
Product Line Architecture Design of Software-Intensive Physical Protection
Systems
ISSE 2020 - 6th IEEE International Symposium on Systems Engineering, Proceedings
Tekinerdogan, Bedir; Yakin, Iskender; Yagiz, Sevil; Ozcan, Kaan
https://doi.org/10.1109/ISSE49799.2020.9272239

This publication is made publicly available in the institutional repository of Wageningen University and Research, under
the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with
explicit consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact openscience.library@wur.nl

https://doi.org/10.1109/ISSE49799.2020.9272239
mailto:openscience.library@wur.nl

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Product Line Architecture Design of

Software-Intensive Physical Protection Systems

Bedir Tekinerdoğan

Information Technology

Wageningen University & Research
Wageningen, The Netherlands

bedir.tekinerdogan@wur.nl

İskender Yakın

ASELSAN

Ankara, Turkey
iyakin@aselsan.com.tr

Sevil Yağız

ASELSAN

Ankara, Turkey
syagiz@aselsan.com.tr

Kaan Özcan

ASELSAN

Ankara, Turkey
mkozcan@aselsan.com.tr

Abstract— A physical protection system (PPS) integrates

people, procedures, and equipment for the protection of assets

or facilities against theft, sabotage, or other malevolent

intruder attacks. Since PPSs are not radically different and

share lots of commonalities, there is an important potential

for reuse and herewith an opportunity to substantially reduce

the cost and development time, and enhance the quality of the

developed PPSs. In this paper, we report on the design of a

product line architecture for a family of software-intensive

PPSs. With this, we adopt a model-based systems engineering

(MBSE) approach in which we focus on the architecture

design of PPSs. We model the corresponding architecture

view models for the PPS product line architecture and discuss

the development of specific PPSs.

Keywords— Physical Protection Systems, Systems

Engineering, Product Line Engineering, Architecture Design

I. INTRODUCTION

Currently, many physical systems such as airports, rail
transport, highways, hospitals, bridges, the electricity grid,
dams, power plants, seaports, oil refineries, and water
systems, require protection. In this context, a physical
protection system (PPS) integrates people, procedures, and
equipment for the protection of assets or facilities against
theft, sabotage, or other malevolent intruder attacks [8]. A
PPS provides deterrence, detection, delay, and response
measures to protect the corresponding facility against an
adversary’s attempt to complete a malicious act. Designing
effective PPSs requires a thorough analysis of the
requirements and the resources to provide the protection
that is needed. To guide the analysis and development
process and properly realize these concerns, dedicated PPS
methods have been proposed. A PPS method provides the
step to assess the vulnerabilities of a facility together with
the corresponding insider or outsider threats, and likewise
provide adequate protection at critical points of the facility,
by also effectively using the available resources.

This paper considers the context of an industrial
company that is developing a broad range of PPSs for
different kinds of facilities ranging over different business
domains. Although each facility that needs to be protected
is unique, the PPS share a broad range of features and the
same gross-level structure, or architecture. Developing each
PPS from scratch is a timely and costly activity. To reduce
the time-to-market, reduce the cost of development, and
increase the quality of the PPSs, a reuse-based development
approach is an important and valuable alternative. In fact,
reuse has already been an important goal in many industrial

practices and has also been broadly addressed in the
literature. Reuse can be done at a small scale for reusing
small components, and in an ad hoc manner. Yet, it is now
widely recognized that a large-scale and systematic reuse
approach can achieve the most substantial benefit. This idea
has culminated in the product line engineering (PLE)
approach that is comprehensive and systematic and indeed
focuses on exploiting reuse over the whole lifecycle
process. A product line is defined as a set of systems sharing
a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed
way[3].

One of the critical assets in PLE is the product line
architecture. The products in the product line typically share
a common product line architecture, and it is thus essential
to model and document the product line architecture
properly. The product line architecture is needed to support
the communication among stakeholders, guide the design
decisions and the development of the artifacts in the life
cycle. Explicitly modeling the artifacts in the lifecycle
process is a recommended practice of the model-based
systems engineering (MBSE), which focuses indeed on
creating and exploiting domain models as the primary
means of information exchange between engineers, rather
than on document-based information exchange.

The architecture design, together with the rationale of
the design decision, is described in the architecture
documentation. Typically, architecture needs to be modeled
for multiple stakeholders that have different concerns.
Hence, a common practice for modeling the architecture is
by modeling different architectural views, each of which is
a representation of a set of system elements and relations
associated with them to support a particular concern.
Architectural views conform to well-defined viewpoints
that represent the conventions for constructing and using a
view. Having multiple views helps to separate the concerns
and, as such, support the modeling, understanding,
communication, and analysis of the software architecture
for different stakeholders. In this paper, we focus on the
design of a product line architecture of PPSs using multiple
architecture views.

The remainder of the paper is organized as follows. In
section 2, we present the background. Section 3 describes
the product line scope for product line architecture. Section
4 describes the adopted architecture framework, the selected
viewpoints, and the product line architecture views. Section
5 presents the application engineering process of the

product line architecture. Section 6 presents the related
work, and finally, section 7 concludes the paper.

II. PRELIMINARIES

A. Physical Protection Systems

PPS design is a systematic approach that employs, in
particular, a systems engineering approach [8][6]. Systems
engineering is an interdisciplinary approach to translating
users' needs into the realization of a system, its architecture,
and design through an iterative process that results in an
effective operational system [9][11].

Systems engineering can be applied for developing
different systems, and as such, the method is agnostic to the
domain of particular physical systems. Yet, to carefully
address the specific concerns of PPSs dedicated PPS
methods have been proposed [6][7][8]10][26]. Based on the
identified PPS methods, we can state that the design of each
PPS includes a predefined set of activities, including the
determination of PPS objectives, the design and
implementation of a PPS, the evaluation of the design, and
if needed, a redesign or refinement of the system. Fig. 1
shows the top-level process of a PPS design method using
the Business Process Modeling Notation (BPMN). The
illustrated process can be applied to the case of a new PPS
design, or an adaptation and enhancement of an existing
PPS. The resulting PPS design should meet the earlier
identified PPS objectives within the operational, safety,
legal, and economic constraints of the facility.

1. Determine
Objectives PPS

2. Design/
Implement PPS

3. Analyze PPS

Key: BPMN

Fig. 1. Design and Evaluation Process for Physical Protection Systems

In this paper, we focus on the design process of the PPS,
which focuses on its turn on the three key sub-activities,
detection, delay, and response, as shown in Fig. 2.

2.1 Detection 2.2 Delay 2.3 Response

Key: BPMN

Fig. 2. PPS Design Process

Specific guidelines are included in the PPS design
method. For example, PPS detection should be as far from
the target as possible and delays near the target. Detection
without assessment is not detection, and thus these two
should be aligned appropriately. Another guideline
considers the close association between response and
response force communications. The PPS should be
designed with effective communication calls for a response
to provide the necessary response to neutralize the
adversarial attacks. These and many other guidelines for
designing effective PPSs are provided to ensure that the
designer takes advantage of the strengths of each piece of
equipment and uses equipment in combinations that
complement each other and protect any weaknesses
[8][6][26].

B. Product Line Engineering

In the previous sub-section, we have indicated that a
systems engineering method is, in general, agnostic to the
particular domain. In addition to this, the conventional
systems engineering methods do not explicitly consider
reuse, which is mostly an implicit concern. In particular, the
notion of PLE is not well integrated, besides of recent
studies that have addressed this issue [11]19][20].

In the traditional approach which does not adopt PLE,
usually, a product portfolio can exist, but products are
developed separately. This means that no PLE practices
such as explicit commonality variability modeling, a
product family architecture, and a shared asset base is
adopted. The usually adopted process is shown in Fig. 3.

The primary activity in this process is to identify among
all the already manufactured or delivered products, which is
the closest one to the requirements and needs expressed
formally (through a request for proposal or RFP) by a new
potential customer [19]. Then the selected engineering
artifacts of the previously existing product are reused and
modified to completely fulfill the RFP requirements
through multiple iterations.

Request for
Proposal

Gap Analysis

Existing Products

Selected Products
To be reused

Develop New
Product

New Product

Fig. 3. Ad-hoc, non-PLE reuse strategy (adapted from: [19])

In case the products in the product portfolio share a
substantial percentage of features, then the single system
non-PLE based approach is considered less efficient. To
exploit the potential for reuse, a systematic PLE method is
then required. Compared to single system development,
applying a product line engineering approach requires
additional investments. The initial investment will result in
a so-called return on investment (ROI). Altogether, PLE
includes one or more of the benefits of large-scale
productivity gains, decreased time to market, increased
product quality, decreased product risk, increased market
agility, increased customer satisfaction, more efficient use
of human resources, ability to effect mass customization,
ability to maintain a market presence, and ability to sustain
unprecedented growth [1][13][15][16].

Different product line engineering processes have been
proposed in the literature. As shown in Fig. 4., the common
PLE process usually consists of two different activities
[15][23][18]. In domain engineering, the focus is on
developing reusable assets, while in the application
engineering, these reusable assets are used to develop
products. The terms domain engineering is also called

core/reusable asset development, while application
engineering is sometimes termed product development.

Application Engineering

Domain Engineering

Domain Req.

Engineering

Product

Management

Domain

Design

Domain

Implementation

Application

Req.Engin.

Application

Design

Application

Implementation

Reusable Asset Base

Application Verification and Validation

Fig. 4. SPLE Process

C. Architecture Design

Setting up a PLE for PPS would require realizing all the
activities of the process, as shown in Fig. 4. In this paper,
however, we do not elaborate on the entire product line
engineering but instead focus on product line architecture.
Since we are dealing with software-intensive PPS, we will
focus on the design of software product line architecture.

It is generally accepted that software architecture design
plays a fundamental role in coping with the inherent
difficulties of the development of large-scale and complex
software. Architectural drivers define the concerns of the
stakeholders. A stakeholder is defined as an individual,
team, or organization with interests in or concerns relative
to a system. Each of the stakeholders’ concerns impacts the
early design decisions that the architect makes. A common
practice is to model different “architectural views” for
describing the design according to the stakeholders. An
architecture view is a representation of a set of system
elements and relations associated with them to support a
particular concern. Having multiple views helps to separate
the concerns and, as such, support the modeling,
understanding, communication, and analysis of the software
architecture for different stakeholders. Architectural views
conform to viewpoints that represent the conventions for
constructing and using such a representation. An
architecture framework organizes and structures the
proposed viewpoints.

A recent software architecture framework approach is
the so-called Views and Beyond (V&B) approach [4][5].
The approach distinguishes three different categories of
viewpoints or styles, including module, component-and-
connector, and allocation styles. Module views deal with
concerns related to implementation, such as decomposition
and generalization. The C&C views deal with the
interaction structure, such as data flow and message routing.
The allocation views describe how software elements are

allocated to the environment of the software system, such as
hardware or development teams. A software architecture
that addresses the concerns of specific stakeholders is here
referred to as an application architecture. Application
architectures can be viewed as specific implementations of
product line architecture, which is the generic design for a
family of systems.

III. PRODUCT LINE SCOPING

As stated before, the product line architecture defines
the gross level structure for a family of products. For
different product portfolios, we might end up with a
different product line architecture. The products in the
product line are not randomly selected. Typically, products
are targeted that are likely to achieve the most economic
benefit; and can be efficiently developed with the core
assets either planned or in hand.

In this section, we focus on the product management
activity of product line engineering, a sub-process of
domain engineering for controlling the development,
production, and marketing of the software product line and
its applications. The input for product management consists
of the company goals defined by top management. The
purpose of product management is to make a significant
contribution to entrepreneurial success by integrating the
development, production, and marketing of products that
meet customer needs. An essential task of product
management is thus the management of a company’s
product portfolio, which is defined as the product types that
are provided by the product line organization. Portfolio
management is a dynamic decision process that continually
checks and updates the portfolio according to the market
and business requirements. The product management sub-
process specifies a product roadmap, which outlines the
estimated product line and defines the major common and
variable features of all applications of the product line. The
product roadmap is, on its turn, provided to the domain
requirements engineering, which defines the product
requirements based on which the product line architecture
will be designed.

Product management employs scoping techniques to
define what is within the scope of the product line and what
is outside. The success of the product line architecture and
herewith the overall product line process depends largely on
the appropriate product line scope. If the scope is too large,
the different product members will typically vary too much,
and likewise, it will be more difficult to realize
commonality and variability. The risk is then that the
product line will collapse into the one-at-a-time product
development effort. On the other hand, if the scope is too
small, then the core assets might not be able to
accommodate future growth, and the product line will
stagnate. As a result, it will be difficult to realize economies
of scope and achieve the expected return on investment.
Scoping should be done carefully to mitigate these risks.

Domain Scoping

Product Portfolio

Scoping

Asset Scoping

Product Roadmap

Scoped Domain Model

List of Assets

Decide on

Final Scope

Fig. 5. Different Scoping Techniques and the output of each process

As shown in Fig. 5. three different forms of scoping can
be distinguished [1]:

• Product Portfolio Scoping

The focus here is on identifying the products that need
to be developed together with the features the products
should provide. This process is usually driven from
marketing aspects and likewise is a topic beyond
system/software engineering aspects.

• Domain Scoping

Here, the boundaries for the domain under consideration
that are supposed to be relevant to the product line are
defined.

• Asset Scoping

This task aims at identifying the particular
(implementation) components that should be developed in a
reusable manner.

These three product line scoping processes build on
each other in the sense that each of them refines the
decisions made on the previous level. Correspondingly they
can be connected with different stages in the product line
development process: the product portfolio scoping relates
to the overall set-up phase and is usually driven by a market
study.

The overall product management process at the
company is shown in Fig. 6. . Based on the company goals,
the product roadmap is envisioned from which a product
contract is derived. The product contract is then used to
develop the system requirements and support the systems
engineering process. Obviously, in this case, it is harder to
identify the products beforehand. Thus the product line
scoping will less rely on product portfolio scoping whereby
an explicit product roadmap is prepared. Therefore, we have
decided to aim to apply product line scoping using domain
scoping and asset scoping. In essence, the product line
scope includes the broad scope of the PPS domain with
focusing on particular PPSs (such as railway PPS, highway
PPS, etc.).

PRODUCT MANAGERS;

CUSTOMER SYSTEM ENGINEERING DEPARTMENTTOP-LEVEL MANAGEMENT

Define Company

Goals

PLANNING

REALIZATION

 Define

Product Contract

 Define

Product Roadmap

 Define System

Requirements

 Define System

Design

Fig. 6. Adopted Product Management Process

The term PPS by itself is also very broad and includes
several sub-domains. Further, the relationship between
domains and systems is often many-to-many. Systems do
not necessarily cover a whole domain and may belong to
several domains. For example, an application concerning
distributed banking practices covers at least the following
domains: banking practices, commercial bank information
systems, workflow management, user interfaces, database
management systems, and networking. Also, a domain can
be used in several systems, and several domains may be
scattered under one system.

Fig. 7. depicts the overall domain with the identified
sub-domains that will be considered. In the figure, several
PPS domains have been identified, but the adopted global
scope is not only limited to these domains. This decision
has, of course, also its implications for the product line
architecture and the product portfolio. We will elaborate on
this in the next paragraphs and subsections.

Physical Protection System (PPS)

Public
Protection System

Border

Protection System

Coast Protection
System

Pipeline Protection

System

Highway
Protection System

(ANPR)

 Protection
System

Fig. 7. Overall Scope for PPS product line

IV. PPS PRODUCT LINE ARCHITECTURE

Developing PPS product line architecture requires the
selection of an architecture framework that is then used to
design the PPS product line architecture, and based on this,
the specific PPS application architectures. Fig. 8. shows the
distinct architect roles in the overall product line
engineering process.

defines
PPS Product Line

Architecture Views

Architecture

Viewpoints

conforms to

defines/

selects

defines
PPS Application

Architecture Views

derived from

Viewpoint Designer/Selector

PL Architect

Application Architect

Fig. 8. Viewpoint definition and view development in the PLE process

The roles are the following:

• PL Viewpoint Designer/Selector – the person who
designs or selects the architecture framework and
viewpoints for the PL

• PL Domain Architect – the person who designs the
product line architecture using the PL viewpoints that
have been defined by PL Viewpoint Designer/Selector

• PL Application Architect - the person who develops the
application architecture based on the PL Domain
Architecture Views developed by PL Domain
Architect.

Hence for designing the PL architecture, the first thing
that is needed is the selection of PL Architecture
Viewpoints. For designing the architecture, we have
adopted the Views and Beyond (V&B) approach from
which we have selected the decomposition view, layered
view, aspects view, client-server view, publish-subscrivew
view, and deployment views. In the following, we will
discuss the selected views.

A. Decomposition View

The product line decomposition view for PPS is shown
in Fig. 9. The decomposition view represents the overall
decomposition of the system as a set of implementation
units. The decomposition view includes all the modules that
can be used in the design of a family of specific PPSs. It
should be noted that the view has been shown for illustration
purposes and (due to confidentiality reasons) should not be
considered complete. Further, we have assumed that each
module represents a software implementation unit, but on
the other hand, it could also relate to hardware/system
elements. We have not made a distinction between software
and system elements. In our future work, we will explore
this distinction in more detail.

Each of the modules of Fig. 9 can have their own sub-
decomposition, which has also been documented. Due to
space limitations, we can not show the complete

decomposition but provide the decomposition view for PPS
Detection (Fig. 10).

Physical Protection System

Internal Intrusion
Detection

External Intrusion
Detection

Access Control

Closed Circuit
Television (CCTV)

Fire Detection

Facility Management

Pedestrian Access
Control

Environmental
Sensors

Radio
Communications

Video Analytics Alarm Monitoring Radar Systems

...

Fig. 9. Product Line Decomposition View for PPS

Physical Protection System - Detection

Internal Intrusion
Detection

External Intrusion
Detection

Fire Detection

Environmental
Sensors

Automatic
Identification System

Alarm Monitoring

Radar Systems CCTV

Fiber/Cable Based
Detection

Network Video
Recorder

Acoustic Detection
Cloud Video

Recorder

Fig. 10. Product Line Decomposition View of PPS Detection

B. Layered View

The layered view for the PPS is shown in Fig. 11. The
lowest layer represents the Facility Layer that includes the
physical elements. The Protection Layer accesses this
facility layer by the use of sensors and actuators. The overall
business logic with the key functionalities such as detection,
alarm assessment, alarm classification, and response
deployment and communication, is provided in the Business
Logic Layer. This layer also includes the software modules
for analytics and decision making for protecting the facility.
Typically it includes the modules as defined in the
decomposition view. The higher-level layer Application UI
Layer defines the client applications that use the modules in
the business logic layer. The architecture also includes a
side layer Configuration Layer, which includes the modules
for configuring the modules in the other layers for
customizing the PPS for various domains.

Facility Layer

Protection Layer
(Sensors and Actuators)

Business Logic Layer

Application/UI Layer
(PPS Application)

Data Model

Signature-Based
Detection

Alarm
Assessment

Response

Event Post
Classification

Anomaly
Detection

Configuration
Layer

 CVR/NVR
Monthly Report

Archiving

Fig. 11. Product Line Layered View for PPS

C. Aspects View

As stated before, we have chosen for a broad scope of
the PPS product line. This required to design the
architecture in a generic manner from which we can derive
many concrete PPSs. However, to support the easy
configuration and reuse, we have implemented an explicit
configuration layer, as it is shown in the layered view in Fig.
11. Part of the configuration requires the implementation of
aspects to cope with cross-cutting concerns such as logging
and monitoring [2]. Fig. 12 shows the aspect views with an
illustration of the key aspects. We have adopted the
notations as proposed by the V&B approach [4].

Aspects View

<<Aspect>>
Logging

<<Aspect>>
MessageMonitoring

<<Aspect>>
ThreadMonitoring

<<Aspect>>
QueryMonitoring

Crosscuts all the operation actions

Crosscuts all incoming and outgoing
messages to the software

Crosscuts all the active threads in the
overall lifecycle

Crosscuts all the queries

<<Aspect>>

Crosscuts ...

Fig. 12. Product Line Aspects View of PPS

D. Client-Server View and Publish-Subscribe View

A software-intensive PPS is digitally controlled and can
consist of multiple components that are located on
networked computers. Each PPS can be deployed on
different platforms and thus a proper platform needs to be
selected [21]. The computers can be connected by a local
network and be physically close to each other, or they can
be combined in a wide area network and geographically
distant. The components in such a distributed system can

communicate and coordinate their actions by passing
messages to achieve a common goal. There are many
alternatives for the message passing mechanism in
distributed systems, including the request-reply pattern and
publish-subscribe pattern [4]. The Client-Server pattern
adopts a request-reply pattern in which we distinguish
between server components that provide the services and
client components that can access these services to
synchronous, blocking service operations. Alternatively, in
the publish-subscribe, so-called subscribers express their
interest in an event, or a pattern of events, and are
subsequently asynchronously notified of events generated
by publishers. In our PPS product line architecture, both
patterns are required and modeled using the so-called
Client-Server View and Publish-Subscribe View. Fig. 13.
shows the PPS Publish-Subscribe view [22].

Publish/Subscribe Domain

Application Node

1..*

 Participant

 Data Object/

Event

writes

reads

Subscriber

 <0..*>

Publisher

 <0..*>

Fig. 13. Product Line Publish-Subscribe View for PPS

E. Deployment View

The deployment view considers the allocation of
software modules to hardware nodes. Since we do not have
a fixed configuration, we cannot directly provide a
reference deployment architecture view. However, every
PPS can be considered as a system-of-systems (SoS)
configuration consisting of multiple systems, which, on
their turn, can consist of sub-systems, which finally consists
of components [25]. This generic SoS structure is shown in
the left part of Fig. 14.

PPS
Application StructureReference Structure

System of Systems

System

Sub-System

*

*

Component

*

Country

Region

City

Building

*

*

*

Facility

*

Fig. 14. Decomposition of PPS systems as System of Systems

An example configuration of PPS is shown in the right
part of Fig. 14, which represents the configuration for the
protection of buildings. A building is part of a facility,
which is located in a city, which belongs to a region, which
is part of a country. Even for this structure, we could derive
multiple PPSs that focus on the protection of the mentioned
system elements (building, facility, city, region, country).

Each element of an SoS forms a node to which the
modules of the earlier views can be allocated to realize the
necessary protection measures. For the example
configuration of PPS, this implies that the layers and
corresponding modules of Fig. 11 are allocated to the
different SoS elements (e.g., Building, Facility, City,
Region). This is typically done after the modules are
configured for a particular context. In this way, we could
have a different kind of system architectures ranging from
local control whereby all the PPS business logic is deployed
at the local entity (e.g., Building), to the centralized control
whereby the PPS business logic is allocated at the central
entity (e.g., Facility, City, Region, or even Country level).
In the case of local control architecture, the sensors and
actuators, as well as the controlled equipment, are within
proximity, and the scope of each controller is limited to a
specific system or subsystem. For the given example, this
would mean that protection is localized for a building, and
no further notification and protection measures are provided
beyond the building boundary. Local PPS controllers can
accept inputs from a supervisory controller to initiate,
configure, or terminate locally-controlled automatic
sequences, but the control action itself is determined in the
local controller. The required operator interfaces and
displays are also local.

In a centralized controlled PPS (e.g., building), the
protection layer (sensors, actuators) within the facility are
connected to a single controller or group of controllers
located in a higher SoS element (e.g., City common control
system). An example view of a centrally controlled PPS is
shown in Fig. 15. Note that here we have just one level of
control, that is, the City level. The control could be
hierarchically allocated to the upper levels of the SOS. It
can be observed that different PPS configurations can thus
be defined with the architecture.

PPS City Common Control Center

*

*

Building

Smart UI

Sensors Actuators

Applications

Business Logic Layer

Application/UI Layer
(PPS Application)

Data Model

Detection
Alarm

Assessment
Response

Event Post
Classification

Monthly
Report

Archiving

Configuration
Layer

Fig. 15. Centrally Controlled PPS

V. APPLICATION ENGINEERING

Once the domain assets have been developed, we can
continue with the application engineering process in which
a specific PPS is designed and implemented. For this, we
will follow the conventional PLE process, as shown in Fig.
4. However, the traditional PPS process has been designed
primarily from the perspective of a single system, and thus
without reuse. Fig. 16. shows the integration of PPS with the
PLE process, which we will use to develop concrete PPSs.
In essence, the output of the PPS domain engineering
process are the family artifacts (such as family feature
model and reference architecture), while the PPS
application engineering focuses on reusing these artifacts to
develop a particular PPS.

PPS Domain Engineering

Domain Requirements
Engineering Domain Design Domain Implementation

PPS Family Feature Diagram PPS Reference Architecture Views

PPS Application Engineering

Determine PPS
Requirements

Design PPS Implement PPS

PPS Application Feature Diagram PPS Application Architecture Views

Fig. 16. PPS Design Process integrated with PLE Process

VI. RELATED WORK

A comprehensive overview of PPS methods is provided
in several textbooks and reports [6][8][10]. In our own
study, we have provided an explicit process model that
integrates the PLE process with the PPS process [24].

Several reference architectures are related to or quite
close to PPS architectures. Software-Intensive PPSs adopt
sensors and actuators to support physical protection. The
detection is typically connected to a central server that
assesses and classifies the alarm, and if needed, triggers the
necessary response. In this sense, PPS uses the notion of
Internet of Things (IoT) [12] that can be described as
connecting devices to the internet. Various reference
architectures have been provided for the IoT. In general, IoT
architecture is integrated as a layered architecture, including
device/datalink layer, network layer, session layer, and
application layer [17]. The device layer includes the
capabilities for the things in the network. The network layer
provides functionality for networking connectivity and
transport capabilities. The IoT layered architecture consists
of functionality for generic support capabilities (such as
data processing or data storage), and specific support
capabilities for the particular applications. In addition to
these, two side-car layers relating to the other four layers are
provided. A security layer includes the functionality to
ensure security over the layers. A management layer
supports capabilities such as device management, local
network topology management, and traffic and congestion
management.

An intrusion detection system (IDS) monitors a network
or systems for malicious activity or policy violations
[1][14]. In case of an intrusion or violation activity, this is
typically reported either to an administrator or collected
centrally using a security information and event
management system. The latter combines outputs from
multiple sources and uses alarm filtering techniques to
distinguish malicious activity from false alarms. In the PPS,
the detection functionality largely uses the techniques as
proposed by IDS and IDPS (intrusion detection and
prevention system).

Supervisory control and data acquisition (SCADA) is a
system of software and hardware elements to control
industrial processes locally or at remote locations. The
basic SCADA architecture begins with programmable logic
controllers (PLCs) or remote terminal units (RTUs), which
are microcomputers that communicate with an array of
objects such as factory machines, sensors, HMIs, and end
devices. The information from these objects is then routed
to computers with SCADA software, which on its turn,
processes and analyses the data to support the decision
making of operators. The PPS is, in essence, a control
system with various hierarchical levels of control.

VII. CONCLUSION

A physical protection system (PPS) is a systems
engineering approach that integrates people, procedures,
and equipment for the protection of assets or facilities
against adversarial attacks. Dedicated PPS methods have
been proposed that provide the steps for designing a PPS,
including the critical measures of deterrence, detection,
delay, and response. For developing multiple PPS, it pays
off to adopt a product line engineering approach that
supports the large scale systematic reuse and herewith
includes several benefits such as reduced time-to-market,
reduced cost of development, and increased quality. The
products in the product line share a common product line
architecture. The architecture, as such, is a key artifact that
guides the development of systems, and supports the
communication among stakeholders, guides the design
decision, and supports the analysis of a system. Proper
design and documentation of the architecture are crucial for
the success of a product line.

In this paper, we have reported on the design of a
product line architecture for PPS. Earlier PPS methods have
focused on the overall process but did not consider the
design and documentation of PPS architectures. In
alignment with model-based systems engineering, we have
adopted an architecture framework approach to model the
PPS product line architecture using multiple views. Each
PPS architecture view helps to focus on the system from a
particular concern perspective.

To the best of our knowledge, this is the first time that a
PPS architecture is documented using a model-based
approach. In our future work, we will further develop the
PPS product line using the presented product line
architecture, thereby also addressing the other PLE lifecycle
activities.

REFERENCES

[1] S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy.
2000.

[2] J. Bakker, B. Tekinerdogan, M. Aksit. Characterization of early
aspects approaches. In Proc. of the Early Aspects Workshop at
AOSD, The Netherlands, 2005.

[3] P. Clements, L. Northrop. Software Product Lines: Practices and
Patterns. Boston, MA:Addison-Wesley, 2002.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[5] E. Demirli, B. Tekinerdogan. Software language engineering of
architectural viewpoints. in Proc. of European Conference on
Software Architecture, p. 336-343, Springer, 2011.

[6] L. Fennelly. Effective Physical Security, Fifth Edition (5th. ed.).
Butterworth-Heinemann, USA, 2016.

[7] ML. Garcia. Vulnerability assessment of physical protection
systems. Amsterdam: Elsevier Butterworth-Heinemann; 2006.

[8] ML. Garcia. The design and evaluation of physical protection
systems. 2nd ed. Amsterdam: Elsevier, 2008.

[9] Guide to the Systems Engineering Body of Knowledge (SEBoK),
October 2016.

[10] IAEA, Handbook on the Physical Protection of Nuclear Material
and Facilities, IAEA-TECDOC-127, March 2000.

[11] INCOSE Product Line Engineering International Working Group,
http://www.incose.org/ChaptersGroups/WorkingGroups/analytic/p
roduct-lines, accessed October 2017.

[12] A. McEwen, H. Cassimally. Designing the Internet of Things.
Wiley, 2014.

[13] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl, Initiating
software product lines, IEEE Software, 19(4), pp. 24–27, Jul. 2002.

[14] NIST (National Institute of Standards and Technology) – Guide to
Intrusion Detection and Prevention Systems (IDPS), February 2007.

[15] K. Pohl, G. Böckle, F. van der Linden. Software Product Line
Engineering – Foundations, Principles, and Techniques, Springer,
2005.

[16] K. Schmid, M. Verlage. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software, Vol. 19, No. 4,
July/August 2002, 50-57.

[17] B. Tekinerdogan, Ö. Köksal. Pattern-Based Integration of Internet
of Things Systems. In: Georgakopoulos D., Zhang LJ. (eds) Internet
of Things – ICIOT 2018. Springer LNCS, vol 10972. 2018.

[18] B. Tekinerdogan, O. Özköse Erdogan, O. Aktug. Supporting
Incremental Product Development using Multiple Product Line
Architecture, International Journal of Knowledge and Systems
Science (IJKSS) 5(4), 2014.

[19] B. Tekinerdogan, S. Duman, Ö. Gümüşay, and B. Durak. Devising
Integrated Process Models for Systems Product Line Engineering.
2019 International Symposium on Systems Engineering (ISSE),
Edinburgh, United Kingdom, 2019.

[20] B. Tekinerdogan, S. Duman, H. Caner, and B. Durak. Customizing
a Feature Ontology for Product Line Engineering within a System-
of-Systems Context. 2019 International Symposium on Systems
Engineering (ISSE), Edinburgh, United Kingdom, 2019.

[21] B. Tekinerdogan., S. Bilir S., C. Abatlevi. Integrating Platform
Selection Rules in the Model Driven Architecture Approach. In:
Aßmann U., Aksit M., Rensink A. (eds) Model Driven
Architecture.,Springer LNCS. vol 3599, Berlin, Heidelberg, 2005.

[22] B. Tekinerdogan, T. Celik. Architecting Feasible Deployment
Alternatives for Publish-Subscribe Systems. International Journal of
Computer & Software Engineering, Vol 2. No. 117, 2017.

[23] E. Tüzün, B. Tekinerdogan, M.E, Kalender, S. Bilgen. Empirical
Evaluation of a Decision Support Model for Adopting Software
Product Line Engineering, Information and Software Technology,
Elsevier, Vol. 60, Pages 77–101, April 2015.

[24] B. Tekinerdogan, S. Yağız, K. Özcan, İskender Yakin. Integrated
Process Model for Systems Product Line Engineering of Physical
Protection Systems, in: Proc. Of 10th International Symposium on
Business Modeling and Software Design, Springer, Berlin, 2020.

[25] B. Tekinerdogan. Multi-Dimensional Classification of System-of-
Systems, in Proc. Of 14th Annual System of Systems Engineering
Conference:“Internet of Things as System of Systems, p. 278-283,
2019.

[26] J.D. Williams, Physical Protection System Design and
Evaluation, IAEA-CN-68/29, Vienna, 10–12 November 1997.

