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Abstract

Motivation: As the number of experimentally solved protein structures rises, it becomes increasingly appealing to
use structural information for predictive tasks involving proteins. Due to the large variation in protein sizes, folds
and topologies, an attractive approach is to embed protein structures into fixed-length vectors, which can be used in
machine learning algorithms aimed at predicting and understanding functional and physical properties. Many exist-
ing embedding approaches are alignment based, which is both time-consuming and ineffective for distantly related
proteins. On the other hand, library- or model-based approaches depend on a small library of fragments or require
the use of a trained model, both of which may not generalize well.

Results: We present Geometricus, a novel and universally applicable approach to embedding proteins in a fixed-
dimensional space. The approach is fast, accurate, and interpretable. Geometricus uses a set of 3D moment
invariants to discretize fragments of protein structures into shape-mers, which are then counted to describe the full
structure as a vector of counts. We demonstrate the applicability of this approach in various tasks, ranging from fast
structure similarity search, unsupervised clustering and structure classification across proteins from different super-
families as well as within the same family.

Availability and implementation: Python code available at https://git.wur.nl/durai001/geometricus.

Contact: janani.durairaj@wur.nl or aaltjan.vandijk@wur.nl

1 Introduction

The number of structures added to the Protein Data Bank (Bernstein
et al., 1977) has been increasing rapidly, with over 10 000 structures
deposited in 2019 alone. Meanwhile, major advances have been
made in the areas of homology based and de novo protein structure
modeling (Senior et al., 2020). This increased availability of protein
structures has enabled protein biologists and bioinformaticians to
start including structural data and information in protein function
studies instead of being confined to the sole use of sequence data.
These studies address a variety of questions, such as finding remote
protein homologs with a similar structural fold, or defining the
properties of a single-protein family. Protein structures evolve
slower than sequences, and encode long-range contact and fold in-
formation that are often crucial for protein activity. Hence, our
understanding of molecular biology can be greatly enhanced by the
inclusion of protein structures.

For both structures and sequences, choosing the right computational
method to generate a representation of a protein for comparison and pre-
diction purposes is crucial. This is especially true for machine learning
methods, which often require variable-length sequences of amino acids,
coordinate sets or other residue descriptors to be transformed into fixed-
length representations. These representations can be used as input for

supervised and unsupervised machine learning methods or be compared
using standard vector distance formulae. As proteins typically cover a
wide range of shapes, sizes and topological folds, the choice of representa-
tion is not always straightforward and may depend on the scale of the
study. For instance, research questions addressing proteins within a single
family may opt to use alignment-based representations (Ma and Wang,
2014; Simossis et al., 2003). These have the advantage of easy interpret-
ability, as each residue can be directly mapped to a column in the trans-
formed representation. However, alignment is computationally expensive
and its accuracy decreases with decreasing protein similarity.

To solve this, alignment-free methods were introduced, which
learn a reduced and condensed representation of proteins without
an explicit alignment. There are many examples of such approaches
using machine learning and deep learning methods to learn generic
patterns and features of the protein sequence space (Alley et al.,
2019; Rao et al., 2019). Structure-based representations also exist
(Budowski-Tal et al., 2010; Liu et al., 2018b) but are generally more
difficult to generate due to the 3D nature of structures compared
with to the 1D sequences. Some structure-based ‘alignment-free’
methods generate a representation of a protein of the same length as
the sequence and then use sequence alignment or calculate sequence
similarity to compare these structural sequences in 1D (Le et al.,
2009; Lo et al., 2007). The conserved nature of protein structure
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circumvents the problem of decreasing accuracy of sequence align-
ment in these approaches.

Many structure embedding techniques make use of a library of
small structural fragments to which fragments of each input struc-
ture are compared, usually requiring the calculation of rotations and
translations that would orient the input fragment and the library
fragment in the same position (Budowski-Tal et al., 2010). To re-
duce the computational load of these structure–structure compari-
sons, library sizes are limited. Newer techniques which make use of
deep learning (Liu et al., 2018b), do not need a library but still re-
quire a pre-trained model to generate new embeddings. In both
cases, the size, scale and resolution of the embedding is highly de-
pendent on the initial choice of library fragments or training data
used, and thus may not be applicable to research questions about a
different protein set. Also, in both these approaches it is difficult to
link predictive importance to functionally important residues or
structural regions, which is often desired in studies aimed at under-
standing underlying mechanisms in protein biology.

To address these disadvantages of existing approaches, we intro-
duce Geometricus, a novel structure embedding technique based on
3D rotation-invariant moments. Moment invariants were proposed
in the 1960s for 2D images (Hu, 1962) and have been used exten-
sively in the image processing field for object detection (Rizon et al.,
2006) and character recognition (Flusser and Suk, 1994) among
other applications. In the 1980s, they were subsequently adapted to
the 3D field (Sadjadi and Hall, 1980), and found applications in the
fields of robotics (Se et al., 2001), gesture recognition (Kratz and
Rohs, 2011), brain morphology (Mangin et al., 2004) and even in
structural biology (Sommer et al., 2007). Rotation-invariant
moments yield identical output when performed on any translated
and/or rotated version of a set of continuous or discrete 3D coordi-
nates. This implies that coordinate sets can be compared without the
need for superposition. Alternatively, any set of coordinates can be
represented by a number of these moments.

To generate a Geometricus embedding for a protein structure, we
fragment the structure into overlapping k-mers based on sequence, as
well as into overlapping spheres, calculated for a certain radius, based on
3D coordinate information. Moment invariants are calculated for each of
the coordinate sets corresponding to these structural fragments, and then
binned into shape-mers, each of which represent a set of similar structural
fragments. Counting the occurrences of these shape-mers across the pro-
tein yields a representation of the whole protein structure as a fixed-
length vector of counts, similar to an amino acid k-mer count vector
describing a protein sequence. As the moment invariant calculation is sim-
ple, the entire embedding process runs in the order of tens of milliseconds
per protein and is easily parallelized. In addition, each element in the
count vector can be mapped back to the residues forming the correspond-
ing shape-mer, allowing for interpretation of predictive residues on par
with alignment-based approaches. The shape-mer binning process is eas-
ily controllable, allowing for coarse shape-mer definitions for divergent
proteins with distinct structures, or a fine-grained resolution for closely
related proteins from the same family. This makes Geometricus suitable
for a variety of tasks where library-based or model-based embeddings
would struggle or require expensive retraining.

We demonstrate the effectiveness and versatility of Geometricus
embeddings in a variety of machine learning approaches and other
applications applied to datasets of varying structure similarity.
Geometricus can be used for very fast structure similarity searches,
while maintaining accuracy close to that obtained by alignment-based
methods. The innate simplicity of the approach enables flexibility in
application, such that embeddings can be optimized for the task at
hand, as we demonstrate using datasets with proteins from different
superfamilies and within the same family. Geometricus is available as
a Python library at https://git.wur.nl/durai001/geometricus.

2 Materials and methods

2.1 Protein embedding
To generate embeddings for a set of proteins, we define so-called
shape-mers which are analogous to sequence k-mers. A shape-mer

represents a set of similar structural fragments, each a collection of
coordinates in 3D space. The following sections describe the process
of generating these structural fragments, their subsequent conver-
sion into rotation- and translation-invariant moments, the moment-
based grouping of structural fragments into shape-mers, and finally,
shape-mer counting to obtain the resulting embedding.

2.1.1 Protein fragmentation

We consider two different ways of dividing a protein with l residues
into structural fragments, using its a-carbon coordinates,
a ¼ faijai ¼ ðax

i ; a
y
i ; a

z
i Þ; i : 1; . . . ; lg.

1. k-mer based—for a given value of k, a protein is divided into l k-

mer-based structural fragments, fCk
i ; i : 1; . . . ; lg where

Ck
i ¼ fajjj 2 ðmaxð1; i� bk=2cÞ;minðl; iþ bk=2cÞÞg

Here bc converts a floating point number to the closest integer value

below it.

2. radius based—for a given radius r, a protein is divided into l

radius-based structural fragments fCr
i ; i : 1; . . . ; lg where

Cr
i ¼ fajjdðai; ajÞ < rg

with dðai; ajÞ being the Euclidean distance between ai and aj.
Practically, this is accomplished by constructing a KD-Tree on a,

using the KD-tree implementation in ProDy v1.10.11(Bakan et al.,
2011) and querying by radius with each ai as the center.

Although the k-mer-based approach is effective in describing
structural fragments that are sequential in nature, such as a-helices
and loops, the radius-based approach can capture long-range struc-
tural contacts as seen in b-sheets, as well as distinct interaction pat-
terns in space, as found in enzyme active sites. Both fragmentation
methods have OðlÞ time complexity.

Each resulting structural fragment is then transformed into four
moment invariants, described in the next section. In our examples
and results section, we use a k of 16 and a radius r of 10 Å as a com-
promise between specificity of the structural fragments and effect-
iveness of the moment invariants. In principle, optimization of these
parameters could lead to further improvements of our approach for
specific applications, but we leave this open for future exploration.

2.1.2 Moment invariants

Three-dimensional moment invariants are computed using the for-
mula of the central moment, defined below for a discrete set of c
coordinates, with ðx; y; zÞ being the centroid:

lpqr ¼
Xc

i¼1

ðxi � xÞpðyi � yÞqðzi � zÞr

Using this formula, we then compute four moments that were
previously used in a structural bioinformatics study to describe en-
zyme active sites (Sommer et al., 2007). These include the three
second-order rotation invariants (O3, O4 and O5) described by
Mamistvalov (1998) and a fourth invariant, F, described by Flusser
et al. (2003). These four moment invariants are defined below:

O3 ¼ l200 þ l020 þ l002

O4 ¼ l200:l020 þ l200:l002 þ l020:l002

�l2
110 � l2

101 � l2
011

O5 ¼ l200:l020:l002 þ 2l110:l101:l011

�l002:l
2
110 � l020:l

2
101 � l200:l

2
011
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F ¼ 15l2
111 þ l2

003 þ l2
030 þ l2

300 � 3l102:l120 � 3l021:l201

�3l030:l210 � 3l102:l300 � 3l120:l300

�3l012:ðl030 þ l210Þ � 3l003ðl021 þ l201Þ
þ6l2

012 þ 6l2
120 þ 6l2

201 þ 6l2
210 þ 6l2

021 þ 6l2
102

Thus, any structural fragment can be represented by a vector
ðO3;O4;O5; FÞ. Moment invariant calculation is implemented using
Numba v0.48.0 (Lam et al., 2015) and has OðcÞ time complexity
which is negligible for small values of c, as seen for k¼16 (i.e. a
maximum c of 16) and r¼10 (c ¼ 1866).

2.1.3 Discretization to shape-mers

Although the moment invariants obtained for each structural frag-
ment can be directly compared, discretizing them enables collecting
sets of fragments that resemble each other across multiple proteins.
We convert the continuous and real-valued moment invariants to
discrete shape-mers as follows:

ðO03;O04;O05;F0Þ ¼ ðbm� lnðO3Þc; bm� lnðO4Þc;
bm� lnðO5Þc; bm� lnðFÞcÞ

Here, m is the resolution parameter, which defines the coarseness
of the shape-mers, with higher values leading to more fine-grained
separation of structural fragments. Thus, a shape-mer is defined by
four discrete numbers and can describe any number of structural
fragments. Figure 1 gives examples of moment invariant and shape-
mer calculations (with m¼1) for three synthetic coordinate sets gen-
erated with the equation fai ¼ ðR cosðiÞ;R sinðiÞ; iÞ; i : 1; . . . ;16g for
R¼0, 0.5 and 2, respectively, each rotated by 645�, and translated
by 610Å along the x-axis.

2.1.4 Counting shapes

Given a set of n proteins, we generate a collection of shape-mers for
each protein. The total number of shape-mers s is then the number
of distinct shape-mers observed across all n proteins. A count vector
of length s is calculated for each protein with each element recording
the number of times the corresponding shape-mer appears in that
protein. This counting is done separately for the k-mer- and radius-
based approaches, as they represent different types of structural
fragments. The two resulting count vectors are concatenated to form
the final protein embedding. The entire embedding process has a
time complexity of OðnlÞ and takes around 50 ms CPU time for pro-
teins of medium length (400–600 residues). Note that different val-
ues for m (the resolution parameter) and different input sets of
proteins will lead to different sets of shape-mers and embedding

sizes. This allows the user to generate feature spaces tailored to the
problem at hand.

2.2 Datasets
We apply Geometricus to a number of datasets to demonstrate the
wide applicability of shape-mer-based protein embedding. These are
described below. The remaining sections use the acronyms defined
here to refer to these datasets.

1. CASP11—87 573 protein structures from the Critical

Assessment of protein Structure Prediction XI (Moult et al.,

2016) training set, obtained from the ProteinNet data source

(AlQuraishi, 2019).

2. CATH20—the CATH database of protein structures (Pearl

et al., 2003) categorizes proteins hierarchically based on second-

ary structure class (C), architecture (A), topology (T) and hom-

ology (H). From the CATH hierarchy, we selected 3673 proteins

with <20% sequence identity to each other from the top five

most populated CAT categories. Table 1 shows the number of

proteins per CAT category.

3. SCOP-Lo—the Structural Classification of Proteins (SCOP)

database (Murzin et al., 1995) provides a detailed classification

of structures based on their topologies and folds. We adapted

the SCOP-Lo dataset from Lo et al. (2007). This dataset com-

prises 23 912 target proteins from ASTRAL SCOP 1.67 further

divided into sets with 10%, 30%, 70% and 100% maximum se-

quence identity within each group respectively. It also contains a

query set of 83 proteins each with at least two proteins from the

same SCOP family in the 10% target protein set, and <10% se-

quence identity to other proteins in the query set.

4. Pfam10—the Protein families database (Pfam; Bateman et al.,

2002) collates a large set of protein families. Out of the 20 most

populated Pfam domains, the 10 accessions with most available

structures are considered, resulting in a total of 3053 structures.

Table 2 lists the number of proteins for each of these 10 Pfam

accessions.

5. CMGC—1822 human protein structures in the CMGC kinase

family were collected from the Kinase-Ligand Interaction

Fingerprints and Structures database (Kooistra et al., 2016).

These are further divided into 660 cyclin-dependent kinases

(CDK), 527 mitogen-activated protein kinases (MAPK), 268

Fig. 1. (A) Three synthetic structural fragments, with a rotation of 645� and translation of 610Å between the middle fragment and the two outer ones. (B) Moment invariants

ðO3;O4;O5; FÞ for each fragment. The three rotated and translated versions have the same moment invariant values. (C) The natural log-transformed versions of

ðO3;O4;O5; FÞ and (D) shape-mers ðO03;O04;O05; F0Þ for each fragment
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casein kinase 2 proteins, 160 dual specificity Tyrosine regulated

kinases, 122 glycogen synthase kinases, 61 cdc2-like kinases, 16

serine/threonine-protein kinases and 8 CDK-like kinases.

6. MAPK—the 527 MAP kinases from the CMGC dataset are con-

sidered separately. These comprise 271 p38 MAPK structures

(p38), 147 extracellular signal-regulated kinases (ERKs) and 109

c-Jun N-terminal kinases (JNKs).

Note that the low sequence identity between the proteins in
many of these datasets clearly underlines the need for structure-
based embedding.

2.3 Visualization of shape-mers and Geometricus

embeddings
To visualize two commonly occurring k-mer-based shape-mers from
the CASP11 dataset, we first randomly selected 1000 structural frag-
ments described by them. From these 1000, one fragment was ran-
domly chosen as the base and the remaining were superposed to the
base using the Kabsch algorithm (Kabsch, 1976). For each fragment,
the best superposition to the base of that fragment and its flipped
version, in terms of the minimum root mean square deviation, is
taken in order to account for 360� rotations. We also visualized two
radius-based shape-mers using two of their structural fragments
shown in the context of their respective protein structures.

The Geometricus embeddings of the Pfam10, CMGC and
MAPK datasets, generated for different values of the m parameter,
were reduced to two dimensions using the Python implementation
(v0.3.10) of the Uniform Manifold Approximation and Projection
algorithm by McInnes et al. (2018), with the cosine similarity metric
and default settings.

2.4 Structure similarity search
We demonstrated how Geometricus can be used in structure-based
similarity searches by applying it to the CATH20 and SCOP-Lo
datasets. A pair of proteins is called similar if they share the same
CAT category for the CATH20 dataset or the same SCOP category
for the SCOP-Lo dataset, and dissimilar otherwise.

Typically, in structure similarity search applications, similarity
scores are calculated for a small set of query proteins against a larger
predefined and preprocessed target set of structures. Here, the target
set determines which collection of shape-mers will be used in the
search. For the CATH20 dataset, 70% of the proteins are randomly
chosen as the target set. The SCOP-Lo dataset already has four
defined target sets (10%, 30%, 70% and 100% sequence redundant
sets) which are each evaluated separately.

The pairwise similarity measure between two proteins is defined
as the cosine similarity of their Geometricus embedding vectors,
constructed with a low resolution (m¼0.25) to reflect the major
structural differences expected between proteins in these two data-
sets. Proteins with a similarity score above a threshold t are pre-
dicted to be similar and those below t are predicted as dissimilar.
We calculated similarity scores for all CATH20 proteins against the
CATH20 target set, and the 83 SCOP-Lo query proteins against

each of the four sequence redundant SCOP-Lo target sets. Receiver
operating characteristic-area under the curve (ROC)-AUC curves
were constructed by varying t to evaluate the correctness of the simi-
larity search in these five cases.

2.5 CATH classification
A k-nearest neighbor classifier from the scikit-learn python library
v0.22.1 (k¼5, metric¼ ‘cosine’) was trained to predict the CAT cat-
egory for the proteins in the CATH20 dataset with 50% of the data
randomly chosen for training and the remaining for testing. We
repeated this five times and report the average accuracy.

2.6 MAPK classification
To demonstrate the applicability of Geometricus for interpretable
machine learning on protein structures, we performed classification
on the MAPK dataset to predict the type of MAP kinase (namely
p38, ERK or JNK) from protein structure. This was accomplished
using the decision tree classifier from the scikit-learn Python library
(v0.22.1; Pedregosa et al., 2011), with a random 70–30% split of
training and test data. The top two most predictive shape-mers from
the trained classifier were then mapped back to the residues that
they correspond to and visualized on one p38 structure (PDB ID:
3QUE), one ERK structure (PDB ID: 2OJJ) and one JNK structure
(PDB ID: 4KKG) using PyMOL (DeLano et al., 2002).

3 Results

3.1 Shape-mers capture common structural fragments

across protein structures
We performed moment-invariant and shape-mer calculations on
over 87 000 proteins in the CASP11 dataset to understand their dis-
tributions and patterns found across structurally divergent proteins.
Figure 2A shows the log-distribution of each of the four moment
invariants for the k-mer- and radius-based structural fragmentation
approaches. The radius-based approach shows wider distributions
in general, which can be expected: different locations in a protein
have different densities of residues leading to differing numbers of
coordinates in the radius-based approach, whereas the k-mer-based
approach largely produces fragments with k coordinates except for
some shorter fragments at the N- and C-terminal ends of each
protein.

Shape-mers were computed from the moment invariants using a
resolution m of 1 (see Section 2). The resulting 565 k-mer shape-
mers and 703 radius shape-mers do not all represent the same num-
ber of structural fragments. Figure 2B shows the log 10 distribution
of structural fragment counts represented by each shape-mer. Some

Table 1. Number of proteins in each CAT category in the CATH20

dataset

Class Architecture Topology No. of

proteins

Mainly alpha Orthogonal bundle Arc repressor mutant,

subunit A

465

Mainly beta Sandwich Immunoglobulin-like 700

Mainly beta Sandwich Jelly Rolls 401

Alpha beta Three-layer (aba)

sandwich

Rossman fold 1660

Alpha beta Two-layer sandwich Alpha–beta plaits 447

Table 2. Number of proteins for each Pfam accession in the Pfam10

dataset

Pfam

accession

Short name Description No. of

proteins

PF00005 ABC_tran ABC transporter 187

PF00069 Pkinase Protein kinase domain 438

PF00076 RRM_1 RNA recognition motif. (a.k.a.

RRM, RBD or RNP domain)

269

PF00096 zf-C2H2 Zinc finger, C2H2 type 144

PF00400 WD40 WD domain, G-beta repeat 906

PF00440 TetR_N Bacterial regulatory proteins, tetR

family

164

PF02518 HATPase_c Histidine kinase-, DNA gyrase B-

and HSP90-like ATPase

87

PF12796 Ank_2 Ankyrin repeats (three copies) 263

PF13561 adh_short_C2 Enoyl-(acyl carrier protein)

reductase

273

PF13855 LRR_8 Leucine rich repeat 322
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shape-mers, at the right end of Figure 2B, are found over a million
times, and unsurprisingly represent common structural fragments
such as short, well-defined a-helices. One k-mer-based and one
radius-based example are shown in Figure 2C1 and D1, respectively,
both found across most of the proteins in the CASP11 dataset.
Conversely, the shape-mers on the very left end of the Figure 2B rep-
resent only one structural fragment, likely loops or specific folds
which are structurally and functionally unique and thus rare. The
remaining shape-mers describe anywhere between one and a million
fragments and may be specific to certain superfamilies or families of
proteins. Figure 2C2 shows an extended roll-like shape-mer found
in almost 10 000 proteins and Figure 2D2 shows a sparse radius
shape-mer found on the surfaces and ends of 5000 proteins.

3.2 Geometricus can be used for fast and accurate

structure similarity search and topology classification
A common application of structure-based embeddings is to perform
a fast similarity search for an input structure across a database of
structures and return the most similar candidates. We demonstrate
the performance of Geometricus on this task using CATH and
SCOP classifications as a ground truth measure of protein similarity.

Figure 3 shows the ROC curves for the CATH20 dataset and for
various sequence redundancy levels of the SCOP-Lo dataset, along
with their corresponding AUC values. The all versus all similarity
calculation for the 3673 proteins in the CATH20 dataset took 250
ms. For the SCOP-Lo dataset, query versus target similarity calcula-
tion for the 83 query proteins against the 10% target dataset (with
4332 proteins) took 4 ms and the 100% target set (with 23 912 pro-
teins) took 20 ms. Generating the target dataset embeddings was

also fast, taking 2 min for the CATH20 dataset and 15 min for the
100% SCOP-Lo dataset (excluding file parsing time as this depends
on the speed of the disk). Target set embedding time is not as im-
portant as search time, as it only has to be run once. Embedding
each additional query protein takes 20–60 ms depending on its
length. A k-nearest neighbors classification of the CATH20 dataset
into the five CAT classes showed a high accuracy of 82%.

In both these applications, Geometricus performs favorably com-
pared with results reported by other alignment-free approaches
applied to comparable datasets (Budowski-Tal et al., 2010; Le et al.,
2009; Lo et al., 2007), which typically achieve search AUCs between
0.75 and 0.85 and fold classification accuracy up to 75%. For the
structural alphabets defined by Le et al. (2009) classification accur-
acy increases to 80% upon using more sophisticated SVM classifiers
with tailored kernels. This approach is not investigated here but
would likely improve our fold classification accuracy further.
Geometricus comes close to the highly accurate alignment-based
methods (Le et al., 2009; with search AUCs exceeding 0.9 and fold
classification accuracy exceeding 90%) at a mere fraction of the
computational cost.

3.3 Geometricus can be used across and within protein

families
Unlike library-based or deep learning-based structure embedding
techniques, Geometricus can be adapted to the type and scale of the
problem at hand without sacrificing speed, via the m (resolution)
parameter. When comparing proteins from different superfamilies, a
coarse discretization of structural fragments is preferred as it is
expected that these proteins will have very different structures.

Fig. 2. (A) Natural log distribution of each of the four moment invariants across k-mer-based structural fragments (in blue) and radius-based structural fragments (in orange)

from proteins in the CASP11 dataset. (B) Histogram of ( log 10 transformed) counts of fragments described by each shape-mer. (C) Two examples of k-mer-based shape-mers,

shown using a thousand randomly selected fragments, superposed. (D) Two examples of radius-based shape-mers, magnified and highlighted as black dots on two protein

structures in which they are found
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However, as the specificity of the problem increases, the proteins
under investigation start resembling each other more. In such cases,
more specific binning of fragments, i.e. a higher resolution, is advan-
tageous to better capture their differences. This is demonstrated in
Figure 4 with the Pfam10, CMGC and MAPK datasets.

The Pfam10 dataset (Fig. 4A) consists of proteins that contain 1
of 10 fairly divergent Pfam domains. A low resolution of 0.25 (lead-
ing to 26 k-mer-based shape-mers and 28 radius-based shape-mers)
already separates these ten Pfam accessions into well-defined clus-
ters. Some similar accessions, such as the Protein kinase domain and
the Histidine kinase-like ATPase cluster closer together as expected.
Higher resolutions perform worse on this dataset, as comparable
structural fragments are split across different shape-mers.

The CMGC dataset (Fig. 4B) contains proteins from a group of
kinases called the CMGC group (named after the initials of some
members). As these proteins are more evolutionarily and functional-
ly related, a higher resolution of 0.5 (resulting in 78 k-mer shape-
mers and 93 radius shape-mers) is required to achieve a good separ-
ation between the individual families within this group.

Finally, the MAPK dataset (Fig. 4C) consists of MAP kinases, a
family of proteins which relay signals from the cell surface to coord-
inate growth, stress and other responses. This family is divided into
subfamilies, here simplified into the p38, ERK and JNK categories,
each of which relay different types of growth and stress signals. A
high resolution of 2 (resulting in 1098 k-mer shape-mers and 908 ra-
dius shape-mers) separates these subfamilies.

Thus, the feature space generated by Geometricus can be altered
depending on the structural similarity expected between the proteins
under consideration. This is especially advantageous in situations
where the proteins under study are from the same family or

Fig. 3. ROC curves for an all versus all structure similarity search using

Geometricus embeddings on the CATH20 dataset (dark blue) and four similarity

searches of 83 query proteins on different sequence redundant target sets from the

SCOP-Lo dataset (10%—light blue, 30%—orange, 70%—green, and 100%—red).

True positives were determined using CATH and SCOP classifications, as described

in Section 2

Fig. 4. The effect of the resolution parameter m on different datasets. (A–C) the Pfam10, CMGC and MAPK datasets, respectively and 1–3 represent resolutions of 0.25, 0.5

and 2. As the structural similarity between proteins increases, higher resolutions are needed to achieve a good separation of pre-existing clusters in each dataset
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subfamily and share a common structural fold, or in the case of mu-
tation studies where local structure alterations occur due to single-
residue changes. In contrast, other embedding techniques are often
optimized for divergent structures, and would likely assign the same
embedding to each protein in these cases.

3.4 Geometricus can be used as input for interpretable

machine learning
Typically, when analyzing highly similar proteins as found in the
MAPK dataset, one would also be interested in interpreting the
results to find functionally important residues or structural regions.
Such insights can be directly be applied to select candidate residues
for mutational studies or used in directed evolution techniques to en-
gineer proteins and enzymes with desired properties such as sub-
strate specificity (Ding et al., 2014), drug-target binding affinity
(Michael et al., 1992), interaction specificity (Fariselli et al., 2002)
or thermostability (Jia et al., 2015) among others. Geometricus
embeddings are well-suited for this kind of learning as each element
of an embedding can easily be mapped back to the specific residues
of the shape-mer it represents.

We demonstrate this with a classification problem defined for the
MAPK dataset, namely to predict the specific subfamily of a MAP kin-
ase. A simple decision tree trained on 70% of the data and tested on the
remaining 30% showed an accuracy of 96% for this task. More interest-
ingly, this trained classifier can now be inspected for predictive features.
We mapped the top two shape-mers considered the most predictive by
the decision tree back to all the residues and locations at which they
occur across all the MAPK proteins. These locations are visualized on
three example proteins, one from each of the three subfamilies
(Fig. 5A;shape-mer 1 in red and shape-mer 2 in blue). Figure 5B details
the percentage of proteins from each subfamily which contain each of
the two shape-mers, and the average number of times they appear per
protein. The first appears more often in p38 kinases at a higher frequency
per protein, while the second favors the ERK kinases with over three
occurrences per protein on average. Looking at the structures themselves,
it becomes clear which particular locations (highlighted and magnified)
cause this difference in frequencies, even in such highly similar structures.
Although this is a simple example, it demonstrates the potential for using
Geometricus in interpretable machine learning tasks for protein families.

4 Conclusion

We have presented a novel, fast and accurate approach for protein
structure embedding with a wide range of applications.

Geometricus uses 3D rotation invariant moments to describe struc-
tural fragments such that they can be easily compared across pro-
teins without the need for superposition or alignment. This allows
for a blazing fast embedding technique that takes milliseconds to
generate an embedding of a protein, and scales linearly with the
number of proteins.

The simplicity of this approach also brings with it versatility, as
Geometricus does not depend on a fixed library of predefined frag-
ments and can instead grow or shrink depending on the scale of the
problem at hand. Therefore, it is readily applied to more specialized
prediction tasks focusing on a single protein family with a conserved
structural fold where other structure embedders would likely strug-
gle to resolve each protein. The explicit mapping between residues
and shape-mers further allows the user to trace back from a predict-
ive model to predictive residues and structural regions, which can
broaden our understanding of specific protein and enzyme mecha-
nisms. This makes Geometricus well-suited for machine learning
tasks where interpretation is a concern along with accuracy.

Although this initial version of Geometricus uses four rotation-
invariant moments, more such invariants have been studied (�Zuni�c
et al., 2016) and could be added to increase the specificity of a
shape-mer. Another possible extension is to include solvent accessi-
bility or amino acid descriptors as rotation-invariant aspects of a
residue set. Although these additions would likely not be so helpful
in tasks spanning diverse proteins, such as structure similarity
search, they may be useful in tasks involving enzyme mechanisms
(Heckmann et al., 2018) or protein/ligand interactions and hotspots
(Liu et al., 2018a; Zheng et al., 2019) where the accessibility of a
structure fragment as well as its physicochemical and electrostatic
properties matter as much as its shape.

Geometricus thus combines a set of highly attractive features
that sets it apart from other structure embedding and structure simi-
larity techniques. It is much faster than alignment-based algorithms
such as Madej et al. (2014) and Ye and Godzik (2004), and at the
same time highly accurate compared with other alignment-free tech-
niques such as Le et al. (2009) and Lo et al. (2007). Unlike most
techniques, its independence from a fragment library or predefined
training set allows for broad application to generate feature sets for
machine learning, even for differentiating mutants—something that
has not been explored due to the focus of current techniques on di-
vergent proteins. The shape-mer approach allows for easy interpret-
ability and possible association of specific shapes to function, and its
simplicity allows for ease of expansion. Shape-mer similarity could
also be utilized to train structure-informed sequence embedding
techniques, similar to the approach detailed by Bepler and Berger
(2019), or as part of a scoring function to assess protein model

Fig. 5. (a) The occurrences of two shape-mers (colored red and blue, respectively) most predictive in separating MAPK subfamilies visualized on three MAPK structures: (1)

p38 structure (PDB ID: 3QUE), (2) ERK structure (PDB ID: 2OJJ) and (3) JNK structure (PDB ID: 4KKG). For each shape-mer, one location in a structure where it is present

is magnified across all three structures and discussed in the text. (B) The percentage of proteins containing a shape-mer and the average number of times a shape-mer appears

per protein across the three MAPK subfamilies, for (1) the first shape-mer (red) and (2) the second shape-mer (blue)
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quality, a field in which topology has been shown to play a crucial
role (Garg et al., 2016).

Improvements in homology and de novo modeling techniques
have greatly expanded the number of proteins for which we can ac-
curately model structure. This means that future structure-based ma-
chine learning tasks will likely be augmented with structural models
to obtain large datasets comparable with those used in sequence-
based predictive approaches, where such a fast and versatile structural
embedder would be useful. Given the prominent role in present-day
bioinformatics of both structural modeling and machine learning,
Geometricus embeddings, with possible further embellishments, may
lead to breakthroughs in understanding protein function.
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