org/opensilex/parentpj",
 "website": "http://example.com",
 "contacts": [
 {
 "email": "admin@opensilex.org",
 "firstName": "Ad”,
 "familyName": "Ministrator",
 "type":
"http://www.opensilex.org/vocabulary/oeso/#ScientificContact"
 }
]
 }
]

If the POST request is successful, the client might get a response like the following:

{
 "metadata": {
 "pagination": null,
 "status": [
 {
 "message": "Data inserted",
 "exception": {
 "type": "Info",
 "href": null,

106

 "details": "1 projects inserted"
 }
 }
],
 "datafiles": [
 "http://www.opensilex.org/opensilex/PT"
]
 }
}

In the above response, there are two particularly important items of interest. One is the value of

“status”, indicating the insertion was a success. The other is the contents of “datafiles”. If the

operation was a success, this list contains the URIs of all the newly inserted projects (in this case,

only one project was created). Note that PHIS generates its own URI for the project, although it

uses the project acronym as a template in this case.

In general, PHIS generates URIs for new database entries itself. In the case of projects, the URI is

informative in that it uses the project acronym. However, for many other entity types, PHIS

generates a URI which is not based on the entity metadata. For example, the first variable created

might have the URI http://www.opensilex.org/opensilex/id/variables/v001. While in these

cases this has the advantage of ensuring that URIs are unique, it does have the disadvantage of not

conveying any information about the entity without looking at the triple store.

 Important note: When a successful POST call is made, PHIS will always create a new

object, even if there is already an identical entry in the database. The new object will

simply have a different generated URI. New developers should keep this behaviour in

mind, because it can lead to unexpected results. For example, one half of a dataset might

be associated with the first project created, and the other with the second instance.

Because of the aforementioned behaviour, it is important to first check whether a particular entity

has already been created in the database before proceeding with a POST call. Therefore, one

should first perform a GET call to check for existing instances. If the GET call indicates no match,

then a POST call may be performed. If there is a match, the developer may opt to perform a PUT

call instead, which will update the attributes of the existing object in the database. This behaviour

is demonstrated in the project creation script.

http://www.opensilex.org/opensilex/id/variables/v001

107

A call to PUT /projects is identical to a call to POST /projects, except that the PUT call must

specify the URI of an existing project for each entry being updated. Therefore, the request body

parameters should look similar to the following

[
 {
 "uri" : "http://www.opensilex.org/opensilex/PT",
 "name": "projectTest",
 "acronyme": "PT",
 "subprojectType": "subproject type",
 ...
 }
]

Because the URI is provided, PHIS can find the unique object it identifies, and can then update its

attributes with the newly provided values (assuming the particular service allows changes to the

relevant attributes).

 Important note: Apart from logging out of a session, PHIS services do not support

DELETE requests (although developers are currently implementing new services

accessible by the system administrator). It is therefore important to carefully avoid

polluting the database with invalid entries. While an entry’s data may be updated, the

entry itself cannot be deleted by a normal user using the web services. So, it is best to

perform testing for a new project’s workflow on a test PHIS server, rather than a

production server.

4.4. Experiments

Experiments represent units of work in one or more projects. While the exact division of projects

into such units of work is left to the project manager, PHIS provides an internal structure for

capturing different aspects of a given experiment. Amongst others, these include:

• Experiment description and keywords.

• The sensors employed during the experiment.

• The variables measured during the experiment.

• The place where the experiment is performed.

• The crop species under investigation.

• Administrative metadata such as start and end dates, containing projects, contact persons.

108

PHIS defines a set of web services under /experiments that are conceptually similar to those under

/projects. The major difference lies in which types of descriptive data sent or received to the web

services. Furthermore, there are two additional specialist web services for updating the variables

and sensors associated with the experiments.

Web service Description

GET /experiments Find experiments matching certain criteria and return

their attributes.

POST /experiments Create new experiments with attributes as specified.

PUT /experiments Update the attributes of already existing experiments.

GET /experiments/{URI} Return the attributes of the experiment with URI as

specified in path.

PUT /experiments/{URI}/variables Update the list of variables that are measured during

the experiment with the given URI.

PUT /experiments/{URI}/sensors Update the list of sensors which are used by the

experiment with the given URI.

In the script create_experiment.py, the creation of “experiment” entities is demonstrated. The

process is almost identical to that of creating “project” entities, although the reader will note that

the experiment script is significantly less complex than project submission script. This is because

the logic of checking for existing entities and choosing whether to POST or PUT based on this has

been abstracted by defining

109

post_or_put_experiment =
phis.define_post_or_put(getter=phis.get_experiments,

poster=phis.post_experiments,
putter=phis.put_experiments)

This block of code defines a function post_or_put_experiment that calls the GET, POST and PUT

methods as needed to ensure creation of the object without making a duplicate. The reader will

notice this method being reused in subsequent scripts, and it is meant to indicate that the calling of

these services are similar to invocations in earlier scripts. The reader may always refer back to

create_project.py for an example of following this entire process explicitly. The abstracted

version is implemented in the function define_post_or_put contained in the file phis.py .

4.5. Sensors

Sensor hardware and its specification are important aspects in capturing essential information about

an experimental procedure. The following web service calls are supported:

Web service Description

GET /sensors Find sensors matching certain criteria and return their

attributes.

POST /sensors Create new sensors with attributes as specified.

PUT /sensors Update the attributes of already existing sensors.

PUT /sensors/{URI}/variables Update which variables are measured by the sensor

with the specified URI.

GET /sensors/{URI} Get general device information regarding the sensor

with the specified URI.

GET /sensors/profiles/{URI} Get the measurement specifications of the sensor with

the given URI.

POST /sensors/profiles Update the specifications (sensor profiles) of the

sensors specified in the body parameters.

The PHIS web services divide information about sensor hardware into “sensors” and their “sensor

profiles”. This distinction corresponds to the representation of “Sensing Device” in the OESO

ontology.

110

In OESO, the parent class of “Sensing Device” is the more general “Device”, which has generic

associated properties such as a human readable description, manufacturer and serial number. These

properties are set using either POST or PUT /experiments. Because all sensors inherit directly or

indirectly from “Device”, all sensors may have these properties.

By contrast, sensor profiles refer to properties associated with descendant class of “Sensing Device”

in OESO to which the particular sensor belongs. These encode specific information which

characterizing the measurement process. Examples include aspects such as camera resolution and

frame rate. Because these are properties of descendants of “Sensing Device”, not all sensors may

be assigned these properties.

In the script create_sensors.py, an example is provided for defining a sensor object

corresponding to the FX10 hyperspectral camera. This is followed by the attachment of a sensor

profile to this object, which specifies the resolution of the sensor.

111

4.6. Provenance

An important aspect of dataset curation is to record the source of information, or provenance, with

as much detail as possible. This increases transparency and supports critical engagement with the

information contained in the dataset.

However, sources of information are diverse in their nature. They may include, amongst many

others, published documents, information from sensors and visual observations. This is compounded

by the fact that the result of a workflow processing other information may, in turn, be seen as a

data source.

Because of this potential diversity, PHIS treats data provenance generically. Developers can create

provenance entities which consist of four components:

Property Description

uri Unique URI identifying the provenance entity, generated by

PHIS automatically.

label A short identifier to act as an alias for the object.

comment A human readable comment describing the source of data this

provenance entity describes.

metadata JSON object storing an arbitrary list of key / value pairs.

Notable here is the relative lack of prescribed structure. However, in the context of specifying

information sources, this makes sense. These entries are primarily intended for human

consumption, although the “metadata” field allows some structuring using JSON notation.

What is most important is that the provenance entry conveys to a database user clearly how the

information was obtained. This may involve referring to URIs of related resources, which can be

easily stored in the metadata object. PHIS allows searches based on the metadata object’s

contents, which increases its utility in automated workflows.

It is helpful to consider a few use cases for provenance entities:

• Defining a particular procedure employed during an experiment: Experiments are not
necessarily monolithic, they may comprise of a number of procedures which together gather
the experimental data. A provenance entity may be used to note down which researchers

112

were performing the measurements, what equipment they were using, how the researchers
were using the equipment to perform measurements and any manual procedures that were
necessary.

• Indicating an external source of data: Sometimes it is useful to make an externally obtained
dataset available alongside locally gathered data. In this case, provenance objects may
refer to published papers detailing the dataset, contact persons involved in data gathering
and links to where the dataset was obtained from (a website, for example).

• Record the data processing workflow by which derived data was obtained: In certain cases,
it may be useful to upload the results of a data processing pipeline alongside the original
raw data. This is especially true if the workflow is either complex, is computationally
expensive or involved expert judgements. To aid reproducibility, a provenance entity can
record the method employed to process the data, references to documents which help to
detail these methods, links to source code used for automatic processing of the raw data,
and the details of developers or expert judges.

To define and manage data provenance, PHIS provides the following web services:

Web service Description

GET /provenances Find provenances matching certain criteria and return their

attributes.

POST /provenances Create new provenances with attributes as specified.

PUT /provenances Update the attributes of already existing provenances.

The operation of these web services is a relatively straightforward adaptation of the conventions

established by previously discussed web services. An example showing the creation of a provenance

entity is provided in the script create_provenance.py .

113

4.7. Scientific Objects

Tracking the actual test subjects is an important part of data curation. PHIS allows developers to

represent test subjects by creating “scientific objects”. This class is defined in the OESO ontology,

and can represent objects such as plants, roots, leaves and seeds. It is also possible to represent

relationships between scientific objects. For example, one can create three leaves and indicate

that they are part of a particular plant.

After having represented scientific objects relevant to an experiment, it is possible to indicate

during data uploads which scientific objects were measured in obtaining the data. This allows

developers to later query the database to find all measurements related to a particular scientific

object. For example, such a query might return a series of photos taken of a particular plant at

regular intervals.

PHIS defines the following web services for managing scientific objects:

Web service Description

GET /scientificObjects Find scientific objects matching certain criteria

and return their attributes.

POST /scientificObjects Create new scientific objects with attributes as

specified.

PUT /scientificObjects/{URI}/{experiment} Update a scientific object and specify which

experiment it belongs to.

These web services behave similarly to previous cases. The only exception is the PUT service, which

can only update one scientific object at a time. This service also requires the scientific object and

experiment IRIs to be passed as path parameters, rather than being amongst the body parameters of

the request.

A scientific object maintains the attributes:

Property Description

uri Unique URI identifying the scientific object, generated by PHIS

automatically.

114

label A short identifier to act as an alias for the object.

rdfType The IRI of the class of scientific object, which identifies the

object as, for example, a plant or a seed.

geometry Indicates the location and extents of the scientific object.

experiment JSON object storing an arbitrary list of key / value pairs.

isPartOf Indicates the IRI of another scientific object that this object

forms a part of.

properties A list of properties which further describe the object.

Properties take the form of triples, each consisting of an rdfType, a relation and a value. The

rdfType and relation are both IRIs, representing the type of the value, and the type of relationship

the value has to the scientific object.

Taking an example from the documentation, a contact person may be specified by giving the IRI

http://xmlns.com/foaf/0.1/Agent as the rdfType, while the relation may be specified as

http://www.opensilex.org/vocabulary/2018#hasContact. In this case, the value may be an IRI

pointing to the contact person, such as

http://www.opensilex.org/demo/id/agent/marie_dupond.

In the case study, the scientific objects are individual tomato plants. Each plant has a label of the

form “Cn” or “Dn”, where n is a number from 1 to 2, and C/D indicate either control (C) or diseased

(D). The script create_scientific_objects.py demonstrates the creation of these scientific

object entities. Note that, because of the difference in how PUT operations are performed,

define_post_or_put cannot be used to simplify the script. The scientific object submission script

instead explicitly performs the sequence of GET, POST and PUT operations to ensure duplicates are

not created.

Once all scientific objects have been created, there is enough structure in the PHIS database to

begin uploading data related to these objects, which we discuss in the following sections.

http://xmlns.com/foaf/0.1/Agent
http://www.opensilex.org/vocabulary/2018#hasContact
http://www.opensilex.org/demo/id/agent/marie_dupond

115

4.8. Uploading Data

As mentioned previously, PHIS provides two separate mechanisms for uploading measurement data.

These are handled by the services /data and /data/file(s) services respectively. We discuss

these services in turn in the following subsections.

4.8.1. Point data

Data managed through the /data services can be thought of as collections of individual data points.

This subsystem is particularly well suited to storing discrete individual measurements, primarily

single numbers or string labels. The subsystem is also well suited to storing spreadsheet data, as

each cell in a spreadsheet can be seen as a single data point and uploaded as such. The web app

supports uploading of spreadsheet data in csv format, although it is currently relatively strict

regarding how this spreadsheet is formatted (downloading a template csv file to assist data entry is

possible via the same interface).

Each data point is characterized by the following attributes:

Property Description

uri Unique URI identifying the data point, generated by PHIS

automatically.

provenanceUri URI indicating the provenance of the data point.

objectUri URI indicating the scientific object being measured.

variableUri URI indicating the variable being measured (such as weight or

temperature).

date The date and time of measurement. Examples:

2017-06-15 or 2017-06-15T10:51:00+0200

value The actual measurement

From these properties, we see that each data point includes its source, the object measured, the

variable being measured, the time of measurement, and the actual measurement value. Provenance

and scientific objects have been discussed previously, but variables have not been discussed so far.

We leave a more detailed discussion to a later section, but essentially variables definitions capture

three aspects: the trait being measured, the method of measurement, and the units of

116

measurement. For example, a variable might represent the trait “ambient temperature”, with

method “thermocouple” and with units “kelvin”.

The web services of the data point subsystem include:

Web service Description

GET /data Find data points by date range, or the URIs of the variable, object

or provenance.

POST /data Create a new point data entry.

GET /data/search Similar to GET /data, but additionally allows queries based on the

object and provenance labels (not only their URIs).

The operation of these web services is similar to the operation of earlier web services. It is worth

noting, however, that PHIS does not currently support a PUT service for point data. This means

that, once created, a data point’s value cannot be changed. While from one perspective, this is

inconvenient, from another this ensures reproducibility and transparency by preventing changes

that would invalidate any prior analyses based on the older data.

There are at least two strategies by which a dataset curator can incorporate changes to already

submitted data. One strategy makes use of provenance entities as a means of creating new versions

of a given dataset without disturbing the previous versions. Another strategy is to use annotation

entities to attach comments and replacement values to data points.

Since each data point has a unique URI, it is possible to annotate a data point with a replacement

value using the /annotations service. The annotation can also contain an explanation for the

substitution, possibly referring to events such as sensor failure (created using the /events service).

In case the replacement value needs to be replaced, the first annotation can itself be annotated.

This does mean that users should be aware of the possibility that corrections may have been made

in this fashion. It is advisable to add comments about such annotations to either the experiment,

project or provenance metadata, as these can be updated.

The main advantage of using the /data services is that PHIS provides a more structured way of

capturing values and the metadata describing what they mean. Because the structure of the data is

now managed by PHIS, it becomes independent of the original data storage format. The service is

117

also convenient for time series measurements of qualities such as temperature, which can be

autonomously submitted to the web services at each measurement point.

The main disadvantage of these point data services is that they are awkward for storing bulky data.

Furthermore, only one value may be stored for a given combination of provenance, object, variable

and date. In some cases, this can be remedied by encoding multiple values as a JSON object stored

in a string. For example, a list of the numbers 1 through 4 can be encoded as "[1, 2, 3, 4]".

However, while it is technically possible to store bulky data encoded in the value as a string, this

isn’t the intended use of the subsystem. For inherently large units of data, PHIS provides a file

storage service which is discussed in the following section.

4.8.2. Bulk data

Some information is too bulky for submission as point data, typical examples being images or

videos. For these cases, PHIS provides the facility to upload individual files to the database using

the /data/file(s) services.

The advantage of using this subsystem is that data can be uploaded in well-known file formats,

which can make subsequent use easier. Metadata can be attached to each file, describing the origin

and contents. Files may be associated with scientific objects, such as individual plants being

measured. The sensor employed may also be recorded in the file metadata.

The disadvantage of this subsystem is that file formats do not necessarily stay supported for lengthy

periods of time. While metadata may be attached to files, PHIS web services treat the contents in a

black box fashion. Dataset curators should therefore think carefully about the long-term

implications of the file format choices, and attempt to capture as much file metadata as possible.

As an important special case, array data may be stored in specially designed interchange formats

such as HDF5 (https://www.hdfgroup.org/).

https://www.hdfgroup.org/

118

PHIS provides the following web services to deal with uploading files:

Web service Description

GET /data/file/{URI} Retrieves a file with the given URI.

GET /data/file/{URI}/description Retrieves the description of the file with the given URI.

GET /data/file/search Finds all files matching the criteria specified in the body

parameters.

POST /data/file Uploads a single file and its description.

POST /data/files Uploads multiple files and their descriptions.

Again it is worth noting that PHIS does not support PUT operations for the file storage subsystem.

This means that, once a file is uploaded, it cannot be changed or removed from the system. This

design choice has an identical rationale as seen in the point data subsystem, and changes to files

may be dealt with in exactly the same way (through provenance or annotation entities).

4.8.3. Cross-referencing between data subsystems

Finally, it should be noted that it is possible to combine the point data and bulk data subsystems.

One possibility is to post a bulk data file and then post a data point with the file’s URI as its value.

Typically developers may opt to simply use either one of the subsystems separately, but it may be

useful for users to have records be available in both subsystems. For example, this approach allows

a web app user to search for data points associated with an object and also get references to

images, downloadable in spreadsheet format.

4.8.4. Uploading the case study data: Ground truth labels

In the case study data, each plant is labelled as either control or diseased. The point data

subsystem can be used for this purpose in order to store these labels. In this section, we will discuss

this process. We will create a variable called “Diseased” in PHIS, which will store a class label for

each tomato plant. This will either be the value “diseased” or “healthy”, depending on whether or

not the plant is infected. This process can be easily extended to storage of other variables,

especially for the storage of tabular data associated with experimental samples.

119

As discussed earlier, each value uploaded to the point data subsystem needs a provenance URI, a

concerned object URI, a variable URI, a date/time of measurement and a value to record. We have

already discussed the creation of provenance and scientific object entities, but we still have to

describe the creation of variables.

Variables are defined by the trait being measured, the method by which the measurement is

performed, and the unit of measurement.13 It is possible to define new traits, methods, units and

variables using either the web app or the PHIS web services. The web app method is simple and

convenient, although the web services allows for the process to be automated.

To use the web app for creating variables and related entities, select “Variables” under

“Experimental Organization”. This brings up a list of existing variables, as shown in the following

figures.

Clicking on “create variable” opens the interface for defining traits, methods, units and variables,

as shown in the following screenshot.

13 At the time of writing, developers report that recent changes to PHIS has changed the trait-method-unit
model of variables to a quality-entity-method-unit model to conform with ontologies of measurement (OM or
QUDT).

120

From here, it is possible to combine existing traits, methods and units into a new variable. If a new

trait, method or unit is needed, these can be defined using the plus buttons, bringing up the

following interface:

Note carefully that any entities created cannot be modified via the web interface. Therefore the

user should make sure not only that all the details are correct, but also that they are not creating

what is essentially a duplicate entity.

121

Alternatively, variables and related entities may be created using the PHIS web services:

Web service Description

Trait services:

GET /traits Retrieves all traits matching search parameters.

POST /traits Create new traits as specified.

PUT /traits Update already existing traits.

GET /traits/{URI} Get information about trait with specified URI.

Method services:

GET /methods Retrieves all methods matching search parameters.

POST /methods Create new methods as specified.

PUT /methods Update already existing methods.

GET /methods/{URI} Get information about method with specified URI.

Unit services:

GET /units Retrieves all units matching search parameters.

POST /units Create new units as specified.

PUT /units Update already existing units.

GET /units/{URI} Get information about unit with specified URI.

Variable services:

GET /variables Retrieves all variables matching search parameters. No

trait, method and unit information is returned.

POST /variables Create new variables as specified.

PUT /variables Update already existing variables.

GET /variables/details Retrieves all variables matching search parameters.

Trait, method and unit information is returned.

GET /variables/{URI} Get information about variable with specified URI.

The script upload_tabular.py demonstrates how to utilize these four services to create a trait,

method, unit and encompassing variable for a class label. The script also utilises the POST /data

service to upload either a “diseased” or “healthy” label for each of the plants.

122

The creation of trait, method and unit entities is similar to creating other PHIS entities, requiring

only body parameter containing a label and a comment. The label is a name for the trait, method

and unit, and the comment is a human-readable description of what the label means. For example,

the case study defines the following labels and comments:

trait_data = {
 "label": "Diseased",
 "comment": "Whether or not the subject in question is diseased."
 }

method_data = {
 "label": "direct_observation",
 "comment": "Value is assigned by a human through direct
observation."
 }

unit_data = {
 "label": "dimensionless",
 "comment": "arbitrary units"
 }

The case study method and unit is particularly simple, since these values are determined by human

observation (given the label “direct_observation”) and do not have a unit of measurement

(described in with the label “dimensionless”). However, numerical values can be similarly specified

and furnished with the correct methods and units. For example, (trait) fruit weight might be

measured by means of a scale (mentioning the mechanism by which the scale is measuring the

weight) with grams as units.

Having created the trait, method and unit, the script then creates a variable. The body parameter

is similar to those used to define traits, methods and units, except that there are URIs for the

variable’s trait, method and unit as well.

variable_data = {
 "label": "Diseased",
 "comment": "Does the scientific object carry a disease?",
 "trait": the_trait["uri"],
 "method": the_method["uri"],
 "unit": the_unit["uri"]
 }

123

Finally the data itself is posted for each scientific object using the POST /data service. This service

requires URIs for provenance, scientific object and the variable. Further including the date and

time uniquely identifies the data point. Finally, the value being saved is specified. The body

parameters have the form

{
 "provenanceUri": provenance_uri,
 "objectUri": object_uri,
 "variableUri": variable_uri,
 "date": date_and_time,
 "value": value
}

In the case study, value is either “diseased” or “healthy”, referring to label of a specific plant

specified using objectUri.

Having demonstrated the submission of point data to record ground truth data in the case study, we

now show the uploading of bulk data files for handling the hyperspectral data portion of the

dataset.

4.8.5. Uploading the case study data: Image data

The case study data consists of a set of hyperspectral images obtained from an FX10 camera. The

bulk data subsystem is most appropriate for these hyperspectral images. We will discuss uploading

these images to the PHIS database.

The dataset is composed of hyperspectral scans where each scan is stored as an individual directory

of files serving different purposes. To ease uploading of the dataset, individual directories are

provided as ZIP files. We will upload these files to bulk storage, along with their metadata.

The uploading of individual images is performed by the script named

create_hyperspectral_images.py . This script steps through each file in the directory containing

ZIP files and submits the file using the POST /data/file service. Note that details of interaction

with this service are implemented in the post_file_object function contained in phis.py file. As

a body parameter, one provides:

{

124

'rdfType': rdf_type,
'date': date,
'provenanceUri': provenance_uri,
'concernedItems': concerned_items,
'metadata': metadata

}

The rdfType identifies the type of file we are submitting using a URI. For a VNIR image, this is:

http://www.opensilex.org/vocabulary/oeso#VNIRImage

Furthermore a date and provenance URI is presented. A list of “concerned items” can be provided,

which may for example include plant(s) present in the image.

Finally, the metadata entry provides a flexible means of specifying metadata relevant to the file

type. In the example, we provide the sensor, project and experiment URIs, as well as the name of

the original file as follows

{
"sensor" : sensor_uri,
"project" : project_uri,
"experiment" : experiment_uri,
"filename" : os.path.basename(file_path)

}

This identifies the sensor used to upload the file, from where the sensor profile can be obtained.

The relationship between the file and containing project and experiment are also detailed. Finally,

the original filename of the file is stored along with this metadata.

4.9. Conclusion

In this chapter, we have considered uploading of a case study dataset to a PHIS server. This

included core metadata such as the project description, as well as the actual measured data and

ground truth. Ground truth data was recorded using PHIS’ point data facility, while image data was

recorded using PHIS’ bulk data facility. At this point, the dataset is now fully represented in the

PHIS server.

