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ARTICLE INFO ABSTRACT

Keywords: The modelling near-infrared (NIR) spectroscopy data requires removal of scattering effects from the data before
MUIIﬁbIOCk applying advanced chemometrics methods. Often different scatter-correction techniques are explored, and the
Fusion scatter-correction technique with the best performance is selected. However, the information highlighted by
;I::;lezgg different scatter-correction techniques may be complementary and their fusion may result in better models for
Multivariate predicting characteristics, such as meat quality. To test this, sequential and parallel preprocessing fusion ap-

proaches will be used in this work to fuse information from different scatter-correction techniques to try to
improve the predictive performance of NIR models. Three different chemical properties, i.e., moisture, fat and
protein content, were predicted. For comparison, partial least-squares regression (PLSR) was performed on
standard normal variate (SNV) corrected data, as this is a widely used scatter-correction technique. Compared to
this commonly used procedure, the scattering fusion approaches reduced the error and bias by up to 52% and
84%, respectively. The results suggest that fusion of scatter-correction techniques is essential to achieve optimal

NIR prediction models for predicting meat characteristics such as moisture, fat and protein content.

1. Introduction

In recent years, near-infrared (NIR) spectroscopy has emerged as a
key non-destructive technique for rapid and cost-effective estimation of
meat properties [1,2]. Applications of NIR spectroscopy for meat range
from prediction of chemical [3,4], sensory and textural properties [5] to
authenticity of meat products [6-8].

The interaction of NIR light with the meat product is highly complex
and the signal recorded after the interaction has two main components i.
e., absorption and scattering [1]. The absorption is mainly related to the
chemical components present in the meat whereas the scattering may
result from the physical structure of the meat [9]. Often for efficient
prediction of chemical components, scattering effects are removed from
the data [10] as they may mask the underlying spectral signal corre-
sponding to the chemical components [11]. The masking can be
observed as additive and multiplicative effects over the whole spectral
range. Several scatter-correction methods are available to remove these
effects [12], such as 2nd derivative which removes first-order additive
effects (baseline shift) and also reveals underlying peaks [13]. Standard
normal variate (SNV) removes additive and multiplicative effects by
treating each spectrum by subtraction of its mean spectral intensity from
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each intensity response and then division by the standard deviation of
the spectrum [14]. Multiplicative scatter-correction (MSC) assumes that
each spectrum consists of a multiplicative, an additive and a residual
part [15]. In summary, there are many pre-processing methods available
in chemometrics to remove or reduce the scattering effects in NIR
spectra [10].

In chemometrics, often the best scatter-correction technique is
selected [16]. However, selecting and using a single scatter-correction
may lead to sub-optimal modelling as the data preprocessed with
different scatter-correction techniques may carry complementary in-
formation [10,17]. Recently, Mishra et al., (2020) [10] showed that a
fusion of scatter-correction techniques is a better solution as the infor-
mation highlighted by differently corrected data is complementary.

This study aims to demonstrate that a fusion of information from
different scatter-correction techniques can improve NIR models for
predicting meat properties, compared to the NIR models using a single
scatter-correction technique. To perform the fusion, the sequential
preprocessing through orthogonalization (SPORT) [18] and the parallel
preprocessing through orthogonalization (PORTO) approaches were
used. Three different chemical properties (moisture, fat and protein)
were used for the predictive analysis. As a comparison, standard PLSR
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modelling was performed on SNV normalized data.
2. Materials and methods

2.1. Data set

The NIR absorbance data set acquired on meat (minced pork) used in
the study is the open-source data set available on the website of the
Carnegie Mellon University http://lib.stat.cmu.edu/datasets/tecator.
This data set was chosen as it is freely available and covers most com-
mon meat properties such as moisture, protein and fat content. The
spectra from 240 samples covered the range of 850-1050 nm with a total
of 100 channels. The NIR data were recorded in transmission mode on a
Tecator Infratec Food and Feed Analyzer and converted to absorbance
by calculating the -log10 of the transmittance. Each sample contains
finely chopped pure meat with different moisture, fat and protein con-
tents. The moisture, fat and protein, measured in per cent, were deter-
mined by oven drying, the Soxhlet and the Kjeldahl methods [19]. The
samples were further portioned into calibration (60%) and test (40%) set
using the Kennard-Stone algorithm [20].

2.2. Data analysis

2.2.1. Scatter-correction methods

In the present work, four of the most commonly used scatter-
correction techniques were selected. Two techniques were model-
based (variable sorting for normalization and multiplicative scatter-
correction) and two were model-free (standard normal variate and
2nd derivative). Multiplicative scatter-correction (MSC) models each
spectrum as a mixture of scattering and absorbance [15]. The MSC was
implemented using the mean as the reference. In standard normal
variate (SNV) [14] for each spectrum, the offset correction is done by
subtracting the mean intensity while the multiplicative effect is then
reduced by dividing each intensity by the standard deviation of the
centered spectrum. Variables sorting for normalization (VSN) [21] as-
sumes that not all the bands are equally altered by the unwanted effects
and, consequently, assigns to each variable a weight in the range [0,1]
corresponding to its probability of it being affected only by scattering.
VSN estimates these weights based on the random consensus (RANSAC)
algorithm which estimates the extent to which a wavelength is affected
by size effects (additive and multiplicative offsets) or by shape effects
(chemical related features). In this way, variables that are strongly
related to chemical components have a low weight and negligible role in
the calculation of the size effect. The main benefit of the VSN approach
in comparison to MSC is that it does not require a reference spectrum to
perform the weight estimation. In the present work, the weights esti-
mated by VSN were integrated into SNV leading to a weighted SNV. The
fourth method was the calculation of 2nd derivative, which is commonly
used to remove both additive and multiplicative effects [13]. Numerical
differentiation, i.e., calculation of the second derivative, was performed
using the Savitzky-Golay approach (2nd order polynomial with a 21-
point window). All the pre-processing methods were implemented
using the MBA-GUI [22] under MATLAB 2018b (The Mathworks,
Natick, MA, USA). All the models were evaluated based on the coeffi-
cient of determination (Rzp), root mean squared error of prediction
(RMSEP) and prediction bias.

2.2.2. Partial least-squares regression

Partial least-squares regression (PLSR) is a common chemometric
method [23] widely used for NIR data modelling [24]. PLSR projects the
NIR data onto a subspace of latent variables (LVs) which have maximum
covariance with the response(s). The transformed data are relevant for
predicting the response variables. In this study, PLSR was calculated by
means of the MATLAB’s built-in function ‘plsregress’, combined with a
10-fold cross-validation procedure to select the optimal number of latent
variables (LVs).
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2.2.3. Sequential preprocessing through orthogonalization

SPORT is a two steps process involving a PLSR followed by orthog-
onalization [18]. A schematic of SPORT approach is presented in Fig. 1a.
The SPORT algorithm for two pre-processing blocks (X; and Xj) is as
follows:

1. The Y responses are fitted to the X; by the PLS regression

2. X is orthogonalized with respect to the scores obtained from the first
regression

3. The orthogonalized X» is used to predict the Y residuals

4. The overall predictive model is obtained by combining the sub-
models calculated in steps 1 and 3

The procedure is continued for as many blocks (4 in this case) as
there are pretreatments. In this work, the scatter-correction order was
2nd derivative, VSN, SNV and MSC, making a total of four blocks of data.
The number of LVs is optimized exploring all possible combinations of
LVs and the optimal one is the model resulting in the lowest RMSECV.

2.2.4. Parallel pre-processing through orthogonalization

PORTO is a combination of PLSR, generalized canonical analysis
(GCA) and multiple orthogonalization steps. PORTO aims to extract
common and distinct information within the differently scatter-
corrected data to improve data modelling. The concept of PORTO to
identify common and distinct information is shown in Fig. 1b. The three
circles represent three differently scatter-corrected data and the letters D
and C indicate the distinct and the common information. The algorithm
for PORTO is similar to parallel partial least-squares regression and is as
follows:

1. Standard PLS models are calculated between the Y and each of the
differently pre-processed blocks X, (p = 1,...,P), leading to as many
scores matrices T from each model.

2. GCA is performed on all possible subsets of blocks to identify global
and local common components (T¢x) as those linear combinations of
the block scores with high correlation.

3. The scores T, are orthogonalized with respect to Tcy to obtain Tpo

4. Step 2 and 3 are repeated for all relevant blocks by using the T, as
the input to the GCA in step 2

5. For each block, a PLS regression model is calculated between Y and
the orthogonalized scores of each of the blocks, leading to distinct
scores for each differently pre-processed block, i.e., Typ

6. The final model is built by running an ordinary least square regres-
sion between the concatenated scores matrix and the Y, leading to
regression coefficients, Beta.

To optimize the number of LVs for each block, several local cross-
validations (CV) are performed in sequence, as discussed in [25]. The
PORTO was implemented in MATLAB 2017b using the multi-block data
analysis codes from NOFIMA (https://nofima.no/en/) for the imple-
mentation of parallel orthogonalized partial lest-squares.

3. Results
3.1. PLSR modelling vs SPORT vs PORTO

The results from PLSR, SPORT and PORTO modelling are shown in
Fig. 2. For all the properties, the preprocessing fusion approaches out-
performed the traditional PLSR modelling done using a single scatter-
correction technique. A summary of the improvements in RMSEP
attained with the SPORT and PORTO approach compared to the PLS
regression analysis are shown in Table 1. It can be noted that for all three
properties the SPORT and PORTO outperformed the PLS regression
analysis performed on signal scatter correction technique. Further, the
improvements were much better with the PORTO compared to the
SPORT. For example, for protein prediction, the PORTO approach
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Fig. 1. A schematic of the sequential (SPORT) (A) and parallel (PORTO) (B) preprocessing fusion approaches.
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Fig. 2. Summary of the partial least-
squares regression (PLSR), sequential
preprocessing through orthogonaliza-
tion (SPORT) and parallel preprocessing
through orthogonalization (PORTO)
models. Model details are expressed in
latent variables (LVs), coefficient of
determination (R%p), prediction bias
(Bias) and root mean squared error of
prediction (RMSEP). The PLSR predic-
tion for (A) moisture content (%), (B) fat
content (%), and (C) protein content
(%). SPORT prediction for (D) moisture
content (%) (4 LVs + 1 MSC), (E) fat
content (%) (4 SNV + 2 MSC), and (F)
protein content (%) (1 from 2nd deriv-
ative + 1 MSC). PORTO prediction for
(G) moisture content (%) (1 common
component + 4 unique components),
(H) fat content (%) (1 common compo-
nent + 4 unique components), and (I)
protein content (%) (2 common compo-
nents + 3 unique components).
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Table 1
A summary of improvement in RMSEP for moisture, fat and protein with SPORT
and PORTO approaches compared to PLS regression.

Properties % improvement % improvement % improvement with
with SPORT with PORTO PORTO compared to
compared to PLS compared to PLS SPORT

Moisture 7 38 33

Fat 9 32 25

Protein 33 54 32

reduced the RMSEP by 54% compared to 33% reduction by the SPORT.
On comparing the improvement by PORTO over the SPORT, it can be
noted that the PORTO reduced the RMSEP by up to 33%. A better per-
formance of PORTO can be accounted to its ability to perform a parallel
fusion of information from several pre-processing, which extracts the
information much more efficiently than the SPORT [26].

In the case of SPORT, the improvements were possible due to the
ability of SPORT to model extra latent variables from a differently pre-
processed data. For example, compared to the 4 LVs used by PLSR
(based on SNV) for the prediction of moisture (Fig. 2A), the SPORT
approach identified 1 extra LV from the MSC preprocessed block
(Fig. 2D). Similarly, for the fat content, the SPORT approach identified 2
extra LVs (MSC) (Fig. 2E) which are not identified by the standard PLSR
modelling performed utilizing only SNV (Fig. 2B). In the case of protein,
SPORT only identified 2 LVs (1from 2nd derivative +1 from MSC)
compared to the 6 LVs identified by standard PLSR performed using
SNV. The identification of LVs from multiple scatter-correction tech-
niques by SPORT suggests that complementary information was present
in differently scatter-corrected data and that the fusion led to better
performing models. Similarly, for PORTO modelling, there were both
common and unique latent variables involved in optimal models indi-
cating a synergistic use of complementary information present in
different pre-processings.

4. Conclusions

Selection of a single scatter-correction technique in NIR data
modelling does not allow proper utilization of complementary infor-
mation highlighted by different scatter-correction techniques. This
study shows that the performance of NIR models for predicting moisture,
fat and protein content in minced pork can be improved with the fusion
of information from different scatter-correction techniques. Both the
sequential (SPORT) or parallel (PORTO) fusion approaches allowed
modelling of complementary information highlighted by different
scatter-correction techniques. PORTO performed slightly better than
SPORT. This could be because PORTO is based on identifying more
detailed information (common and distinct) in differently scatter-
corrected data, whereas the performance of SPORT may be affected by
the order in which the scatter-correction techniques are arranged. These
fusion approaches have the further benefit that they take the user out of
the loop of identifying the best technique, thus, saving time and re-
sources. Based on the results of this study, it is highly recommended that
scientific community explore these preprocessing fusion approaches to
improve the predictive performance of NIR models.
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