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1  | INTRODUC TION

Antimicrobial resistance (AMR) threatens the core of modern medi-
cine, since effective antimicrobials are prerequisites not only for cur-
ing infectious diseases, but are also part of routine surgery procedures 
to prevent bacterial infections (World Health Organization,  2015). 
Action plans have been developed by international healthcare or-
ganizations and governments to restrict AMR in both human and 

veterinary medicine and avoid possible transmission of AMR from an-
imal or environmental reservoirs to healthcare settings (World Health 
Organization, 2015; O'Neill, 2016). One crucial aspect of these action 
plans is monitoring of AMR in relevant reservoirs (O'Neill, 2016).

In food animals in the EU, AMR monitoring is performed follow-
ing EU legislation (European Commission, 2013), by annually per-
forming standardized antimicrobial susceptibility testing of a fixed 
number of indicator organisms like commensal Escherichia coli, and 
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Abstract
To combat antimicrobial resistance (AMR), policymakers need an overview of evolu-
tion and trends of AMR in relevant animal reservoirs, and livestock is monitored by 
susceptibility testing of sentinel organisms such as commensal E. coli. Such monitor-
ing data are often vast and complex and generates a need for outcome indicators that 
summarize AMR for multiple antimicrobial classes. Model-based clustering is a data-
driven approach that can help to objectively summarize AMR in animal reservoirs. In 
this study, a model-based cluster analysis was carried out on a dataset of minimum 
inhibitory concentrations (MIC), recoded to binary variables, for 10 antimicrobials 
of commensal E. coli isolates (N = 12,986) derived from four animal species (broil-
ers, pigs, veal calves and dairy cows) in Dutch AMR monitoring, 2007–2018. This 
analysis revealed four clusters in commensal E. coli in livestock containing 201 unique 
resistance combinations. The prevalence of these combinations and clusters differs 
between animal species. Our results indicate that to monitor different animal popula-
tions, more than one indicator for multidrug resistance seems necessary. We show 
how these clusters summarize multidrug resistance and have potential as monitoring 
outcome indicators to benchmark and prioritize AMR problems in livestock.
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food borne pathogens such as Salmonella and Campylobacter species 
from animals and food thereof. Such monitoring programmes result 
in complex data, which are only interpretable by experts. However, 
policymakers need a clear overview of development of AMR in res-
ervoirs to further develop, adjust and validate implemented policies 
timely. Policy informing organs like European Food Safety Authority 
(EFSA) have expressed the need for outcome indicators of AMR in 
tested microorganisms such as commensal E.  coli (European Food 
Safety Authority, 2017). These outcome indicators should summa-
rize AMR for multiple antimicrobial classes in a bacterial population, 
to allow an overall assessment of AMR in samples from relevant res-
ervoirs, such as food animals.

Candidates for such AMR indicators have been tested on data-
sets of commensal indicator E.  coli from food animals by EFSA, 
European Centre for Disease Prevention and Control (ECDC) 
and European Medicines Agency (EMA) (European Food Safety 
Authority, 2017). Suggestions were for example the pan-suscep-
tible proportion and multidrug resistance proportion (resistant 
to three or more antimicrobial classes) (European Food Safety 
Authority, 2017). In this joint scientific opinion, it was concluded 
that the pan-susceptible proportion is the most suitable summary 
indicator, because a high negative correlation was found with 
overall AMU. Resistance to three or more antimicrobials was sug-
gested as secondary outcome indicator when very few isolates in 
an animal population were fully susceptible, and the proportion 
of fluoroquinolone-resistant isolates and the prevalence of ESBL-
producing E.  coli were suggested as other secondary indicators. 
However, as mentioned in that joint scientific opinion, the pan-sus-
ceptible proportion or resistance to three or more antimicrobials 
may not be specific enough to adjust AMU policy, especially for 
sector-specific measures (European Food Safety Authority, 2017). 
Other suggestions in literature have been to weigh antimicrobial 
classes, ranked by their relevance for public health as performed 
by a panel of experts in Havelaar et al.(2017), or to weigh observed 
AMR for antimicrobial classes by antimicrobial use (AMU) of that 
same class in an animal population; examples are Dorado-Garcia 
et al. (2016), Laxminarayan and Klugman (2011). The downside of 
applying weights to such calculations is that subjective choices 
have to be made, which may bias the results.

Currently, objective arguments for suitable AMR monitoring 
outcome indicators are lacking. Few studies have succeeded in 
reducing complexity of AMR monitoring data over antimicrobial 
classes in understandable output parameters. To develop specific 
and applicable outcome indicators of AMR monitoring, we per-
formed a model-based cluster analysis on a dataset of minimum 
inhibitory concentrations (MIC) for 10 antimicrobials of commen-
sal E. coli isolates derived from four animal species (broilers, pigs, 
veal calves and dairy cows) in Dutch AMR monitoring, 2007–2018. 
Here, we show how model-based clustering can be used as a da-
ta-driven method to summarize resistance patterns, resulting in 
four clusters that have potential as monitoring outcome indica-
tors to follow AMR trends and effects of AMU (-interventions) in 
livestock.

2  | METHODS

The data used for this analysis were MIC of 12,986 bacterial isolates, 
all being randomly isolated commensal indicator E. coli isolates from 
faecal or caecal samples of livestock as prescribed by EU legisla-
tion(3): 3,602 from broiler chickens, 2,958 from dairy cows, 3,491 
from slaughter pigs and 2,935 from veal calves. All isolates were 
collected in the Dutch national monitoring programme for AMR in 
livestock, from 2007 to 2018. Details of data collection and anti-
microbial susceptibility testing in this monitoring programme were 
described extensively by Hesp et al. (2019).

We used as definition for antimicrobial resistance: non-wild type 
susceptibility, based on epidemiological cut-off (ECOFF) values as 
defined by the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) (European Committee on Antimicrobial 
Susceptibility Testing, 2019). The MIC of all 12,986 isolates were re-
coded to binary variables (0 for susceptible, 1 for resistant) using the 
EUCAST ECOFF values (in parenthesis), for ten different antibiotics: 
gentamicin (GEN, 2 mg/L), ceftazidime (TAZ, 0.5 mg/L), cefotaxime 
(FOT, 0.25  mg/L), chloramphenicol (CHL, 16  mg/L), trimethoprim 
(TMP, 2 mg/L), sulfamethoxazole (SMX, 64 mg/L), ampicillin (AMP, 
8 mg/L), tetracycline (TET, 8 mg/L), nalidixic acid (NAL, 16 mg/L) and 
ciprofloxacin (CIP, 0.064 mg/L). These antimicrobials were included 
in the analysis because they were continuously tested in the sus-
ceptibility panel from 2007 to 2018. They represent the following 
antimicrobial classes: aminoglycosides (GEN); 3rd generation ceph-
alosporins (FOT/TAZ); amphenicols (CHL); folate pathway inhibitors 
(TMP/SUL); aminopenicillins (AMP); tetracyclines (TET); and (fluoro) 
quinolones (NAL/CIP).

After recoding the MIC to binary variables, the data were ex-
plored with multivariate analyses, using the 12,986 isolates as (sta-
tistical) units with their resistance for the 10 antimicrobials as binary 
outcome variables (accordingly, 10 variables). Dimension reduction 
techniques were explored to describe the multidrug resistance pat-
terns. Principal component analysis and multiple correspondence 

Impacts

•	 This study delivers clusters that differentiate levels of 
multidrug resistance and show differences in antimicro-
bial resistance (AMR) between livestock reservoirs. Risk 
managers can use these clusters as outcome indicators 
of AMR monitoring in livestock for public health haz-
ards, to assess the need for or effects of interventions

•	 It is the first study with a data-driven approach to sum-
marize resistance phenotypes over antimicrobial classes 
in bacterial isolates from animals

•	 This analysis resulted in a deeper understanding in the 
patterns in co-occurrence of resistance to more than 
one antimicrobial for commensal E.  coli isolates from 
animals
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analysis were considered but rejected, because these methods 
summarize pairwise correlations and associations (i.e., joint resis-
tance patterns) only, thus largely neglecting multiple resistance of 
higher order, and the interpretation of their output is complicated. 
Instead, we chose for model-based cluster analysis (Vermunt, 2002) 
also known as latent class analysis, which derives clusters from data 
based on a statistical model, without the need to choose heuristi-
cally a similarity coefficient as in hierarchical clustering. For binary 
variables, the model has four key assumptions: (a) each unit belongs 
to one of K clusters (although the posterior membership is a proba-
bility, i.e., fuzzy), (b) the resistance probability of each outcome vari-
able (probability that the outcome is 1) depends on the cluster, (c) 
for each cluster, the joint probability of the outcome variables is the 
product of the individual resistance probabilities (i.e., the outcome 
variables within a cluster are independent) and (d) the overall joint 
distribution is a mixture of the joint probabilities of the clusters with 
mixing proportions equal to the relative cluster sizes. The Flexmix 
package (Leisch, 2004) in R (R Core Team, 2017) was used to fit this 
model for K  =  10, with 1,000 random restarts in the stepFlexmix 
function. The most likely number of clusters was chosen by the 
model based on the lowest information criterion, specifically the in-
tegrated completed likelihood criterion (ICL), because ICL gives more 
parsimonious solutions than Akaike's information criterion (AIC) and 
Bayesian information criterion (BIC) (Biernacki et al., 2000). Finally, 
isolates are assigned to the cluster on the basis of maximum pos-
terior membership probability according to the model described in 
Appendix  S1. Other resistant isolates than in this dataset can be 
predicted similarly (Appendix S1). The assumption that the outcome 
variables are independent within clusters may appear counterintui-
tive, because resistances from the same antimicrobial class are likely 
to co-occur. However, such associations are used constructively in 
the model by placing isolates with such co-occurrences in a separate 
cluster with high probabilities of occurrence for the antimicrobials 
of that specific class. The high probabilities ensure that there is high 
co-occurrence, even under independence (as products of high prob-
abilities are still high). Co-occurrence is thus not contradictory with 
independence within clusters. Co-occurrence is modelled simply by 
high probabilities of occurrence in a cluster. Note that if the outcome 
variables would be independent in the full data set, the method 

would not subdivide the isolates in clusters (the result would be one 
cluster). In other words, model-based cluster analysis uses the asso-
ciations between the outcome variables (i.e., the antimicrobials) to 
subdivide the isolates into clusters. The composition of the clusters 
was further investigated, by analysing the occurrence of combina-
tions of resistance phenotypes within the clusters and how they dif-
fered between animal species. The clusters from this analysis were 
compared with the outcome indicators suggested by ECDC, EFSA 
and EMA to show how the clusters relate to those indicators, and to 
investigate the potential of model-based clustering to quantitatively 
summarize monitoring outcomes.

3  | RESULTS

Model-based clustering showed that four clusters best described 
the data (illustration in Figure S1). The composition of the four clus-
ters, that is the mean probability of resistance per antimicrobial per 
cluster, is presented in Table 1 and a graphical representation can 
be found in Figure 1. Out of the 1,024 possible combinations of re-
sistance within individual isolates, 201 unique combinations were 
found. An overview of the overall frequency from high to low of the 
201 resistance combinations is presented in supplementary material 
(Table S1) with the cluster they were assigned to and their posterior 
membership probabilities. The posterior probabilities in Table S1 of 
all resistant combinations to belong to cluster 1–4 are model gen-
erated and are calculated according to Appendix S1. Tables S2–S5 
present resistance combinations per cluster, per species. A graphical 
representation of the yearly proportions of isolates in the clusters 
over time for the different animal species can be found in Figure 2.

Cluster 1 (n  =  7,566 isolates) is the cluster which is mostly 
pan-susceptible, besides (mostly) single resistance against TET, AMP, 
AMP TET, SMX, TMP, GEN, GEN TET and CHL with low probabil-
ity (<0.16) (Table 1; Table S2). The single resistance phenotype with 
only TET resistance is almost exclusively present in pigs (Table S2). 
Cluster 2 (n = 698) is mostly susceptible, but carrying only CIP and 
NAL resistance, sometimes in combination with other resistance 
traits, of which AMP and TET have the highest resistance proba-
bilities (0.33 and 0.18, respectively). Cluster 2 is almost exclusively 

TA B L E  1   Resistance probability per cluster (rows) of a commensal E. coli isolate against an antimicrobial (columns). Isolates (N = 12,986) 
are from broilers, dairy cows, slaughter pigs and veal calves in the Netherlands, 2007–2018

GENa  TAZ FOT CHL TMP SMX AMP TET NAL CIP

Cluster 1 (n = 7,566) 0.01 0 0 0 0.01 0.01 0.05 0.16 0 0

Cluster 2 (n = 698) 0.08 0.02 0.02 0.06 0.05 0.12 0.33 0.18 0.96 0.99

Cluster 3 (n = 3,289) 0.04 0.04 0.04 0.26 0.77 0.94 0.66 0.81 0 0

Cluster 4 (n = 1,433) 0.16 0.12 0.13 0.41 0.90 0.98 0.88 0.80 0.97 0.99

Overall proportion of 
resistanceb 

0.04 0.02 0.03 0.12 0.30 0.36 0.31 0.39 0.16 0.16

aGEN, gentamicin; TAZ, ceftazidime; FOT, cefotaxime; CHL, chloramphenicol; TMP, trimethoprim; SMX, sulfamethoxazole; AMP, ampicillin; TET, 
tetracycline; NAL, nalidixic acid; CIP, ciprofloxacin. 
bOverall proportion of resistance in the full data, that is the fraction, out of all isolates (N = 12,986), resistant against an antimicrobial. 
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present in broilers and not in other animal species (Table 2; Table S3). 
Cluster 3 (n = 3,289) mostly consists of multidrug-resistant isolates, 
with high probability of resistance against SMX, TET, TMP and AMP 
(proportions of 0.94, 0.81, 0.77 and 0.66 of the isolates respectively, 
Table 1), and against CHL with moderate probability (0.26) but with 
low probability (<0.05) against 3rd generation cephalosporins FOT 
and TAZ (Table 1; Table S4). Cluster 4 (n = 1,433) contains the most 
multidrug-resistant isolates: almost all (0.99) are resistant against 
CIP NAL (Table 1, S5), and to SMX, TET, TMP, AMP and CHL with 

even higher probability than in cluster 3, and with some probability 
(0.12 and 0.13, respectively) to 3rd generation cephalosporins (TAZ, 
FOT). To summarize the clusters:

Cluster 1: Isolates that are mostly susceptible against all tested 
antimicrobials.

Cluster 2: Isolates that are mostly susceptible against all tested 
antimicrobials, except the (fluoro) quinolones.

Cluster 3: Multidrug-resistant isolates that are (fluoro)quinolone 
susceptible.

F I G U R E  1   Heatmap showing the resistance probability for the ten tested antimicrobialsa per cluster in the four clusters from model-
based clustering, in commensal E. coli isolates (N = 12,986) from broilers, dairy cows, slaughter pigs and veal calves from the Netherlands, 
2007–2018. aGEN, gentamicin; TAZ, ceftazidime; FOT, cefotaxime; CHL, chloramphenicol; TMP, trimethoprim; SMX, sulfamethoxazole; TET, 
AMP, ampicillin; NAL, nalidixic acid; CIP, ciprofloxacin
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  GENa TAZ FOT CHL TMP SMX AMP TET NAL CIP 

F I G U R E  2   Proportion of isolates in the four clusters (1–4) derived from model-based clustering of multidrug resistance in commensal 
E. coli isolates (N = 12,986) of broilers, dairy cows, slaughter pigs and veal calves from the Netherlands, 2007–2018
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Cluster 4: Multidrug-resistant isolates that are also (fluoro)quino-
lone resistant.

Note that the clusters are numbered in such a way that the resistance 
increases in probability with cluster number for each antimicrobial, except 

for (fluoro)quinolones (CIP and NAL). Clusters 1 and 3 are (fluoro) quinolone 
susceptible, whereas clusters 2 and 4 are highly (fluoro)quinolone resistant.

Table 2 shows how the isolates from the different animal spe-
cies are divided over the four clusters and Table  3 presents the 

TA B L E  2   Distribution of the clusters per animal species (with the overall distribution in the last row)

Na 

Cluster

1 2 3 4

Broilers 3,602 0.28b  0.18 0.22 0.31

Dairy cows 2,958 0.96 0.00 0.03 0.01

Slaughter pigs 3,491 0.53 0.00 0.46 0.01

Veal calves 2,935 0.62 0.01 0.28 0.08

Relative cluster size 12,986 0.58c  0.05 0.25 0.11

aNumber of isolates tested per animal species, from 2007 to 2018. 
bProportion, out of all isolates tested for this animal species, that belong to this cluster. 
cRelative cluster size, that is the proportion of all 12,986 isolates that belong to this cluster. 

TA B L E  3   A-B Relation between the four clusters from model-based clustering and outcome indicators as proposed by ECDC, EFSA and 
EMA(4): pan-susceptibility (Pan-S), resistant to three or more classes (>=3), and ciprofloxacin resistance (CIP-R), shown as proportions of 
commensal E. coli isolates (N = 12,986) of broilers, dairy cows, slaughter pigs and veal calves from the Netherlands, 2007–2018, shown for 
the dataset overall (Table 3A) and stratified per animal species (Table 3B)

Table 3

Animal species Indicator Proportion per animal speciese  Cluster 1 Cluster 2 Cluster 3 Cluster 4

Table 3A

Total (n = 12,986) Indicator Overall proportiona  Cluster 1 Cluster 2 Cluster 3 Cluster 4

Pan-Sb  0.46 0.46 0.00 0.00 0.00

>=3c  0.33 0.00 0.01 0.21 0.11

CIP-Rd  0.16 0.00 0.05 0.00 0.11

Table 3B

Broilers (n = 3,602) Pan-Sf  0.20 0.20 0.00 0.00 0.00

>=3g  0.55 0.00 0.05 0.19 0.31

CIP-Rh  0.49 0.00 0.18 0.00 0.31

Dairy cows 
(n = 2,958)

Pan-S 0.95 0.95 0.00 0.00 0.00

>=3 0.02 0.00 0.00 0.02 0.01

CIP-R 0.01 0.00 0.00 0.00 0.01

Slaughter pigs 
(n = 3,491)

Pan-S 0.33 0.33 0.00 0.00 0.00

>=3 0.38 0.00 0.00 0.36 0.01

CIP-R 0.01 0.00 0.00 0.00 0.01

Veal calves 
(n = 2,935)

Pan-S 0.46 0.46 0.00 0.00 0.00

>=3 0.33 0.00 0.01 0.24 0.08

CIP-R 0.09 0.00 0.01 0.00 0.08

aOverall proportion of isolates from the total number of isolates (N = 12,986), belonging to this outcome indicator by ECDC, EFSA and EMA (4). Note: 
these indicators are not mutually exclusive. 
bProportion of pan-susceptible isolates per cluster. 
cProportion of isolates resistant to three or more classes per cluster. 
dProportion of ciprofloxacin resistant isolates per cluster. 
eTotal proportion per animal species belonging to this outcome indicator. 
fProportion of pan-susceptible isolates per animal species per cluster. 
gProportion of isolates resistant to three or more classes per animal species per cluster. 
hProportion of ciprofloxacin resistant isolates per animal species per cluster. 
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comparison between the four clusters and the outcome indicators 
defined by ECDC, EFSA and EMA. All isolates with pan-suscepti-
bility (the primary outcome indicator defined by ECDC, EFSA and 
EMA) from the total of isolates tested (n = 12,986) belong to cluster 
1 (bottom of Table 3; Table S2). Isolates belonging to the second-
ary outcome indicator (as defined by ECDC, EFSA and EMA) mul-
tidrug-resistant (>=3) are divided over three clusters: 2, 3 and 4. 
The highest proportion of multidrug resistance is found in cluster 
3 (0.21), followed by cluster 4 (0.11), and lastly 0.05 of the multi-
drug-resistant isolates belongs to cluster 2 (Table 3).

4  | DISCUSSION

The purpose of this study was to use a data-driven method, model-
based clustering, to summarize AMR in bacterial isolates over anti-
microbial classes, in order to develop suitable outcome indicators of 
AMR monitoring based on objective arguments. Model-based clus-
tering delivered four clusters as a dimension reduction of the com-
plex data of 12,986 isolates tested with a panel of 10 antimicrobials 
of eight antimicrobial classes. These four identified clusters have 
potential to serve as AMR monitoring outcome indicators. We show 
a proof-of-principle of how model-based clustering can be used to 
develop data-driven summary indicators to assess AMR monitoring 
outcome. In addition, this analysis resulted in a deeper understand-
ing of the patterns in co-occurrence of resistance to more than one 
antimicrobial per isolate, as expressed phenotypically in commensal 
E. coli. These patterns were identified by 201 unique resistance com-
binations in this dataset, divided over the four clusters (Tables S1–
S5). The prevalence of these combinations is different for the animal 
populations tested. It goes beyond the extent of this study to inves-
tigate all multidrug resistance patterns individually. Here, we discuss 
our main results and remarkable findings: the method creates clus-
ters that differentiate levels of multidrug resistance, with or without 
resistance to (fluoro)quinolones and 3rd generation cephalosporins.

Quinolone resistance splits the clusters: clusters 1 and 3 with-
out CIP NAL and cluster 2 and 4 with CIP NAL resistance (Table 1; 
Figure  1). Furthermore, 3rd generation cephalosporin resistance 
also differs between clusters: clusters 3 and 4 contain isolates with 
resistance against FOT TAZ, but clusters 1 and 2 contain hardly 
any. Hence, this cluster analysis divides multidrug-resistant isolates 
over three different categories: relatively susceptible but with the 
fluoro(quinolones) CIP NAL (cluster 2), multidrug resistant mostly 
without resistance to these critically important antimicrobials for 
human medicine (World Health Organization, 2019) (cluster 3), and 
multidrug resistance including resistance to critically important an-
timicrobials (cluster 4). Most isolates were assigned to a cluster with 
high certainty, but not all, as can be seen from a few examples of less 
certain posterior memberships in Table S1.

We conclude from this analysis that the isolates of the four ani-
mal species are differently distributed over the resistance clusters, 
Table 2. As an example, almost all isolates of dairy cows are in clus-
ter 1, whereas broiler isolates are distributed over all clusters. This 

is in line with AMU in dairy cows, which has for many years been 
much lower than in broilers (SDa, 2018). Regarding the broilers, most 
isolates belong to the multidrug-resistant cluster 4 (0.31), corre-
sponding with the relatively high level of resistance against critically 
important antimicrobials in these animals. In pigs, the proportion 
of isolates in the multidrug-resistant cluster 3 (without resistance 
against critically important antimicrobials) is high (0.46) and, in con-
trast, is low in cluster 4 (0.01). Veal calves have multidrug-resistant 
isolates mainly belonging to cluster 3 (0.28) and to a lesser extend 
to cluster 4 (0.08).

We illustrate the variation in time trends of the four clusters in 
different animal reservoirs in Figure 2. Interestingly, the susceptible 
cluster 1 increases over time in all animal species. And in pigs, mul-
tidrug-resistant cluster 3 decreases over time. In broilers, the highly 
multidrug-resistant cluster 4 decreases over time. These findings 
are in line with the overall reduction in AMU in all animal species in 
the Netherlands since 2009 (Dorado-Garcia et al., 2016; SDa, 2018; 
Veldman et al., 2019), and more specifically a stop of 3rd generations 
cephalosporin use in broilers (SDa,  2018; Mevius and Heederik, 
2014).

The four clusters we found can be used as indicators to bench-
mark AMR: over time, over several countries or between animal 
sectors, either as a reflection of AMU or to assess the overall AMR 
situation. For benchmarking, it is crucial to create transparency by 
robust metrics, preferably developed by quantitative methods (Bos 
et  al.,  2015). These clusters lead to transparency of AMR present 
in different reservoirs and this method is flexible for policymakers 
to make choices. Suggestions for benchmarking methods are for 
example to set an AMR benchmark threshold for the proportion of 
isolates in ‘susceptible’ cluster 1. Also, the cluster 3 versus cluster 4 
proportion could be of interest to benchmark over different reser-
voirs (Table 2; Figure 2).

Our results indicate that more than one indicator is needed to 
describe multidrug resistance, as shown in the comparison between 
the four clusters from this analysis and the indicators proposed by 
EFSA, ECDC and EMA (European Food Safety Authority,  2017), 
Table 3. For example, the proportion of multidrug resistant isolates 
in slaughter pigs versus veal calves (0.38 and 0.33, respectively, 
Table 3). In pigs, almost all of these isolates belong to the non-critical 
multidrug-resistant cluster 3, but in contrast a higher proportion of 
the multidrug-resistant isolates from veal calves belong to the more 
critical multidrug resistant cluster 4 compared to slaughter pigs (0.08 
versus 0.01). Ciprofloxacin resistance, a separate outcome indicator 
for EFSA, is represented in clusters 2 and 4, differentiating ciproflox-
acin resistance as part of multidrug resistance (cluster 4) or mostly 
without other resistances (cluster 2). Cluster 2 with the phenotype 
containing just CIP NAL resistance is almost exclusively present in 
broilers (Table 2, Table 3 and Table S3). (Fluoro) quinolone resistance 
seems to persist in broiler flocks, as also described by other studies 
(Roth et al., 2019; Chantziaras et al., 2018; Taylor et al., 2016; Vieira 
et al., 2011).

Model-based clustering summarizes the data without loss of 
relevant information. As ECDC, EFSA and EMA mentioned in their 
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recent report, for a more detailed analysis of causes for AMR in the 
agricultural sector, an in-depth breakdown to the level of individual 
drug–microbe combinations by animal species and production sec-
tor is needed (European Food Safety Authority, 2017). Furthermore, 
Buyle et al.(2013) mentioned an unavoidable loss of information to 
occur when indicators are used to summarize large datasets. Using 
model-based clustering may tackle both of these problems, provid-
ing a solution to balance between reducing complexity and loss of in-
formation. The clusters reduce complexity, but can be broken down 
by composition to look up specific information (see the examples 
of the resistance combinations in Supplementary Tables). Another 
advantage over the EFSA indicators is that these clusters are mutu-
ally exclusive, while the EFSA indicators are not mutually exclusive 
and therefore cannot give an overview of the whole dataset. This is 
illustrated in Table 3.

In comparison with the work of Havelaar et al. (2017), Dorado-
Garcia et al. (2016) and Laxminarayan and Klugman (2011) another 
important advantage of model-based clustering is that it avoids 
the making of arbitrary choices, that is on what basis groups are 
made, because this method is data-driven. Although the antimi-
crobial susceptibility panel included in the analysis will influence 
results, this probabilistic approach avoids weighing or prioritizing 
with lack of quantitative arguments. And in the model no heuris-
tic choices such as similarity coefficients have to be made, as ex-
plained in Methods.

So far, few studies have investigated multidrug resistance pat-
terns with a quantitative approach to summarize the data and reduce 
complexity. Most studies on clusters in AMR data describe hierarchi-
cal clustering of genetic data from the bacterial genome from which 
their genetic relatedness can be inferred. Kappell et al.  (2015) ap-
plied a principal component analysis to both genetic and phenotypic 
AMR data of multidrug-resistant strains, but describe only ordina-
tion to visualize patterns, not quantify them (i.e., leading to an out-
put that can be interpreted, for ranking and prioritizing specific AMR 
patterns). Multivariate analyses to quantify multidrug resistance in 
either genetic or phenotypic AMR data have hardly been performed. 
Now that whole genome sequencing is becoming available for rou-
tine diagnostics and surveillance activities, methods to reduce com-
plexity in genetic AMR data are needed. We used phenotypic data, 
but this approach could also be interesting to apply on genetic data.

This study concerns ecological data: commensal E. coli is a senti-
nel organism from samples of healthy animals at slaughter, and mul-
tidrug resistance in a commensal organism from healthy animals is 
not directly a public health threat. However, the patterns we found 
reflect either direct selection or co-selection of AMR by AMU, or 
other driving mechanisms in the animal populations. These patterns 
can consequently be subjected to further investigating the biological 
mechanisms behind. Besides AMU, other drivers could play a role, 
for example disinfectants (biocides, i.e., quaternary ammonium com-
pounds) (Van Gompel et al., 2019), although these positive associations 
were not confirmed in two other studies (Maertens et al., 2019, 2020).

The cluster output of this analysis is, apart from the variability 
in the data itself, dependent of the selected panel of antimicrobials. 

Two antimicrobials of the critically important classes 3rd generation 
cephalosporins and (fluoro) quinolones were included as variables 
in the analysis. Both FOT and TAZ are included in the EUVSEC sus-
ceptibility testing panel because that increases the sensitivity for 
ESBL screening, and both CIP and NAL are included in that panel 
to monitor different types of quinolone resistance (European Food 
Safety Authority 2012). In this analysis, these two classes partly 
determine the way the data is divided into these four clusters. For 
those classes, the isolates resistant to one of these antimicrobials are 
nearly always resistant to both antimicrobials (because of cross-re-
sistance), therefore the model considers them to be a cluster. We 
checked for the influence of modelling only one antimicrobial per 
antimicrobial class (without TAZ and NAL, which are additional in the 
classes of 3rd generation cephalosporins and quinolones to FOT and 
CIP, respectively). This resulted in a solution of only two clusters: one 
with all almost completely susceptible isolates, and the other being 
all the multidrug-resistant isolates (data not shown). Apparently, in 
this data, once an isolate is resistant to one antimicrobial, it has a 
high probability of being resistant to multiple antimicrobials. We 
considered the two-cluster solution for eight antimicrobials less in-
formative as it models less data and is, by design, ignorant of the 
importance of resistance to those two antimicrobial classes.

As a result of the characteristics of this data, the four clusters in 
our results have an intrinsic focus on (fluoro)quinolones and 3rd gen-
eration cephalosporins. This could be of practical use, since these 
antimicrobial classes are of specific interest to policy. Cluster mem-
bership varies by data which depends on the level of AMR and AMU 
pressure. Therefore, this clustering method should be re-evaluated 
after analysing a more diverse international dataset. Next to that, it 
could be interesting to model cluster membership probabilities for a 
diversity of data, for example to estimate the probability of an isolate 
with resistance to one, two or three or more antimicrobial classes to 
belong to cluster 1–4.

In this analysis, we used a large dataset. Model-based clustering 
detects associations between resistance for different antimicrobials 
and this is more likely to succeed in larger than in smaller data sets. 
However, small data sets can use the results of larger ones such as 
presented in this paper. For example, the four clusters found in our 
study can be used as new predefined categories to summarize resis-
tance patterns in smaller datasets.

These clusters may be interesting benchmark indicators for EU 
member states, that monitor with the susceptibility panel as prescribed 
by EU legislation. This analysis was performed on Dutch data, so the 
question is whether the clusters would also be applicable for data from 
other countries. It could be dependent of specific AMR patterns, which 
may vary between ecologies of microbes, different animal sectors, and 
between regions and countries. To further develop this method, this 
analysis should be repeated for several other countries, such as the 
monitoring data yearly reported by all EU member states to EFSA.

In this study, isolates from all animal species were included in one 
analysis instead of analysing all animal species separately, this en-
ables comparing the cluster outcomes for benchmarking purposes. 
However, the effect of this methodology on the cluster outcome 
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should be further investigated. In addition, it could be interesting to 
use this model to investigate associations within one animal species 
over different European countries. Countries often have differences 
in food animal producing sectors, and other clusters may be found 
with different input data. However, in principle the method should 
perform the same: summarizing resistance data in a more easily un-
derstandable output than achieved so far.

In conclusion, model-based clustering identifies clusters that 
summarize resistance over antimicrobials or antimicrobial classes. 
The four clusters we found have potential to be used by policymak-
ers as monitoring outcome indicators, as we showed for Dutch AMR 
monitoring data from livestock, 2007–2018. The composition of the 
clusters was determined by the co-occurrence of resistance to more 
than one antimicrobial per isolate, and these reflect selection and 
co-selection patterns by AMU or other determinants. This study 
concerns ecological data from a commensal microorganism from 
Dutch livestock reservoirs, but this analytical method has poten-
tial value to identify clusters as outcome indicators for data from 
other microorganisms (e.g., foodborne pathogens such as Salmonella, 
Campylobacter), or data from other reservoirs.
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