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A B S T R A C T   

This paper addresses a multi-objective sugarcane harvesting problem in Thailand, where several conflicting 
objectives and local restrictions are regarded as major obstacles to a sustainable sugar production environment. A 
multi-objective modeling approach that balances three different objectives of different key supply chain actors, 
namely (i) maximizing output in terms of total sugar production volume, (ii) maximizing grower equity in terms 
of a fair harvesting time-slot distribution, and (iii) maximizing supply chain efficiency in terms of a lower 
variability in resource requirements across the harvesting season, is introduced and solved by a state-of-the-art 
multi-objective evolutionary genetic algorithm. To better help the algorithm generate efficient solutions forming 
the Pareto front, two local searches are also embedded and intermittently performed during algorithm execution. 
Based on the information of an operating mill in Kanchanaburi Province, Thailand, we have found that our 
approach produces solutions that are close to optimal in terms of production output. Nonetheless, by sacrificing a 
small amount of production output, these solutions provide significant improvements in terms of grower equity 
and supply chain resource efficiency, which are crucial for the survivability of involved actors.   

1. Introduction 

Sugar is an important food product globally. According to Statista, a 
commercial data provider, in 2019, global sugar production reached a 
level of more than 178 million tons, which grew about 4.7% compared 
to 2017. In terms of production quantities, India was the largest 
contributor with a share of 18.7% of global sugar production, followed 
by Brazil (16.5%), the European Union (9.8%), Thailand (8.7%), and 
China (6.0%). Despite the increase in sugar production, global sugar 
consumption is gradually decreasing, which, in turn, adds pressure to 
sugar prices. This is especially challenging for countries that sell a sig-
nificant share of their sugar product to the global market, such as 
Thailand (Rojrak, Manutchai, Komsan, & Wacharapong, 2017). 

In Thailand, sugarcane – the main raw material of sugar – is culti-
vated throughout most of the country, except in the South where the 
weather is not suitable for sugarcane growing. According to Rojrak et al. 
(2017), about 427,395 households, or equivalently 927,447 people, are 
directly involved in Thai sugarcane farming. Unlike other sugarcane 
producing countries such as Brazil or Australia, Thai sugarcane growers 
are typically with small-scale farm areas, whose individual sugarcane 

production is less than 300 tons per crop year (Thuankaewsing, Kham-
jan, Piewthongngam, & Pathumnakul, 2015). 

These many small-scale growers often end up with sugarcane pro-
duction quantities that are inconveniently small for large-scale milling 
operations in the next stage of the sugar supply chain. To simplify their 
procurement process and ensure maximum production output without 
stoppages, sugar mills typically ask small sugarcane growers to volun-
tarily collaborate with one another to achieve certain minimum pro-
duction quotas as a group (Thuankaewsing et al., 2015). For instance, 
given a transportation quota of 1000 tons, a grower whose sugarcane 
production quantity is less than 1000 tons must be grouped with others. 
The number of sugarcane growers in a group may vary from 2 to 8 
growers, with up to 50 sugarcane fields per group. This type of collab-
oration not only simplifies supply chain planning and coordination for 
the sugar mills, as a large number of growers are now reduced into a 
smaller number of grower groups, but also allows these small-scale 
growers to jointly buy or rent expensive harvesting and transportation 
machinery over the entire season. 

This collaborative setting, however, leads to complications, espe-
cially in the financial compensation of individual growers, resulting 
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from the fact that growers are still paid based on the sugar yields related 
to the sugarcane fields they contribute to the group. Commonly, these 
yields are determined by both sugarcane production quantities and their 
corresponding sugar content, referred to as the Commercial Cane Sugar 
(CCS) value – a tonnage of sugarcane with the CCS of β is equivalent to 
10 ⋅β kilograms of sugar production quantity. This CCS value is also 
found to be highly dependent on the right harvest timing and the time 
between harvesting and milling, as the amount of sugar content in 
sugarcane naturally increases during growth but starts to decrease after 
its maturity peak; and, once harvested, the CCS value – and so the 
amount of sugar produced – gradually drops. 

While the CCS value lies at the core of most sugarcane harvesting 
operations, it is normally impossible to harvest every field at its corre-
sponding optimal time period, due to limited harvesting and milling 
resources (Florentino et al., 2018). As such, growers within the same 
group must negotiate a harvesting schedule that builds up trans-
portation amounts satisfying production quotas and, at the same time, 
provides good expected yields for their fields. The resulting schedules 
may, unfortunately, require some or all of the growers to harvest their 
sugarcane fields long before or after the optimal harvesting periods in 
order to settle possible conflicts. 

In addition to these local issues, coordinating sugarcane supply 
across an entire area to a single sugar mill adds even more complexity to 
the problem. For the sugar mill, this means that there can be long queues 
of delivery trucks in some time periods – as each group of sugarcane 
growers independently and uncoordinatedly decides its own harvesting 
periods – which, in turn, lead to additional waiting times that further 
deteriorate sugar yields. Higgins (2002) also pointed out that this 
additional supply variability might adversely affect utilization of related 
expensive infrastructure – and so the total supply chain cost – benefiting 
none of the supply chain actors. In contrast, by simply reducing supply 
variability to the mills, the whole system could be largely improved. 

All in all, there is a need to study the collaboration and coordination 
in the Thai sugar supply chain, especially in relation to different ob-
jectives of different supply chain actors. For this purpose, this paper 
introduces the Multi-Objective Sugarcane Harvesting Problem (MOSHP): a 
multi-objective modelling approach that balances (i) sugar mill output, 
(ii) sugarcane grower equity, and (iii) sugarcane supply variability across 
the season. To better explore the multi-dimensional solution space and 
trade-offs between objectives, this paper also develops a heuristic so-
lution methodology based on state-of-the-art evolutionary algorithms. 
With this multi-objective approach, we are then able to (i) explore the 
value of cooperation among growers and their contracted mills, (ii) 
understand the impacts of critical parameters on the resulting harvesting 
plans, and (iii) improve the efficiency and effectiveness of subsequent 
operational plans, including resource and harvest front scheduling, over 
the milling season. 

The remainder of this paper is organized as follows. In Section 2, we 
first provide a more detailed description of different operations in the 
Thai sugar supply chain, where related literature is thoroughly discussed 
in Section 3. The formal description of the MOSHP – along with its 
mathematical formulation – is provided in Section 4. Our solution 
approach is introduced in Section 5, followed by intensive computa-
tional results in Section 6. Finally, Section 7 concludes our work and 
discusses future research directions. 

2. Thai sugar supply chain 

While local restrictions and practices may make the detailed struc-
ture of the Thai sugar supply chain different from those of other world 
sugar producers, like Brazil or Australia, they all share the same broad 
objective – that is, to maximize sugar production within the harvesting/ 
milling season – as well as the four main in-bound logistical operations: 
(i) planting, (ii) harvesting, (iii) transporting, and (iv) milling. These four 
processes are markedly crucial as they account for most of the produc-
tion cost, or about 60% in the Thai context (Kanjana, 2016). 

Additionally, the performances of these four processes greatly affect the 
efficacy of the whole supply chain as sugar production predominantly 
depends on the CCS value, which subsequently depends on how efficient 
these four processes are organized. 

2.1. Planting process 

Planting is the first in-bound logistical process of the sugar supply 
chain, where sugarcane growers need to first prepare the fields, select 
suitable sugarcane species, plant, and monitor sugarcane until the har-
vesting season has been reached. As the CCS value gradually increases 
during growth and starts to decrease once sugarcane reaches its maturity 
peak and there is no exact method that precisely estimates such a value, 
growers therefore need to periodically evaluate and check for the CCS 
value of their planted sugarcane – especially, when the planned har-
vesting periods are closing by. The traditional approach for estimating 
peak periods is based on the elapsed time since a predefined date, i.e. the 
date in which sugarcane is planted (Florentino et al., 2018; Jiao, Hig-
gins, & Prestwidge, 2005; Pagani et al., 2017), although such a predic-
tion may be imprecise due to several uncontrollable factors, including 
unexpected weather conditions, sugarcane types, and plant diseases 
(Florentino et al., 2018; Grunow, Gunther, & Westinner, 2007). 

2.2. Harvesting process 

The most suitable time for harvesting sugarcane is when its CCS 
value expectedly reaches its peak – about 8–12 months after planting. 
Nonetheless, this time period may vary depending on weather, sugar-
cane species, and types, i.e. primary or secondary (ratoon) sugarcane. 
Practically, ratoon crops should be harvested first because their CCS 
value decays much faster than the newly planted ones. Furthermore, 
burnt sugarcane must be immediately harvested and transported to the 
mills as the CCS value of burnt sugarcane drops much faster than fresh 
sugarcane harvested by either manpower or harvest machinery (Larra-
hondo, Briceno, Rojas, & Palma, 2006; Larrahondo, Viveros, & Victoria, 
2009). 

While sugar mills prefer fresh sugarcane for its purity over burnt 
sugarcane, the latter is much easier to harvest – if landscape conditions 
do not allow for maneuvering large machinery or if the minimum dis-
tance between sugarcane patches does not meet harvester track re-
quirements (about 1.5–1.6 meters). Unfortunately, the milling season in 
Thailand is relatively short – about 5 months from late November to 
early May. Part of it also overlaps with the harvesting seasons of other 
agricultural crops, such as rice, and a long holiday season known as 
Songkran Festival in April. As such, a majority of small sugarcane growers 
in Thailand tend to burn sugarcane fields before harvesting in order to 
speed up the harvesting process. Although burning sugarcane fields may 
help save scarce labor force, it adversely affects both sugar productivity 
and the environment of neighborhood areas. Accordingly, sugarcane 
field burning is now prohibited in Thailand – but it is sometimes still 
done by growers. Fig. 1 illustrates the timing of sugarcane harvesting in 
Thailand, where the best time periods start from January to February of 
each calendar year. 

Resource allocation is another problem that may arise during har-
vesting seasons in Thailand as these many small sugarcane growers are 
not capable of possessing expensive harvesting machinery, such as 
harvesters, forwarders, and transporting trucks. A group of growers then 
needs to correspondingly rent such machinery from the mills, third- 
party service providers, or large-scale growers, and share it within the 
group during the seasons. Besides, a sequential, field-by-field harvesting 
operation is strictly performed to avoid mixing of harvests from different 
fields (Pitakaso & Sethanan, 2019). With these limited resources but 
more dynamic operations, the optimal harvesting plan is therefore less 
likely to be devised and executed, but rather suboptimal ones satisfying 
all constraints posed by involved players (Guan, Nakamura, Shikanai, & 
Okazaki, 2009). 
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2.3. Transporting process 

After harvesting, sugarcane will be loaded onto trucks and trans-
ported to the mills immediately in order to preserve the CCS value of 
harvested sugarcane at its maximal level. There are four types of vehi-
cles used in this process, (i) 10-wheeler trucks with a 20-ton capacity, (ii) 
10-wheeler trucks with a 40-ton capacity, (iii) 6-wheeler trucks with a 
10-ton capacity, and (iv) grower-owned trucks with less than 10 tons of 
capacity. 

To accommodate growers with considerably small transporting ve-
hicles, some mills may set up local sugarcane loading stations within 
their operating areas so that transport of harvests by growers is 
consolidated and directly shipped to the mills (Khamjan, Khamjan, & 
Pathumnakul, 2013; Saranwong & Likasiri, 2017). While loading station 
networks may help improve supply chain efficiency – and so total 
transportation cost – this strategy, however, requires high upfront in-
vestments and adds complexity to operation schedules that can poten-
tially affect the quality of sugar produced, i.e. double handling and 
waiting times for batch moves. 

2.4. Milling process 

When loaded trucks arrive at the mills, the trucks have to wait in 
queues for the evaluation of sugarcane quantity (by weight) and quality 
(by the CCS value). The management of these queues follows one of 
three systems (Kanjana, 2016): (i) a first-come first-served (FCFS) sys-
tem, (ii) a queue-locked (QL) system, or (iii) a mixed system – an inte-
gration between the FCFS and QL systems. While the FCFS system is 
generally applied to all types of growers, the QL system is specifically 
designed for contract growers that have detailed agreements with the 
mills regarding the amount of sugarcane to be delivered and the time 
periods at which it must be delivered (i.e. their places in the queue are 
locked in). These different queuing systems are normally exercised at 
different time periods of the harvesting season due to unstable sugarcane 
supplies caused by traditional sugarcane cultivation practices in 
Thailand. More specifically, the QL system is adopted in the middle of 
the season, where sugarcane supply exceeds the mill capacity, while the 
FCFS system is adopted early and late in the season, when sugarcane 
supply is less than the mill capacity. 

Regarding the current practice, Thai sugarcane growers tend to 
cultivate sugarcane early in the rainy season to ensure that the crops will 
get enough water and be ready within the next harvesting season 
(Pongpat, Gheewala, & Silalertruksa, 2017). Since all growers cultivate 
their sugarcane with similar timelines, all the crops will then be ripe at 
approximately the same time, causing oversupply in some periods and 
undersupply in others. When the sugarcane supply exceeds the mill 
capacity, it would take additional time for harvested sugarcane to be 
milled. But, since the CCS value of harvested sugarcane decreases over 
time, both mills and growers would be at risk of losing benefits from 
such occurrences. 

The situation is made even worse if mills have no control over 

harvesting decisions made by growers, as they still need a constant feed 
of sugarcane over the entire season. In order to avoid periodic supply 
shortages that could interrupt processing activities, most mills generally 
form contractual agreements with growers to settle on the amounts of 
sugarcane to be delivered in certain time periods and then prioritize the 
deliveries from these contract growers in the QL system. With this 
practice, mills can ensure that sugar production is more stable, while 
contract growers would not have to worry about lost CCS value resulting 
from long delivery queues at the mills. Despite these supply chain 
benefits, not many growers join the QL system due to the risk of 
misalignment between planned (contracted) and optimal harvesting 
periods, i.e. the delivery time windows specified in the contracts may not 
be the same as the optimal harvesting periods due to the uncontrollable 
factors mentioned above. 

3. Related literature 

Most of the existing research has focused on several interrelated 
sugar supply chain aspects – often on the tactical and operational 
planning levels (Carvajal, Sarache, & Costa, 2019) – even in the early 
work by Singh and Pathak (1994) that explored harvesting and trans-
portation activities in the Thai sugar supply chain by a simulation 
technique. These integrated approaches stem from the fact that sugar-
cane quality dynamics and the central role of CCS value are both 
impacted by different supply chain actors, as well as impacting on the 
performances of these supply chain actors at the same time (Higgins, 
1999). 

In terms of solving these complex supply chain problems, different 
approaches have been applied, and the focus within the research has 
differed over time. For instance, Grunow et al. (2007) developed a hi-
erarchical decision framework for the sugarcane supply problem in 
Venezuela, where the whole problem was decomposed into three deci-
sion stages, namely (i) cultivation planning, (ii) harvest scheduling, and 
(iii) resource dispatching, while Paiva and Morabito (2009) integrated 
the production of sugar, ethanol, and molasses into one single frame-
work and modeled the resulting sugarcane supply chain problem with 
mathematical programming. 

Lamsal, Jones, and Thomas (2016) and Junqueira and Morabito 
(2019), on the contrary, focused more on the operational issues of sugar 
supply chains in two different geographic locations. In particular, 
Lamsal et al. (2016) explored the logistics of harvested sugarcane in the 
United States so that the fleet size of trucks required for transportation 
was minimized, while Junqueira and Morabito (2019) investigated a so- 
called Harvest Front Scheduling Problem (HFSP) that combined harvesting 
and resource scheduling into one decision-making framework. In Jun-
queira and Morabito (2019), a harvest front was defined as a group of 
machinery and crews required to harvest and transport sugarcane to the 
mills, which could be alternatively viewed as a production line (it should 
be noted that harvest front is sometimes used to describe a set of sugar-
cane fields, as for instance in Stray, van Vuuren, & Bezuidenhout 
(2012)). The objective of the HFSP was simply to assign and relocate all 

Fig. 1. The best harvesting periods for sugarcane in Thailand.  
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the fronts in such a way that total operational cost – including both 
realizable and opportunity costs – was minimized. 

Such operational issues were also explored in the Thai context by 
Sethanan and Neungmatcha (2016) and Pitakaso and Sethanan (2019), 
where the use of harvesters expectedly increased due to labor force 
shortages and sugarcane farm burning malpractices. While it is apparent 
that the use of harvesting machinery, such as harvesters and forwarders, 
is far more efficient when compared to labor force (Pongpat et al., 
2017), a majority of small Thai sugarcane growers are, unfortunately, 
incapable of owning one due to its relatively high initial investment. 
They correspondingly rent it from large-scale growers, third party ser-
vice providers, or the mills whom they have contracts with, and share it 
over during the harvesting season. To better utilize these mechanical 
harvesters, efficient harvester route planning is thus required; and, the 
total harvested distance is generally set as the primary objective in such 
plans. 

Nonetheless, Sethanan and Neungmatcha (2016) observed that the 
least cost routing might not necessarily lead to plans providing 
maximum yields due to competition among conflicting objectives. As 
such, in their work, a multi-objective harvester route planning problem 
was explored and solved by a variant of particle swarm optimization. As 
an extension to Sethanan and Neungmatcha (2016), Pitakaso and 
Sethanan (2019) further integrated both the assignment and schedule of 
mechanical sugarcane harvesters into one single framework. They found 
that the quality of harvester route planning largely depended on the 
availability of harvest equipment and it might be better to solve both 
simultaneously. Besides, the performance of this subsequent operational 
planning also depended on the quality of its input – namely, the har-
vesting plan – which was vulnerable to any slight disruptions in each of 
the aforesaid four processes. This remark was in-line with Grunow et al. 
(2007) that the optimal but inflexible plans were rarely executable; 
rather, suboptimal but flexible ones with recourse actions throughout 
the planning horizon were more practical. 

While grower equity is a very important issue in the Thai and 
Australian sugar supply chains, it seems less relevant in Brazil, 
Venezuela, or other South American countries, where most sugarcane 
fields are large-scale mill-owned or individual-owned farms. Notwith-
standing such a fact, equity issues between growers have been addressed 
in the literature. For instance, Thuankaewsing et al. (2015) proposed a 
tabu search heuristic for the harvest scheduling problem that implicitly 
took grower equity, as measured by yield proportion – a ratio of total 
harvested sugarcane yield to the best estimated sugarcane yield (in tons) 
– into consideration, as a part of constraint sets. In their setting, the 
minimum yield proportion for all growers was equally set at the 
beginning of the search, i.e. all growers achieved at least the same 
minimum fraction of sugarcane output. This number was then maxi-
mized through an iteratively search procedure while maintaining 
problem feasibility; and, once the algorithm terminated, the solutions 
that maximized total sugar production with the highest yield proportion 
were then returned. Their concept of grower equity was a bit different 
from Higgins (1999) and Jiao et al. (2005), due to different harvesting 
practices, where the proportion of harvested sugarcane in each round 
was applied so that each grower would have approximately the same 
amount of sugarcane harvested in each period; and, no one would be left 
too far behind or ahead of others across the entire season. 

While almost all of the aforesaid literature addressed issues in the 
sugar supply chain with one single objective, da Silva, Marins, and Dias 
(2015) and Florentino et al. (2018) explored more interesting decision- 
making problems related to sugarcane harvest scheduling in Brazil with 
multiple conflicting objectives. More specifically, in da Silva et al. 
(2015), the authors attempted to determine harvesting plans that 
minimized total deviational costs of different players, taking into ac-
count uncertainties in harvest conditions, cutting decisions, and agri-
cultural logistics. Meanwhile, Florentino et al. (2018) focused more on 
harvesting plans that maximized the quality of harvested sugarcane 
while minimizing movement of machinery across the planning horizon. 

Different variations of goal programming were applied by the authors, 
namely a new revised multi-choice goal programming approach 
addressing parameter uncertainties without use of binary decision var-
iables by da Silva et al. (2015) and an extended goal programming 
approach (scalarization technique) that reduced a multi-objective model 
to a more pragmatic model with a single objective by Florentino et al. 
(2018). 

As has been demonstrated in the previous literature, in order to 
devise flexible and executable harvesting plans for the Thai sugar supply 
chain, we do need to include not only the contextually specific con-
straints – such as grower equity and field-by-field harvesting practice – 
but also the competing objectives from both mills and growers into 
consideration. In the following section, we will define the resulting 
problem as the Multi-Objective Sugarcane Harvesting Problem (MOSHP). 
Technically speaking, the MOSHP is a reflection of the Thai sugar supply 
chain’s in-bound logistical activities focusing on three different objec-
tives: (i) the maximization of sugar production over the entire season, 
(ii) the minimization of grower inequity resulting from unbalanced CCS 
value losses, and (iii) the minimization of variability in deployed re-
sources across harvesting periods. Since these three objectives are not 
easily combined into one measurement, we therefore focus on gener-
ating a diverse set of efficient non-dominated solutions – known as 
Pareto-optimal solutions – and let key supply chain actors decide on the 
execution of plans that best suit their current situation. Similar multi- 
objective modeling approaches have also been studied in wine grape 
harvest operations by Varas, Basso, Maturana, Osorio, and Pezoa (2020) 
and in the paper industry by Vafaeenezhad, Moghaddam, and Cheikh-
rouhou (2019), but with different algorithmic frameworks for gener-
ating the Pareto-optimal solutions. 

It is worth remarking that our proposed methodology differs greatly 
from those of da Silva et al. (2015) and Florentino et al. (2018), as their 
solution quality largely depends on the aspiration levels set by decision 
makers and their corresponding weights (Khorramshahgol & Hooshiari, 
1991), while ours is immune to such parameter settings. To be precise, 
all objectives in our approach are concurrently optimized based on their 
absolute terms rather than relative terms defined by deviational vari-
ables in the adopted goal programming approaches. On top of that, so-
lutions produced by goal programming could be dominated violating the 
fundamental concept of decision theory (Hannan, 1985) – although 
detection and restoration techniques can be included to safeguard the 
final results when violations occur (Tamiz, Mirrazavi, & Jones, 1999). 

4. Problem description 

4.1. Multi-Objective Sugarcane Harvesting Problem (MOSHP) 

Consider a sugar mill with a set of contract growers (I), each of whom 
owns a different number of sugarcane fields, denoted by J(i). Each 
sugarcane field j ∈ J(i) differs in terms of area (aij), sugarcane yield (wij), 
and the CCS value pertaining to such a field – which, in turn, depends on 
the expected time period when a field is harvested. More formally, given 
a set of harvesting periods (T), fijt denotes the expected CCS value of field 
j ∈ J(i) that belongs to grower i ∈ I in time period t ∈ T; and, bij is the 
expected best harvesting period for such a field. 

It is worth noting that, as stipulated by the Thai Sugar Association, a 
sugarcane field whose expected CCS value is less than a certain mini-
mum CCSL may not be harvested. In addition, grower i ∈ I may be in a 
group with other small growers so that transportation quota set by the 
mill is satisfied; and, in such a case, sugarcane fields j1 and j2 ∈ J(i) may 
belong to different growers within the same group i ∈ I. 

The capacity of a mill, as denoted by QU
t , is relatively constant over 

the season (but might differ slightly due to maintenance activities). To 
avoid lengthy startup procedures, the mill must continuously operate 
with a capacity of at least QL

t in each time period, where QL
t ⩽QU

t . 
As we assume that field-by-field harvesting practice is adopted, the 
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main decision needed to be made is which sugarcane field j ∈ J(i) will be 
harvested in each period t ∈ T such that the following three objectives 
are optimized.  

• Mill’s objective: Maximize total amount of sugar production, as 
measured by the total CSS value over the entire season.  

• Grower’s objective: Equalize grower benefits by minimizing the 
standard deviation of misalignment between planned and optimal 
harvesting periods among all parties.  

• Both players’ objective: Smoothen the resource requirements for 
harvesting in each period by minimizing the standard deviation of 
harvested sugarcane field areas over the entire season (supply 
variability). 

In addition to several logical constraints derived from the definition 
of variables, the following sets of constraints have to be considered for 
the underlying Multi-Objective Sugarcane Harvesting Problem 
(MOSHP).  

• Capacity-related constraints at both the grower’s and the mill’s ends.  
• Rules and regulations imposed by either the Government or the Thai 

Sugar Association. 

4.2. Mathematical formulation 

The following notation will be used in the MOSHP investigated in 
this paper. 

4.2.1. Sets and parameters  

• i ∈ I is a set of growers, or groups of growers.  
• j ∈ J(i) is a set of sugarcane fields that belongs to grower i ∈ I.  
• t ∈ T is a set of harvesting periods (weeks).  
• aij denotes the area of sugarcane field j ∈ J(i) (rais, 1 rai  = 0.395 

acres).  
• wij denotes the estimated yield of sugarcane field j ∈ J(i) (tons/rai).  
• bij denotes the expected best harvesting period for sugarcane field 

j ∈ J(i).  
• fijt denotes the estimated CCS value of sugarcane field j ∈ J(i) in 

period t ∈ T.  
• D denotes the loss of quality in sugarcane inventory, as measured by 

weekly percentage drop of the CCS value, i.e. the CCS value of har-
vested sugarcane constantly decreases by D% per week.  

• CCSL denotes the minimum level of CCS value required by the Thai 
Sugar Association.  

• QU
t denotes the upper limit of mill capacity in time period t ∈ T 

(tons).  
• QL

t denotes the lower limit of mill capacity in time period t ∈ T (tons).  
• M is a large number. 

4.2.2. Decision variables  

• xijt is a binary decision variable indicating whether sugarcane field 
j ∈ J(i) is harvested in time period t ∈ T: 

xijt =

{
1, sugarcane field j ∈ J(i) is harvested in time period t ∈ T,
0, otherwise.

4.2.3. Auxiliary variables  

• yi is the sum of absolute differences between the time periods at 
which sugarcane fields in J(i) are harvested when compared to their 
expected best time periods (bij).  

• y is the average sum of harvesting differences from the best time 
periods for all growers.  

• gt is the sum of sugarcane field areas harvested in time period t ∈ T.  
• g is the average harvested areas of sugarcane fields over the entire 

season.  
• Millt is the amount of sugarcane milled in period t ∈ T.  
• ot is the amount of sugarcane inventory at the end of period t ∈ T.  
• CCSt is the average CCS value of harvested sugarcane fields in period 

t ∈ T. 

Using this notation, the MOSHP can be mathematically formulated 
as follows. 

4.2.4. Objective function and constraints 

Minimize :

z1 :
∑

i∈I

∑

j∈J(i)

∑

t∈T
−
(

aijwijfijtxijt − DCCSt ot

)
, (1)  

z2 :

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i∈I(yi − y)2

|I|

√

, (2)  

z3 :

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

t∈T (gt − g)2

|T|

√

(3)  

s.t. 
∑

i∈I

∑

j∈J(i)

aijwijxijt + ot− 1 = Millt + ot, ∀t ∈ T (4)  

Millt⩽QU
t , ∀t ∈ T (5)  

Millt⩾QL
t , ∀t ∈ T (6)  

Millt⩾ot− 1, ∀t ∈ T (7)  

∑

t∈T
xijt⩽1, ∀j ∈ J

(

i

)

, i ∈ I (8)  

yi =
∑

j∈J(i)

⃒
⃒
⃒
⃒
⃒
bij −

∑

t∈T
t⋅xijt

⃒
⃒
⃒
⃒
⃒
, ∀i ∈ I (9)  

y =

∑

i∈I
yi

|I|
(10)  

gt =
∑

i∈I

∑

j∈J(i)

aijxijt, ∀t ∈ T (11)  

g =

∑

t∈T
gt

|T|
(12)  

CCSt =

∑

i∈I

∑

j∈J(i)
aijwijfijtxijt

∑

i∈I

∑

j∈J(i)
aijwijxijt

, ∀t ∈ T (13)  

CCSL⩽fijtxijt +
(
1 − xijt

)
M, ∀j ∈ J

(
i
)
, i ∈ I, t ∈ T (14)  

xijt ∈
{

0, 1
}
, ∀j ∈ J

(
i
)
, i ∈ I, t ∈ T (15)  

ot⩾0, ∀t ∈ T (16) 

As sugar content – and so its total production – can be calculated by 
the CCS value, the mill’s objective, i.e. maximizing the total amount of 
sugar produced over the entire season, could be written as Eq. (1), with a 
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slight modification, where the whole expression is converted into 
minimization for consistency with the other objectives – namely, z2: 
equalizing grower benefits and z3: resource smoothing. Observe that, 
when sugarcane is over harvested, inventory of sugarcane, as denoted by 
ot, gradually loses its quality. In particular, the loss of CCS value is 
approximated by the average CCS value of harvested sugarcane in that 
period (CCSt), defined by Eq. (13), and the deterioration rate (D). Eq. (4) 
preserves the amounts of harvested sugarcane across periods until the 
end of the season. Inequalities (5) and (6) ensure that fresh sugarcane is 
steadily supplied to the mill over the entire season without violating mill 
capacity in any single period, while Constraint (7) helps prevent sug-
arcane inventory from building up. Constraint (8) makes sure that each 
sugarcane field j ∈ J(i) could be harvested in one of the harvesting pe-
riods t ∈ T. The misalignment between the planned and the optimal 
peak period for sugarcane field j ∈ J(i), along with its average sum, is 
defined by Eqs. (9) and (10). Likewise, the total area of harvested sug-
arcane fields in time period t ∈ T and its average are defined by Eqs. (11) 
and (12), respectively. Lastly, Constraint (14) allows only sugarcane 
fields, whose CCS values are at least CCSL to be harvested – if xijt = 1, fijt 

must be at least CCSL; otherwise, this constraint conveys no additional 
information. 

5. Solution approach 

5.1. Multi-objective evolutionary algorithms 

The MOSHP investigated in this paper is a multi-objective optimi-
zation problem, in which trade-offs between competing objectives have 
to be made. In terms of computation, solving multi-objective optimiza-
tion problems is relatively challenging, especially when there are more 
objectives to be optimized, as the number of efficient solutions defining 
a Pareto front exponentially grows – but yet unknown. Also, once the 
dimension of problems exceeds three, visualization – and so evaluation 
of such solutions – has become more complicated. 

While multi-objective optimization problems may be solved by sca-
larization techniques that combine multiple objectives into one, such 
methods are of limited used as they could provide only one Pareto- 
optimal solution at a time – and, some might be inapplicable for non- 
convex objective spaces (Li, Deb, Zhang, Suganthan, & Chen, 2019). 
As such, multi-objective optimization problems are practically solved by 
Multi-Objective Evolutionary Algorithms (MOEAs), or nature-inspired 
search heuristics, whose concepts are based on the evolution of solu-
tion populations under different algorithmic frameworks (Coello, 
Lamont, & Van Veldhuizen, 2007). 

Emmerich and Deutz (2018) classified MOEAs into three main 
groups based on selection paradigms, including (i) Pareto Dominance- 
Based MOEAs (NSGA-II and SPEA2), (ii) Indicator-Based MOEAs (IBEA 
and Hypervolumn-Based MOEAs), and (iii) Decomposition-Based 
MOEAs (MOEA/D and NSGA-III). Zhou et al. (2011), on the other 
hand, divided MOEAs into several more classes based on their algo-
rithmic frameworks, selection and reproduction procedures, and other 
computational issues. Among these MOEAs, the well-known Elitist Non- 
Dominated Sorted Genetic Algorithm II (NSGA-II) is one of the solution 
methodologies that has been widely applied in the literature (see Ban-
dyopadhyay & Bhattacharya, 2013; Ren, Wen, Hu, & Li, 2020; Wang, 
Fu, Huang, Huang, & Wang, 2017, for example). 

NSGA-II is a Pareto Dominance-Based MOEA that allows only elite 
populations to reproduce by elite-preserving operators and maintains 
the diversity of non-dominated solutions by crowding distances (Deb, 
Pratap, Agarwal, & Meyarivan, 2002). While the NSGA-II has performed 
quite well for low dimensional problems, it tends to lose the designed 
selection pressure during the evolutionary process in higher dimensional 
problems as the proportion of non-dominated solutions grows much 
faster with a slight increment in the number of objectives (He & Yen, 
2016). In addition, these many non-dominated solutions may occupy 

limited elite slots, which, in turn, slows down the search process (Deb & 
Jain, 2014). 

To overcome such shortcomings, Deb and Jain (2014) have recently 
introduced a modified version of the NSGA-II, called the Reference-Point 
Based Many-Objective NSGA-II, or the NSGA-III, for short. The concept of 
NSGA-III is quite similar to that of NSGA-II except for the selection 
procedure, where the NSGA-III uses relative distances between the so-
lutions and reference points instead of crowding distances to help pre-
serve the diversity of Pareto-optimal solutions. In terms of algorithmic 
design, these reference points might be regarded as search directions 
during the evolutionary process (Li et al., 2019). 

Deb and Jain (2014) showed that the NSGA-III outperformed the 
NSGA-II and other recent Decomposition-Based MOEAs in terms of both 
solution quality and diversification as measured by the Inverse Genera-
tional Distance (IGD). Their results were in-line with Li et al. (2019), 
where the NSGA-III was applied on several sets of multi-objective opti-
mization benchmark instances. Based on its recent successes, the NSGA- 
III is therefore adopted as a part of the devised algorithm in this work 
(see Algorithm 1 in the Appendix for an overview of the NSGA-III). 

It is worth remarking that, similar to the NSGA-II, the NSGA-III might 
be regarded as a generic selection operator that could be applied along 
with varieties of reproduction/recombination operators that well suit 
the problems. 

5.2. Multi-objective evolutionary genetic algorithm 

The MOSHP in this paper is solved by means of the Multi-Objective 
Evolutionary Genetic Algorithm (MOEGA) embedded with the NSGA-III – 
as a selection procedure – whose implementation outline is provided in 
Algorithm 2 in the Appendix. This algorithm includes five computa-
tional modules for the generation of MOSHP’s non-dominated solutions 
as follows.  

• Initial Population Generation Module (IntGen): This module is called 
to create the initial solution population (P1).  

• Repair Module (Repair): This module is repeatedly called whenever a 
solution is constructed so that feasibility is maintained at all time.  

• Uniform Crossover Module (U-Cross): This module contains one of 
the deployed reproduction operators iteratively called for offspring 
generation.  

• Uniform Mutation Module (U-Mutation): This module contains 
another reproduction operator iteratively called for offspring 
generation. 

• Local Search Module (LocalSearch): This module helps guide the al-
gorithm towards Pareto-optimal fronts, where two local search op-
erators – namely relocation and swap – are applied every a fixed 
number of generations. 

5.2.1. IntGen 
IntGen creates a pool of initial solution populations, each of which is 

referred to as a chromosome, or a collection of genes, in the GA setting. 
While the definition of chromosomes may be different elsewhere, in this 
paper, a chromosome is defined as a sequence of harvesting periods for 
all sugarcane fields. More formally, given a number of sugarcane fields 
Nf and a set of time periods T, IntGen first creates a chromosome of 
length Nf and then assigns a planned harvesting period t ∈ T to each of 
the genes until all genes are attached with some values t ∈ T. For 
example, a chromosome [2, 3, 1,5, 6,4] indicates the sequence of har-
vesting periods for six sugarcane fields, where Field 1 is harvested in 
time period 2, Field 2 is harvested in time period 3, and so on (see 
Table 1 for detailed planning). 

To help guide the proposed MOEGA towards the Pareto front, while 
maintaining solution diversity, two sets of initial solutions are con-
structed: (i) randomly initiated solutions (PR

1 ) and (ii) objective-wise 
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initiated solutions (PL
1), where P1 = PR

1 ∪ PL
1. 

The process for generating PR
1 is quite straightforward as planned 

harvesting periods are randomly generated and assigned to all genes. 
However, to avoid generating inefficient solutions, for each sugarcane 
field j ∈ J(i), a random integer number rj is selected from a normal 
distribution with a mean of bij – the expected best time period for sug-
arcane field j ∈ J(i) – and a standard deviation between 1 and 3 periods. 
More specifically, rj ∈ Z + and rj̃N(bij,Unif [1,3]),∀j ∈ J(i),∀i ∈ I. 

For solution set PL
1, one of the best four solutions in each domain will 

be randomly selected and applied with two local search operators, 
namely relocation and swap. The concepts of these two local search op-
erators are equivalent to Swap(1,0) and Swap(1,1) suggested by Fleszar 
and Hindi (2002), where a field is relocated from one period to another 
by the relocation operator and two fields are interchanged by the swap 
operator. Once these two local searches terminate, three best solutions 
with respect to each objective will be added to the initial solution pool. 

5.2.2. Repair 
The initial (or offspring) solutions may be infeasible as they are 

constructed without any MOSHP constraints. Hence, a repairing mech-
anism is needed to maintain solution feasibility at all time; and, we 
achieve this by the Repair module. The Repair module first checks 
whether a solution is feasible – and if not, such a solution will be 
repeatedly repaired by the Undersupply, Oversupply, and MinCCS sub-
modules. In particular, Undersupply preserves the mill’s minimum ca-
pacity by relocating the best possible fields to periods that need 
additional supply. Oversupply and MinCCS, on the other hand, randomly 
remove fields violating the mill’s maximum capacity and the minimum 
CCS constraint, and then reinsert them into best possible periods with 
respect to the CCS values. Algorithms 3–6 in the Appendix give a precise 
description of the detailed steps for Repair, Undersupply, Oversupply, and 
MinCCS, respectively. 

5.2.3. U-Cross 
U-Cross is a reproduction operator used to combine the information 

from two parent chromosomes and generate a new offspring based on a 
random number p – the crossover probability that ranges between 0 and 
1 – and a crossover threshold α.  

• If p < α, two random chromosomes from the solution pool will be 
selected as parent solutions for the creation of an offspring solution 
whose genes inherit the values from each of its parents with equal 
probability.  

• If p⩾α, U-Mutation will be called. 

It is worth noting that the offspring solution might be infeasible – and 
if so, the Repair module will be subsequently called. 

5.2.4. U-Mutation 
U-Mutation is another reproduction operator used to maintain di-

versity of the population. It also helps algorithm avoid getting stuck in 
local extrema from too similar parent solutions in the solution pool. U- 

Mutation is called only when p⩾α; and, once it is called, each of the 
selected chromosome’s genes is prone to mutate (change) from its initial 
value to one within a predefined range with equal probability. Similar to 
U-Cross, the resulting solution might be infeasible; and, in such a case, 
the Repair module will be subsequently called. 

5.2.5. LocalSearch 
In order to help the algorithm generate good offsprings, LocalSearch 

will be called every a fixed number of generations. The implementation 
of this LocalSearch submodule is similar to that of PL

1, where four best 
objective-wise solutions in the non-dominated solution pool will be 
randomly selected and applied with two local search operators – namely 
relocation and swap. Once LocalSearch terminates, three best objective- 
wise solutions will join other offspring solutions in Pt. 

6. Results and discussion 

6.1. Experimental design 

The proposed MOEGA has been tested on four different instance 
sizes, each with different numbers of growers and sugarcane fields, total 
sugarcane field areas, harvesting periods, and mill capacities as sum-
marized in Table 2. 

For each problem size, 10 different experimental instances are 
generated – except for the practical ones, with only five experimental 
instances each, but with four different variants. The first three variations 
are the namesake early, middle, and late maturation scenarios, 
describing when within the harvesting season the sugarcane matures 
(Florentino et al., 2018; Jiao et al., 2005), while the last variation is 
created to reflect a balanced sugarcane supply throughout the entire 
season. For computational consistency, the percentages of matured 
sugarcane in each scenario over the entire season are set as in Table 3. 

All parameter values of the practical instances are generated based 
on the operational data of a mill in Kanchanaburi Province, Thailand, 
whose daily capacity is about 8,200 tons (QU ). The numbers of growers 
(I) and sugarcane fields (J(i)), together with total sugarcane field areas 
(aij), are generated based on a report by the Office of Cane and Sugar 
Board (OCSB), publicly available at http://www.ocsb.go.th. In addition, 
the CCS values of all sugarcane fields (fijt), along with their best har-
vesting periods (bij), are estimated from the least squares polynomial of 
degree 3 (Jiao et al., 2005). But, only three sugarcane species will be 
considered in this research as they represent most of sugarcane planted 
in this area – LK92-11, LK95-84, and KK3. 

In order to ensure that the harvested sugarcane is of good quality and 
the mill is steadily supplied with sugarcane for the whole season, the 
minimum level of CCS value required (CCSL) and the lower capacity 
limit of a mill are set at 10 and 80% of its maximum capacity, respec-
tively. Lastly, the discount factor for loss of sugarcane quality (D) is set at 
8.37% per week as reported by the OCSB, while the parameter values of 
all other instance sizes are randomly created (or selected) from the 
practical instances. 

Table 1 
The detailed harvesting plan of a chromosome [2,3,1,5,6,4].  

Field Time Period 

1 2 3 4 5 6 

1  √      
2   √     
3 √       
4     √   
5      √  
6    √     

Table 2 
A summary of the MOSHP information for each instance size.  

Instance 
Sizes 

Number 
of 

Growers 

Number 
of 

Sugarcane 
Fields 

Total 
Sugarcane 
Field Area 

(rais) 

Harvesting 
Period 
(weeks) 

Mill 
Capacity 
(tons/ 
week) 

Small 
Instance 

19 25 820 8 1,275 

Moderate 
Instance 

196 278 8,925 12 9,330 

Large 
Instance 

668 970 31,168 20 19,455 

Practical 
Instance 

1,962 2,845 91,726 20 57,300  
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In addition to the aforesaid MOSHP parameters, the MOEGA pa-
rameters, as reported in Table 4, are set based on the results of pre-
liminary experimental runs so that the resulting sugar yields are close to 
the ideal yields derived from the single-objective sugarcane harvest 
scheduling problem, with no consideration on either grower equity or 
supply chain efficiency, i.e. the output maximization model. For 
comparability and consistency, all experiments are conducted on a 
laptop with an Intel Core i7 CPU (1.99 GHz) and a memory of 8 GB. 

6.2. Solution quality 

We assess the quality of solutions generated by the proposed MOEGA 
with those of the Preemptive Goal Programming (PGP), where we first 
solve single-objective models and use the results of these so-called upper 
level models as additional constraints in the lower level ones (Taha, 
2017). In doing so, the MOSHP is decomposed into three different single- 
objective mathematical programming models, each of which aims to 
optimize one of its original objectives: (i) the output maximization 
model (M1), (ii) the grower equity model (M2), and (iii) the supply chain 
efficiency model (M3). All non-linear expressions are also linearized 
based on the deviations from their ideal best values resembling those of 
Florentino et al. (2018) – namely bij and g for grower equity and supply 
chain efficiency models, respectively. This may, however, affect the 
interpretation of solutions as grower equity and supply chain efficiency 
in these models are measured by total absolute deviations, i.e. 

∑
i∈Iyi and 

∑
t∈T
⃒
⃒gt − g

⃒
⃒, while those of the MOEGA are measured by standard 

deviations. 
Depending on the sequences of objective priorities, these three 

models will be successively solved by CPLEX, each with a time limit of 
two hours as to avoid excessive computation times (the longest 
computational time for each instance is therefore six hours). For small 
instances, four different benchmark solutions are generated based on 
mill-oriented and grower-oriented priority sequences, while fewer 
benchmark solutions are generated for larger instances due to the 
dominance of higher priority models that leaves no room for improve-
ment in the lower priority ones. Besides, the computational times of 
CPLEX drastically rise as instance sizes become larger. This is especially 
evident for the practical instances, where run-out-of-memory errors 
consistently occur when M2 is executed. Hence, only one priority 
sequence is explored for all practical variants. The results from the PGP 
approach are then compared with those of the MOEGA in terms of 
average solution deviations and coefficients of variation as reported in 
Table 5. It is worth noting that deviations of solutions, or solution gaps, 
in Table 5 are reported based on the PGP solutions, i.e. 
(xMOEGA − xPGP)/(xPGP)⋅100, while the coefficients of variation are 

computed by SDxMOEGA/xMOEGA. 
It is evident from Table 5 that the MOEGA performs relatively well 

when compared to the PGP approach as it could provide solutions that 
are close to optimal in terms of sugar production (mill-oriented solu-
tions) – but with much better grower equity and supply chain efficiency 
as measured by the standard deviations of harvesting period misalign-
ment and harvested areas across the season. The coefficients of variation 
among the MOEGA solutions are also low indicating that there is not 
much variability within the MOEGA solution pool. In contrast, the 
quality of PGP solutions largely depends on priority sequences, whose 
solutions rarely change due to the dominance of higher priority models 
over the lower priority ones. Instead of favoring one objective over the 
others, the MOEGA tries to concurrently optimize all different aspects of 
different actors within the sugar supply chain so that well-balanced 
solutions could be established; and, this could be regarded as one 
major advantage of the MOEGA over the PGP approach. 

Regarding the amount of sugar produced, it is evident that mill- 
oriented solutions are superior to the MOEGA solutions, with a 
maximal average gap of 2%. Nonetheless, grower inequity and vari-
ability in harvested areas derived from these solutions are observably 
high. This implies that, under a good collaboration framework where all 
parties centrally decide on the harvesting periods based on one an-
other’s decisions, growers can receive higher profits, while mill opera-
tions are smoothed out. Although the production of sugar slightly 
decreases, savings from subsequent resource allocation phases may 
offset such loss leading to a more sustainable production environment. 

A similar conclusion could be drawn from the two grower-oriented 
models with priority sequences M2 − M1 − M3 and M2 − M3 − M1. 
Although significant improvements in grower equity are evident, the 
MOEGA solutions are still better off in terms of standard deviations on 
both metrics, with slight differences on the total CCS values. We also 
observe that grower-oriented models tend to underperform in terms of 
sugar production when the problems become larger, which seems sur-
prising as more sugarcane fields are expected to be harvested in their 
best periods. The reason behind this unexpected outcome is the negli-
gence of field information – including the CCS values, sugarcane yields, 
and field ownership – in M2 and M3. As no information regarding the 
sugarcane fields is incorporated into these models, all the fields will be 
treated equally important; and, the harvesting plans with the least total 
absolute deviations may not be the ones providing highest sugar yields 
nor the highest grower equity. These settings are even worse for poorly 
coordinated systems – such as the one investigated in this paper – as 
grower-oriented solutions would only create higher chances of over 
harvests that further deteriorate compensation for both players due to 
the CCS decay. 

These observations clearly stress the importance of collaboration and 
coordination to sustainability in the Thai sugar supply chain; and, we 
expect that our devised framework will serve as a stepping stone for such 
a development. 

6.3. Exploration of the solution space 

In terms of flexibility, as the MOEGA provides multiple non- 
dominated solutions as output, planners will have more freedom to 
pre-screen and select individual solutions that best suit their specific 
conditions for further evaluation and execution. 

For instance, Fig. 2 shows a sample set of solutions to the four 
practical instances having the CCS values of at least 99.5% of the 
maximum CCS values obtained from the PGP solutions. 

Based on Fig. 2, traditional plans that prioritize the CCS value typi-
cally lead to situations with higher grower inequity and resource usage 
imbalance implied by the second and the third objectives. By executing 
alternative plans with slight decreases in sugar production, grower eq-
uity could be lifted significantly, while the mill could benefit from better 
utilization of the machinery fleet that has been rented to contract 
growers – this is especially evident for middle and late maturation 

Table 3 
Percentages of matured sugarcane in each of the four scenarios over the entire 
season.  

Scenarios Early of the season Middle of the season Late of the season 

Early Mature 60 20 20 
Middle Mature 20 60 20 
Late Mature 20 20 60 
Balance 33 34 33  

Table 4 
The MOEGA algorithmic settings.  

Parameters Values 

Generation 200 
Number of generations before calling local searches 10 
Number of reference points 91 (12 divisions) 
Size of solution population 100 
Number of randomly initiated solutions 97 
Number of objective-wise initiated solutions 3 
Mutation Threshold (α)  0.7  
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scenarios. Since harvesting machinery is typically expensive with high 
variable operating costs, less usage variation will lead to a more favor-
able situation for the mill as smaller fleet sizes are expected to be 
operated at higher utilization rates. 

Besides these explicit benefits at both growers’ and mills’ ends, the 
proposed MOEGA could potentially help reduce the implicit costs of 
sugarcane field burning and opportunity losses from CCS decay due to a 
more balanced resource usage over the entire season. Further pre- 

Table 5 
The overall results from the proposed MOEGA when compared to the PGP solutions in terms of solution deviations and coefficients of variation.    

Average percentagesa of solution deviationsb and coefficients of variationc 

Instance PGP Order CCS Grower Equity Harvested Area   

Best Average CV Best Average CV Best Average CV  

M1-M2-M3 − 0.071 − 0.548 0.004 − 70.7963 − 38.1743 0.340 − 84.8728 − 19.1498 0.510 
Small M1-M3-M2 − 0.071 − 0.548 0.004 − 70.7963 − 38.1743 0.340 − 84.8728 − 19.1498 0.510  

M2-M1-M3 0.197 − 0.281 0.004 − 55.2912 − 4.3610 0.340 − 86.3524 − 28.1174 0.510  
M2-M3-M1 0.249 − 0.229 0.004 − 53.9995 − 1.5920 0.340 − 84.7687 − 22.1981 0.510  

Moderate M1-M2-M3 − 0.297 − 1.178 0.007 − 53.961 − 26.217 0.367 − 86.883 − 47.258 0.351  
M2-M1-M3 0.581 − 0.308 0.007 − 38.953 − 2.116 0.367 − 89.852 − 59.251 0.351  

Large M1-M2-M3 − 0.305 − 1.745 0.011 − 46.116 − 20.703 0.170 − 70.119 − 33.028 0.235  
M2-M1-M3 2.478 0.997 0.011 − 34.2703 − 3.342 0.170 − 77.425 − 49.305 0.235  

Practical (Early) M1-M2-M3 − 0.169 − 1.913 0.012 − 43.184 − 22.502 0.143 − 69.190 − 29.764 0.230 
Practical (Middle) M1-M2-M3 − 0.131 − 1.399 0.009 − 47.412 − 20.764 0.158 − 73.001 − 33.029 0.285 
Practical (Late) M1-M2-M3 − 0.156 − 1.652 0.010 − 53.852 − 23.810 0.177 − 62.809 − 25.430 0.217 
Practical (Balance) M1-M2-M3 − 0.079 − 0.551 0.004 − 43.235 − 24.950 0.296 − 76.622 − 36.883 0.282  

a The quality of solutions for small, moderate, and large instances is averaged over 10 MOEGA replications, while that of practical instances is averaged over five 
MOEGA replications due to comparatively long computation times. 

b Percentage of solution deviation is computed by (xMOEGA − xPGP)/(xPGP)⋅100. 
c CV is the coefficient of variation as computed by SDxMOEGA/xMOEGA. 

Fig. 2. Solution ranges (black vertical bar) for the three objectives based on the selected practical instances with at least 99.5% of the maximum CCS values obtained 
from the PGP solutions. Also included are red horizontal bars showing the solutions of the PGP approach. 

P. Jarumaneeroj et al.                                                                                                                                                                                                                         



Computers & Industrial Engineering 154 (2021) 107129

10

screening could have been done on the second and the third objectives 
depending on planner knowledge, current state of operations, and other 
related issues at time of decision making. 

6.4. The impact of cultivation patterns 

We have also conducted a comparative study on the Pareto fronts of 
the practical instances, where we shift cultivation patterns of data sets to 
match the four scenario settings, as demonstrated in Fig. 3. 

It could be seen that, among all four variants, the one with a balanced 
yield provides not only the best sugar production but also the least 
standard deviations in terms of both grower equity and harvested area, 
while the worst two variants are the early and late maturation scenarios 
with lease sugar output and higher standard deviations on both 
domains. 

Based on these results and the current practice in Thailand, where 
harvesting occurs mostly from early to middle of the season, the Thai 
sugar industry could be largely improved simply by balancing the sug-
arcane yields over the entire season. In doing so, the OCSB and mills 
must promote a new cultivation practice that leans towards such a 
scenario. For instance, growers should be informed by the OCSB 
regarding proper sugarcane species that best suit their growing areas, as 
well as the amount and time periods in which sugarcane should be 
cultivated, so that oversupply of sugarcane output in any specific time 
period can be avoided. 

On the other side of the supply chain, the mills must support growers 
by promptly responding to any slight changes that might take place on 
future periods. This could be achieved by an introduction of supportive 
information systems, such as the Geographic Information System (GIS), 
together with viable multi-objective decision support frameworks that 
take into account the conflicting objectives of different stakeholders, 
like the one introduced in this study. Without these technological sup-
ports, new equilibrium is less likely; and, the additional surplus would 
be futile. 

6.5. MOEGA implementation issues 

It is evident from the previous analyses that the MOEGA has several 
advantages over traditional harvest planning techniques. Firstly, the 

MOEGA generates a set of well-balanced solutions that concurrently 
benefits both growers and mills, with only slight decrease in sugar 
output, while traditional harvest planning techniques tend to generate 
smaller sets of optimal solutions that largely depend on parameter set-
tings and predefined sets of constraints. The MOEGA also helps decision 
makers explore not only the multi-dimensional solution space but also 
the trade-offs among three different conflicting objectives, which can 
potentially lead to new supply chain management practices that further 
enhance the Thai sugar supply chain as a whole. 

Nonetheless, the solutions provided by the MOEGA – and from other 
solution approaches in the literature – are only preliminary harvesting 
plans as they heavily rely on yield predictions, with no consideration on 
any other potential disturbances that might impede sugarcane harvest-
ing activities in future periods, such as weather conditions or the 
availability of limited harvesting resources. Since yield predictions are 
inherently uncertain, especially for periods far into the future, a selected 
harvesting plan is therefore rarely executable throughout an entire 
season. Rather, suboptimal plans with recourse actions may be more 
practical and thus are implemented for shorter periods within the sea-
son. For example, during a rainy period, harvesting with heavy ma-
chinery might have to be delayed or replaced with green teams – groups 
of laborers with comparatively low cutting capacities of 1.5–2 tons/ 
man-day (Pongpat et al., 2017). In either case, amendments on the 
adopted harvesting plan are inevitable; and, they are required not only 
for this specific period but also for those in the future until the end of 
planning horizon. Similar propagated changes on the selected harvest-
ing plans may also originate from field adjustment as to avoid excessive 
moves of harvest fronts in each harvesting period (Florentino et al., 
2018). 

To properly address uncertainties and possible forecast updates, the 
MOEGA could be performed in a rolling horizon fashion, where har-
vesting decisions corresponding to the current period are assessed along 
with other detailed operational decisions, i.e. daily harvest front 
scheduling, taking into consideration the most up-to-date information. 
With availability of multiple non-dominated harvesting plans and im-
provements in supply chain data, more fine-tuned harvesting plans with 
minimal adverse effects on both growers and mills could be potentially 
devised and successfully executed. We expect that, under this integrated 
framework, a more sustainable sugar supply chain could be established; 

Fig. 3. The Pareto Fronts of the selected four practical case’s variants.  
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and, it is something worth exploring in future studies. 

7. Conclusions 

Sugarcane harvest planning in Thailand is relatively unique due to 
discussions around grower equity and other local planning consider-
ations that potentially lead to conflicts among actors within the supply 
chain. In order to balance conflicting objectives while satisfying all 
posed constraints, this paper develops the Multi-Objective Sugarcane 
Harvesting Problem (MOSHP) that concurrently optimizes both grower’s 
and mill’s objectives, namely (i) the amount of sugar produced over the 
entire season, (ii) grower equity within and across parties, and (iii) ef-
ficiency in deployed resources across harvesting periods. We also 
develop a solution methodology based on genetic algorithms, but with a 
more intricate selection procedure, known as the NSGA-III in the liter-
ature. To better help the algorithm move towards the Pareto front, two 
local search operators are also embedded in the algorithm and inter-
mittently called every a fixed number of generations. Once the algorithm 
terminates, a pool of diverse harvesting plans is returned from which 
planners can pre-screen and select specific plans that best suit their 
particular situation for further evaluation and execution. 

We have applied the model and proposed solution methodology on 
the MOSHP instances of various sizes, where the largest instances 
comprise of 1,962 growers and 2,845 sugarcane fields with a total area 
of 91,726 rais. All information regarding these instances are generated 
based on the current operational information of a mill in Kanchanaburi 
Province, Thailand. We find that, when compared to mill-oriented so-
lutions, our approach is able to produce a set of diverse solutions with 
comparable quality, as the maximal average gap (in terms of sugar 
output) is only 2%. Nonetheless, our solutions show that, with slight 

decrease in sugar production, grower equity and supply chain efficiency 
could be largely improved. By improving these two other objectives, 
growers can receive higher profits, while mills can enjoy lower opera-
tional costs that potentially offset the decrease in sugar production. We 
also find that the greatest improvement can be achieved by moving the 
whole supply chain towards a balanced yield scenario, which, however, 
requires a relatively high level of collaboration throughout the Thai 
sugar supply chain. 

It should be remarked that the harvesting plans provided by the 
MOEGA are only preliminary plans with no detailed information 
regarding the schedules of harvest fronts. Nonetheless, the MOEGA is 
still useful as it could be combined with other detailed planning, i.e. 
daily harvest front scheduling, for the development of fine-tuned oper-
ational plans, which is worth exploring in future studies. 
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Appendix A 

In this appendix, pseudocode is included for the different parts of the solution methodology described in Section 5. 

Algorithm 1. Generation t of the NSGA-III.    

1: Input: H structured reference points (Zr) (or predefined reference points), parent population Pt with size N.  
2: Create: Create offspring population Qt from Pt .  
3: Sort: Sort the pool of solutions Rt = Pt ∪ Qt into different Pareto-optimal fronts (F1, F2, …, FL) based on non-dominated 

sorting procedure.  
4: Fill: Sequentially select and fill population Pt+1 from the first front’s solutions (F1) until those of front l (Fl), where St =
∑l

i=1

⃒
⃒
⃒Fi

⃒
⃒
⃒⩾
⃒
⃒
⃒N
⃒
⃒
⃒.  

5: if |St | = |N| then  
6: Return: Terminate and return population Pt+1.  
7: else 
8: Normalize: Normalize the objective points so that they are with the same unit range. 
9: Create: Create H structured reference points (Zr) on a normalized hyperplane.  

10: Attach: Attach each solution in St with a reference point based on the closest perpendicular distances between such 
a solution and the reference points.  

11: Compute: Compute niche counts for each reference point based on niche-preservation operation. Technically 
speaking, the niche count of reference point j, denoted by σj, is defined as the number of solutions in St⧹Fl associated 
with the jth reference point.  

12: Select: Select the solutions from Fl based on the niche count until |Pt+1 | = |N|.  
13: end if 
14: Return: Population Pt+1    

Algorithm 2. The structure of MOEGA.    

1: Input: Information regarding the MOSHP, together with other pre-specified parameters for the NSGA-III. 
2: Initialization: Initialize all parameters. 
3: Create and Repair: Create initial solution population and repair those infeasible solutions violating MOSHP 

constraints by IntGen and Repair. 
4: while current generation t < gen do  
5: Initialization: Initialize offspring solution (Qt).  

(continued on next page) 
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(continued ) 

6: while the number of offspring solution (|Qt |) < N do  
7: Generate: Generate an offspring based on the value of random variable p, whose value is bounded between 0 and 

1.  
8: if p < α then  
9: Crossover: Call the uniform crossover operator (U-Cross) for generating an offspring solution. 

10: else 
11: Mutation: Call the uniform mutation operator (U-Mutation) for generating an offspring solution. 
12: end if 
13: Repair: Repair the offspring solution if it is found to be infeasible by Repair. 
14: end while 
15: Local Search: Apply local search operators to help guide the algorithm every a fixed number of generations. 
16: NSGA-III Selection Procedure (Algorithm 1) 
17: Update: Update generation by t = t + 1.  
18: end while 
19: Return All non-dominated solutions to the MOSHP.   

Algorithm 3. Repair Module.    

1: Input: A solution to the MOSHP at generation t.  
2: Check: Check whether such a solution is feasible. 
3: if the given solution is feasible then 
4: Evaluate: Evaluate all three objectives of such a solution. 
5: Terminate: Terminate and return the solution back to the solution pool Pt.  
6: else 
7: while the given solution is infeasible do 
8: Undersupply: Repair the chromosomes violating the mill’s minimum capacity by Undersupply. 
9: Oversupply: Randomly remove the fields violating the mill’s maximum capacity to FO by Oversupply.  

10: MinCCS: Randomly remove the fields violating the minimum CCS constraint to FCCS by MinCCS.  
11: Relocate: Relocate unassigned fields, i.e. FO ∪ FCCS, to the best-possible periods, in terms of CCS values.  
12: end while 
13: Evaluate: Evaluate all three objectives of the repaired solution. 
14: end if 
15: Return A feasible solution.   

Algorithm 4. Undersupply Submodule.    

1: Input: A solution to the MOSHP at generation t.  
2: Minimum Capacity Check: Check whether the mill’s minimum capacity constraint is violated on any period p.  
3: while there exists a period p′ at which the mill’s minimum capacity constraint is violated do  
4: Create: Create a list of fields that should be harvested in period p′ based on the CCS values, i.e. Fb.  
5: Repair: Relocate a field from Fb to its best-possible period p′ until the mill’s minimum capacity constraint is met.  
6: Update: Update the chromosome, total capacity, remaining capacity, and oversupply in each period p.  
7: end while 
8: Return An updated chromosome.   

Algorithm 5. Oversupply Submodule.    

1: Input: A solution to the MOSHP at generation t.  
2: Maximum Capacity Check: Check whether the mill’s maximum capacity constraint is violated on any period p.  
3: if there exists a period p′ at which the mill’s maximum capacity constraint is violated do  
4: Remove: Randomly remove a field f in p′ to a temporary list FO.  
5: end if 
6: Update: Update the chromosome, total capacity, remaining capacity, and oversupply in each period p.  
7: Return An updated chromosome with FO.    

Algorithm 6. MinCCS Submodule    

1: Input: A (partially completed) solution to the MOSHP. 
2: Min CCS Check: Check whether the minimum CCS constraint is violated on any period p.  
3: while there exists a period p′ at which the minimum CCS constraint is violated do  
4: Remove: Remove all fields f in p′ that have CCS values lower than 10 and store such fields in a list FCCS.  
5: end while 
6: Update: Update the chromosome, total capacity, remaining capacity, and oversupply in each period p.  
7: Return An updated chromosome with FCCS.    
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