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Abstract
Current generalizations of the central ideas of single-objective branch-and-bound to the
multiobjective setting do not seem to follow their train of thought all the way. The present
paper complements the various suggestions for generalizations of partial lower bounds and
of overall upper bounds by general constructions for overall lower bounds from partial lower
bounds, and by the corresponding termination criteria and node selection steps. In particular,
our branch-and-bound concept employs a new enclosure of the set of nondominated points
by a union of boxes. On this occasion we also suggest a new discarding test based on a
linearization technique. We provide a convergence proof for our general branch-and-bound
framework and illustrate the results with numerical examples.

Keywords Multiobjective optimization · Nonconvex optimization · Global optimization ·
Branch-and-bound algorithm · Enclosure

1 Introduction

In this paper we propose a general solution approach for continuous multiobjective optimiza-
tion problems of the form

min f (x) s.t. g(x) ≤ 0, x ∈ X (MOP)
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with a vector f : R
n → R

m of continuous objective functions, a vector g : R
n → R

k

of continuous inequality constraint functions, and an n-dimensional box X = [x, x] with
x, x ∈ R

n , x ≤ x . We do not impose any convexity assumptions on the entries of f or g so
that, in particular, the set of feasible points

M = {x ∈ X | g(x) ≤ 0} (1)

is not necessarily convex. Nevertheless, the proposed approach will aim at the global solution
ofMOP, in a sense defined below.

The literature on deterministic algorithms for globally solving problems of the typeMOP
can be divided into two classes. One class comprises methods which use a parametric scalar-
ization approach and then apply a single objective global optimization technique, mostly
branch-and-bound, to the resulting auxiliary problems for each parameter. Examples and a
discussion of the drawbacks of such approaches are given in [26].

The present paper falls into the second class of solution approaches which try to adapt the
ideas of single objective branch-and-bound methods directly to the multiobjective setting,
that is, they do without the intermediate step of some scalarization approach. The basic idea
of any branch-and-bound algorithm for the minimization of a single function f over a set M
starts by subdividing M iteratively into partial sets M ′ and then discarding all sets M ′ which
cannot contain minimal points. The discarding tests rely on partial lower bounds for f on the
sets M ′, and from them also an overall lower bound for the globally minimal value of f on
M can be computed. In addition, the generation of feasible points during the discarding tests
leads to overall upper bounds on the globally minimal value. A standard termination criterion
for such algorithms is that the difference between the current overall upper and lower bounds
drops below some prescribed tolerance. Consequently, the choice of a partial set M ′ which is
branched into smaller sets in the next iteration is typically governed by the aim to reduce the
difference between overall upper and lower bounds. As the partial sets M ′ may be interpreted
as nodes of the underlying branch-and-bound tree, the latter step is known as node selection.

The contribution of the present paper is motivated by the fact that current generalizations
of the branch-and-bound idea to the multiobjective setting do not seem to follow this train
of thought all the way. In fact, while several suggestions for generalizations of partial lower
bounds and of overall upper bounds are available, we are not aware of general constructions
for overall lower bounds from partial lower bounds, and of the corresponding termination
criteria and node selection steps. The aim of the present paper is to close this gap.

In particular, in Sect. 2 we will discuss in more detail that the single objective branch-and-
bound idea focuses on constructions in the image space of the optimization problem, whereas
some of the known multiobjective branch-and-bound methods invest additional effort into
constructions in the decision space. While this may be useful for good approximations of the
efficient set (to be defined below), it is unrelated to the basic branch-and-bound idea.

The first multiobjective branch-and-bound approach without an intermediate scalarization
step, but with convergence considerations, was given in [12]. It is formulated for biobjective
problems only and focuses on simple discarding tests based on monotonicity considerations
and interval arithmetic. Its node selection rule chooses boxes one by one until all of them are
sufficiently small for termination. Branch-and-bound methods for more than two objectives
are proposed in [31] and [11]. The convergence results in [31] rely on growth conditions
of image boxes in terms of decision space boxes as they hold in, e.g., interval arithmetic.
The approach from [11] considers general lower bounding procedures for discarding tests,
however in combination with a nonstandard notion of ε-efficient sets (to be defined below).
Both in [11] and in [31] the termination criterion and node selection rule resemble the ones
from [12]. In [26] significantly more efficient discarding tests for general multiobjective
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problems on convex feasible sets are suggested, which base on computing partial lower
bounds by convex underestimators of the objective functions instead of interval arithmetic.
Their termination criterion is based on a bound for the possible improvement from some
lower bounds compared to upper bounds.

A different algorithm for box constrained biobjective problems is presented in [28,37]. In
combination with iterative trisections of the feasible set it makes use of the Lipschitz property
of the objective functions to compute partial lower bounds via Lipschitz underestimators
of the objective functions. An overall lower bound is constructed from these partial lower
bounds, and they are compared to some simple overall upper bound in the node selection
rule. However, the generalization of this approach to more objective functions and to more
general feasible sets does not seem to be straightforward.

The remainder of this paper is structured as follows. Section 2 reviews some preliminaries
from single objective branch-and-boundmethods and frommultiobjective optimization. Sec-
tion 3 introduces enclosures of the nondominated set ofMOP as well as the computation of
their widths as the central tools of our approach. Based on the concept of local upper bounds,
an explicit choice for an overall upper bounding set within such an enclosure is introduced in
Sect. 4. The construction of corresponding overall lower bounding sets bases on the partial
lower bounding sets used for discarding tests. These are discussed in Sect. 5 along with three
explicit discarding techniques, where the construction of the corresponding partial lower
bounding sets is based on singletons, convex underestimators and a relaxation-linearization
technique, respectively, the latter being novel. Section 6 constructs corresponding overall
lower bounding sets from such partial lower bounding sets, before Sect. 7 explicitly states a
natural termination criterion, a related node selection rule, and the resulting multiobjective
branch-and-bound framework in Algorithm 1. Section 8 provides convergence results for
this algorithm, and Sect. 9 complements them with a proof of concept by some numerical
illustrations. Section 10 concludes the article with final remarks.

2 Preliminaries

To motivate the concrete branch-and-bound steps in the case of multiobjective optimization,
let us first describe the framework for single objective optimization problems in some more
detail.

2.1 Overview of single objective branch-and-bound

In single objective optimization of f overM a globallyminimal point is some xmin ∈ M such
that no x ∈ M satisfies f (x) < f (xmin) = v, where v denotes the globally minimal value.
The discarding tests for subsets M ′ of M are performed by comparing efficiently computable
partial lower bounds �b′ of f on M ′ with the currently best known overall upper bound ub on
the globally minimal value of f on M . The value ub = f (xub) results from the evaluation of
f at the currently best known feasible point xub ∈ M . In fact, any set M ′ with �b′ > ub may
safely be discarded without deleting a globally minimal point of f on M , since all x ∈ M ′
then satisfy f (x) ≥ �b′ > ub ≥ v. Of course also any empty set M ′ can be discarded. The
algorithm keeps a list L of subsets M ′ which have not yet been discarded.

A branch-and-bound iteration proceeds by choosing and deleting a subset M ′ from L,
splitting this subset into two or more parts, and checking if the new subsets may be discarded
or if some of them must again be written to L. If during the latter tests a point x ′

ub ∈ M with
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f (x ′
ub) < f (xub) is generated, the currently best known feasible point and the corresponding

upper bound are updated to x ′
ub and f (x ′

ub), respectively, and possibly further subsets may
be discarded from L by this updated information.

These constructions do not only upper bound the globally minimal value v by ub =
f (xub) ≥ v, but they also yield the overall lower bound v ≥ �b := minM ′∈L �b′, since
the partial minimal values v′ of f on M ′ satisfy v = minM ′∈L v′ and the lower bounding
property v′ ≥ �b′ thus implies v ≥ �b. Consequently, the minimal value v is sandwiched
between �b and ub. If for a given tolerance ε > 0 the branch-and-bound method generates
bounds satisfying the termination criterion ub− �b < ε, then, in addition to v ≤ f (xub), the
point xub also satisfies f (xub) = ub < �b + ε ≤ v + ε and is hence ε-minimal, that is, no
x ∈ M satisfies f (x) < f (xub) − ε.

For any ε > 0 the above termination criterion will be met after finitely many branch-and-
bound steps if the method chooses points xkub such that ubk = f (xkub) converges to v from
above, and if for the sets M ′ ∈ Lk the values �bk = minM ′∈Lk �b′ converge to v from below.
The latter is usually guaranteed by employing a node selection rule which in the hypothetical
case ε = 0 would select a set M ′ with �b′ = �bk infinitely often, along with choosing a lower
bounding procedure with appropriate convergence properties.

In practical implementations of such a branch-and-bound framework, the feasible set is
usually assumed to be given in the form M = M(X) = {x ∈ X | g(x) ≤ 0} from (1) with
a box X . Subdividing M can then be performed by subdividing X into subboxes X ′ and
putting M ′ := M(X ′) = {x ∈ X ′ | g(x) ≤ 0}. The list L then only needs to contain the
information on subboxes X ′ along with their corresponding partial lower bound �b′ for f on
M(X ′). A common subdivision step consists in choosing some box X ′ from L and halving
it along a longest edge into two subboxes X1 and X2, which corresponds to splitting the set
M ′ = M(X ′) into M1 = M(X1) and M2 = M(X2).

Upon termination of the branch-and-bound method the listLwill contain at least one sub-
box X ′ with xub ∈ M(X ′), so that for the entire remaining boxes X ′ inL the set

⋃
X ′∈L M(X ′)

as well as its superset
⋃

X ′∈L X ′ are nonempty. In addition to the information that xub is ε-
minimal, the described construction also implies that both latter sets form coverings of the
set of all globally minimal points Xmin of f on M .

This approach, however, neither forces the sizes of the remaining boxes X ′ or of the
intervals f (M(X ′)) to become small, nor does it guarantee that the points in the covering⋃

X ′∈L M(X ′) form a subset of the set of ε-minimal points Xε
min . In fact, examples show

that the latter property may not even hold if the termination criterion ub− �b < ε is ignored,
but the algorithm terminates after an arbitrary large number of iterations.

Note that, in particular, the single objective branch-and-bound method does not focus on
good approximations ofminimal points xmin , butmainly on the approximation of theminimal
value v. Moreover, the discarding tests and the termination criteria solely rely on bounds on
objective function values, that is, the approach mainly works in the image set f (M). Below
we shall see how this carries over to themultiobjective setting. Clearly, working exclusively in
the image space may be algorithmically beneficial since in many multiobjective applications
its dimension is significantly smaller than the decision space dimension.

2.2 Efficient and nondominated points

In the presence ofmore than one objective function there is in general no feasible point xmin ∈
M whichminimizes all objective functions simultaneously, that is, such that f (xmin) ≤ f (x)
holds for all x ∈ M . Instead, one takes the equivalent negative formulation of optimality from
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the single objective case, namely, for xmin ∈ M there exists no x ∈ M with f (x) < f (xmin),
and transfers it to vector-valued functions f . In fact, a point xwE ∈ M is called weakly
efficient forMOP if there exists no x ∈ M with f (x) < f (xwE ),where the inequality ismeant
componentwise (cf., e.g., [10,25]). Since in some situations weakly efficient points allow the
improvement of one objective function without any trade-off against other objectives, usually
a stronger concept is employed in which the strict inequality f (x) < f (xmin) from the single
objective case is rewritten as f (x) ≤ f (xmin) and f (x) �= f (xmin). A feasible point xE ∈ M
is called efficient forMOP if there exists no x ∈ M with f (x) ≤ f (xE ) and f (x) �= f (xE ).
The set of all efficient points XE is called efficient set of MOP and forms a subset of the
set XwE of all weakly efficient points of MOP. We remark that under our assumptions the
problem MOP possesses efficient points whenever M is nonempty [10]. They usually form
a set of infinitely many alternatives from which the decision maker has to choose.

The notion of ε-minimality from the single objective case can be generalized to multi-
objective problems as well. For ε > 0 a point xε

E ∈ M is called ε-efficient for MOP (cf.
[23] with choice εe ∈ R

m+) if there exists no x ∈ M such that f (x) ≤ f (xε
E ) − εe and

f (x) �= f (xε
E ) − εe hold, where e stands for the all ones vector. We denote the set of all

ε-efficient points by Xε
E . It is not hard to see that the chain of inclusions XE ⊆ XwE ⊆ Xε

E
holds for any ε > 0 so that, in particular, under our assumptions all three sets are nonempty.

Whereas efficiency, weak efficiency and ε-efficiency are notions in the decision space R
n ,

as mentioned above the branch-and-bound idea focuses on constructions in the image space
R
m . These are covered by the following concepts. For points y1, y2 ∈ R

m we say that y1

dominates y2 if y1 ≤ y2 and y1 �= y2 holds. In this terminology a point xE ∈ M is efficient if
and only if f (xE ) is not dominated by any f (x) with x ∈ M . Hence, the set YN = f (XE ) of
points yN ∈ f (M)which are not dominated by any y ∈ f (M) is called the nondominated set
(also known as Pareto set) ofMOP. The nondominated set YN plays the role of the minimal
value v from the single objective case.

Analogously, theweakly nondominated setYwN = f (XwE ) ofMOP consists of the points
ywN ∈ f (M) such that no y ∈ f (M) satisfies y < ywN , that is, such that no element of
f (M) strictly dominates ywN , and the ε-nondominated set Y ε

N = f (Xε
E ) of MOP consists

of the points yε
N ∈ f (M) such that no element of f (M) dominates yε

N − εe. In the single
objective case Y ε

N corresponds to the (rarely discussed) set [v, v + ε] ∩ f (M) of ε-minimal
values, whereas YwN behaves like YN and collapses to v. In view of our above remarks, the
three sets satisfy YN ⊆ YwN ⊆ Y ε

N for any ε > 0, and they are nonempty for M �= ∅.

3 Enclosing the nondominated set

The first aim of our multiobjective generalization of the branch-and-bound framework is to
sandwich the nondominated setYN ofMOP in some sense between an overall lower bounding
set LB and an overall upper bounding set UB, where LB is constructed from partial lower
bounding sets. In Sect. 7 this will lead to a termination criterion and a node selection rule.

Since in set notation the single objective sandwiching condition �b ≤ v ≤ ub may be
rewritten as {v} ⊆ (�b+R+)∩ (ub−R+) (where, e.g., the expression �b+R

m+ is shorthand
for the Minkowski sum {�b} + R

m+), let us generalize it to the requirement

YN ⊆ (LB + R
m+) ∩ (UB − R

m+) (2)

with nonempty and compact sets LB,UB ⊆ R
m . This is in line with the sandwiching

approaches reviewed in [30] which, however, have not been combined with branch-and-
bound ideas.
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The enclosing interval [�b, ub] for v from the single objective case thus generalizes to the
enclosure

E(LB,UB) := (LB + R
m+) ∩ (UB − R

m+)

for YN . Since the single objective termination criterion ub−�b < ε may be interpreted as an
upper bound on the interval length of the enclosing interval [�b, ub], a natural multiobjective
termination criterion is to upper bound somewidthw(LB,UB) of the enclosure E(LB,UB)

by a tolerance ε. In view of the special structure of the enclosure we suggest to measure its
width with respect to the direction of the all ones vector e, that is, we define w(LB,UB) as
the supremum of the problem

max
y,t

‖(y + te) − y‖2/
√
m s.t. t ≥ 0, y, y + te ∈ E(LB,UB). (W̃ (LB,UB))

Thanks to the normalization constant
√
m the objective function of W̃ (LB,UB) equals t .

Imposing the nonnegativity constraint on t is possible due to symmetry. Lemma 3.3 will
provide a sufficient condition for the solvability of W̃ (LB,UB) which is, however, only
needed later. The following lemma first justifies the choice of this width measure.

Lemma 3.1 For sets LB,UB ⊆ R
m with YN ⊆ LB + R

m+ and some ε > 0 let
w(LB,UB) < ε. Then the relation

E(LB,UB) ∩ f (M) ⊆ Y ε
N

holds.

Proof For any ȳ ∈ E(LB,UB) ∩ f (M) assume that there exists some y ∈ f (M) with y ≤
ȳ − εe and y �= ȳ − εe. Since our assumptions imply external stability [32, Theorem 3.2.9],
the point y either lies in YN or is dominated by some yN ∈ YN . This implies y ∈ YN +R

m+ ⊆
LB + R

m+, and together with y ≤ ȳ − εe ≤ ȳ ∈ UB − R
m+ it shows y ∈ E(LB,UB).

Moreover, the point y + εe clearly lies in LB + R
m+, and with y + εe ≤ ȳ ∈ UB − R

m+ we
also obtain y + εe ∈ E(LB,UB). Consequently (y, ε) is a feasible point of W̃ (LB,UB) ,
resulting in the contradiction w(LB,UB) ≥ ‖εe‖2/√m = ε. �

Lemma 3.1 states that for w(LB,UB) < ε all attainable points in the enclosure
E(LB,UB) are ε-nondominated. In the single objective case (m = 1) this statement col-
lapses to the simple observation that for ub−�b < ε all values in the interval [�b, ub]∩ f (M)

are ε-minimal, that is, they lie in [v, v+ε]∩ f (M). Recall that, in combination with discard-
ing tests based on ub, this does not entail that the elements of

⋃
X ′∈L M(X ′) are ε-minimal

points. Analogously one may not expect that the multiobjective discarding tests based on
UB, as discussed in Sect. 5, will yield

⋃
X ′∈L M(X ′) ⊆ Xε

E for w(LB,UB) < ε.
As the condition y ∈ (LB + R

m+) ∩ (UB − R
m+) is equivalent to the existence of some

�b ∈ LB and ub ∈ UB with �b ≤ y ≤ ub, the enclosure E(LB,UB) can be written as the
union of the nonempty boxes which can be constructed with lower and upper bound vectors
from LB and UB, respectively,

E(LB,UB) =
⋃

(�b,ub)∈LB×UB
�b≤ub

[�b, ub]. (3)

This shows, in particular, that appropriate choices of LB and UB might lead to a discon-
nected enclosure E(LB,UB), thus correctly capturing the topological structure of YN .
Moreover, the following result relates the computation of w(LB,UB) to the description
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(3) of E(LB,UB) and implies that w(LB,UB) coincides with the largest value s(�b, ub)
among the above boxes [�b, ub], where

s(�b, ub) := min
j=1,...,m

(ub j − �b j ) (4)

denotes the length of a shortest edge of [�b, ub].
Lemma 3.2 For any sets LB,UB ⊆ R

m the width w(LB,UB) of E(LB,UB) coincides
with the supremum of

max
�b,ub

s(�b, ub) s.t. (�b, ub) ∈ LB×UB, �b ≤ ub. (W (LB,UB))

Proof Since the objective function of W̃ (LB,UB) satisfies ‖(y + te) − y‖2/√m = t , in
particular it does not depend on y. Hence the supremum of W̃ (LB,UB) coincides with the
supremum of

max
t

t s.t. t ≥ 0, ∃ y ∈ R
m : y, y + te ∈ (LB + R

m+) ∩ (UB − R
m+). (W (LB,UB))

As the condition y ∈ LB+R
m+ implies y+te ∈ LB+R

m+ and, analogously, y+te ∈ UB−R
m+

implies y ∈ UB − R
m+, the latter existence constraint simplifies to

∃ y ∈ R
m : y ∈ LB + R

m+, y + te ∈ UB − R
m+

or, equivalently,

∃ (�b, ub) ∈ LB ×UB : te ≤ ub − �b.

The supremum of W (LB,UB) thus coincides with the supremum of

max
�b,ub,t

t s.t. 0 ≤ te ≤ ub − �b, (�b, ub) ∈ LB ×UB

which, after explicitly computing the upper bound s(�b, ub) for t , yields the assertion. �
The next result immediately follows from Lemma 3.2 in view of the Weierstrass theorem.

Lemma 3.3 Let the sets LB,UB ⊆ R
m be nonempty and compact, and let E(LB,UB) be

nonempty. Then the problem W (LB,UB) is solvable. In particular, the widthw(LB,UB) is
a real number, and there exists some box [�b�, ub�] with (�b�, ub�) ∈ LB ×UB, �b� ≤ ub�

and w(LB,UB) = s(�b�, ub�).

Note that under our assumptions the enclosure E(LB,UB) is nonempty whenever LB and
UB satisfy (2), as then ∅ �= YN ⊆ E(LB,UB) holds.

The combination of Lemmas 3.1, 3.2 and 3.3 yields the following explicit sufficient
condition for ε-nondominance of the attainable points in the enclosure E(LB,UB).

Theorem 3.4 For nonempty and compact sets LB,UB ⊆ R
m with (2) and some ε > 0 let

max {s(�b, ub)| (�b, ub) ∈ LB ×UB, �b ≤ ub} < ε. (5)

Then the relation

E(LB,UB) ∩ f (M) ⊆ Y ε
N

holds.

For the application ofTheorem3.4we shall subsequently construct sequences of nonempty
sets (LBk), (UBk) ⊆ R

m with (2) for all k ∈ N as well as limk w(LBk,UBk) = 0. Then,
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in analogy to the single objective case, (5) may be employed as the termination criterion of
a multiobjective branch-and-bound method for any prescribed tolerance ε > 0.

4 Upper bounding the nondominated set

Regarding the generalization of the concept of upper bounds ub = f (xub) for vwith xub ∈ M
from the single objective case, observe that the notion of a currently best feasible point does
not make sense in the multiobjective setting.

4.1 The provisional nondominated set

Instead, different feasible points xub ∈ M may provide good approximations for different
efficient points. Consequently, in the course of the algorithm one keeps a subset Xub of the
finitely many feasible points generated so far or, as we wish to work in the image space, we
rather keep the setF := f (Xub), whose elements are to approximate different nondominated
points ofMOP.

It would be useless, however, to store a point f (x1)with x1 ∈ Xub inF which is dominated
by f (x2) for some x2 ∈ Xub, as in this case the statement that x2 is a better feasible point
than x1 does make sense. Hence, whenever some new point xub ∈ M is generated in the
course of the algorithm, its image f (xub) is only inserted into F if f (xub) is not dominated
by any element from F . Moreover, all elements of F which are dominated by f (xub) are
deleted from F . In the following we will refer to this procedure as updating F with respect
to f (xub).

The source of the points xub will be elements of subboxes X ′ of X (e.g., their midpoints
mid(X ′)) which are chosen for the discarding tests described below. If such an xub ∈ X ′ is
feasible for MOP the list F will be updated with respect to f (xub).

As a consequence of this construction, no element ofF dominates any other element ofF .
Any subset of R

m with the latter property is called stable, so that F forms a finite and stable
subset of the image set f (M) of MOP. Observe that also the nondominated set YN of MOP
is a (not necessarily finite) stable subset of f (M). This motivates to call F a provisional
nondominated set [12].

From the single objective construction one may expect that the choice UB = F for the
upper bounding set in (2) is possible. However, while the inclusion YN ⊆ F∪(F+R

m+)c does
hold, simple examples show that the required inclusion YN ⊆ F − R

m+ may fail. Fortunately
the following concept, already used in [26], allows us to construct an upper bounding setUB
from the information in F .

4.2 Local upper bounds

The subsequent construction assumes the existence of a sufficiently large box Z = [z, z]with
f (M) ⊆ int(Z) (where int denotes the topological interior). In the present setting of MOP
the set f (M) is contained in the compact set f (X), so that the existence of such a box Z
is no restriction. The explicit construction of some suitable Z is possible, for example, by
interval arithmetic, which we shall discuss in more detail in Sect. 5.3.

Given a finite and stable set F ⊆ f (M), the elements of the nondominated set YN can,
in particular, not be dominated by any q ∈ F . This motivates to define the so-called search
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Fig. 1 Local upper bounds. The
circles mark F , the bullets mark
lub(F)

f(M)

z

S(F)

z

region

S(F) = {z ∈ int(Z) | ∀q ∈ F : q � z},
that is, the set of all points in int(Z)\F which are not dominated by any point fromF . While
this clearly implies

YN ⊆ F ∪ S(F), (6)

now we need some algorithmically useful description of S(F).
To motivate this description, first note that the set complement of S(F) relative to int(Z),

S(F)c =
⋃

q∈F
{z ∈ int(Z) | q ≤ z}

is the union of finitely many closed sets q + R
m+, q ∈ F , in int(Z). In [22] it is shown that

the search region S(F) itself is the union of finitely many open sets (p − int(Rm+)) ∩ int(Z)

where each p can be interpreted as a local upper bound, and each p − int(Rm+) covers a part
of the search region. The set of these local upper bounds induced by F is actually a uniquely
determined, nonempty and finite set lub(F) with S(F) = ⋃

p∈lub(F){z ∈ int(Z) | z < p}
(cf. Fig. 1).

The following formal definition of local upper bounds is given in [22], along with an
extensive discussion and graphical illustrations.

Definition 4.1 Let F be a finite and stable subset of f (M). A set lub(F) ⊆ Z is called local
upper bound set with respect to F if

(i) ∀z ∈ S(F) : ∃p ∈ lub(F) : z < p
(ii) ∀z ∈ (int(Z)) \ S(F) : ∀p ∈ lub(F) : z ≮ p
(iii) ∀p1, p2 ∈ lub(F) : p1 � p2 or p1 = p2

Since at the start of a branch-and-bound method no feasible points x ∈ M may be known,
the set F then is empty. In this case the search region S(∅) coincides with int(Z), and
Definition 4.1 leads to lub(∅) = {z}.

By [26, Lemma 3.4], see also the forthcoming Lemma 5.1, it holds F ⊆ lub(F) − R
m+,

and thus we obtain YN ⊆ F ∪ S(F) ⊆ lub(F) − R
m+. Hence, the set UB := lub(F) is an

upper bounding set in the sense of condition (2), and in the resulting sandwiching condition

YN ⊆ (LB + R
m+) ∩ (lub(F) − R

m+) (7)
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it remains to find a suitable lower bounding set LB. We remark that, in the course of a
branch-and-bound method, algorithms from [8,22] may be employed to efficiently calculate
and update the local upper bound sets lub(F) with respect to the appearing provisional
nondominated sets F .

5 Lower bounding sets for partial upper image sets

Before we turn to the construction of an overall lower bounding set LB which satisfies
the necessary relation YN ⊆ LB + R

m+ from the sandwiching condition (2), recall that in
the single objective case the overall lower bound �b for the minimal value v is defined as
�b = minX ′∈L �b′ with the partial lower bounds �b′ for f on the subsets M(X ′) of M(X). In
addition to their role in the definition of the overall lower bound �b, the values �b′ are also
needed to discard sets M(X ′) with �b′ > ub, since due to minx∈M(X ′) f (x) = v′ ≥ �b′ >

ub ≥ v those sets cannot contain minimal points. To develop a natural generalization of the
partial lower bound �b′ to a partial lower bounding set LB ′ in the multiobjective setting, let
us first transfer the latter discarding argument.

5.1 Discarding by partial upper image sets and local upper bounds

Before lower bounding sets are introduced at all, we need a generalization of the fact that a
set M(X ′) with minx∈M(X ′) f (x) > ub cannot contain minimal points. In a set formulation
the latter discarding condition can be rewritten as {ub} ∩ ( f (M(X ′)) + R+) = ∅ with the
partial image set f (M(X ′)) of f on M(X ′) and its corresponding partial upper image set
f (M(X ′)) + R+. From the discussion on upper bounding sets in Sect. 4.2 one may expect
that the appropriate generalization to the multiobjective setting claims that the condition

lub(F) ∩ (
f (M(X ′)) + R

m+
) = ∅ (8)

rules out the existence of efficient points in M(X ′), so that X ′ can be discarded from L. This
is indeed the case. For the proof of the correctness of this discarding condition we need the
following two lemmata.

Lemma 5.1 [21,26] Let F be a finite and stable subset of f (M). Then for every q ∈ F and
for every j ∈ {1, ...,m} there is a point p ∈ lub(F) with q j = p j and qk < pk for all
k ∈ {1, ...,m} \ { j}.
For the present paper the main consequence of Lemma 5.1 is the relation F ⊆ lub(F)−R

m+.

Lemma 5.2 For any subbox X ′ the discarding condition (8) implies

F ∩ (
f (M(X ′)) + R

m+
) = ∅. (9)

Proof Assume that for some subbox X ′ the condition (9) is violated. Then there exist some
q ∈ F and some y ∈ f (M(X ′)) with y ≤ q . Moreover, by Lemma 5.1 there exists a local
upper bound p ∈ lub(F)with q ≤ p. This yields y ≤ q ≤ p and, thus, p ∈ f (M(X ′))+R

m+,
so that X ′ violates (8) as well. This shows the assertion. �

The main idea of the following result was already presented in [26]. We include its short
proof for completeness.
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Proposition 5.3 Let F be a finite and stable subset of f (M), and let X ′ be a subbox of X.
Then (8) implies

YN ∩ (
f (M(X ′)) + R

m+
) = ∅. (10)

In particular, f (M(X ′)) cannot contain any nondominated point of MOP so that X ′ can be
discarded.

Proof Assume that (8) holds, but some yN ∈ YN lies in f (M(X ′)) + R
m+. Then, on the one

hand, since yN is not dominated by any point in f (M(X)), it must lie in f (M(X ′)). On the
other hand, by (6) the point yN either belongs to F or to the search region S(F). The first
case implies yN ∈ F ∩ f (M(X ′)) which is impossible by Lemma 5.2. In the second case,
by Definition 4.1(i) there exists some local upper bound p ∈ lub(F) with p > yN , which
yields p ∈ yN + R

m+ ⊆ f (M(X ′)) + R
m+, in contradiction to (8). This shows (10), of which

the second assertion is an immediate consequence. �
Observe that Proposition 5.3 correctly covers also the case of an empty set M(X ′). Also note
that, as in Sect. 4.1, we cannot replace the set lub(F) in (8) byF , since simple examples show
that f (M(X ′)) may contain nondominated points if only the weaker condition (9) holds.

Subsequently we shall need an algorithmically tractable version of at least a sufficient
condition for (8). As a preparation for this as well as for some later developments, for any
z ∈ R

m and a compact set A ⊆ R
m let us consider the auxiliary optimization problem

min
t

t s.t. z + te ∈ A + R
m+. (D(z, A))

Its infimum ϕA,e(z) is known as Tammer-Weidner functional [15]. In the present paper we
will abbreviate it by ϕA(z), since we shall exclusively use the direction e. In the case A = ∅
the feasible set of D(z, A) is empty, and we follow the usual convention to formally define
ϕ∅(z) := +∞. The following two lemmata are based on [7, Proposition 1.41] and [16,
Section 2.3].

Lemma 5.4 For any nonempty compact set A ⊆ R
m and z ∈ R

m the feasible set of D(z, A)

possesses the form [ϕ,+∞)with some ϕ ∈ R. In particular, D(z, A) is solvable with optimal
point as well as optimal value ϕ, and ϕ coincides with ϕA(z).

Lemma 5.5 Let A ⊆ R
m be compact. Then z ∈ A + R

m+ holds if and only if the infimum
ϕA(z) of D(z, A) satisfies ϕA(z) ≤ 0.

Note that the latter result correctly covers the case A = ∅. The following reformulation of
Proposition 5.3 with the help of Lemma 5.5 allows us to check its assumption (8) by solving
a finite number of one-dimensional optimization problems. In fact, the continuity of f and g
together with the compactness of any subbox X ′ imply the compactness of the partial image
set f (M(X ′)), so that we arrive at the following form of the discarding condition.

Proposition 5.6 Let F be a finite and stable subset of f (M), and let X ′ be a subbox of X. If
for each p ∈ lub(F) the infimum ϕ f (M(X ′))(p) of

min
t

t s.t. p+ te ∈ f (M(X ′))+R
m+ (D(p, f (M(X ′))))

satisfies ϕ f (M(X ′))(p) > 0, then X ′ can be discarded.

Discarding tests basing on Proposition 5.6 may obviously stop to compute the infima
ϕ f (M(X ′))(p) of all p ∈ lub(F) as soon as the result ϕ f (M(X ′))(p) ≤ 0 occurs for some p ∈
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lubF , because then the set X ′ cannot be discarded. While in general all values ϕ f (M(X ′))(p),
p ∈ lub(F), have to be checked for positivity to guarantee that X ′ may be discarded, in the
caseM(X ′) = ∅ it is of course sufficient to stop these computations afterϕ f (M(X ′))(p) = +∞
occurs for the first tested p ∈ lub(F).

We remark that algorithmically the problem D(p, f (M(X ′))) should be treated in its
equivalent lifted formulation

min
t,x

t s.t. p + te ≥ f (x), x ∈ M(X ′). (11)

5.2 Discarding by relaxed partial upper image sets and local upper bounds

Unfortunately, for general continuous functions f and g and any p ∈ R
m it may not be

algorithmically tractable to determine the globally minimal value of D(p, f (M(X ′))) or of
its lifted version (11). Instead, sufficient conditions for ϕ f (M(X ′))(p) > 0 can be obtained by
checking the infimum of some tractable relaxation of D(p, f (M(X ′))) for positivity.

A natural approach to the construction of such a relaxation first returns to the general
condition (8) which we had seen to generalize the requirement ub < minx∈M(X ′) f (x) from
the single objective case. Also there, in general it is not algorithmically tractable to determine
the value minx∈M(X ′) f (x) so that, instead, for an efficiently computable lower bound �b′ of
minx∈M(X ′) f (x) one only checks the sufficient condition ub < �b′.

In analogy to this, in the multiobjective case we try to find a compact set LB ′ ⊆ R
m with

f (M(X ′))+R
m+ ⊆ LB ′ +R

m+ and such that LB ′ +R
m+ possesses, for example, a polyhedral

or convex smooth description. Then for any p ∈ R
m the condition p /∈ f (M(X ′)) + R

m+ is a
consequence of p /∈ LB ′ + R

m+. Hence, in a branch-and-bound framework any such set LB ′
plays the role of a partial lower bound �b′ from the single objective case, which motivates
the following definition.

Definition 5.7 Let X ′ be a subbox of X . Then any compact set LB ′ ⊆ R
m with f (M(X ′))+

R
m+ ⊆ LB ′ + R

m+ is called partial lower bounding set for f (M(X ′)).

In fact, Proposition 5.3 immediately implies the following discarding test.

Proposition 5.8 Let F be a finite and stable subset of f (M), let X ′ be a subbox of X, and
let LB ′ be some partial lower bounding set for f (M(X ′)). If

lub(F) ∩ (
LB ′ + R

m+
) = ∅ (12)

holds, then X ′ can be discarded.

By Lemma 5.5 and due to the assumed tractable structure of LB ′, the condition (12) can
be checked efficiently via the positivity of the infima ϕLB′(p) of

min
t

t s.t. p+ te ∈ LB ′ +R
m+ (D(p, LB ′))

for all p ∈ lub(F). The following tractable discarding test hence follows fromProposition 5.8.

Theorem 5.9 (General discarding test) Let F be a finite and stable subset of f (M), let X ′ be
a subbox of X, and let LB ′ be some partial lower bounding set for f (M(X ′)). If ϕLB′(p) > 0
holds for all p ∈ lub(F), then X ′ can be discarded.

As mentioned before, whenever a discarding test for X ′ based on Proposition 5.8 or
Theorem 5.9 fails, we may at least check whether some point x ′ ∈ X ′ lies in M(X ′). If this
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succeeds, then we update the set F with respect to f (x ′), which also leads to an update of
lub(F) for the subsequent discarding tests. Here x ′ may be the midpoint of X ′ or a point
generated during the solution of the optimization problem D(p, LB ′).

In the followingwe shall describe two known and one novel possibility for the construction
of partial lower bounding sets. For a construction based on Lipschitz underestimators of the
objective functions in the biobjective case we refer to [28,37].

5.3 Lower bounding via a singleton

For a subbox X ′ ⊆ X with M(X ′) �= ∅, the point a′ ∈ R
m with components

a′
j = min

x∈M(X ′)
f j (x), j = 1, . . . ,m, (13)

is called ideal point of the partial image set f (M(X ′)). In the case M(X ′) = ∅ we formally
set a′ = +∞e.

For any ã′ ≤ a′ the singleton LB ′
S := {̃a′} is a partial lower bounding set for f (M(X ′)),

where in the formal case ã′ = +∞e we put LB ′
S = {+∞e} := ∅. In fact, for M(X ′) = ∅

the inclusion f (M(X ′)) + R
m+ ⊆ LB ′

S + R
m+ is trivially true, and otherwise for each y ∈

f (M(X ′)) + R
m+ there exists some x ∈ M(X ′) with y ≥ f (x) ≥ a′ ≥ ã′, so that y also lies

in LB ′
S + R

m+. The compactness of LB ′
S is clear.

The discarding test resulting from Proposition 5.8 with this partial lower bounding set
is formulated in Corollary 5.10. Note that in the present case of a singleton partial lower
bounding set we do not have to employ Theorem 5.9.

Corollary 5.10 (Discarding via a singleton) Let F be a finite and stable subset of f (M), let
X ′ be a subbox of X, and let the ideal point a′ of f (M(X ′)) be bounded below by ã′ ≤ a′.
If the set {p ∈ lub(F) | p ≥ ã′} is empty, then X ′ can be discarded.

Discarding via singletons is suggested in [12,31,37]. The option chosen in [12] for the
computation of a lower estimate ã′ to the ideal point a′ is to use techniques from interval
analysis (IA) [18,27]. This requires the additional assumption of factorability of the entries
of f , which means that each objective function f j can be written as a composition of finitely
many arithmetic operations and elementary functions [24]. Interval arithmetic then allows
to compute an interval Fj (X ′) ⊆ R containing the partial image set f j (X ′) for each j ∈
{1, . . . ,m}, so that F(X ′) := ∏m

j=1 Fj (X ′) is an m-dimensional box containing f (X ′). Due
to M(X ′) ⊆ X ′ this also implies f (M(X ′)) ⊆ F(X ′), and ã′ may be chosen as the vector
whose entries are the lower limits of the intervals Fj (X ′). In the following we shall denote
this point as ã′

I A.
In [12] this approach is not combined with the concept of local upper bounds, but a box

X ′ is discarded if ã′
I A is dominated by some q ∈ F . Also note that, since the function g does

not enter the computation of ã′
I A, the identification of empty sets M(X ′) must be handled

separately. In [31] the ideal point estimate may in general also be computed by interval
arithmetic, but for the multiobjective location problems considered as applications in that
paper, more explicit bounds can be computed. The ideal point estimate in [37] results from
Lipschitz underestimates of the single objective functions on X ′.

For the subsequent sections it will be relevant that any technique T for the choice of a
partial lower bounding set LB ′

T also induces a specific lower estimate ã′
T for the ideal point.

In fact, for each partial lower bounding set LB ′
T of f (M(X ′)) the infima of the problems

min
y

y j s.t. y ∈ LB ′
T + R

m+
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with j ∈ {1, . . . ,m} form a vector ã′
T ≤ a′, that is, a specific lower estimate for the ideal

point of f (M(X ′)). Therefore we obtain the induced singleton partial lower bounding set
LB ′

T ,S := {̃a′
T }.

Clearly, in view of Corollary 5.10 a subbox X ′ can be discarded if {p ∈ lub(F) | p ≥ ã′
T }

is empty. However, due to the relation LB ′
T + R

m+ ⊆ ã′
T + R

m+ we may also modify the
general discarding test from Theorem 5.9 as follows.

Corollary 5.11 (Modified general discarding test) LetF be a finite and stable subset of f (M),
let X ′ be a subbox of X, let LB ′

T be some partial lower bounding set for f (M(X ′)), and let
ã′
T be the induced lower estimate of the ideal point of f on M(X ′). If ϕLB′

T
(p) > 0 holds

for all p ∈ lub(F) with p ≥ ã′
T , then X ′ can be discarded.

The computation of ã′
T requires the solution of m optimization problems over the set

LB ′
T + R

m+, and also the computation of each value ϕLB′
T
(p) requires the solution of an

optimization problem over the same set. Therefore the modified discarding test from Corol-
lary 5.11 is computationally beneficial whenever the current number of local upper bounds
exceedsm. Since this number of local upper bounds is observed to become vast in the course
of numerical experiments, the discarding test fromCorollary 5.11 reduces the overall number
of required solutions of optimization problems significantly. As a consequence, subsequently
we will only work with this modified discarding test.

5.4 Lower bounding via convex underestimators

Following the ideas presented in [26] a partial lower bounding set LB ′ for a subbox X ′
of X can be determined with the aid of convex underestimators of the functions f j , j =
1, . . . ,m, and gi , i = 1, . . . , k, on X ′. Since in [26] the proposed construction of convex
underestimators uses the αBB technique from [1,3], the functions f j and gi have to be twice
continuously differentiable with factorable Hessians. Then, using interval arithmetic on the
second derivatives, functions f j,α and gi,α may be constructed which, on X ′, are smooth,
convex and satisfy f j,α ≤ f j aswell as gi,α ≤ gi . In [26] the entries of g are actually assumed
to be convex functions, so that there no convex underestimators have to be computed for them.

Using the convex underestimators for the entries of g, the set

Mα(X ′) := {x ∈ X ′ | gα(x) ≤ 0}
is a convex relaxation of M(X ′) with a smooth and convex description. In particular, the
individual minimization of the smooth and convex functions f j,α over the convex setMα(X ′)
is efficiently possible and yields the specific lower estimate ã′

αBB for the ideal point of
f (M(X ′)). Numerical tests reveal that the lower estimates ã′

I A and ã′
αBB of the ideal point

are in general unrelated. Again, in the case Mα(X ′) = ∅ we obtain ã′
αBB = +∞e.

However, also an essential improvement of the singleton partial lower bounding set
LB ′

αBB,S = {̃a′
αBB} is possible. In fact, LB ′

αBB := fα(Mα(X ′)) is another partial lower
bounding set, since the compactness of X ′ and the continuity of fα and gα yields its com-
pactness, and for each y ∈ f (M(X ′)) + R

m+ there exists some x ∈ M(X ′) ⊆ Mα(X ′) with
y ≥ f (x) ≥ fα(x), so that y also lies in fα(Mα(X ′)) + R

m+. Note that this construction
benefits from explicitly using that all objective functions are evaluated simultaneously at the
same points x , whereas the construction of ã′

αBB treats the behavior of the single objective
functions independently of each other. In the case Mα(X ′) = ∅ we obtain the empty partial
lower bounding set LB ′

αBB = fα(∅).
Corollary 5.11 yields the following discarding test.
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Corollary 5.12 (Discarding via convex underestimators) Let F be a finite and stable subset
of f (M), and let X ′ be a subbox of X. If the infimum ϕLB′

αBB
(p) of

min
t,x

t s.t. p+te ≥ fα(x), gα(x) ≤ 0, x ∈ X ′ (DαBB(p))

satisfies ϕLB′
αBB

(p) > 0 for all p ∈ lub(F) with p ≥ ã′
αBB, then X ′ can be discarded.

Note that DαBB(p) is the lifted version of the problem D(p, LB ′
αBB), in analogy to the

lifting (11). We remark that here the computation of ã′
αBB requires the solution of m convex

optimization problems, and the computation of each value ϕLB′
αBB

(p) requires the solution
of another convex optimization problem.

It is not hard to see that the set {̃a′
αBB} + R

m+ may be essentially larger than its subset
fα(Mα(X ′)) + R

m+, so that for a box X ′ which is discarded via the partial lower bounding
set LB ′

αBB = fα(Mα(X ′)), this may not be possible via LB ′
αBB,S = {̃a′

αBB}.
In [26] this discarding test is further refined by an iterative construction of polyhedral outer

approximations of the convex set fα(M(X ′)) + R
m+ in the spirit of a cutting plane method,

starting from the polyhedral outer approximation {̃a′
αBB} + R

m+. More precisely, first the
infimum ϕLB′

αBB
( p̄) of DαBB( p̄) is computed for some p̄ ∈ {p ∈ lub(F) | p ≥ ã′

αBB}. In
the case that ϕLB′

αBB
( p̄) is positive and finite, also the remaining elements in {p ∈ lub(F) |

p ≥ ã′
αBB} \ { p̄} must be checked for being elements of LB ′

αBB + R
m+. However, this is

not necessarily done by computing their values ϕLB′
αBB

(p). Instead information from the
Lagrange multipliers corresponding to the optimal point of DαBB( p̄) lead to an inequality
〈a, y〉 ≤ b which is violated by y = p̄ but satisfied for all y ∈ LB ′

αBB (see [26, Section 3.2]
for details and illustrations).Hence, subsequently infimaϕLB′

αBB
(p)only have to be computed

for the elements of the set {p ∈ lub(F) | p ≥ ã′
αBB , 〈a, p〉 ≤ b} (if any). This generation of

cutting planes is repeated as long as local upper bounds p with ϕLB′
αBB

(p) > 0 are identified
and speeds up the discarding test significantly.

5.5 Lower bounding via a linearization technique

Instead of constructing polyhedral relaxations of the partial upper image set f (M(X ′))+R
m+

by the generation of cutting planes to a convex relaxation, there is also a more direct method
to generate polyhedral relaxations. To the best of our knowledge this has not yet been used
in the framework of multiobjective branch-and-bound, and we shall present it next.

This approach assumes that all entries of f and g are factorable. By introducing auxiliary
variables it first reformulates the description of f (M(X ′)) such that nonlinear elementary
functions only appear in single equations, and then the graphs of these nonlinear functions
are relaxed to polyhedral sets. This so-called reformulation-linearization technique (RLT,
also known as auxiliary variable method; AVM) is based on the reformulation analysis in
[33,34]. The complete RLT approach is explained in, e.g., [4,35].

Example 5.13 Let us briefly illustrate the main idea of RLT for the polyhedral relaxation of
the graph of the function ψ(x) = sin(x1 exp(x2)) on the set X = [0, 1]2. This graph may be
written as

gph(ψ, X) = {(x, x3) ∈ X × R | x3 = sin(x1 exp(x2))}
= {(x, x3) ∈ X × R | x3 = sin(x4) with x4 = x1 exp(x2)}
= {(x, x3) ∈ X × R | x3 = sin(x4) with x4 = x1x5, x5 = exp(x2)}.
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Next, enclosing intervals Xi for the new variables xi , i = 3, 4, 5 may be computed by
interval arithmetic, e.g., x5 ∈ X5 := EXP([0, 1]) = [exp(0), exp(1)], where EXP is the
interval version of the elementary function exp. Hence, if x+ denotes the vector of auxiliary
variables and x̂ := (x, x+) the vector of all variables, we may recursively compute a box
X̂ = X × X+ with x̂ ∈ X̂ . This means that gph(ψ, X) may be written as the projection of
the lifted graph

ĝph(ψ, X) := {̂x ∈ X̂ | x3 = sin(x4), x4 = x1x5, x5 = exp(x2)}
to the space of the first three variables. This completes the reformulation step.

The linearization step constructs a polyhedral relaxation of the lifted graph by relaxing
each set defined by an individual equality constraint. For example, a polyhedral relaxation of
the individual graph {(x2, x5) ∈ X2×X5 | x5 = exp(x2)} is given by the points in X2×X5 =
[0, 1] × [1, exp(1)] below the secant to the function exp through the points (0, exp(0)) and
(1, exp(1)), and above the two tangents to exp in (0, exp(0)) and in (1, exp(1)). In the
factorization of a function usually most of those factors whose graphs must be relaxed are
such univariate functions. Among the few exceptions is the multiplication of two variables
as in the above expression x4 = x1x5. However, the convex hull of the graph of a product of
two variables over a box is explicitly known, and it is actually polyhedral [2].

Proceeding in this manner we arrive at a collection of linear inequalities Ax̂ ≤ b which
describe the polyhedral relaxation {̂x ∈ X̂ | Ax̂ ≤ b} of the lifted graph ĝph(ψ, X). The
projection of this set to the first three variables then is a polyhedral relaxation of gph(ψ, X).
Fortunately, in our application of this technique in the framework of optimization problems it
will not be necessary to compute a representation of the polyhedral relaxation in the original
variables, but we will be able to work with the explicitly known lifted polyhedron.

With a subbox X ′ of X , the reformulation-linearization technique for the construction of
a partial lower bounding set LB ′ for f (M(X ′)) first views the partial image set f (M(X ′))
as the projection of the graph

gph( f , M(X ′)) := {(x, f (x)) ∈ X ′ × R
m | g(x) ≤ 0}

to R
m . Then we introduce auxiliary variables x f ∈ R

m and xg ∈ R
k to lift this graph to the

set

ĝph( f , M(X ′)) := {(x, x f , xg) ∈ X ′ × X ′
f × X ′

g | xg ≤ 0, x f = f (x), xg = g(x)}
where the boxes X ′

f ⊆ R
m and X ′

g ⊆ R
k are computed by interval arithmetic. Clearly, also

the projection of ĝph( f , M(X ′)) to the x f -space R
m coincides with f (M(X ′)).

Next, each of the m + k factorable equations x f = f (x) and xg = g(x) is treated as in
Example 5.13, yielding a further lifting step to the set

ĝphRLT ( f , M(X ′)) := {̂x ∈ X̂ ′ | xg ≤ 0, A′
f x̂ ≤ b′

f , A′
g x̂ ≤ b′

g}.
The projection of ĝphRLT ( f , M(X ′)) to the (x, x f , xg)-space R

n × R
m × R

k then is a
polyhedral relaxation of the lifted graph ĝph( f , M(X ′)), and its further projection to the
x f -space R

m constitutes a polyhedral relaxation of the original partial image set f (M(X ′)).
This projection to R

m is the desired partial lower bounding set LB ′
RLT . Note that the latter

set is closed as the projection of a closed polyhedron and thus compact as a closed subset of
the compact box X ′

f ⊆ R
m .

For the formulation of the corresponding auxiliary optimization problem D(p, LB ′
RLT )

an explicit description of the set LB ′
RLT is fortunately not required, but due to the projection
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property we may as well solve the lifted problem

min
t ,̂x

t s.t. p+te ≥ x f , xg ≤ 0, A′
f x̂ ≤ b′

f , A′
g x̂ ≤ b′

g, x̂ ∈ X̂ ′, (DRLT (p))

that is, a box constrained linear program. Corollary 5.11 thus yields the following discarding
test, where the entries of the corresponding lower estimate ã′

RLT of the ideal point of f on
M(X ′) are the optimal values of the m linear optimization problems

min
x̂

(x f ) j s.t. xg ≤ 0, A′
f x̂ ≤ b′

f , A′
g x̂ ≤ b′

g, x̂ ∈ X̂ ′

with j ∈ {1, . . . ,m}.
Corollary 5.14 (Discarding via a linearization technique) Let F be a finite and stable subset
of f (M), and let X ′ be a subbox of X. If the infimum ϕLB′

RLT
(p) of DRLT (p) satisfies

ϕLB′
RLT

(p) > 0 for all p ∈ lub(F) with p ≥ ã′
RLT , then X ′ can be discarded.

In the discarding test from Corollary 5.14 the computation of a value ϕLB′
RLT

(p) can
actually be terminated prematurely as soon as a dually feasible point with positive dual
objective value has been generated, as weak duality then implies ϕLB′

RLT
(p) > 0.

6 Lower bounding the nondominated set

After the concept of a partial lower bounding set LB ′ for f (M(X ′)) has been clarified, let
us turn to the generalization of the overall lower bound �b = minX ′∈L �b′ for v from the
single objective case. Recall that for the sandwiching property (2) we wish to define a set
LB ⊆ R

m with YN ⊆ LB + R
m+, that is, an overall lower bounding set LB for YN .

6.1 Previous suggestions for overall lower bounding

The convexification based branch-and-bound method from [26] guarantees that for its termi-
nation tolerance ε > 0 the boxes X ′ ∈ L satisfy (lub(F)−(ε/2)e−int(Rm+))∩( fα(M(X ′))+
R
m+) = ∅. From this particular property one can concludeYN ⊆ (lub(F)−(ε/2)e−int(Rm+))c

which leads to the overall lower bounding set LB = F − (ε/2)e. However, in [26] this set
LB is not used for node selection or a termination criterion, but solely to interpret the accu-
racy of the algorithm’s output. A similar construction is suggested in [11], but without an
algorithmically suitable description and again only for an error estimate upon termination.

As mentioned above, [37] suggests to compute partial lower bounds via Lipschitz under-
estimators of the objective functions. An overall lower bound is constructed from them by
taking the nondominated set of the union of partial lower bounds. While this is in the spirit
of our suggestion in Sect. 6.3, in [37] it remains unclear how the latter nondominated set
is computed. Furthermore, the generalization of this approach to more than two objective
functions and to feasible sets other than boxes does not seem to be straightforward.

6.2 Overall lower bounding via partial lower bounding sets

The following result shows that for any lower bounding technique T we may choose LB =⋃
X ′∈L LB ′

T . Note that this set is compact as the union of the finitely many compact sets
LB ′

T , X
′ ∈ L.
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Lemma 6.1 For any lower bounding technique T and partial lower bounding sets LB′
T for

f (M(X ′)) define LBT := ⋃
X ′∈L LB ′

T . Then the inclusion

YN ⊆ LBT + R
m+

holds.

Proof Corresponding to any yN ∈ YN there exists some efficient point xE ∈ M(X) with
yN = f (xE ). Assume that the subbox X ′

E with xE ∈ M(X ′
E ) does not lie in L. Then it has

been discarded, and since all discussed discarding tests are based on the general condition
(12) from Proposition 5.8 with the set of local upper bounds lub(F) of some provisional
nondominated set F , the box X ′

E also satisfies (8) with this set lub(F). Proposition 5.3 thus
yields YN ∩ ( f (M(X ′

E )) + R
m+) = ∅ which contradicts yN ∈ f (M(X ′

E )). Consequently
there is some X ′

E ∈ L with yN ∈ f (M(X ′
E )) which implies

yN ∈ f (M(X ′
E )) + R

m+ ⊆ LB ′
T ,E + R

m+ ⊆
(

⋃

X ′∈L
LB ′

T

)

+ R
m+

and shows the assertion. �
In view of YN �= ∅ Lemma 6.1 particularly guarantees LBT �= ∅. More importantly,

together with (7) we have shown that the desired enclosing property (2) for the nondominated
set YN may in fact be formulated as

YN ⊆ (
LBT + R

m+
) ∩ (

lub(F) − R
m+
)
, (14)

that is, the enclosure E(LBT , lub(F)) satisfies (2).
In the single objective case it is clear that not only the function value v = f (xmin) of

any minimal point xmin lies in the enclosing interval [�b, ub], but also the function value
f (xub) = ub of the currently best known feasible point. In the multiobjective setting this
corresponds to the set E(LBT , lub(F)) not only enclosing the nondominated set YN , but also
the provisional nondominated set F = f (Xub). The following result verifies this.

Lemma 6.2 For any lower bounding technique T the inclusion

YN ∪ F ⊆ E(LBT , lub(F)) (15)

holds.

Proof In viewof (14)we only need to showF ⊆ E(LBT , lub(F)). As external stability holds
by [32, Theorem 3.2.9], we haveF ⊆ YN +R

m+. By Lemma 6.1 this impliesF ⊆ LBT +R
m+.

From Lemma 5.1 we additionally know F ⊆ lub(F) − R
m+, so that the assertion is shown. �

Since both, LBT and lub(F), are nonempty and compact sets, and since F ⊆ f (M)

consists of attainable points, Lemma 6.2 and Theorem 3.4 even yield the following result,
which prepares the termination criterion and node selection rule suggested in Sect. 7.

Proposition 6.3 For some ε > 0 let

max {s(�b, p) | (�b, p) ∈ LBT × lub(F), �b ≤ p} < ε.

Then all elements of the provisional nondominated setF are ε-nondominated points of MOP.
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6.3 Overall lower bounding by nondominated ideal point estimates

For efficient handling of the set LBT + R
m+ = ⋃

X ′∈L
(
LB ′

T + R
m+
)
in the definition of

the enclosure E(LBT , lub(F)) as well as in the resulting termination criterion and node
selection rule, one should take into account that many boxes X ′ ∈ Lmay be redundant in its
description. In the single objective case this corresponds to the fact that most X ′ ∈ L satisfy
�b′ > �b = minX ′∈L �b′, so that we are only interested in a box X ′ with �b′ = �b. Usually
the latter box is unique. In the multiobjective setting one cannot expect the existence of a
single box X ′ with LB ′

T + R
m+ = LBT + R

m+, but several boxes X ′ may be nonredundant,
namely the ones for which the sets LB ′

T are ‘nondominated’ in some sense.
A situation for which nondominance among the sets LB ′

T , X
′ ∈ L, is easily defined is the

case of singleton sets LB ′
T . Hence, for each X ′ ∈ L let us again consider the lower estimate

ã′
T for the ideal point of f (M(X ′)) induced by LB ′

T . Recall that LB
′
T ,S = {̃a′

T } is a singleton
partial lower bounding set for f (M(X ′)), so that by Lemma 6.1 the finite set

LBT ,S = {̃a′
T | X ′ ∈ L}

is an overall lower bounding set, that is, YN ⊆ LBT ,S + R
m+ holds.

Let us now consider only boxes X ′ ∈ L which correspond to the nondominated points of
LBT ,S , that is, to the (unique) stable subset LBT ,S,N of LBT ,S so that no element of LBT ,S,N

is dominated by some point in LBT ,S .

Lemma 6.4 With the nondominated set LBT ,S,N of LBT ,S the inclusions

LBT + R
m+ ⊆ LBT ,S + R

m+ ⊆ LBT ,S,N + R
m+

hold.

Proof The first inclusion is valid because of

LBT + R
m+ =

(
⋃

X ′∈L
LB ′

T

)

+ R
m+ =

⋃

X ′∈L
(LB ′

T + R
m+) ⊆

⋃

X ′∈L
({̃a′

T } + R
m+)

=
(

⋃

X ′∈L
{̃a′

T }
)

+ R
m+ = LBT ,S + R

m+.

Furthermore, for each y ∈ LBT ,S + R
m+ there is some X ′ ∈ L with ã′

T ≤ y. As |L| < ∞,
either ã′

T ∈ LBT ,S,N holds or there exists some a ∈ LBT ,S,N with a ≤ ã′
T ≤ y. This shows

the second inclusion. �
The first inclusion in the assertion of Lemma 6.4 means that, as expected, LBT ,S is a coarser
overall lower bound for YN ∪ F than LBT . The second inclusion implies that the ‘relevant’
boxes for the definition of LBT ,S + R

m+ are the ones from the sublist

LN := {X ′ ∈ L | ã′
T ∈ LBT ,S,N }.

The combination of Lemma 6.2 with Lemma 6.4 and (3) immediately yields the next
result.

Lemma 6.5 For any lower bounding technique T the inclusion

YN ∪ F ⊆ E(LBT ,S,N , lub(F)) =
⋃

(a,p)∈LBT ,S,N×lub(F)
a≤p

[a, p]. (16)

holds.
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7 Termination criterion, node selection rule, and conceptual algorithm

In view of Lemma 6.5 and Theorem 3.4 we can now state the basis for the termination
criterion of the multiobjective branch-and-bound method.

Theorem 7.1 In some iteration of the branch-and-bound method let LBT ,S,N be the non-
dominated set of the current set of induced ideal point estimates LBT ,S = {̃a′

T | X ′ ∈ L},
let F denote the current provisional nondominated set, and for some ε > 0 let

max
{
s(a, p) | (a, p) ∈ LBT ,S,N × lub(F), a ≤ p

}
< ε (17)

hold. Then all q ∈ F are ε-nondominated points of MOP.

We point out that the maximum in condition (17) is taken over finitely many choices so that
checking (17) is algorithmically tractable.

Moreover, if for given ε > 0 the condition (17) is violated, that is,

w(LBT ,S,N , lub(F)) = max
{
s(a, p) | (a, p) ∈ LBT ,S,N × lub(F), a ≤ p

} ≥ ε

holds, then we expect to reduce the width w(LBT ,S,N , lub(F)) of E(LBT ,S,N , lub(F)) by
branching a box X� ∈ LN such that with the corresponding ideal point estimate ã�

T and some
p� ∈ lub(F) with ã�

T ≤ p� we have

s (̃a�
T , p�) = max

{
s(a, p) | (a, p) ∈ LBT ,S,N × lub(F), a ≤ p

}
.

Observe that in single objective optimization the rule to select a box X� with �b� = �b =
minX ′∈L �b′ does not need information about the upper bound ub = f (xub), since increasing
�b reduces the length of the enclosing interval [�b, ub] anyway. In the multiobjective setting
decreasing w(LBT ,S,N , lub(F)) reduces the worst case width of the enclosure, which is still
a natural generalization of the single objective case since there no worst case over several
instances has to be considered.

Selection rules employed in the literature so far are to choose X ′ ∈ L with minimal value
(̃a′

LB′) j , for some j ∈ {1, . . . ,m} [12,26] or with maximal width of F(X ′) [31]. Recall
that, as opposed to our above suggestion, such node selection rules are unrelated to the basic
branch-and-bound idea. In contrast to this, [37] proposes a node selection rule in the spirit of
our approach where however, as mentioned above, it remains unclear how the overall lower
bounding set is computed.

The multiobjective branch-and-bound framework resulting from our considerations is
stated in Algorithm 1. It does not need our previous assumption of a nonempty feasible set
M . Subsequently we shall comment on the implementation of some of its lines.

In line 1 of Algorithm 1 one may choose, for example, Z := F(X) with the interval
enclosure F(X) of f (X). In the node selection rule from line 9 the function s denotes the
length of a shortest box edge, as defined in (4). Possibilities for the computation of partial
lower bounding sets in line 14 andof their induced ideal point estimates in line 15 are discussed
in Sects. 5.3, 5.4 and 5.5. Line 16 and line 21 base on the modified general discarding test
from Corollary 5.11. We point out that, if in line 14 the infeasibility of M(Xk,�) is detected
by the computation of an empty partial lower bounding set LBk,�

T , then line 15 results in

ãk,�T = +∞ e, so that in line 16 there does not exist any p ∈ lub(Fk)with p ≥ ãk,�T , and Xk,�

is discarded. In line 18 onemay check, for example, if the choice xk,� = mid(Xk,�) is feasible.
We will discuss more general constructions for xk,� in Sect. 8. The update in line 20 can be
implemented with the algorithms from [8,22]. Line 21 can become numerically expensive
for long lists Lk , so that one may decide not to use it in each iteration, but only occasionally.

123



Journal of Global Optimization

Algorithm 1 Conceptual Multiobjective Branch-and-Bound Method

Input: Problem MOP with f : R
n → R

m , g : R
n → R

k , X = [x, x], x, x ∈ R
n , x < x ,

termination tolerance ε > 0, partial lower bounding technique T .

1: Compute a box Z = [z, z] with f (M(X)) ⊆ int(Z).
2: Initialize list L0 ← {

(X , {z}, z)}.
3: Initialize set of nondominated ideal point estimates LB0

T ,S,N ← {z}.
4: Initialize provisional nondominated set F0 ← ∅.
5: Initialize set of local upper bounds lub(F0) = {z}.
6: Initialize iteration counter k ← 0.
7: repeat
8: k ← k + 1.
9: Choose some (Xk , LBk

T , ãkT ) from Lk−1 with

(̃akT , pk ) ∈ LBk−1
T ,S,N × lub(Fk−1), ãkT ≤ pk , and

s (̃akT , pk ) = max{s (̃a′
T , p) | (̃a′

T , p) ∈ LBk−1
T ,S,N × lub(Fk−1), ã′

T ≤ p}.
10: Lk ← Lk−1 \ {(Xk , LBk

T , ãkT )}.
11: Divide Xk along the midpoint of a longest edge into Xk,1 and Xk,2.
12: Fk ← Fk−1, lub(Fk ) ← lub(Fk−1).
13: for � = 1, 2 do
14: Determine a partial lower bounding set LBk,�

T for f (M(Xk,�)).

15: Determine the ideal point estimate ãk,�T induced by LBk,�
T .

16: if there is some p ∈ lub(Fk ), p ≥ ãk,�T with ϕ
LBk,�T

(p) ≤ 0 then

17: Lk ← Lk ∪ {(Xk,�, LBk,�
T , ãk,�T )}.

18: if some xk,� ∈ M(Xk,�) is available then
19: Fk ← update of Fk with respect to f (xk,�).
20: lub(Fk ) ← update of lub(Fk ).
21: Remove all (X ′, LB′

T , ã′
T ) from Lk for which ϕLB′

T
(p) > 0 holds

for all p ∈ lub(Fk ) with p ≥ ã′
T .

22: if Lk �= ∅ then
23: Determine the nondominated set LBk

T ,S,N of {̃a′
T | (X ′, LB′

T , ã′
T ) ∈ Lk }.

24: until Lk = ∅ or max{s (̃a′
T , p) | (̃a′

T , p) ∈ LBk
T ,S,N × lub(Fk ), ã′

T ≤ p} < ε.

Output:
25: if Lk �= ∅ then

Fk is a set of ε-nondominated points of MOP,
and E(LBk

T ,S,N , lub(Fk )) is an enclosure of YN with w(LBk
T ,S,N , lub(Fk )) < ε.

26: else
MOP is inconsistent.

In line 23 one can either do a pairwise comparison for determining the nondominated set, or,
in case of a long listLk , one can use for instance the Jahn-Graef-Younes method, see [17,19].

8 Convergence

In this section we show that for any ε > 0 Algorithm 1 terminates after a finite number of
iterations. To this end, we extend results from the single objective case to our multiobjective
branch-and-bound approach. Themain observation for the following is that for a given subbox
X ′ ⊆ X the entries (̃a′

T ) j of the induced ideal point estimate for f (M(X ′)) can be interpreted
as the results of a lower bounding procedure for f j on M(X ′).
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In preparation of the convergence proof we briefly review the definition and some impor-
tant properties of such lower bounding procedures in the single objective branch-and-bound
framework. As common in global optimization, a sequence of boxes (Xk) is called exhaustive
if we have Xk+1 ⊆ Xk for all k ∈ N, and limk diag(Xk) = 0 where diag(X ′) denotes the
diagonal length of a box X ′ ⊆ X . The following definitions are taken from [20].

Definition 8.1 Let f : R
n → R, g : R

m → R
k and M(X) = {x ∈ X | g(x) ≤ 0}.

(a) A function � from the set of all subboxes X ′ of X to R ∪ {+∞} is called M-dependent
lower bounding procedure if �(X ′) ≤ inf x∈M(X ′) f (x) holds for all subboxes X ′ ⊆ X
and any choice of the functions f and g.

(b) An M-dependent lower bounding procedure is called convergent if every exhaustive
sequence of boxes (Xk) and all choices of f and g satisfy

lim
k

�(Xk) = lim
k

inf
x∈M(Xk )

f (x).

We remark that for any exhaustive sequence of boxes (Xk) the set
⋂

k∈N Xk is a singleton,
say {̃x}. In the case x̃ /∈ M(X) we have M(Xk) = ∅ for all sufficiently large k, so that with
the usual convention infx∈∅ f (x) = +∞ the convergence of a lower bounding procedure
then requires limk �(Xk) = +∞. Moreover, if in the case x̃ ∈ M(X) we have xk ∈ Xk

for all k, then in view of limk diag(Xk) = 0 the sequence (xk) also converges to x̃ , and the
convergence of � and continuity yield

lim
k

�(Xk) = lim
k

inf
x∈M(Xk )

f (x) = f (̃x) = lim
k

f (xk). (18)

Basically all lower bounding procedures that are commonly used in global optimization
are convergent in the sense of Definition 8.1, in particular the ones considered throughout this
article, that is, interval arithmetic [18,27], convex relaxations via the αBB method [1,3] as
well as lower bounds based on linearization techniques as described in [4,33–35]. Note that
in the above case x̃ /∈ M(X) these lower bounding procedures even satisfy �(Xk) = +∞ for
almost all k, thus implying the convergence property limk �(Xk) = +∞. While this stronger
property is employed for discarding inconsistent subproblems in line 16 of Algorithm 1, we
will not use it in our convergence analysis.

As mentioned above, in Algorithm 1 the entries (̃a′
T ) j of the induced ideal point estimate

for f (M(X ′)) are the results �T , j (X ′) of a lower bounding procedure �T , j for f j on M(X ′).
For the following let �T (X ′) denote the vector with entries �T , j (X ′), so that we may write
ã′
T = �T (X ′).
We start by showing that problems with empty feasible sets are handled by our branch-

and-bound method as expected.

Lemma 8.2 Let the feasible set of problemMOP be empty and assume that in Algorithm 1 the
entries of the induced ideal point estimates are computed by some convergent M-dependent
lower bounding procedure. Then for any ε > 0 Algorithm 1 terminates after a finite number
of iterations.

Proof We assume the contrary and derive a contradiction. First of all, note that due to the
absenceof feasible points the local upper bounds are never updated, so thatwehave lub(Fk) =
{z} in each iteration k.

Under our assumption that the algorithm does not terminate it is well-known from the
theory of spatial branch-and-bound methods that an exhaustive sequence of boxes (Xkν ) is
generated. Since none of these boxes contains a point from M(X), the convergence of the
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lower bounding procedure yields �T (Xkν̄ ) = ãkν̄

T > z for some sufficiently large ν̄. Thus in
line 16 of Algorithm 1 the box Xkν̄ is discarded. For that reason, the sequence of boxes (Xkν )

actually terminates after finitely many iterates and cannot be exhaustive. �
Analogously to the single objective case, we must assume that in line 18 of Algorithm 1

feasible points are eventually available to improve the local upper bounds. This is formally
stated in the following assumption, which we shall discuss in some detail after the proof of
convergence.

Assumption 8.3 There exist some δ > 0 and some procedure so that for all boxes X ′ ⊆ X
created by Algorithm 1 with diag(X ′) < δ and M(X ′) �= ∅ a feasible point x ′ ∈ M(X ′) can
be computed.

Lemma 8.4 Let the feasible set of problemMOP be nonempty, assume that in Algorithm 1 the
entries of the induced ideal point estimates are computed by some convergent M-dependent
lower bounding procedure, and let Assumption 8.3 hold. Then for any ε > 0 Algorithm 1
terminates after a finite number of iterations.

Proof Assume that the algorithmdoes not terminate. Then it generates an exhaustive sequence
of boxes (Xkν ) all of which contain a feasible point. Note that otherwise the sequence of
boxes would terminate after finitely many iterations, for a similar reason as in the proof
of Lemma 8.2 (see, e.g., [20] for a more detailed explanation). As the sequence (Xkν ) is
exhaustive and due to Assumption 8.3, for all sufficiently large ν a point xkν ∈ M(Xkν )

is available in line 18 of Algorithm 1. Since the image point f (xkν ) is used to update the
provisional nondominated set in line 19, it either becomes an element of Fkν or it is ignored
since it is dominated by some point from Fkν . In any case, there is some qkν ∈ Fkν with

qkν ≤ f (xkν ). (19)

Due to (18), for some sufficiently large ν ∈ N we additionally have

f (xkν ) − �T (Xkν ) ≤ ε

2
e, (20)

where e again stands for the all ones vector. Finally, as the termination criterion was violated
in iteration kν̄ − 1, the ideal point estimate ãkν̄

T ∈ LBkν̄−1
T ,S,N and the local upper bound

pkν̄ ∈ lub(Fkν̄−1) with ãkν̄

T ≤ pkν̄ , in which the maximum is attained, satisfy

pkν̄ − �T (Xkν̄ ) = pkν̄ − ãkν̄

T ≥ εe,

and thus
�T (Xkν̄ ) + ε

2
e ≤ pkν̄ − ε

2
e. (21)

The combination of (19), (20) and (21) yields the chain of inequalities

qkν ≤ f (xkν ) ≤ �T (Xkν ) + ε

2
e ≤ pkν − ε

2
e < pkν

and, thus, qkν < pkν . This contradicts property (ii) of Definition 4.1 and, hence, the assertion
is shown. �
From Lemma 8.2 and Lemma 8.4 we immediately obtain the main convergence theorem of
the present article.
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Theorem 8.5 Assume that in Algorithm 1 the entries of the induced ideal point estimates
are computed by some convergent M-dependent lower bounding procedure, and let Assump-
tion 8.3 hold. Then for any ε > 0 Algorithm 1 terminates after a finite number of iterations.

Since, as discussed above, in global optimization usually convergent lower bounding
procedures are used, the seemingly restrictive assumption of Theorem 8.5 is Assumption 8.3.
In the remainder of this section we shall briefly comment on this. First note that the difficulty
of finding feasible points also arises in single objective branch-and-bound methods: In case
that no sufficiently good feasible point is found, the algorithms do not terminate since the
gap between upper and lower bound does not drop below the termination tolerance ε.

Usually the objective function is evaluated at feasible points in order to obtain upper
bounds at the globally minimal value. These feasible points can be obtained by means of
different approaches. In a very simple case one may check if the midpoint of a box that
is currently examined is feasible and use this for an update of the current upper bound, if
the objective value is sufficiently good. In practice, commonly a local procedure is used to
solve the original problem locally where, for instance, the midpoint of the current box is
used to initialize the starting point. Under Assumption 8.3 one may eventually expect the
box midpoint to lie sufficiently close to the feasible set to make this local concept work.
Although this approach in fact works well on many instances of practical interest, in general
there is no guarantee that always sufficiently good upper bounds are computed in this way.

One possibility to transfer this approach from the single objective case to multiobjective
branch-and-bound problems might be to consider a scalarization approach and solve the
resulting single objective problem locally. However, although this attempt might work in
practice, we prefer to not follow this line of research here since the drawback of this approach
from the single objective case still remains and, in general, there is no proof of convergence.

Instead, in single objective optimization it is often proposed to accept so-called εM -feasible
points, meaning that a point x ∈ X is accepted if gi (x) ≤ εM , i ∈ {1, . . . , k}, holds for some
predefined value εM > 0. Unfortunately, a reasonable value for εM is hard to determine in
advance, since even for εM close to zero usually one cannot be sure that an εM -feasible point
is actually close to the feasible set.

For that reason, so-called upper bounding procedures have been developed that ensure
Assumption 8.3 and, thus, termination of a branch-and-bound method by computing a con-
vergent sequence of upper bounds, as for instance proposed in [20] for the purely inequality
constrained case. For problems that also involve equality constraints we refer to [14]. These
techniques can be adapted to multiobjective problems which is, however, beyond the scope
of the present paper.

9 Numerical illustrations

The present section provides a brief proof of concept for Algorithm 1. Note that we neither
aim at studying its numerical behavior for increasing dimensions m and n, nor do we intend
to compare the performance of the lower bounding procedures from Sects. 5.3, 5.4 and 5.5
among each other or in comparison to other lower bounding procedures like, for example,
Lipschitz based underestimators. In fact, a thorough numerical study is beyond the scope of
the present paper and postponed to future research. In contrast, the aim of the article at hand
is the introduction of a general framework which allows to consider such comparisons in the
first place.
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For these reasons we illustrate the behavior of Algorithm 1 only along five biobjective
exampleswith decision space dimensions up to n = 4,where for threemerely box constrained
instances we employ interval arithmetic as the lower bounding technique T , while for the
two instances with additional constraints we test the linearization technique from Sect. 5.5.
The box removal step from line 21 is performed only in every 50th iteration to speed up the
computation time. We implemented the algorithm in Matlab 2019 with the Intlab Toolbox
(version 6) for interval arithmetic [29], and ran it on a computer with an Intel i7 processor
with 3.60 GHz and 32 GB of RAM.

Test Problem 9.1 As the first merely box constrained test instance we choose the Fonseca-
Fleming problem from [13],

FF : min

⎛

⎜
⎜
⎝

1 − exp

(

−∑n
i=1

(
xi − 1√

n

)2
)

1 − exp

(

−∑n
i=1

(
xi + 1√

n

)2
)

⎞

⎟
⎟
⎠ s.t. − 4 ≤ xi ≤ 4, i = 1, . . . , n

for the three decision space dimensions n ∈ {2, 3, 4}. The nondominated set of this problem
can be determined analytically as

YN =
{(

1 − exp(−4(t − 1)2)
1 − exp(−4t2)

)

| t ∈ [0, 1]
}

for any n ∈ N (cf. Fig. 2a).
For n = 2 a set of image points for this problem is generated by the evaluation of the

objective functions on an equidistant grid in the decision space, and illustrated in Fig. 2a.
For n = 2 and the termination tolerance ε = 0.1, Fig. 2b and c depict the terminal enclosure
and the terminal provisional nondominated set, respectively. The refinement of the latter for
ε = 0.05 is shown in Fig. 2d.

Figure 2e and f provide an impression of the distribution of visited points in the decision
space for n = 2 and n = 3, respectively, where also the pre-image points of the terminal
provisional nondominated set (i.e., the provisional efficient points) are marked. This indi-
cates that the suggested branch-and-bound framework promotes clustering of the decision
space iterates near the efficient set, as opposed to a uniform distribution of these points,
corresponding to a worst-case algorithm [36].

Table 1 provides some more details for Test Problem 9.1 up to decision space dimension
n = 4 and for the following test instances, namely the discarding method (T ), the largest of
the shortest box edge lengths (w), the number of discarded boxes (# disc. boxes), the number
of iterations (# iter.), the computational time (time), and the number of points in the final
provisional nondominated set (#F).

The graphical illustrations for the following four test problems are structured analogously
to Test Problem 9.1. As also similar comments apply, these will not be explicitly repeated.

Test Problem 9.2 We use a slightly modified version of the merely box constrained problem
DEB2DK from [6], which has the form

DEB2DK : min

(
r(x) sin(x1π/2)
r(x) cos(x1π/2)

)

s.t . 0 ≤ x1, x2 ≤ 1

with r(x) = (5 + 10(x1 − 0.5)2 + cos(4πx1))(1 + 9x2). Figure 3 and Table 1 provide the
results.
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(a) (b)

(c)

(e) (f)

(d)

Fig. 2 Test problem FF (Fonseca–Fleming)

Test Problem 9.3 This problem consists of two Shekel functions which are well known from
evaluations of single-objective global optimization algorithms (see, e.g., [28]).

Shekel : min

(− 0.1
0.1+(x1−0.1)2+2(x2−0.1)2

− 0.1
0.14+20((x1−0.45)2+(x2−0.55)2)

− 0.1
0.15+40((x1−0.55)2+(x2−0.45)2)

− 0.1
0.1+(x1−0.3)2+(x2−0.95)2

)

s.t. 0 ≤ x1, x2 ≤ 1.
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Table 1 Computational results for test problems

Test problem ε T w # disc. boxes # iter. time (s) #F

FF, n = 2 0.1 IA 0.0981 4 55 1 32

FF, n = 3 0.1 IA 0.0987 6 199 3 46

FF, n = 4 0.1 IA 0.0998 40 747 54 76

FF, n = 2 0.05 IA 0.0496 6 119 2 58

FF, n = 3 0.05 IA 0.0499 30 689 52 96

FF, n = 4 0.05 IA 0.05 188 4049 6850 180

DEB2DK 0.1 IA 0.0991 214 573 60 240

DEB2DK 0.05 IA 0.0497 438 1123 461 482

Shekel 0.1 IA 0.0978 10 47 1 26

Shekel 0.05 IA 0.0496 16 100 2 57

Constr-Ex 0.1 RLT 0.0984 75 127 15 18

Constr-Ex 0.05 RLT 0.0492 143 237 35 34

TP5 0.1 RLT 0.0978 50 170 69 56

TP5 0.05 RLT 0.0498 100 340 243 113

The results are given in Figure 4 and Table 1.

Test Problem 9.4 A test problem with additional constraints is given by the Constr-Ex prob-
lem from [9],

Constr-Ex: min

(
x1

1+x2
x1

)

s.t. x2 + 9x1 ≥ 6

9x1 − x2 ≥ 1

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5.

The results of Algorithm 1 are provided by Figure 5 and Table 1.

Test Problem 9.5 As a second test instance with additional constraints we take the problem

T P5 : min

(
x21 − x2

−0.5x1 − x2 − 1

)

s.t. 6.5 − x1
6

− x2 ≥ 0

7.5 − 0.5x1 − x2 ≥ 0

30 − 5x1 − x2 ≥ 0

− 7 ≤ x1, x2 ≤ 4

from [5]. In Figure 6 and Table 1 the results are shown.
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(a) (b)

(c) (d)

(e)

Fig. 3 Test problem DEB2DK

10 Final remarks

In linewith the approaches from [26,31] and, partly, [11,12] alsoAlgorithm1generates afinite
subset of the ε-nondominated set Y ε

N for a prescribed tolerance ε > 0, namely the provisional
nondominated set F upon termination. The preliminary computational experience indicates
as a proof of concept that Algorithm 1 may possess the potential to solve also problems from
practice in higher dimensions and with more objective functions.
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(e)

(c) (d)

(a) (b)

Fig. 4 Test problem Shekel-functions

Let us mention that for m ≥ 3 we expect the computation time to increase quickly
for at least two reasons. First, adaptively refining the boxes which form the enclosure of
the nondominated set may have exponential complexity in m and, second, increasing the
number of objective functions usually increases the fraction of nondominated points among
all attainable points, resulting in additional algorithmic workload. A thorough study of the
algorithm’s numerical behavior for increasing dimensions m and n as well as a systematic
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(a) (b)

(c)

(e)

(d)

Fig. 5 Test problem Constr-Ex

comparison of different lower bounding procedures is beyond the scope of the present paper
and postponed to future research.

Examples show that one must not expect that for ε → 0 the sets F will converge to
the nondominated set YN , but only to the weakly nondominated set YwN where, further-
more, the latter convergence may be arbitrarily slow in ε. We have also seen in the proof of
Lemma 6.1 that our discarding rules guarantee that the set

⋃
X ′∈L M(X ′) as well as its super-
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(a) (b)

(c)

(e)

(d)

Fig. 6 Test problem TP5

set
⋃

X ′∈L X ′ form coverings of the set of efficient points XE ofMOP. Consequently the set⋃
X ′∈L f (M(X ′)), its superset

⋃
X ′∈L f (X ′), and any further supersets like

⋃
X ′∈L F(X ′)

for an interval extension F of f , form coverings of the set of nondominated points YN .
In the framework of our approach it is clearly also important to study approximation

properties of the enclosing sets E(LBT ,S,N , lub(F)) forw(LBT ,S,N , lub(F)) → 0. Observe
that YN is known to be a subset of the boundary of the image set f (M) [10] so that, if f (M)

is a topological manifold with boundary, the dimension of YN can be at most m − 1. At the
same time, for w(LBT ,S,N , lub(F)) → 0 all boxes [a, p] in (16) ‘become flat at least in one
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direction’ and thus at most (m − 1)-dimensional. This fits well to the expected dimension of
YN .

However, in general one may not expect that the enclosures E(LBT ,S,N , lub(F)) uni-
formly approximate the nondominated set YN for w(LBT ,S,N , lub(F)) → 0. This is due
their different connectedness structure. In fact, examples like Test Problem 9.2 and Test Prob-
lem 9.3 show that, as opposed to the convex case [10], in the nonconvex case the set YN may
be disconnected while E(LBT ,S,N , lub(F)) is connected.

One way to construct a subset of E(LBT ,S,N , lub(F))with the same connectedness struc-
ture as YN may be to intersect it with the above union of interval enclosures

⋃

X ′∈L
F(X ′) ⊇ YN

for sufficiently small boxes F(X ′), X ′ ∈ L. However, in our framework this is not desirable
as we wish to avoid the effort of constructing such small boxes in the first place.

Wewould also like tomention that our branch-and-bound framework can be generalized to
the presence of equality constraints in the description of the feasible set ofMOP. The crucial
modifications for this are appropriate generalizations of the lower bounding procedures as
well as meeting Assumption 8.3 for the convergence proof. As the details of this are mainly
technical, we did not include them in the present paper for the clarity of presentation.
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