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A B S T R A C T   

The modelling near-infrared (NIR) spectroscopy data requires removal of scattering effects from the data before 
applying advanced chemometrics methods. Often different scatter-correction techniques are explored, and the 
scatter-correction technique with the best performance is selected. However, the information highlighted by 
different scatter-correction techniques may be complementary and their fusion may result in better models for 
predicting characteristics, such as meat quality. To test this, sequential and parallel preprocessing fusion ap
proaches will be used in this work to fuse information from different scatter-correction techniques to try to 
improve the predictive performance of NIR models. Three different chemical properties, i.e., moisture, fat and 
protein content, were predicted. For comparison, partial least-squares regression (PLSR) was performed on 
standard normal variate (SNV) corrected data, as this is a widely used scatter-correction technique. Compared to 
this commonly used procedure, the scattering fusion approaches reduced the error and bias by up to 52% and 
84%, respectively. The results suggest that fusion of scatter-correction techniques is essential to achieve optimal 
NIR prediction models for predicting meat characteristics such as moisture, fat and protein content.   

1. Introduction 

In recent years, near-infrared (NIR) spectroscopy has emerged as a 
key non-destructive technique for rapid and cost-effective estimation of 
meat properties [1,2]. Applications of NIR spectroscopy for meat range 
from prediction of chemical [3,4], sensory and textural properties [5] to 
authenticity of meat products [6–8]. 

The interaction of NIR light with the meat product is highly complex 
and the signal recorded after the interaction has two main components i. 
e., absorption and scattering [1]. The absorption is mainly related to the 
chemical components present in the meat whereas the scattering may 
result from the physical structure of the meat [9]. Often for efficient 
prediction of chemical components, scattering effects are removed from 
the data [10] as they may mask the underlying spectral signal corre
sponding to the chemical components [11]. The masking can be 
observed as additive and multiplicative effects over the whole spectral 
range. Several scatter-correction methods are available to remove these 
effects [12], such as 2nd derivative which removes first-order additive 
effects (baseline shift) and also reveals underlying peaks [13]. Standard 
normal variate (SNV) removes additive and multiplicative effects by 
treating each spectrum by subtraction of its mean spectral intensity from 

each intensity response and then division by the standard deviation of 
the spectrum [14]. Multiplicative scatter-correction (MSC) assumes that 
each spectrum consists of a multiplicative, an additive and a residual 
part [15]. In summary, there are many pre-processing methods available 
in chemometrics to remove or reduce the scattering effects in NIR 
spectra [10]. 

In chemometrics, often the best scatter-correction technique is 
selected [16]. However, selecting and using a single scatter-correction 
may lead to sub-optimal modelling as the data preprocessed with 
different scatter-correction techniques may carry complementary in
formation [10,17]. Recently, Mishra et al., (2020) [10] showed that a 
fusion of scatter-correction techniques is a better solution as the infor
mation highlighted by differently corrected data is complementary. 

This study aims to demonstrate that a fusion of information from 
different scatter-correction techniques can improve NIR models for 
predicting meat properties, compared to the NIR models using a single 
scatter-correction technique. To perform the fusion, the sequential 
preprocessing through orthogonalization (SPORT) [18] and the parallel 
preprocessing through orthogonalization (PORTO) approaches were 
used. Three different chemical properties (moisture, fat and protein) 
were used for the predictive analysis. As a comparison, standard PLSR 
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modelling was performed on SNV normalized data. 

2. Materials and methods 

2.1. Data set 

The NIR absorbance data set acquired on meat (minced pork) used in 
the study is the open-source data set available on the website of the 
Carnegie Mellon University http://lib.stat.cmu.edu/datasets/tecator. 
This data set was chosen as it is freely available and covers most com
mon meat properties such as moisture, protein and fat content. The 
spectra from 240 samples covered the range of 850–1050 nm with a total 
of 100 channels. The NIR data were recorded in transmission mode on a 
Tecator Infratec Food and Feed Analyzer and converted to absorbance 
by calculating the -log10 of the transmittance. Each sample contains 
finely chopped pure meat with different moisture, fat and protein con
tents. The moisture, fat and protein, measured in per cent, were deter
mined by oven drying, the Soxhlet and the Kjeldahl methods [19]. The 
samples were further portioned into calibration (60%) and test (40%) set 
using the Kennard-Stone algorithm [20]. 

2.2. Data analysis 

2.2.1. Scatter-correction methods 
In the present work, four of the most commonly used scatter- 

correction techniques were selected. Two techniques were model- 
based (variable sorting for normalization and multiplicative scatter- 
correction) and two were model-free (standard normal variate and 
2nd derivative). Multiplicative scatter-correction (MSC) models each 
spectrum as a mixture of scattering and absorbance [15]. The MSC was 
implemented using the mean as the reference. In standard normal 
variate (SNV) [14] for each spectrum, the offset correction is done by 
subtracting the mean intensity while the multiplicative effect is then 
reduced by dividing each intensity by the standard deviation of the 
centered spectrum. Variables sorting for normalization (VSN) [21] as
sumes that not all the bands are equally altered by the unwanted effects 
and, consequently, assigns to each variable a weight in the range [0,1] 
corresponding to its probability of it being affected only by scattering. 
VSN estimates these weights based on the random consensus (RANSAC) 
algorithm which estimates the extent to which a wavelength is affected 
by size effects (additive and multiplicative offsets) or by shape effects 
(chemical related features). In this way, variables that are strongly 
related to chemical components have a low weight and negligible role in 
the calculation of the size effect. The main benefit of the VSN approach 
in comparison to MSC is that it does not require a reference spectrum to 
perform the weight estimation. In the present work, the weights esti
mated by VSN were integrated into SNV leading to a weighted SNV. The 
fourth method was the calculation of 2nd derivative, which is commonly 
used to remove both additive and multiplicative effects [13]. Numerical 
differentiation, i.e., calculation of the second derivative, was performed 
using the Savitzky-Golay approach (2nd order polynomial with a 21- 
point window). All the pre-processing methods were implemented 
using the MBA-GUI [22] under MATLAB 2018b (The Mathworks, 
Natick, MA, USA). All the models were evaluated based on the coeffi
cient of determination (R2

P), root mean squared error of prediction 
(RMSEP) and prediction bias. 

2.2.2. Partial least-squares regression 
Partial least-squares regression (PLSR) is a common chemometric 

method [23] widely used for NIR data modelling [24]. PLSR projects the 
NIR data onto a subspace of latent variables (LVs) which have maximum 
covariance with the response(s). The transformed data are relevant for 
predicting the response variables. In this study, PLSR was calculated by 
means of the MATLAB’s built-in function ‘plsregress’, combined with a 
10-fold cross-validation procedure to select the optimal number of latent 
variables (LVs). 

2.2.3. Sequential preprocessing through orthogonalization 
SPORT is a two steps process involving a PLSR followed by orthog

onalization [18]. A schematic of SPORT approach is presented in Fig. 1a. 
The SPORT algorithm for two pre-processing blocks (X1 and X2) is as 
follows:  

1. The Y responses are fitted to the X1 by the PLS regression  
2. X2 is orthogonalized with respect to the scores obtained from the first 

regression  
3. The orthogonalized X2 is used to predict the Y residuals  
4. The overall predictive model is obtained by combining the sub- 

models calculated in steps 1 and 3 

The procedure is continued for as many blocks (4 in this case) as 
there are pretreatments. In this work, the scatter-correction order was 
2nd derivative, VSN, SNV and MSC, making a total of four blocks of data. 
The number of LVs is optimized exploring all possible combinations of 
LVs and the optimal one is the model resulting in the lowest RMSECV. 

2.2.4. Parallel pre-processing through orthogonalization 
PORTO is a combination of PLSR, generalized canonical analysis 

(GCA) and multiple orthogonalization steps. PORTO aims to extract 
common and distinct information within the differently scatter- 
corrected data to improve data modelling. The concept of PORTO to 
identify common and distinct information is shown in Fig. 1b. The three 
circles represent three differently scatter-corrected data and the letters D 
and C indicate the distinct and the common information. The algorithm 
for PORTO is similar to parallel partial least-squares regression and is as 
follows:  

1. Standard PLS models are calculated between the Y and each of the 
differently pre-processed blocks Xp (p = 1,…,P), leading to as many 
scores matrices Tp from each model.  

2. GCA is performed on all possible subsets of blocks to identify global 
and local common components (TCk) as those linear combinations of 
the block scores with high correlation.  

3. The scores Tp are orthogonalized with respect to TCk to obtain Tpo  
4. Step 2 and 3 are repeated for all relevant blocks by using the Tpo as 

the input to the GCA in step 2  
5. For each block, a PLS regression model is calculated between Y and 

the orthogonalized scores of each of the blocks, leading to distinct 
scores for each differently pre-processed block, i.e., TUp 

6. The final model is built by running an ordinary least square regres
sion between the concatenated scores matrix and the Y, leading to 
regression coefficients, Beta. 

To optimize the number of LVs for each block, several local cross- 
validations (CV) are performed in sequence, as discussed in [25]. The 
PORTO was implemented in MATLAB 2017b using the multi-block data 
analysis codes from NOFIMA (https://nofima.no/en/) for the imple
mentation of parallel orthogonalized partial lest-squares. 

3. Results 

3.1. PLSR modelling vs SPORT vs PORTO 

The results from PLSR, SPORT and PORTO modelling are shown in 
Fig. 2. For all the properties, the preprocessing fusion approaches out
performed the traditional PLSR modelling done using a single scatter- 
correction technique. A summary of the improvements in RMSEP 
attained with the SPORT and PORTO approach compared to the PLS 
regression analysis are shown in Table 1. It can be noted that for all three 
properties the SPORT and PORTO outperformed the PLS regression 
analysis performed on signal scatter correction technique. Further, the 
improvements were much better with the PORTO compared to the 
SPORT. For example, for protein prediction, the PORTO approach 
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Fig. 1. A schematic of the sequential (SPORT) (A) and parallel (PORTO) (B) preprocessing fusion approaches.  

Fig. 2. Summary of the partial least- 
squares regression (PLSR), sequential 
preprocessing through orthogonaliza
tion (SPORT) and parallel preprocessing 
through orthogonalization (PORTO) 
models. Model details are expressed in 
latent variables (LVs), coefficient of 
determination (R2

P), prediction bias 
(Bias) and root mean squared error of 
prediction (RMSEP). The PLSR predic
tion for (A) moisture content (%), (B) fat 
content (%), and (C) protein content 
(%). SPORT prediction for (D) moisture 
content (%) (4 LVs + 1 MSC), (E) fat 
content (%) (4 SNV + 2 MSC), and (F) 
protein content (%) (1 from 2nd deriv
ative + 1 MSC). PORTO prediction for 
(G) moisture content (%) (1 common 
component + 4 unique components), 
(H) fat content (%) (1 common compo
nent + 4 unique components), and (I) 
protein content (%) (2 common compo
nents + 3 unique components).   

P. Mishra et al.                                                                                                                                                                                                                                  



Infrared Physics and Technology 113 (2021) 103643

4

reduced the RMSEP by 54% compared to 33% reduction by the SPORT. 
On comparing the improvement by PORTO over the SPORT, it can be 
noted that the PORTO reduced the RMSEP by up to 33%. A better per
formance of PORTO can be accounted to its ability to perform a parallel 
fusion of information from several pre-processing, which extracts the 
information much more efficiently than the SPORT [26]. 

In the case of SPORT, the improvements were possible due to the 
ability of SPORT to model extra latent variables from a differently pre- 
processed data. For example, compared to the 4 LVs used by PLSR 
(based on SNV) for the prediction of moisture (Fig. 2A), the SPORT 
approach identified 1 extra LV from the MSC preprocessed block 
(Fig. 2D). Similarly, for the fat content, the SPORT approach identified 2 
extra LVs (MSC) (Fig. 2E) which are not identified by the standard PLSR 
modelling performed utilizing only SNV (Fig. 2B). In the case of protein, 
SPORT only identified 2 LVs (1from 2nd derivative +1 from MSC) 
compared to the 6 LVs identified by standard PLSR performed using 
SNV. The identification of LVs from multiple scatter-correction tech
niques by SPORT suggests that complementary information was present 
in differently scatter-corrected data and that the fusion led to better 
performing models. Similarly, for PORTO modelling, there were both 
common and unique latent variables involved in optimal models indi
cating a synergistic use of complementary information present in 
different pre-processings. 

4. Conclusions 

Selection of a single scatter-correction technique in NIR data 
modelling does not allow proper utilization of complementary infor
mation highlighted by different scatter-correction techniques. This 
study shows that the performance of NIR models for predicting moisture, 
fat and protein content in minced pork can be improved with the fusion 
of information from different scatter-correction techniques. Both the 
sequential (SPORT) or parallel (PORTO) fusion approaches allowed 
modelling of complementary information highlighted by different 
scatter-correction techniques. PORTO performed slightly better than 
SPORT. This could be because PORTO is based on identifying more 
detailed information (common and distinct) in differently scatter- 
corrected data, whereas the performance of SPORT may be affected by 
the order in which the scatter-correction techniques are arranged. These 
fusion approaches have the further benefit that they take the user out of 
the loop of identifying the best technique, thus, saving time and re
sources. Based on the results of this study, it is highly recommended that 
scientific community explore these preprocessing fusion approaches to 
improve the predictive performance of NIR models. 
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