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ABSTRACT

Genetic groups, also called unknown or phantom 
parents groups, are often used in dairy cattle genetic 
evaluations to account for selection that cannot be 
accounted for by known genetic relationships. With 
the advent of genomic evaluations, the theory of ge-
netic groups was extended to the so-called single-step 
genomic BLUP (ssGBLUP). In short, genetic groups 
can be fitted in ssGBLUP through regression effects, or 
by including them in the pedigree and computing the 
adequate combined pedigree and genomic relationship 
matrix. In this study, we applied the so-called Quaas 
and Pollak transformation to a system of equations for 
single-step SNP BLUP (ssSNPBLUP), such that ge-
netic groups can thereafter be included in the pedigree. 
The example in this study showed that including the 
genetic groups in the pedigree for ssSNPBLUP allowed 
reduced memory burden and computational costs in 
comparison to genetic groups fitted as covariates.
Key words: unknown parents groups, phantom 
parents, single-step, genomic evaluation

Technical Note

Genetic groups, also called unknown or phantom 
parents groups, are allocated to animals to account 
for selection that cannot be accounted for by known 
genetic relationships (Quaas, 1988). Genetic groups can 
be defined based on, among others, the birth year of 
animals, sex, selection path, and breed (Quaas, 1988; 
Westell et al., 1988; Legarra et al., 2007). Developed for 
pedigree-based BLUP, the theory of genetic groups was 

extended to single-step genomic BLUP (ssGBLUP; 
Misztal et al., 2013). An alternative implementation of 
genetic groups is to fit the genetic group contributions 
as regression effects (Misztal et al., 2013). While this 
approach is straightforward and can be easily imple-
mented in current software for genomic evaluations, it 
is expected to lead to considerable memory and com-
putational costs for genetic evaluations using a very 
large pedigree (i.e., containing millions of animals) and 
a relatively large number of genetic groups (i.e., higher 
than 100), which is often the case in dairy cattle genetic 
evaluations (e.g., Matilainen et al., 2018). Another 
equivalent implementation is to include the genetic 
groups in the pedigree as “phantom parents” and to 
set up the combined pedigree and genomic relation-
ship matrix adequately for ssGBLUP, as proposed by 
Misztal et al. (2013), who applied the Quaas and Pol-
lak (1981) transformation (QP transformation) to the 
mixed model equations of ssGBLUP. In practice, this 
latter implementation based on the QP transformation 
seems to be more feasible for dairy cattle ssGBLUP 
(Mäntysaari et al., 2020). However, as far as we know, 
the inclusion of the genetic groups based on the QP 
transformation has not been derived for single-step SNP 
BLUP (ssSNPBLUP) yet. In contrast to ssGBLUP, 
the ssSNPBLUP approaches directly estimate the SNP 
effects. They also avoid some drawbacks of ssGBLUP, 
such as requiring an inverse of the genomic relationship 
matrix or a representation thereof (Liu et al., 2014; 
Fernando et al., 2016). Therefore, the aim of this study 
was to derive the system of equations for ssSNPBLUP 
proposed by Liu et al. (2014) that includes the genetic 
groups in the pedigree.

For the derivation, we first assumed that genetic 
groups were explicitly fitted as fixed effects in the mod-
el associated with the system of equations proposed 
by Liu et al. (2014). Ignoring all fixed effects, except 
the genetic groups, the resulting ssSNPBLUP system 
of equations following Liu et al. (2014) can be written 
as follows:
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where the subscripts g and n refer to genotyped and 
nongenotyped animals, respectively, y is the vector of 
records, t̂  is the vector of estimated genetic group ef-
fects, ûn  and ûg  are the vectors of estimated additive 

genetic effects for nongenotyped animals and for geno-
typed animals, respectively, ĝ  is the vector of estimated 

SNP effects, the matrix Q
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 is the inverse of the residual (co)

variance structure matrix, and the matrix Σ−1  is de-
fined as
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(Liu et al., 2014; equation [A17]). The matrix Z con-
tains the SNP genotypes (coded as 0 for one homozy-
gous genotype, 1 for the heterozygous genotype, or 2 
for the alternate homozygous genotype) centered by 

their observed means. The scalar σu
−2  is the inverse of 

the additive genetic variance, w is the proportion 
(strictly between 0 and 1) of the additive genetic vari-
ance due to residual polygenic effects, and 
m p pj j= −( )2 1Σ ,  with pj being the observed allele fre-

quency of the jth SNP. The matrix 
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pedigree relationship matrix among all animals, and 
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 is the inverse of the pedi-

gree relationship matrix among genotyped animals. 
Each row of Q contains the genetic group composition 
of an animal.

Following Quaas and Pollak (1981), we first defined 
the matrix P as
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Then, pre-multiplying both sides of the system of Equa-

tion [1] by P−( )′1  and inserting P P−1  between the 

coefficient matrix and the vector of solutions (which is 
known as the QP transformation) resulted, after some 
algebra, in
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created by including genetic groups using the rules of 
Quaas (1988).

In our implementation, before running the iterative 
algorithm for solving the system of Equation [2], the 
matrix Qg and the submatrices of the inverse of a pedi-
gree relationship matrix for the genotyped animals and 
their ancestors, Aanc

gg ,  Aanc
nn ,  and Aanc

ng ,  were first set up 

such that A Qgg g
−1  could be computed as 
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then computed and stored in a file for their use by the 
iterative solver.

It is worth noting that absorbing the equations as-
sociated with ĝ  in the system of Equation [2] leads to 
the system of equations derived by Misztal et al. (2013) 
for ssGBLUP, demonstrating the equivalence between 
both models. Furthermore, the same approach could be 
applied to other ssSNPBLUP linear systems (e.g., Fer-
nando et al., 2016).

For illustrating the performances of the systems of 
Equations [1] and [2], the data set and associated vari-
ance components from the 4-trait routine genetic evalu-
ation of August 2019 for temperament and milking 
speed of dairy cattle for the Netherlands and the Flem-

ish region of Belgium (CRV Animal Evaluation Unit, 
2020a,b) were used. Performance in both countries were 
considered as different traits. The data file included 
4,058,154 records with a single record per animal. The 
pedigree included 6,344,482 animals. A total of 441 
genetic groups were defined based on selection path, 
breed, country of origin, and year of birth (CRV Ani-
mal Evaluation Unit, 2020c). On average, each genetic 
group replaced unknown parents of 1,516 animals, 
varying from 373 to 9,362 animals. The number of ani-
mals genotyped for 37,995 segregating SNPs was 
123,644. The 4-trait mixed model included random ef-
fects (additive genetic and residual), fixed covariables 
(heterosis and recombination), and fixed cross-classified 
effects [herd × year × season at classification, age (in 
month) at classification, lactation stage at classifica-
tion, milk yield, and month of calving; CRV Animal 
Evaluation Unit, 2020a,b]. An additional fixed covari-
ate that estimates the mean breeding value in geno-
typed animals was fitted (Hsu et al., 2017). This addi-
tional effect aimed to correct for the fact that the geno-
types were centered using the observed allele frequencies 
instead of using the base population allele frequencies 
(Hsu et al., 2017). The genetic groups were fitted in 
ssSNPBLUP with covariates (for the system of Equa-
tion [1]) or with the QP transformation (for the system 
of Equation [2]). Additionally, to avoid problems with 
estimating their effects, genetic groups were considered 
as random effects in both cases by adding 1 times the 
additive genetic covariance matrix to their block-diago-
nal elements (Misztal et al., 2013; Schaeffer, 2018). 
Practically, the matrix ′ ′ −Q W R WQ1  was replaced by 
′ ′ +− −Q W R WQ I1 2σu  in the system of Equation [1], and 

the matrix 
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The proportion of additive genetic variance due to re-
sidual polygenic effects, w, was assumed to be equal to 
0.10. To illustrate the additional memory and computa-
tional costs of fitting genetic groups, ssSNPBLUP 
without genetic groups was also performed.

The different ssSNPBLUP systems were solved us-
ing a Fortran 2003 program detailed in Vandenplas 
et al. (2020). The matrix-free version of the software 
was used, and all the data needed to perform the mul-
tiplication of the coefficient matrix by a vector was 
stored in-memory. A 2-level preconditioned conjugate 
gradient (PCG) method was used as iterative solver 
(Vandenplas et al., 2019). The first-level preconditioner 
M  included only the diagonal elements of the coef-
ficient matrix for the fixed effects, and a block-diagonal 
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structure for the random effects with blocks corre-
sponding to equations for different traits within a level. 
The second-level preconditioner was a diagonal matrix 
with all diagonal elements equal to 1, except for the 
diagonal elements corresponding to the SNP equations 
that were equal to 100, and for the diagonal elements 
corresponding to the genetic group equations fitted as 
covariates that were equal to 10 (Vandenplas et al., 
2019). The value of 10 for the genetic group equations 
was determined following the ratio between the largest 
eigenvalues of the preconditioned coefficient matrices of 
ssSNPBLUP with and without genetic groups fitted as 
covariates (Vandenplas et al., 2019). The 2-level PCG 
method iterated until the relative difference between 
2 consecutive solutions was ≤10−5 (Lidauer et al., 
1999). The smallest and largest Ritz values, that were 
approximations of the smallest and largest eigenvalues 
that influenced the convergence, were also computed 
using the Lanczos method based on information ob-
tained from the PCG method (Kaasschieter, 1988). 
The effective spectral condition numbers of the differ-
ent preconditioned coefficient matrices were computed 
as the ratio of the largest to the smallest eigenvalue 
that influence the convergence (Nabben and Vuik, 
2006). All computations were performed on a computer 
with 376 GB and an Intel Xeon Gold 6130 (2.10 GHz) 
processor with 32 cores (Intel, Santa Clara, CA). The 
number of OpenMP (www​.openmp​.org) threads used 
for all computations was equal to 5. All reported times 
are indicative because they may have been influenced 
by other jobs running simultaneously on the computer.

All the characteristics and results for the ssSNPB-
LUP systems without and with genetic groups are in 
Table 1 and Figure 1. The ssSNPBLUP system without 
genetic groups included 26,861,588 equations, while the 
2 ssSNPBLUP systems with genetic groups included 
26,863,352 equations. The Pearson correlations between 
the estimates for all fixed effects, additive direct effects, 
and SNP effects of the 2 ssSNPBLUP systems with 

genetic groups were higher than 0.99, as expected, be-
cause the same model underlies the 2 ssSNPBLUP 
systems with genetic groups. For the ssSNPBLUP sys-
tems with genetic groups, the matrices Q (of size 

6,344,482 by 441), or 
1

1 1

w g gg g−










−Q A Q'  (of size 441 by 

441), − −
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

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−1
1 1

w g ggQ A'  (of size 441 by 123,644), and 

1 1

w g ggQ A Z' −  (of size 441 by 37,995), were stored in-mem-

ory using double precision reals. The differences in size 
among these matrices explained the main increase of 
random access memory (RAM) needed by ssSNPBLUP 
with genetic groups as covariates (25,211 MB; Table 1) 
in comparison to ssSNPBLUP with QP transformation 
(4,726 MB; Table 1). These differences could also 
largely explain the differences in wall clock times 
needed for the whole process of the 2 ssSNPBLUP with 
genetic groups: about 9,660 s for ssSNPBLUP with 
genetic groups as covariates, and about 4,600 s for ssS-
NPBLUP with the QP transformation. These differ-
ences are expected to be even larger for evaluations 
with larger pedigree.

The 3 ssSNPBLUP systems converged in about the 
same number of iterations (i.e., around 1,200–1,300 
iterations; Table 1; Figure 1). This agreed with the ex-
tremal eigenvalues and the effective spectral condition 
numbers that were similar for the 2 systems (Table 1). 
It is worth noting that similar effective spectral condi-
tion numbers for the 3 ssSNPBLUP were possible after 
applying the second-level preconditioner also to the 
equations corresponding to the genetic group covari-
ates. Without applying the second-level preconditioner 
to the genetic group covariates, around 150 additional 
iterations were needed to reach convergence.

In this study, we derived a system of equations for ssS-
NPBLUP that included genetic groups in the pedigree 
and that required less memory and computational costs 
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Table 1. Characteristics of systems for single-step SNP BLUP without genetic groups, with genetic groups fitted as covariates and fitted using 
the Quaas and Pollak (1981) transformation (QP transformation)

Characteristic No genetic group Covariate QP transformation

Number of equations 26,861,588 26,863,352 26,863,352
Number of iterations 1,221 1,352 1,292
Smallest eig 1.488 × 10−5 1.297 × 10−5 1.357 × 10−5

Largest eig 5.948 7.421 5.948
κ1 3.997 × 105 5.722 × 105 4.382 × 105

Software peak memory2 (MB) 4,130 25,211 4,727
Wall clock time3 (s) 4,017 9,657 4,602
1κ = effective spectral condition number of the preconditioned coefficient matrix defined as the ratio of the largest to the smallest eigenvalue.
2The software peak memory is defined as the peak resident set size (“high water mark,” VmHWM) obtained from the Linux /proc virtual file 
system.
3Wall clock time of the whole process.

www.openmp.org
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than an equivalent system with genetic groups fitted as 
covariates. Additional research should be performed to 
evaluate if fitting genetic groups in single-step evalu-
ations (ssSNPBLUP or ssGBLUP) is beneficial (e.g., 
in terms of accuracy and bias) for such dairy cattle 
data sets. As already mentioned, the system of Equa-
tion [2] is equivalent to the ssGBLUP system proposed 
by Misztal et al. (2013), and may therefore encounter 
the same issues as its equivalent ssGBLUP (e.g., Brad-
ford et al., 2019; Tsuruta et al., 2019). The concept 
of metafounders could be also easily implemented in 
ssSNPBLUP to replace the genetic groups, similar to 
studies with ssGBLUP (e.g., Macedo et al., 2020).
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