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The high cost of microalgal cultivation
has hindered exploitation of their advan-
tages for sustainable production of
green chemicals and biomass. Never-
theless, recent advances in the field of
synthetic biology could help to overcome
the associated bottlenecks.

Improving reducing power generation
and carbon influx will be crucial for
attaining an overall improvement in
microalgal productivity.
The major bottleneck in commercializing biofuels and other commodities pro-
duced by microalgae is the high cost associated with phototrophic cultivation.
Improving microalgal productivities could be a solution to this problem. Syn-
thetic biology methods have recently been used to engineer the downstream
production pathways in several microalgal strains. However, engineering up-
stream photosynthetic and carbon fixation metabolism to enhance growth, pro-
ductivity, and yield has barely been explored in microalgae. We describe
strategies to improve the generation of reducing power from light, as well as to
improve the assimilation of CO2 by either the native Calvin cycle or synthetic al-
ternatives. Overall, we are optimistic that recent technological advances will
prompt long-awaited breakthroughs in microalgal research.
Enhancing light absorption, in conjunc-
tion with techniques to swiftly channel
electrons through the electron transport
chain, could enhance the generation of
reducing power.

The Calvin–Benson–Bassham (CBB)
cycle might not be the best CO2 fixation
pathway, and other natural and synthetic
pathways may outperform the CBB
cycle. However, implementing these
entire pathways in new hosts will be
very challenging.

Mixotrophic cultivation and microbial
electrosynthesis could be implemented
as an additional source of energy
and carbon to improve microalgal
productivity.
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Towards Improving Upstream Photosynthetic and CO2 Fixation Metabolism
Research on microalgae as a platform for biofuel production dates back to the 1980s [1].
Despite decades of research, the cost of microalgal biofuel is still considerably higher
than the biofuel produced from traditional agricultural crops. The expensive cultivation of
microalgae in large-scale photobioreactors has been a bottleneck for economically feasible
production of low-value commodities. Hence, microalgae are currently only used to pro-
duce high-value compounds such as pigments and fatty acids, focusing on niche markets
with limited competition [2,3]. However, the massive deforestation and other environmental
consequences associated with the production of biofuels and biomass from traditional
crops urges alternative sustainable production methods. Hence, research to realize the
full potential of microalgae for sustainable production of biomass and products remains
an urgent topic.

Current genetic engineering strategies to improve microalgal productivity of lipids, which are the
precursors for biofuel production, have often resulted in reduced biomass production and/or
growth rate. At least to some extent this is because the supply of carbon or energy is insufficient
to meet the increased demands of engineered strains (Figure 1) [4–6]. Thus, to overcome carbon
or energy shortage, further major improvements in microalgal productivities will require extensive

rewiring of the upstreammetabolic pathways such as carbon fixation, as well as the generation of
ATP and reducing power by photosynthesis. Some of these strategies have been recently
proposed and partly implemented in plants (reviewed in [7–9]). These strategies require varying
levels of genetic engineering interventions ranging from up- or downregulation or knockout of
one or a few native genes to the introduction of complete, complex non-native systems such
as synthetic photosystems or synthetic carbon fixation pathways. Recent improvements in the
synthetic biology toolbox for microalgae, for example CRISPR/Cas (see Glossary) technology
(Box 1) [10], now allow similar explorations in microalgae, potentially leading to large improve-
ments in their productivity.
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Glossary
2A signal peptides: specific amino
acid sequences that are introduced
between the coding DNA sequences of
two genes expressed from a single
promoter. These sequences induce
ribosomal skipping during mRNA
translation leading to expression of
multiple proteins from a single mRNA
sequence. These sequences can be
used to express multiple proteins from a
single mRNA when there are limitations
in the availability of regulatory elements
for a particular species.
Chlorophyllide a oxygenase
(CrCAO): Chlamydomonas reinhardtii
CrCAO converts chlorophyll a
(chlorophyllide a) to chlorophyllide b, that
is further converted to chlorophyll b by
another enzyme, chlorophyll synthase.
CRISPR/Cas: clustered regularly
interspaced palindromic repeats and
CRISPR-associated (Cas) proteins are
an immune system in bacteria and
archaea against invading viruses. This
immune system incorporates short
fragments of viral DNA into the host
genome as a 'CRISPR array'. The
multiple short viral fragments are
separated by a recurring repeat
sequence, and the entire CRISPR array
is transcribed and cleaved into single
CRISPR RNAs by host machinery. The
single CRISPR RNA and the Cas protein
form a complex, and this complex
introduces a precise double-stranded
DNA break (DSDB) when it encounters
viral DNAwith the same sequence as the
CRISPRRNA. The ability of Cas proteins
to introduce precise DSDBs has been
exploited in developing the genome-
editing tools that are presently used
across various organisms.
Gene stacking: the expression of
multiple heterologous proteins in a single
host is termed gene stacking. Recycling
the antibiotic resistance for selection,
using multiple antibiotics in a single or
multiple rounds of transformation,
implementing 2A peptides for multi-
cistronic expression, and bidirectional
promoters are some of the strategies
employed for gene stacking in
microalgae.
Photosynthetic efficiency (PE):
during the process of photosynthesis,
the light energy is converted into
chemical energy to fuel host
metabolism. PE is usually determined as
the percentage of incident light energy
that is converted to chemical energy for
biomass production. In nature, only 50%
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In this review we elaborate on synthetic biology-based approaches for enhancing the light-driven
generation of reducing power and CO2 fixation to improve overall microalgal productivity.
Moreover, we discuss potential 'mixotrophy' strategies to utilize inorganic and organic molecules,
as a complement or alternative to light and CO2, as energy and carbon sources to enhance
microalgal productivities.

Improving the Generation of Reducing Power from Light
Limiting the losses in the conversion of solar energy during photosynthesis could provide addi-
tional energy for host metabolism. Some of the solar energy absorbed by the photosystems is
lost via a process termed non-photochemical quenching (NPQ), which is influenced by the lag
in the adaptation of photosystem antenna sizes to the light conditions (Box 2). For these reasons,
it has been proposed to reduce the antenna size by genetic engineering as a strategy to reduce
the NPQ and improve photosynthetic efficiency (PE). Truncation of light-harvesting antenna
and disruption of the chloroplast signal recognition particle (CpSRP) protein have been the
primary targets for reducing antenna size. CpSRP is responsible for translocating light-harvesting
proteins to the thylakoid membrane of the chloroplast. Truncation of antennas led to improved PE
and biomass productivity in several microalgal species (Table S2 in the supplemental information
online). Contrasting observations were also made in some cases where reduction in antenna size
did notmake a difference or adversely affected the PE [11,12]. Amore refined strategy to optimize
light capture and PE would be to fine-tune the content of chlorophyll pigments (Chl). However,
determining the optimal values of pigment content, especially for cultures grown under fluctuating
light conditions, is impractical and could detrimentally affect engineered strains with adapted
pigment and antennae composition in some conditions [13].

An alternative strategy to improve PE in microalgae would be to introduce heterologous photo-
systems that have a potentially higher light-harvesting efficiency or a wider absorption spectrum.
Plant and microalgal photosystems only absorb light in the visible range from 400 nm to 700 nm,
whereas ~50% of the available solar radiation falls outside that range [14]. Some of the non-
absorbed light is emitted in the more energetic part of the spectrum (UV, <400 nm), whereas
most of the non-captured light is in the IR spectrum (>700 nm). Although photons >700 nm
are less energetic, and are insufficiently energetic to perform water-splitting, photons up to
1100 nm are still sufficiently energetic to drive the generation of a typical proton motive force of
200 mV and generate ATP [15]. Several bacterial photosystems found in nature have higher
light-harvesting efficiencies and broader absorption spectra. Components of these bacterial
photosystems could potentially be harnessed to improve PE. Complete rewiring of eukaryotic
oxygenic photosynthesis to improve its efficiency has been proposed before [14,16]; however,
rebuilding the highly complex multi-subunit photosystems may be highly ambitious. Nevertheless,
replacement of some parts of native photosystems by heterologous counterparts has already been
demonstrated in microalgae.

A study along these lines replaced the D1 subunit in photosystem II (PSII) of Chlamydomonas
reinhardtii by its counterpart from the cyanobacterium Synechococcus elongatus. The mutants
showed that the photochemistry of the PSII system could be improved for some variants under
particular conditions (low or high light) [17]. Other studies showed that heterologous expression
of PSII subunits D1 and PsbH from plants in the cyanobacterium Synechocystis did not improve
the PE of the engineered strains [18–22]. To date, swapping of PSII subunits has not improved PE
in cyanobacteria and microalgae under photobioreactor conditions. One reason could be that re-
placement of single proteins within the native photosystem complexes is not sufficient because
efficient photosystem operation requires specific interactions between multiple proteins in the
photosystem. In another study, a larger set of six core proteins of PSII was replaced by the
2 Trends in Biotechnology, Month 2021, Vol. xx, No. xx



of total solar radiation belongs to the
photosynthetically active radiation (PAR),
in other words the fraction of total solar
radiation that can be used by
photosynthetic organisms to perform
photosynthesis. The theoretical
maximum of PE is reported to be 11%,
whereas the maximum overall PE is
reported to be 3–6% in plants and
microalgae.
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complete set of PSII core proteins from the microalgae Scenedesmus obliquus or Volvox carteri,
or from the same strain of C. reinhardtii as a control. Complementation of the deleted PSII
proteins successfully reconstituted 85%, 55%, and 53% of the photosynthetic activity upon
expression of the core proteins from C. reinhardtii, S. obliquus, and V. carteri, respectively [23].
Although functional heterologous replacement of PSII was demonstrated, improved PE in
microalgae has not yet been realized by PSII subunit engineering, and this will likely require
more extensive rewiring and optimization of photosystems.

Other than introducing heterologous photosystem complexes, introducing the biosynthetic path-
way for non-native pigments may increase the absorption range and PE. In plants, heterologous
expression of photosynthetic proteins and pigment biosynthesis pathways that were lost during
evolution resulted in improved photosynthesis, growth, and stress tolerance [24]. A similar
strategy was recently followed for the improvement of PE in the microalga Nannochloropsis
salina. The chlorophyllide a oxygenase (CrCAO) gene from C. reinhardtii was introduced to
produce chlorophyll b (Chl b), which is not native to N. salina. This strategy resulted in a 26%
higher cell number, 31% improved cell dry weight, and an 8% increase in total lipid content of
N. salina under medium-light conditions after 12 days [25,26]. The production of Chl b in
N. salina indicates the potential of producing non-native pigments in microalgae.

Following this approach, the chlorophyll f synthase (ChlF) recently discovered in some
cyanobacteria, that produces the far-red light-absorbing chlorophyll f (Chl f), could be an
interesting candidate for expression in microalgae [27]. This can lead to an expansion of the
light absorption spectrum into the IR wavelengths. Recent insights have revealed that ChlF,
which is highly homologous to the D1 subunit of PSII, probably forms a heterodimer with the
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Figure 1. Schematic Representation of Algal Carbon Partitioning. (A) CO2 fixed via photosynthesis is the sole source of carbon in photoautotrophs, and
downstream metabolism distributes the carbon into biomass production, and the accumulation of products such as polyunsaturated fatty acids (PUFAs) and lipids.
(B) Conventional metabolic engineering approaches to enhance the production of metabolites focus on overexpressing the genes for the production pathway of these
metabolites, mostly resulting in an improvement in metabolite production but a reduction in microalgal growth, that limits further increases in productivity. (C) To further
enhance the productivity and the growth of engineered microalgae, the generation of reducing power and carbon fixation via photosynthesis could be improved.
Abbreviations: CBB, Calvin–Benson–Bassham; LHC, light-harvesting complex.
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Box 1. Development of the Genome-Editing Toolbox for Microalgae

The genome-editing toolbox for microalgae consists of various nuclease enzymes such as zinc-finger nucleases (ZFNs),
transcriptional activator-like effector nucleases (TALENs), and CRISPR/Cas. Before the emergence of CRISPR/Cas
systems, ZFNs and TALENs were widely used in microalgae for generating mutants. The DNA-binding domains of zinc-
finger proteins were combined with the endonuclease domain of FokI to develop the synthetic nucleases (ZFNs) for
generating the precise double-stranded DNA breaks (DSDBs) [118]. The DNA-binding domain of transcription activator-
like effector protein together with FokI comprise the TALENs [119]. These two nucleases were successfully implemented
in variousmicroalgal organisms for generatingmutants [120,121]. However, the laboriousmodification and design of these
proteins for each target site and frequent off-target events have limited the use of these systems for gene editing [122].

The CRISPR/Cas system emerged as a solution to the bottlenecks associated with ZFNs and TALENs. Amongst other
roles, CRISPR/Cas systems function as natural bacterial and archaeal immune systems against viruses [123] in which
Cas proteins cleave and degrade the invading alien DNA. The nuclease proteins are targeted to the alien DNA via
CRISPR-derived RNA molecules (crRNA) [124]. Cas nucleases and synthetic crRNA guides have been exploited to
develop a high-precision system for introducing double-strandedDNA breaks at specific sites, allowing either gene disrup-
tion or specific recombination events. CRISPR-based genome editing was first demonstrated in human andmouse cells in
2013 [125,126]. Since then, this tool has revolutionized the field of genome editing and has been successfully implemented
across various organisms for the precise generation of mutants. CRISPR-based gene editing in microalgae was first
reported in Chlamydomonas reinhardtii in 2014, but had a very low efficiency and yielded only one targeted mutant per
109 transformed cells [127]. However, optimization of the system in later years improved the editing efficiency and
expanded its application to other microalgal species. Moreover, catalytically inactive variants of the Cas proteins, termed
deadCas (dCas), have been used for gene downregulation (silencing). CRISPR/Cas-based genome editing in microalgae
is summarized in Table S1 in the supplemental information online.
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D2 subunit of PSII to synthesize Chl f [28]. Remarkably, it was shown that, by engineering chime-
ric D1/ChlF proteins in Synechocystis sp. PCC 6803, which natively does not harbor Chl f
pigments, the engineered strain could synthesize Chl f pigments [28]. The chimera strategy could
potentially be interesting to enable Chl f synthesis in microalgae. However, further engineering will
probably be necessary to achieve functional interaction of Chl f with the photosystems.

In addition, UV-absorbing pigments found in Antarctic plants could further broaden the light
spectrum accessible by microalgae upon heterologous expression, and possibly improve
Box 2. Photosynthesis and the Non-Photochemical Quenching (NPQ) Response in Microalgae

Conversion of solar energy into chemical energy sustains the majority of biological life on Earth. In photosynthetic
organisms the solar energy is used by photosystem II (PSII) to split 2 molecules of water into dioxygen, 4 electrons, and
4 H+ molecules, while photosystem I (PSI) further uses solar energy to energize electrons at the energy-level of general cel-
lular reducing equivalents (e.g., NADPH) [128,129]. The excitation of chlorophyll a (Chl a) molecules in the light harvesting
complex (LHC) of PSII by absorption of sunlight releases the energized electrons to enter the electron transport chain
(ETC). These electrons pass through the ETC where they reduce various cofactors and PSI, and eventually generate
NADPH and an H+ gradient across the thylakoid membrane. The latter gradient is used to drive the ATP synthase pump
to generate ATP. This chain of reactions to produce chemical energy from solar energy is facilitated by multiple enzymes in
the ETC [130,131]. Electron energization by capturing photosynthetically active radiation (PAR) from sunlight and the rate
of electron transfer in the ETC are important factors that determine the efficiency of this process [132]. However, only 50%
of incident sunlight (100 nm–1 mm) belongs to the PAR (380–700 nm), thereby limiting the spectrum of available sunlight
that can be exploited for photosynthesis [14]. In addition, not all the excited electrons enter the ETC owing to the lag in
electron transfer between various complexes in the system. In some cases, the excited electrons are de-excited by dissi-
pating the excess energy as heat [132]. This process is termed non-photochemical quenching (NPQ) and results in loss of
absorbed solar energy. NPQ is a protection mechanism that harmlessly de-excites non-transferred electrons to prevent
the generation of reactive oxygen species (ROS) [133–135]. Limiting the acquisition of photons under high light conditions
is a natural strategy to avoid electron overexcitation leading to NPQ [136]. To this end, photosynthetic organisms generally
regulate the size of the light-harvesting antennae based on the available light intensities [137]. These antennae are usually
composed of Chl a and Chl bmolecules linked to pigment complexes that absorb and transfer the light energy towards the
reaction centers of PSI and PSII [138]. Under low light conditions, the antenna size is increased to maximize light capture,
and vice versa [139]. However, the antenna size-regulation response is species-specific and relatively slow, resulting in
harmful light capture under sudden variation from low to high light conditions such as in dense cultures grown in
photobioreactors, resulting in NPQ. This energy loss via NPQ is detrimental for achieving optimum photosynthetic
efficiency (PE), and results in reduced biomass productivity.
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biomass or product yield [29]. However, the genes involved in the biosynthesis of these pigments
remain to be elucidated.

Apart from improving the photosynthetic machinery, potential improvements could be achieved
in the machinery that channels the photosynthetically excited electrons via various redox reac-
tions to generate ATP: the electron transport chain (ETC) (Box 2). To improve ETC reactions,
the rate-limiting protein complexes in the ETC should be identified for the species of interest,
and the entire subunit could be replaced with a faster variant to improve electron flow and reduce
NPQ [30]. Characterization of the ETC complexes in fast-growing microalgal and cyanobacterial
strains could potentially reveal catalytically superior variants of these complexes. Taken together,
inspired by the aforementioned studies, the synthetic biology tools could be exploited for
stepwise improvement of the entire light reactions of photosynthesis, which could potentially
dramatically enhance the microalgal productivity.

Improving Carbon Fixation
Overcoming the Limitations of Natural Carbon Fixation Systems in Microalgae
Microalgae assimilate CO2 in the Calvin–Benson–Bassham (CBB) cycle via the carboxylating
enzyme RuBisCO (ribulose-1,5-bisphosphate carboxylase-oxygenase) that has some short-
comings (Box 2), –resulting in a relatively low rate and efficiency of carbon fixation. Multiple
genetic engineering strategies have been implemented in various microalgal strains to partly
overcome these shortcomings [9]. One strategy is to simply increase the levels of active
RuBisCO enzyme to increase the overall carboxylation activity, assuming that the levels of
functional protein are limiting growth. This strategy was reported in the microalgal strain
Nannochloropsis oceanica where overexpression of native RuBisCO activase improved
both growth rate (32%) and biomass accumulation (46%) [31]. In the cyanobacterium
Synechocystis PCC 6803, overexpression of native RuBisCO improved growth rate and bio-
mass production by ~20% [31,32].

Alternatively, native RuBisCO enzymes could be replaced by either superior natural or engineered
RuBisCO variants. To select variants, it is important to consider their catalytic activity and their
CO2/O2 specificity because RuBisCO variants with improved catalytic activity often have reduced
CO2 specificity, and vice versa [33]. This 'trade-off' is typically observed among natural RuBisCO
variants [34]; in addition, directed engineering of RuBisCO to improve its performance only led
to limited overall carboxylation improvements under ambient conditions [35–37]. Therefore,
especially when microalgae are cultivated in atmospheric CO2 conditions, this trade-off needs
to be taken into account. However, under elevated CO2 concentrations that are often applied
in photobioreactors, the use of RuBisCO variants with increased catalytic rates (but with lower
CO2/O2 specificity) may be attractive to increase productivity.

To harness the power of potentially superior RuBisCO variants, attempts were made to express
natural or engineered RuBisCO proteins in RuBisCO deletion mutants of bacteria [38,39] and
plants [40,41], as well as in the microalgal species Chlamydomonas reinhardtii [42]. However,
so far these studies led to only limited improvements in growth, probably because of the modest
number of variants screened and challenges in heterologous expression for many multimeric
(type I) RuBisCO variants that often require activases or chaperone proteins. Pyrenoids – the
microalgal subcompartments in which RuBisCO is often located to facilitate higher local CO2

concentrations – are another complication facing the expression of heterologous RuBisCO in
microalgae. It was recently determined that the pyrenoid compartment assembles by specific
binding of pyrenoid-associated proteins to RuBisCO [43]. This assembly is likely disrupted
when replacing a native RuBisCO by a heterologous candidate. However, the binding regions
Trends in Biotechnology, Month 2021, Vol. xx, No. xx 5
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of the RuBisCO variant or of the pyrenoid-associated proteins could be engineered to support
pyrenoid formation with a heterologous RuBisCO.

A potentially promising type I RuBisCO variant was discovered in the red alga Griffithsia monilis
that has an unusually high CO2/O2 specificity factor of 167, from two- to fourfold higher than the
values typically reported for C3 plants, green algae, and cyanobacteria [34,44–46]. However,
the requirement for post-translational modifications of the G. monilis RuBisCO proteins
and for the assembly of multiple subunits of this RuBisCO enzyme may explain its poor heter-
ologous expression in tobacco plants [46]. Recent developments indicate that coexpression
of chaperones that facilitate the assembly of specific RuBisCO enzymes could enable the
heterologous expression of these proteins [47]. Therefore, developing techniques to assemble
the red alga RuBisCO in microalgae could be an interesting approach towards enhancing CO2

fixation.

By contrast, the simpler homodimeric type II RuBisCO enzymes may be a better choice for
heterologous expression. Metagenomic studies have revealed numerous RuBisCO-like proteins
from non-domesticated prokaryotic and eukaryotic organisms [48,49]. Recently, 33 000 putative
RuBisCO proteins were identified by this approach, from which 143 type II and type II/III
RuBisCOswere selected and expressed in Escherichia coli and screened by in vitro assays to ob-
tain catalytically superior variants [50]. The most active variant was a type II variant obtained from
the bacterium Gallionella sp., which exhibited an eightfold improved turnover number compared
to typical values reported for type I RuBisCO from green algae and plants [45]. However, the low
affinity for CO2 of this bacterial RuBisCO (Km of 276 μM, compared to 39 μM in Chlamydomonas
and 14 μM in plants) reduces the carboxylation efficiency compared to plants under normal atmo-
spheric conditions [45,50]. Nevertheless, this protein could be a suitable candidate for culturing
microalgae in reactors with CO2 supplementation.

In addition to RuBisCO, it is important to identify other rate-limiting steps in the CBB cycle to
achieve optimal CO2 fixation. The CBB cycle reactions catalyzed by sedoheptulose
bisphosphatase (SBP) and fructose bisphosphate aldolase (FBA), in addition to RuBisCO,
are reported to be rate-limiting steps in plants and cyanobacteria [51,52]. Overexpression
of other CBB enzymes was reported to enhance photosynthesis and growth rate in
the cyanobacteria Synechocystis, Synechococcus, and Anabaena spp. [32,51,53,54].
Respective overexpression of the cyanobacterial SBP and FBA in the microalgae Chlorella
vulgaris and Euglena gracilis improved their biomass production by 1.2- and twofold,
respectively [55,56]. By contrast, overexpression of native fructose 1,6-bisphosphatase in
C. reinhardtii adversely affected growth rate and biomass production [57]. Obtaining
improved variants of these enzymes via directed evolution and metagenomic studies should
also be considered, alongside improvements to RuBisCO, as a means to increase the CO2

fixation via CBB cycle.

Decreasing Carbon Loss via Photorespiration
As described in Box 3, the oxygenation activity of RuBisCO, in addition to competing with the
carbon fixation reaction, generates the toxic compound 2-phosphoglycolate (2-PG), especially
under atmospheric CO2 concentrations. Hence, engineering more efficient alternative photores-
piration pathways for recycling 2-PG could be an strong synthetic biology approach to tackle the
losses of photorespiration in microalgae (Figure 2). Such approaches were already successfully
demonstrated in plants, but not yet in microalgae. For example, the more energy-efficient
glycerate photorespiration pathway, that is present in some bacteria [58,59], was introduced
into Arabidopsis thaliana (arabidopsis) chloroplasts. The introduction of five genes encoding
6 Trends in Biotechnology, Month 2021, Vol. xx, No. xx



Box 3. The Calvin–Benson–Bassham Cycle and Other Natural CO2 Fixation Pathways

CO2 fixation in microalgae is primarily driven by RuBisCO as part of the CBB CO2 fixation cycle [140]. There are four types of
RuBisCO proteins, among which type I is the most abundantly found and harbors eight large and eight small subunits (L8S8).
Type II RuBisCO found in some bacteria and dinoflagellates is structurally simpler because it comprises a dimer of the large
subunit (L2) and thus could be a suitable candidate for heterologous expression. The type III RuBisCO generally found in
archaea comprises a dimer of the large subunit, as seen in type II, or multiple dimers attached to form a multi-subunit
complex, (L2)5 [141]. RuBisCO enzymes are known to have relatively low catalytic rates (Kcat = <10 s−1) relative to other
CO2 fixation enzymes [142]. Furthermore, RuBisCOdisplays a 'wasteful' side-activity with oxygen in the presence of relatively
high O2 concentrations versus CO2 (e.g., in ambient air that contains 20%O2 but only 0.04%CO2). This oxygenase reaction
leads to the formation of 2-phosphoglycolate, which must be detoxified or recycled into the Calvin cycle via photorespiration
pathways. In both plants andmicroalgae, 2-phosphoglycolate is recycled into the Calvin cycle via the C2 cycle (see Figure 2 in
main text) [143]. However, this C2 cycle requires ATP input and releases some of the fixed CO2 as well as fixed NH3. Losses
related to photorespiration have been reported to reduce photosynthetic efficiency in plants by up to 50% [144]. A study on
microalgal cultivation in a photobioreactor, even in the presence of elevatedCO2, reported that photorespiration could lead to
a 66% loss of fixed carbon, particularly because dissolved oxygen concentrations in the bioreactor can become very high as
a result of photosynthesis [145].

In addition to the CBB cycle that harbors RuBisCO, six alternative natural CO2 fixation pathways do not utilize RuBisCO for
carboxylation: (i) the reductive tricarboxylic acid cycle, (ii) the Wood–Ljungdahl pathway, (iii) the 3-hydroxypropionate
bicycle, (iv) the 3-hydroxypropionate-4-hydroxybutyrate cycle, (v) the dicarboxylate-4-hydroxybutyrate cycle, and (vi) the
recently discovered reductive glycine pathway [69,70,72,74–76,146–148]. Among these six pathways, the CBB cycle is
one of the the least efficient CO2 fixation route in terms of ATP consumption, because seven molecules of ATP are con-
sumed to generate one molecule of pyruvate, in addition to the limitations of the carboxylating RuBisCO enzymes (see Ta-
ble 1 in main text) [140]. Some other natural pathways consume much less ATP, and the carboxylating enzymes in these
pathways are much more efficient than RuBisCO; however, several of these pathways only function under anaerobic con-
ditions and/or require elevated CO2 concentrations.
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this pathway improved arabidopsis biomass and growth rate [60]. The malate cycle is an alterna-
tive photorespiration pathway that could be considered [59]. This pathway leads to complete
decarboxylation of 2-PG, but could increase CO2 concentrations within RuBisCO-containing
chloroplasts, and was therefore engineered into some plant species. This malate cycle improved
biomass yield and photosynthetic rates in both arabidopsis [61] and tobacco [62], in the latter
case in field studies PE and biomass production were impressively increased by 17% and
24%, respectively.

The alternatives discussed above for natural photorespiration pathways still release CO2. Follow-
ing a more ground-breaking approach, different synthetic pathways were proposed based on
engineered enzymes that could lead to CO2-neutral photorespiration. Such promising pathways,
primarily based on the reduction of glycolate to glycolaldehyde via glycolyl-CoA with engineered
enzymes (glycolyl-CoA synthetase and glycolyl-CoA reductase or glycolyl-CoA carboxylase),
were so far only demonstrated in vitro [63,152]. However, these promising designs for synthetic
photorespiration await in vivo testing in microalgae and other photosynthetic organisms.

Like many other photosynthetic organisms, microalgae have naturally evolved carbon-
concentrating mechanisms (CCMs) to reduce the effects on photorespiration. For microalgae,
this CCM involves multiple steps such as bicarbonate uptake, carbonic anhydrase-mediated
interconversion of bicarbonate and CO2, and localization of RuBisCO in pyrenoid compart-
ments within the microalgal chloroplast [64,65]. Because CCMs involve multiple steps
and pathways, the engineering strategies for improving this system are in the early stages.
Overexpressing a bicarbonate transporter from C. reinhardtii improved the growth rate and
biomass accumulation in N. salina by increasing the intracellular inorganic carbon concentration.
However, the overexpression of the same gene in C. reinhardtii did not yield significant improve-
ments [66,67].
Trends in Biotechnology, Month 2021, Vol. xx, No. xx 7



Chloroplast

RuBisCOCBB 
cycle

CO2
O2

2P-glycolate Glycolate Glycolate

Glyoxylate

Glycine

Serine

HydroxypyruvateGlycerate

CO2

Glycerate

GlyoxylateTartronic-
semialdehydeGlycerate

CO2

Glyoxylate

MalatePyruvate

Acetyl-CoA

CO2

CO2

TSR

MS

GDH

3-PG

GCL

GDH

TrendsTrends inin BiotechnologyBiotechnology

Figure 2. Alternative Photorespiratory Pathways. The pathway in purple indicates the predicted natural photorespiratory pathway in a microalgal cell (and in plants)
that transports glycolate outside the chloroplast and converts two glycolate molecules into glycerate via several metabolic steps, and glycerate is finally transported back
into the chloroplast where it is fed as an intermediate into the Calvin cycle. During this process CO2 and ammonia are released, resulting in a net loss of fixed carbon and
energy. Two synthetic alternative photorespiratory pathways that have been demonstrated to improve biomass in C3 plants are indicated in yellow and red. The pathway in
yellow implements three enzymes from the Escherichia coli glycolate pathway, namely glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL), and tartronic-
semialdehyde reductase (TSR). The malate cycle in red implements two enzymes – GDH from C. reinhardtii and malate synthase (MS) from Cucurbita maxima. In the
synthetic pathways, CO2 is released back into the chloroplast and can be again taken up by RuBisCO for the Calvin cycle, thereby potentially limiting energy and
carbon losses and increasing the growth rate. Abbreviations: CBB, Calvin–Benson–Bassham; 3-PG, 3-phosphoglycerate, RuBisCo, ribulose-1,5-bisphosphate
carboxylase-oxygenase.
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Synthetic Carbon Fixation
Engineering an alternative andmore efficient CO2 fixation pathway is a promising and challenging,
radical strategy to overcome the shortcomings of the RuBisCO enzyme, the CBB cycle, and
photorespiration in microalgae (Table 1 and Box 4).

Some of the alternative carbon fixation pathways, including the highly ATP-efficient Wood–
Ljungdahl pathway, include oxygen-sensitive enzymes, making them poorly compatible with
oxygenic photosynthesis in microalgae. However, there are also aerotolerant natural carbon fix-
ation pathways, of which the reductive glycine pathway (via serine) is probably the most attractive
and ATP-efficient. In this pathway, CO2 is first reduced to formate, which in subsequent steps is
activated and further carboxylated to glycine, that can next be converted to serine and pyruvate,
only consuming 2 ATP/pyruvate. The two carboxylation reactions in this pathway are both
thermodynamically reversible, meaning that this pathway can only function under elevated CO2

concentrations, which is often the case in photobioreactor setups. It has been recently demon-
strated that this linear pathway can be engineered into heterologous hosts, at least for the
8 Trends in Biotechnology, Month 2021, Vol. xx, No. xx



Table 1. CO2 Fixation Pathwaysa

CO2 fixation pathway Natural/synthetic
(aerobic/anaerobic)

Total number
of reactions

ATP required per
pyruvate produced

Carboxylating enzyme Refs

Calvin cycle Natural (aerobic) 10 7 RuBisCO [68,69]

3-Hydroxypropionate cycle Natural (aerobic) 16 7 Acetyl-CoA carboxylase and
propionyl-CoA carboxylase

[70]

Wood–Ljungdahl pathway Natural (anaerobic) 8 <1 Formate dehydrogenase and CO
methylating acetyl-CoA synthase

[71]

Reductive TCA cycle Natural (anaerobic) 9 1–2 2-Oxoglutarate synthase and
isocitrate dehydrogenase

[68,72,73]

Dicarboxylate/4-hydroxybutyrate cycle Natural 14 5 Pyruvate synthase and PEP
carboxylase

[68,74]

3-Hydroxypropionate/4-hydroxybutyrate
cycle

Natural (aerobic) 16 5 Acetyl-CoA carboxylase and
propionyl-CoA carboxylase

[68,75]

Reductive glycine pathway (via serine) Natural (aerobic) 7 2 Formate dehydrogenase and
glycine synthase

[76]

Reductive glycine pathway (via glycine
reductase)

Natural (anaerobic) 8 1–2 Formate dehydrogenase and
glycine synthase

[76]

C4 glyoxylate cycle (MOG pathway) Synthetic (aerobic) 14 10 PEP carboxylase [68]

13 6 Pyruvate carboxylase

CETCH 5.4 Synthetic (aerobic) 13 ~12b Crotonyl-CoA
carboxylase/reductase

[77]

CETCH 6.0/7.0 Synthetic (aerobic) 14 ~6–9c Crotonyl-CoA
carboxylase/reductase and
propionyl-CoA carboxylase

[78]

aAbbreviations: CETCH, crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA; MOG, malonyl-CoA/oxaloacetate/glyoxylate; PEP, phosphoenol pyruvate; TCA, tricar-
boxylic acid.
bFor the production of 1 pyruvate via the CETCH 5.4 and glyoxylate carboligase pathway, 2 ATP are required directly and 4 NADPH are additionally consumed for the
production of pyruvate, which are not required in any of the other pathways [only 5 NAD(P)H or other types of reducing equivalents are necessary to reduce 3 CO2 to
1 pyruvate]. These extra electrons are lost in the two oxidation reactions in the CETCH 5.4 pathway. Assuming a P/O ratio of 2.5, these 4 NADPH equivalents add an
additional indirect cost of 10 ATP equivalents.
cFor the production of 1 pyruvate via the CETCH 6.0/7.0 and glyoxylate carboligase pathways, 4 ATP are required directly and 2 NADPH are additionally consumed for the
production of pyruvate. The extra required electrons are lost in an oxidation reaction in the CETCH 6.0 pathway (methylsuccinyl-CoA oxidase). Assuming a P/O ratio of 2.5,
these extra 2 NADPH equivalents add an additional cost of 5 ATP equivalents. However, in CETCH 7.0 the methylsuccinyl-CoA oxidase is replaced by methylsuccinyl-CoA
dehydrogenase that can donate the electrons to ubiquinone, hence some additional ATP may be regenerated in an electron transport chain. We assume in this case that
only one ATP is 'lost' by the partial oxidation of NADPH, hence only 2 extra ATP are consumed indirectly.
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assimilation of formate. The pathway has been successfully implemented in the bacteria E. coli
and Cupriavidus necator by using a combination of modular engineering and adaptive laboratory
evolution [79,80]. The core part of the reductive glycine pathway, the production of glycine from
formate, was also demonstrated to be functional in the yeast S. cerevisiae [81]. Although this
pathway has not yet been introduced in photosynthetic organisms for the fixation of CO2, the
ubiquitous nature of all the enzymes involved and its simple linear nature make it a promising
pathway to be also introduced into microalgae.

Moreover, the 3-hydroxypropionate bi-cycle and the 3-hydropropionate-4-hydroxybutyrate
pathways can also operate under aerobic conditions. Both pathways fix CO2 with propionyl-
CoA carboxylase and acetyl-CoA carboxylase, which use the more soluble HCO3

− instead of
CO2 as carbon source and may have advantageous kinetics over RuBisCO [68]. However,
both systems require the generation of relatively complex and circular pathways involving many
enzymatic steps, thus complicating their engineering, and especially in organisms with more
limited genetic toolboxes such as microalgae. Although some modules of both pathways were
Trends in Biotechnology, Month 2021, Vol. xx, No. xx 9



Box 4. Synthetic CO2 Fixation Pathways

Based on the enormous repertoire of natural enzymes and potential engineered enzymes, in addition to natural CO2

fixation pathways, synthetic CO2 fixation pathways can be envisaged. Systematic exploration of these possibilities based
on ~5000 natural enzymes led to the design and analysis of a large collection of synthetic pathways [68]. These pathways
were also analyzed in silico in a genome-scale metabolic model of the microalgaC. reinhardtii to estimate their potential for
improving growth versus the CBB cycle. This analysis identified a promising family of pathways, termed the malonyl-CoA/
oxaloacetate/glyoxylate (MOG) pathways, that can operate under aerobic, ambient CO2 conditions and are predicted to
outperform the CBB cycle (Figure S1 in the supplemental information online). A MOG pathway employing the kinetically
superior carboxylating enzyme phosphoenolpyruvate (PEP) carboxylase was proposed to have a two- to threefold higher
CO2/O2 specificity compared to RuBisCO in the CBB cycle. However, it is notable that this pathway involves some
enzymes for which only natural thermophilic variants are known [68]. So far, only the section of the pathway that converts
malate to acetyl-CoA via the 'reverse glyoxylate shunt' has been realized by metabolic engineering in E. coli and the
cyanobacterium Synechococcus elongatus [149,150].

Another well-known hallmark of synthetic CO2 fixation research is the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-
CoA (CETCH) cycle (Figure S2 in the supplemental information online), which includes some engineered enzymes. This
synthetic CO2 fixation route employs enoyl-CoA carboxylases/reductases as the carboxylase because they have a two-
to fourfold higher catalytic rate than RuBisCO and are unreactive to oxygen as a substrate [77]. This aerotolerant pathway
was demonstrated and optimized so far only in vitro. For the first version of the CETCH cycle, 12 candidate enzymes were
sequentially added to an in vitro reaction mixture containing the cofactors and intermediates to demonstrate that the cycle
was functional. This cycle of reactions was optimized in multiple steps to improve the CO2 fixation efficiency by 20-fold.
This improved pathway, termed CETCH 5.4, was capable of fixing CO2 at a rate that was fivefold more efficient than
the CBB cycle in vitro. CETCH 5.4 comprised 13 core reactions and in total 17 proteins originating from nine organisms
[77]. As proof of concept, Miller and coworkers recently demonstrated that the CETCH pathway is compatible with
photosynthetic machinery and hence can be driven by light energy when combined in vitro with thylakoid membranes
isolated from spinach. However, the interactions between enzymes of the original CETCH 5.4 and the thylakoid
membranes resulted in some negative interactions and reduced productivity, resulting in an inactive system. These bottle-
necks were addressed by the addition/replacement of a few enzymes in the pathway, giving rise to CETCH versions 6.0
and 7.0 [78]. Although the CETCH cycle may have some attractive features for implementation in vivo, initial engineering,
even in easily accessible bacterial hosts, remains to be demonstrated.

Another synthetic CO2 fixation pathway was proposed very recently: the Gnd–Entner–Doudoroff (GED) cycle. This path-
way relies on the carboxylation of ribulose 5-phosphate by the reverse activity of 6-phosphogluconate dehydrogenase.
This pathway could also potentially outcompete the CBB cycle under high CO2 conditions, and the functionality of parts
of the GED cycle has already been demonstrated by engineering in E. coli [151].
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successfully engineered into prokaryotic hosts, engineering the full pathways and associated
autotrophic growth has not yet been achieved in vivo [82,83].

In addition to the natural CO2 fixation pathways, synthetic pathways can be designed based on
the large collection of characterized natural enzymes and potential engineered enzymes to
develop an efficient CO2 fixation route (Box 4). Some of these pathways have been successfully
characterized in vitro, but their full implementation in vivo, even in bacterial hosts, remains to be
demonstrated. Altogether, even though the implementation of full synthetic CO2 fixation path-
ways in microalgae may seem to be a far-fetched goal, impressive recent progress in engineering
functional CO2 pathways in several hosts is reassuring. Recently, genetic engineering ap-
proaches combined with adaptive laboratory evolution led to the establishment of a fully
functional CBB cycle in the heterotrophic model bacterium E. coli [84], as well as in the yeast
Pichia pastoris [85] that has a less advanced genetic toolbox. In both cases the introduction of
the CBB cycle only required the addition of a limited number (3–8) of heterologous genes.
However, this work, as well as the previously mentioned engineering of the reductive glycine
pathway for formate assimilation, demonstrates the feasibility of the engineering of complete
autotrophic pathways. Nevertheless, a major challenge in achieving this goal, especially for
microalgae, is themajormetabolic engineering effort that will be necessary to express and localize
the high number of, mostly foreign, enzymes involved. However, recent developments in the
genome-editing toolbox of microalgae are very promising. The characterization of inducible
10 Trends in Biotechnology, Month 2021, Vol. xx, No. xx
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promoters, the 2A signal peptide-based system for multi-cistronic expression of heterologous
proteins, gene stacking techniques based on bidirectional promoters, the identification of resis-
tance to multiple antibiotics, Cre recombinase-based marker recycling, and, last but not least,
CRISPR-associated nucleases for precise genome editing (Box 1), are some recent develop-
ments that could be exploited for expressing a large number of heterologous proteins in
microalgal strains [86–92]. We believe that the growing knowledge about efficient and transplant-
able CO2 fixation pathways, together with state-of-the-art techniques for heterologous protein
expression and for adaptive evolution, should be combined to develop microalgal strains with
improved CO2 fixation ability.

Mixotrophic Routes for Carbon and Energy Source
Cofeeding of Organic Substrates
In addition to cultivating microalgae under photoautotrophic conditions, some microalgae
can also be grown heterotrophically owing to their capacity to utilize exogenous organic
carbon sources. The concomitant use of light/CO2 and organic carbon sources is termed
mixotrophy. Mixotrophic cultivation of microalgae can lead to improved growth rates in
comparison to phototrophic growth owing to the presence of additional carbon and energy
sources [93]. However, mixotrophy does not consistently improve lipid or biomass yield
across different microalgal species [94]. For example, photoautotrophic cultivation of marine
Chlorella sp., Nannochloropsis sp., and Chlorella vulgaris UTEX 259 yielded higher lipid
content compared to heterotrophic and mixotrophic cultivation [95,96]. These studies indi-
cate that improvement of biomass or product yield in microalgae by mixotrophy will be spe-
cies- and product-dependent.

Mixotrophic cultivation could also be a potential strategy to eliminate the energy-intensive
process of aeration in photobioreactors that is required for CO2 supply and oxygen release
from the system [97]. The CO2 required for photosynthesis can be generated by heterotrophic
metabolism whereas the O2 requirement for heterotrophic growth can be met by oxygenic
photosynthesis, thereby creating an internal gas circulation to maximize the yield from
substrate and avoid adverse oxygen accumulation [98]. An innovative mixotrophic cultivation
strategy was recently reported to double photobioreactor productivity by completely eliminat-
ing the gas–liquid transfer of CO2 and O2 [97]. In this case, the CO2 generated by heterotro-
phic metabolism of acetic acid was employed to fuel the CO2 requirement of photosynthesis.
In addition, phototrophic oxygen production maintained the dissolved oxygen concentration
(DOC) for the heterotrophic metabolism of acetic acid. The heterotrophic biomass yield
observed in this study was 0.50 (C-molbiomass per C-molsubstrate), which is close to the theo-
retical maximum of 0.7 for aerobic heterotrophic organisms. The overall mixotrophic biomass
productivity was almost twofold higher than for purely autotrophic growth in the same reactor
setup [97].

In practice, the applicability of mixotrophy is limited to microalgal strains that can take up
and degrade particular organic carbon sources. This limitation could be resolved by the
expression of carbon transporters and missing enzymes for organic carbon metabolism in
the host species. Expression of human glucose transporter GLUT1 in Phaeodactylum
tricornutum improved the cell concentration by fivefold under mixotrophic conditions [99].
In addition, C. reinhardtii expressing the glucose transporter Hup1 from Chlorella kessleri,
when grown on media supplemented with 100 mM glucose in absence of light, doubled
the cell density in 12 h and then remained stationary throughout the experiment, whereas
the wild-type strain did not grow in dark [100]. This strategy could be employed for the
trophic conversion and mixotrophic cultivation of commercially relevant microalgae. From a
Trends in Biotechnology, Month 2021, Vol. xx, No. xx 11
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sustainability perspective, however, the advantage of direct conversion of CO2 and sunlight
as sustainable resources may be compromised by the reliance on organic (plant-based)
carbon sources.

Direct or Shuttle-Based Cofeeding of Electrons
As an alternative or complement to light energy and organic substrates, electricity generated by
renewable energy sources has been proposed as a sustainable biotechnological feedstock, and
this could also be extended to microalgae [101]. Solar/photovoltaic (PV) cells can mediate more
efficient conversions than biological water-splitting photosystems. Specifically, state-of-the-art
PV systems can attain a solar-to-electricity efficiency of 20%, and can be combined with electrolysis
to generate hydrogen at an overall solar to chemical energy conversion of 11%. By comparison,
the maximum conversion efficiency of solar energy to biomass for microalgae is 3% when grown
in outdoor bioreactors, and 1% for crop plants [14].

Feeding with (renewable) electricity for bioproduction has already been extensively explored in
bacteria, and is mostly referred to as microbial electrosynthesis (MES) [102,103]. The uptake of
external electrons from electrodes is achieved by microbes such as Shewanella oneidensis that
are naturally capable of extracellular electron transfer (EET) [104]. EET is facilitated via various
types of mechanisms that transfer the external electron into the ETC of the host species [105].

Alternatively, mediator molecules such as hydrogen or formate could facilitate the transfer of
electrons from cathodes to non-electroactive microbes [106,107]. A proof of principle for
mediator-based MES was demonstrated in the hydrogen-oxidizing bacterium C. necator
by using hydrogen as the mediator of electron transfer. This study demonstrated biomass
production with an overall solar energy to biomass conversion efficiency of 9.7%, compared to
3% and 6% for microalgae grown at pilot scale outdoors and under indoor laboratory conditions,
respectively [108,109].

In microalgae, MES could be a potential strategy to enhance carbon influx and reducing power
generation. Direct electron uptake, or uptake of an electron mediator molecule such as hydrogen
or formate, could improve NAD(P)H generation in microalgae. In the case of formate, the CO2
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Figure 3. Conceptual Figure of Microbial Electrosynthesis (MES) in Microalgae. The blue lines indicate the pathways involved in MES based NADH regeneration.
During the process, the water split at the anodic chamber releases electrons, and these can be directly fed into direct electron uptake systems, or can generate for
example H2 or formate that can act as mediator molecules. Abbreviations: CBB cycle, Calvin–Benson–Bassham cycle; RuBisCo, ribulose-1,5-bisphosphate
carboxylase-oxygenase.
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Outstanding Questions
Among the various synthetic biology
strategies, which strategy or combination
of strategies is the most promising for
improving microalgal productivity?

Transplanting the core photosystem
subunits resulted in varying
photosynthetic efficiencies in microalgae.
Could replacing the entire photosystem
rather than only the core subunit be
feasible?

Does implementing alternative
photorespiratory pathways affect cell
viability? The native photorespiratory
pathway is also reported to be
crucial for specific functions such as
photoprotection and maintenance of
redox balance.

RuBisCO enzymes from prokaryotes
are reported to be catalytically
superior but have reduced specificity
for CO2. The opposite is observed in
RuBisCO from higher plants. Can
protein engineering be employed to
develop a chimeric RuBisCO with an
improved catalytic rate (as seen in
primitive variants), and high CO2

specificity (as observed in higher
plants)?

What further developments in microalgal
genome engineering will be necessary
to implement entire synthetic carbon
fixation pathways?

Mixotrophy studies are often focused
on media supplemented with specific
carbon sources. Could mixotrophy
implemented with wastewater effluents
make this strategy more sustainable?

Do microalgae such as C. vulgaris
have extracellular electron transfer
mechanisms? If not, what causes
their improved growth during pulsed
electric field treatment?

The photosynthetic and carbon fixation
machineries of fast-growing microalgal
variants could have higher catalytic
rates and efficiencies. How laborious
will it be to express these faster variants
in model microalgal strains, and does
this approach have potential for improv-
ing carbon fixation and reducing
power?

Instead of implementing entire
photosynthetic machineries from a fast-
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released by formate oxidation in microalgae to generate NAD(P)H could also be fixed via the CBB
cycle (Figure 3). Similar to the use of organic substrates, this system could alleviate the problems
associatedwith light limitation or could be an additional energy source for culturing themicroalgae
at night. AlthoughMES has solely focused on selected bacterial strains, the potential of this prom-
ising technology could be expanded to unicellular microalgae and cyanobacteria to improve the
productivities of biomass and/or green chemicals.

Electricity-driven cultivation may already have been achieved in microalgae during pulsed
electric field treatment – however, this was primarily to prevent bacterial contamination in
algal cultures or to stimulate product release. For the microalgal and cyanobacterial species
C. vulgaris and Arthrospira plantensis, respectively, this technique was reported to enhance
cell growth, but it was not effective for C. reinhardtii [110,111]. Various assumptions have
been made regarding the underlying mechanism that results in improved growth, but this
remains elusive [112]. C. vulgaris and A. plantensis might be naturally able to transfer
electrons via mechanisms such as EET, and these may be lacking in C. reinhardtii. Further
studies could open up interesting possibilities by identifying microalgal species for which
MES could be applied to improve the production of biomass or green chemicals. In addition
to the direct supply of electrons, enzymatic conversion of dihydrogen could provide an interest-
ing electron source. However, eukaryotic hydrogenase enzymes prefer the reduction reaction
in which dihydrogen is produced, whereas prokaryotic hydrogenases preferentially oxidize the
dihydrogen [113–115]. Implementing cyanobacterial hydrogenases that can directly uptake
dihydrogen and utilize it as an electron source in microalgae could provide an additional source
of electrons.

Concluding Remarks
The commercial production of microalgal products is hindered by the high cost of their
phototrophic cultivation. Improving the influx of carbon as well as the generation of reducing
power, while minimizing losses in their conversion after entering the host metabolism, should
be the prime focus in tackling this issue. Host-specific studies on the CBB cycle and the
identification of rate-limiting steps should stimulate the design of engineering strategies to
improve CO2 fixation capacity. Recent advances in metagenomics-based discoveries, in
CRISPR-based genome editing, and in adaptive evolution strategies could be exploited to
develop natural or synthetic CO2 fixation pathways that will lead to microalgal hosts with
improved productivity (see Outstanding Questions). Given the rapid development of the
genome-editing toolbox for several microalgal strains, the challenging task of expressing
the large number of enzymes involved in these pathways could be realized. Improving CO2

fixation will require additional reducing power, and this can be produced either via alternative
sources such as organic carbon and electricity or by improving the light reactions of photo-
synthesis. Expanding the spectrum of light available for photosynthesis together with the
swift flow of electrons via the ETC will be instrumental for attaining an optimal generation
of reducing power.

Genetic components for improving the productivity of slowly growing model producer
microalgae could be potentially obtained from fast-growing microalgae. By contrast, develop-
ing reliable genome-editing tools for these fast-growing strains could help in engineering them
to exploit their improved photosynthesis for the production of interesting commodities [116].
Picochlorum celerii is an interesting fast-growing strain for this approach. This strain is reported
to have a 10-fold faster doubling time (<2 h) compared to most of model microalgal species
[117]. In addition, its three- to ninefold improved photosynthetic rates, the ability of the strain
to withstand the variation in light intensities, and its resistance to photoinhibition indicate that
Trends in Biotechnology, Month 2021, Vol. xx, No. xx 13



growing microalga in a model microalgal
strain, should the fast-growing strains
be engineered to produce biomass or
metabolites of interest? What would be
the easiest approach?
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it harbors interesting light reaction machineries, and potentially also interesting CBB enzyme
variants [117]. Characterization of the light-harvesting complex (LHC) and ETC of this strain
could pave the way for heterologous expression of these systems in other model microalgal
organisms to improve the PE.

Taken together, the development of microalgal organisms as a major platform for green chemical
production is challenging but feasible. Application of a single strategy (such as improving the CBB
cycle or ETC, or reducing photorespiration), as has been done in the past, is probably insufficient
to address current inefficiencies. To this end, the diverse strategies discussed in this review will
need to be combined together in a model microalgal strain (Figure 4). Given the spectacular
progress that has recently been made in the fields of synthetic biology and genetic engineering,
crucial steps can now be taken towards engineering microalgae as a sustainable platform for
the production of biomass and green chemicals.
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