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LED lighting is appointed as the successor of HPS lighting in greenhouses since it can lead
to a more sustainable cultivation, i.e. it converts electrical energy into photosynthetically
active radiation more efficiently. To quantify the effect of this more efficient conversion
within the operation of the greenhouse system, an optimal controller is proposed to
generate optimal control trajectories for the controllable inputs of the greenhouse. The
optimal controller makes use of an economic objective function, i.e. the difference between
income (yield x product price) and cost of resources (resource use x cost). The performance
of this optimally controlled greenhouse system is compared with respect to the state-of-
the-practice. Simulation experiments suggest optimal control can increase the economic
objective by 10 % to 65.14 €.m~2 compared to 58.96 €.m~2 for the state-of-the-practice, for
tomatoes cultivated in a Dutch weather conditions. The model of the optimally controlled
greenhouse is used to compare the performance of different lighting systems, i.e. no
lighting, HPS lighting and LED lighting. An increase of 9% in the operational return is
observed for LED lighting compared to HPS lighting. The electricity that is saved due to the
more energy-efficient conversion in the LED lighting results in a 30 % decrease in carbon
footprint when comparing a greenhouse with LED lighting to a greenhouse with HPS
lighting.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

signed an agreement with the Dutch government to decrease
the total energy consumption and its environmental footprint
(van der Velden & Smit, 2019). One of the potential solutions

The cultivation of fruit and vegetables in greenhouses in the
Netherlands consumes a vast amount of energy. From the
total energy of 100.5PJ consumed in 2018, 77 % was due to
heating and 23 % due to electricity for artificial lighting (van
der Velden & Smit, 2019). The Dutch horticultural industry
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for decreasing the environmental footprint of the horticul-
tural industry is to reduce the electricity consumption by
switching from High-Pressure Sodium (HPS) lighting to Light
Emitting Diode (LED) lighting (Gémez & Mitchell, 2014).
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Nomenclature

Sub- and Superscripts

*d
o

D

discretised signal or function
optimal signal or value
daily sum of signal

Greek Symbols

o
%g
Olscr
Olcov

Yboi
Ycby
Yeby

Yese

Ychp
MEc
Nxb

Nxc
Nxy

0,
Oy
EX
Tl
Ts

¢C,GSS

thermal insulation constant of the heat buffer, s—!
energy content per cube of gas, J.m=3

heat conductance of the screen, Jm—t.s1.°C~1
heat conductance of the cover, Jm1.s 1°C-1
contribution of boiler use to the carbon footprint,
kg.m=3

contribution of CO, bought to the carbon
footprint, kg.kg—!

contribution of electricity bought from grid to the
carbon footprint, kg.kWh!

contribution of electricity sold to grid to the
carbon footprint, kg.kWh~?

quantisation factor, ( — )

contribution of CHP use to the carbon footprint,
kg.m—3

fraction of CHP input power converted to electrical
power, (—)

conversion of boiler input power to CO, output,
9J"

conversion of CHP input power to CO, output, gJ~*
fraction of input power to light source X converted
to Y radiation, where X {led, hps,sun} and Ye
{PAR,NIR}. ( —)

lower bound to inequality equations h( +)

upper bound to inequality equations h( -)
reference to model component x

discretization interval of the greenhouse system, s
sampling interval of signals, s

assimilation rate, g.m—2.s~?

Alphabetical Symbols

ax,

Acoy
Aﬂoor

©

Choi
Ceby
Cehp
Ceby
Cese

Cprt

Cw
Couf
Cfrt
Chrtof
Cleaf
COZ,air
Coz,out
d

da

crop absorption for Y radiation from light source
X, where X & {led, hps,sun} and YE{PAR,NIR} ( — )
area of the greenhouse cover, m?

floor area of the greenhouse, m?

vector of input unit prices

cost of boiler gas, €.m 3

cost of pure CO,, €.kg!

cost of CHP gas, €m—3

cost of electricity from grid, € kWh?

return on sold electricity to grid, € kWh!

return on fruit harvest, €.kg—!

heat capacity of water, J.kg~1.K~*

crop carbohydrates in assimilate buffer, g.m=2
crop carbohydrates in fruit, g.m—2

offset in fruit buffer, g.m—2

crop carbohydrates in leaves, g.m—2

greenhouse air CO, concentration, g.m=3

outside air CO, concentration, g.m—3
uncontrollable inputs to the greenhouse system
thickness of the heat buffer wall, m

H air

LAI
LATLnax
My

M cBuﬂ?rt

M CLeafHar
Ng

Ne

Ny

Nx

N
Nsup
pa(+)
pa(+)
Pq.
P(x)

Q.CDU
QS un
Rpar
RtDt

S(+)
SLA

to

continuous time model of the greenhouse system
function describing the minimum ventilation rate
as a function of wind speed, m®>.m=2.s7?

function describing the maximum ventilation rate
as a function of wind speed, m3.m=2.s7?

discrete time model of the greenhouse system,
with sampling time 7

discrete time model of the greenhouse system,
with sampling time 7

condensation conductance of the cover, m.s™!
inequality equations

energy loss from the heat buffer, Jm=2.s71
greenhouse air humidity, g.m=3

energy supplied to a released from the heat buffer,
Jm2st

outside absolute air humidity, element in d, g.m—3
integer variable

integer variable

optimised operational return, €.m—2

extinction coefficient of the canopy, (- )

thermal conductivity of the heat buffer surface,
Jmls 1K1

operational return of the greenhouse system,
€m?

leaf area index, m2.m-
maximal leaf area index, m2.m
water mass, kg

assimilates partitioned to the fruit buffer,
gm2s!

leaf harvest, gm=—2.s~
number of uncontrollable inputs

number of inequality constraints

number of inputs

number of states

prediction horizon

number of subsamples

income through yield minus costs for gas, €m—2
carbon footprint, kg.m=2

properties of the cover, m.°C .51

polynomial function in x

integer variable

convective heat loss through the cover, Jm—2.s~!
global radiation, element in d, W.m—2

total PAR absorbed by the canopy, W.m~2

total radiation, PAR and NIR, absorbed by the
canopy, W.m2

Y radiation by lighting source X, where

Xe{led, hps} and Y € {PAR,NIR}. W.m—2

gas use function, m*>.m—2

gas use by boiler, m3.m=2

gas use by CHP, m®>.m—2

slope parameterin S, ( — )

switching value parameterin S, ( —)

value that determines value of S, ( — )

smoothed if-else function by Vanthoor (2011)
specific leaf area, g.m—2

time

start time of the optimal control horizon

2

-2

1
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te end time of the optimal control horizon

Tair greenhouse air temperature, °C

Ty cover temperature, °C

Teoa 24-hr average greenhouse air temperature, °C

Tewis outside temperature, element in d, °C

u controllable inputs to the greenhouse system

Upoi the level of operation of the boiler, W.m=2

Uchy (pure) CO, bought, gm2.s~!

Uchp the level of operation of the combined heat and
power (CHP), W.m—2

Ucoz greenhouse CO, injection, gm 2.5t

Ueby electrical power bought, W.m=2

Uese electrical power sold, W.m—2

Ugt fruit harvest, gm—2.s7!

Ug controlled inputs to the greenhouse climate model

Unea heating input to greenhouse, Jm—2.s~*

Upps electrical power to HPS lighting, W.m~2

Uleq leaf harvest, gm2.s1

Uleq electrical power to LED lighting, W.m—2

User screen set (1 represents fully deployed), (—)

Usto energy flux to heat buffer, W.m—2

Uyen ventilation rate, m3.m2.s71

U set of admissible values for the inputs

Vwind outside wind speed, element in d, m.s~?

X state vector of the greenhouse system

Xs heat stored in heat buffer, . m—2

Xs off lowest energy content of the heat buffer, J.m—2
Xt initial state

X set of admissible values for the states

Ve effect of the crop on the greenhouse climate
Vg effect of the greenhouse climate on the crop
Acronyms

Al artificial intelligence

CHP combined heat and power

HPS high pressure Sodium

LAI leaf area index

LED light emitting diode

PA periodic average

ocC optimal control

RMSE root mean squared error

Existing literature on HPS lighting and LED lighting mainly
focusses at the energy conversion efficiency. For example,
these lighting systems are compared in Nelson and Bugbee
(2015) based on energy conversion efficiencies and in Dueck
et al. (2012) and Gémez and Mitchell (2014) the lighting sys-
tems are compared in a greenhouse experiment with to-
matoes. Data from the experiment by Dueck et al. (2012) has
been used to evaluate a model by Katzin et al. (2020) which
aims to describe the qualitative difference between HPS
lighting and LED lighting. Xu, Wei, & Xu, 2019 proposed a
switching strategy for turning on and off LED lights using
multi-objective optimisation is proposed, reporting an energy
reduction of 30% with respect to rule-based control. Other
research into the effects on crop growth by Lee et al. (2014) and
Olle and Virsile (2013) and optimal positioning of the lighting
system by Ferentinos and Albright (2005), solely focuses on
LED lighting, not on HPS lighting. Overall, LED lighting is
attributed a higher efficiency in converting electrical power to
photosynthetically active radiation (PAR). The installed elec-
trical capacity of LED lighting can be lower while achieving
similar levels of PAR, while emitting less radiative energy.

This paper provides insight on to what extent LED lighting
improves the performance of an optimally controlled green-
house system, measured in operational return (yield income —
resource costs) and carbon footprint. To this extent, this paper
will quantify the difference in operational return and carbon
footprint in simulations using an optimally controlled green-
house with HPS and LED lighting. The control inputs to the
greenhouse result from an optimisation problem which en-
sures a fair comparison between both lighting systems. To-
wards this end, a model is developed that predicts the effect of
the lighting systems on the crop, the greenhouse climate and
the production of electricity for the lighting systems. As a
lighting system influences the greenhouse climate, all rele-
vant inputs e.g. heating, must also be included in this

simulation. The control strategy for the greenhouse aims at
optimising the operational return defined as the difference
between income (yieldx product prices) and cost of resources
(resource use x costs). Taking these steps, the two lighting
systems can be compared.

Models have been developed for individual components of
the greenhouse system, such as energy management system
models (de Zwart, 1996; Seginer et al., 2018; van Beveren et al.,
2019; van Ooteghem, 2007), greenhouse climate models (de
Zwart, 1996; Katzin et al.,, 2020; van Beveren et al.,, 2015;
Vanthoor, 2011) and crop growth and transpiration models
(Heuvelink & Challa, 1989; Kuijpers et al., 2019; Vanthoor,
2011). The present paper builds upon the existing validated
models, by combining them into a complete model for the
greenhouse system. A set of existing models has been selected
based on inclusion of physical and crop physiological phe-
nomena and accuracy of validation. The complete greenhouse
system model is validated with respect to the state-of-the-art,
represented by economic figures in a reference budget
(Vermeulen, 2016, p. 330), using a rule-based controller.

Several approaches to the greenhouse control challenge
have been presented such as Hamiltonian maximization
(Seginer et al., 2018), receding horizon optimal control (RHOC)
(Ramirez-Arias et al., 2012; Tap, 2000; van Ooteghem, 2007)
and optimal control using grower defined bounds (van
Beveren et al., 2015). The present paper employs optimal
control to provide a control strategy aimed at maximizing the
operational return. The few published approaches that have
employed an economic objective function use penalty factors,
i.e. empirically determined factors converting undesirable
configurations of the system (e.g. extreme temperatures) into
an economic quantity. The economic quantity is used to
penalise the occurrence of undesirable configurations through
the objective function of the optimisation problem. In the
approach proposed here, explainable white-box models are
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used to estimate the effect of an undesirable configuration of
the system. In Xu et al. (2018) also an economic objective
function without penalty factors is considered. However, with
respect to the aim of this paper a model detailing the origin of
electricity and heat is not present in Xu et al. (2018) which
therefore follows a different approach.

The contribution of this paper is four-fold. A model, capable
of describing how the inputs to the greenhouse system
(including the energy management system and artificial light-
ing) affect the crop growth and production, is selected and the
interconnection is validated using data representing the state-
of-the-practice. Secondly, an optimal control algorithm is pro-
posed which, in combination with the aforementioned model,
can control the greenhouse system using a purely economic
cost function (no penalty functions). Thirdly, the effects of
different lighting systems employed in the greenhouse system
are analysed, and conclusions are drawn with respect to the
potential economic benefits and carbon footprint reduction of
LED lighting in tomato greenhouses. Lastly, the effect of the
quantisation in the system, due to the ability of only switching
on/off the lighting is researched, aiming to increase the accu-
racy of the third contribution by removing the assumption that
the lights can be controlled to attain any value.

The remainder of this paper is organised as follows,
Section 2 will elaborate on the selected models, the inter-
connection of the selected models and the control of the
greenhouse system. The simulation studies will be presented
in Section 3 and the results will be discussed in Section 4.
Directions for future work and the conclusion of this research
are presented in Section 5.

2. Models & methods

In order to be able to compare various lighting systems, a
modelis developed to predict the effect of a lighting system on
the operation of the greenhouse system. As a different lighting
system might also affect the selected greenhouse climate
control strategy, the controlled greenhouse system must be
considered. The greenhouse control problem is presented in
subsection 2.1. The model used to simulate the greenhouse
system, consists of three parts, the energy management
system, the greenhouse climate and lighting system
and crop growth and transpiration, these are detailed in
subsection 2.2, 2.3, 2.4 and 2.5, respectively. The derivation of
the economic objective function is detailed in subsection 2.6.
The implementation of the proposed controller is presented
in subsection 2.7. The rule-based controller used in the vali-
dation of the model is presented in subsection 2.8. The rele-
vant data from the state-of-the-practice and the weather data
are presented in subsection 2.9 and 2.10, respectively.

2.1. Greenhouse control problem

The greenhouse control problem is graphically represented by
the block diagram as depicted in Fig. 1. The model of the
greenhouse system is composed of the energy management
system X, greenhouse climate and lighting system model Xg
and crop growth and transpiration model ¥¢. The greenhouse
system is affected by controllable inputs ueR™ and

uncontrollable inputs d€R"™. The interaction between the
greenhouse climate model and the crop (temperature, CO,
concentration, radiation and relative humidity) and vice versa
(assimilation and transpiration), are denoted by y, and y. in
Fig. 1, respectively. The controlled inputs to the greenhouse
climate model are represented by u,. The dynamical model of
the system is represented by

X(t) =f(x(t), u(t), d(t)), (1)

where x(t) €R™ is the state of the greenhouse system.

For the simulations presented in this paper, the inputs to
the greenhouse system u will result from an optimisation
problem run by controllerXy. The controller optimises the
operational return I(u(t),c(t)) : R™ x R™ —R over a horizon
tE [to, ty], referred to as the prediction horizon. The prediction
horizon has to be larger than the timescales of the relevant
slow dynamics of the system F, to be able to properly optimise
the control inputs. The cost/return of a unit input is c(t) e R™,
i.e. ¢j(t)u;(t) represents the contribution of inputie{1,...,n,} to
the operational return and is expressed in monetary units.
This is mathematically represented by

i
Jix) = max / l(u(t),c(t)) dt )

subject to :

(x(t),u(t)) e X x U,
G <h(x(t),u(t)) <6y, forte [to,t]

X(to) =xt,

where x; € R"™, represents the state att = to. x(t) is the state of
the actual greenhouse system at time t. The controller is
assumed to have full state information. The inequality equa-
tions are expressed in terms of functions h( ) which are lower
and upper bounded by 6, €R™ and 6, R™ respectively. The
sets XCR™ and UCR™ represent admissible values for the
states and inputs, respectively.

All bounds are fixed except for the bounds on the ventila-
tion rate control input uygn. The bounds on  Ugen,
fomin(*) : R—R and fymax(*) : R— R, originate from the model
in chapter 6 of de Jong (1990) and depend on the wind speed, a
similar approach as presented in van Beveren et al. (2015). The
states x and inputs u for the model in (1), are listed in Tables 1
and 2, respectively. The values of states and inputs will be
presented per square meter of ground area. The upper bound
of the carbohydrates buffer in the leaves Cjy, is determined
by maximal leaf area index input by the user LAlyay, in this
paper LAln.y =3m?m=2 and SLA =26.6kg.m 2 (Vanthoor,
2011). The lower bound of the fruit carbohydrates buffer Cg;
is set to Cpyof, S€€ subsection 2.5.

Subsections 2.2, 2.3, 2.4 and 2.5 present the three compo-
nents of the modelin (1), depicted in Fig. 1. The subsections start
with an introduction of the model that is used and afterwards
elaborate on the changes made to these models. The changes to
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Ye

Yg

Fig. 1 — Block diagram representation of the greenhouse control problem, composed of controller Xy, energy management
system I, greenhouse climate and lighting system model X¢ and crop growth and transpiration model X¢. The control
inputs to the greenhouse system are denoted by u, the elements input to ¢ encompass the harvest of fruits and leaves. The
controlled inputs to the greenhouse climate model are denoted by u,4, see (6). The uncontrolled inputs to the greenhouse
climate model are denoted by d, the outside weather. Variables y, and y. denote the effect of the greenhouse climate on the
crop (temperature, CO, concentration, radiation and relative humidity) and the effect of the crop on the greenhouse

(assimilation and transpiration), respectively.

the models mostly encompass removing discontinuities from
the models and ensuring continuous differentiability. Discon-
tinuities and a deficient degree of continuous differentiability
will generally decrease the performance of the gradient-based
optimisation methods and were therefore avoided whenever
possible. The parameters of the models have been taken in
accordance with the publication in which the models have been
validated (Seginer etal., 2018; van Beveren et al., 2015; Vanthoor,
2011) unless stated otherwise.

2.2. Energy management system

As a different lighting system might also affect the use of re-
sources, the energy management system is a crucial compo-
nent in the greenhouse system model. The model of the
energy management system is based on the model presented
in Seginer et al. (2018) and is composed of a combined heat
and power unit (CHP), a boiler and a heat buffer. This model
has one state x; which represents the stored heat in the buffer.
The buffer is supplied and depleted using control input ug.
The inputs to this model encompass the setpoints given to the
CHP (ucp) and boiler (upy;). Pure CO, is bought (ugy) to
compensate for a difference between the CO, produced on-

site (CHP and boiler) and the injection rate (uco,). Electricity
is bought (ucpy) and sold (uese) to counterbalance the difference
between the electricity demand by the lighting (up,s and uq)
and electricity generated on-site (CHP).

The modelitself only contains dynamics related to the heat
buffer. The description for the energy loss from the heat buffer
H, (W.m~2) was changed from a discontinuous description to a
continuously differentiable description

Ha = —-Xs (3)

where x; (J.m~2) represents the energy stored in the buffer, see
Table 1. The lowest energy content in the heat buffer is rep-
resented by a constant value X ER (.m=2). The thermal
insulation constant is represented by «. With this proposed
new description, H, is now a function of x; more accurately
describing the energy loss when storing energy in the heat
buffer for a long time, as indicated by Seginer et al. (2018). The
derivation of the thermal insulation «=3.96-10"7 (s7?!) is
presented in Appendix A.

The fraction of the input power to the CHP thatis converted
to electrical power is given by 7y, = 0.4 (— ) (Seginer et al.,
2018), the balance of produced and consumed electricity is
therefore

Table 1 — States in the greenhouse system model x and corresponding constraints represented by lower and upper bounds.

States X = [Xs; Tair; Hair; CO2,gir; cbuﬁ Cleaﬁ Cfrt; Teoa]

Symbol Lower bound Upper bound Unit Description

Xs 0 3.10°0 Jm2 heat stored in heat buffer

Tetir 10 35 “C greenhouse air temperature

Bl 5 35 g{H,0}.m3 greenhouse air humidity

CO2 gir 0.69 2.79 g{COz}.m3 greenhouse air CO, concentration

Chuf 0 20 g{CH,0}.m=2 crop carbohydrates in assimilate buffer
Cleaf 0 LAlImax/SLA g{CH,0}.m2 crop carbohydrates in leaves

Cht Chrtoff © g{CH,0}.m2 crop carbohydrates in fruit

Teoa 10 35 °C 24-hr average greenhouse air temperature
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Table 2 — Inputs to the greenhouse system model u and corresponding constraints represented by lower and upper
bounds.

Inputs u = [Uchp; Upoi; Unps; Uled; Ueby; Uese; Uco2; Ucby; Usto; Uven; Uscr; Ulea; Urt]

Symbol Lower bound Upper bound Unit Description
Uchp 0 125 W.m~2 the level of operation of the combined heat and power (CHP)
Upoi 0 83.33 W.m=2 the level of operation of the boiler
Upps 0 100 W.m~2 electrical power to HPS lighting
Uled 0 61.67 W.m2 electrical power to LED lighting
Uepy 0 250 W.m—2 electrical power bought
Uese 0 250 W.m2 electrical power sold
Uco2 0 250 g{COy}.m 251 greenhouse CO, injection
Uchy 0 250 g{CO}.m2s71 (pure) CO, bought
Usto — 250 250 W.m2 energy flux to heat buffer
Uyen Fomin(d) Jf—(c) m3im2st ventilation rate
Uk 0 1 - screen set (1 represents fully deployed)
Ujeq 0 0.4-10°° g{CH,0}.m 257! leaf harvest
Uyt 0 0.4-10~* g{CH,0}.m2.s71 fruit harvest
NecUchp + Ueby — Uese — Unps — Uled = 0, (4) RXY =NxyUx, (7)

and it is added to the constraints, h(x(t), u(t)) in (2), by setting
01; = 0,; = 0 for the corresponding constraint i. Also, the bal-
ance equation for the CO, is added to the constraint equation

NxcUchp =+ NxpUboi + Ucpy — Uco2 = O: (5)

here ny, =7.22:10° (- ) and ny, =7.22:107° (— ) (Seginer
et al., 2018) represent the production of CO, per unit of en-
ergy that is consumed by the CHP and the boiler, respectively.
A similar constraint has been added to match heat supply and
demand. The output to the greenhouse climate model u, (see
Fig. 1).

Ug = [uhea; Uco2; Unps; Uled; Uscr; Muen] ) (6)

where Up,, (W.m™2) and uco, (g.m=2.s7?) refer to the resulting
heat flux to the heating pipes and the CO, injection rate.

2.3. Lighting system

In the present paper, three different lighting systems are
compared no lighting, HPS lighting and LED lighting. To allow
for a comparison with respect to economic figures in budget
G56 in KWIN (Vermeulen, 2016, p. 330), the photosynthetic
photon flux density (PPFD) of HPS lighting used in this
research matches that of budget G56, 185 umol.s~'.m=2. In
KWIN, the HPS electrical input power is 100 W.m~2, resulting
in an efficacy of 1.85 umolJ~1. For the sake of comparison, the
PPFD of LED lighting is modelled as 185 umol.s~1.m~2, with an
efficacy of 3 umolJ~! (Kusuma et al., 2020). The models are part
of the greenhouse climate and lighting system model =g, in
Fig. 1.

In this research, all electrical energy input to the lights is
modelled to contribute to the energy balance. The energy
used to transpire water in the crop, the latent heat, is
accounted for in the transpiration model. The lamps are
modelled to radiate both PAR and near-infrared (NIR), the
radiation is described by

where Xe&{led, hps} and Y& {PAR, NIR}. The fraction of the
electrical input of the lights that is converted to PAR is rep-
resented by ngppar = 0.55 (— ) and nypspar = 0.35 (— ) according
to Katzin et al. (2021). The fraction of the electrical input of the
lights that is converted to NIR is chosen 7;gpy;z = 0.02 (— ) and
NMupsnir = 0-22 (— ) according to Katzin et al. (2021).

The total PAR absorbed by the canopy Rpag (W.m~2) is given
by,

Rpar = (1 _ e—k-LAI)

(Asunpag Nsunpag Qsun + ALEDpag RLEDpax + AHPSpaz REPSPAR),

(®)

where k (—) is the extinction coefficient of the canopy for PAR,
LAI (m2.m~2) the leaf area index and Qs (W.m=2) the global
radiation in d. The total PAR absorbed by the canopy Rpar is
substituted for PARcq, in the photosynthesis model in equa-
tion (9.14) of Vanthoor (2011), which is part of the crop growth
model presented in subsection 2.5. The fraction of PAR in the
global radiation 7g,y,,, = 0.44 (— ), according to Nelson and
Bugbee (2015). The absorption parameters have been chosen
Osunppr = 0.894 (— ), Arep,,, = 0.943 (— ) and awps,,, = 0.870 (—)
according to Nelson and Bugbee (2015).

The total radiation Ry (W.m~?), PAR and NIR, absorbed by
the crop is described by

Rigt =Rpar + (1 — e *4)

(Asunyig Msunnir Qsun + ALEDy RLEDR + AHPsy Rupsnir)-

©)

where Ry is substituted for R, in Equations (8) and (10) of van
Beveren et al. (2015), which is part of the greenhouse climate
system model presented in subsection 2.4. The fraction of NIR
in the global radiation is set to ny,,yz = 0.5 (— ), according to
Vanthoor (2011). The absorption parameters have been cho-
Sen Gsuny, = 0.214 (— ), drepy, = 0.923 (—) and agps,, = 0.263 (—)
according to Nelson and Bugbee (2015).

In the simulation studies with this model, three lighting
systems are compared. For simulations with no lighting, ujq
and uy,s are zero. For simulations with HPS, uyq is zero and for
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simulations with LED lighting uy, is zero. To make a realistic
comparison, the PAR output of both types is chosen equal,
185 umol.s~1.m~2, but different input power ratings upys and
Uieq are employed, 100J.m~2.s7! and 61.67J.m2.s1, respec-
tively, see Table 2.

The typical electrical implementation of the artificial
lighting systems in practice only allows for switching lamps
on or off, no value in-between. The control inputs up,s and uyq
resulting from (2) have a continuous domain, i.e. they can take
any value between the bounds in Table 2. This restriction can
be modelled by a quantisation process, applied to the control
input. A viable method to obtain a value in between is to only
switch on a spatially distributed group of lights, e.g. one third
of the total amount of lights, in which way the average radi-
ation per square meter will be one third of the bounds in Table
2. In the simulation study presented here, the effect of this
quantisation on the performance of the controlled system will
be analysed for a system with no quantisation, a system with
two possible values, referred to as A =1 and a system with
four possible values, referred to as. A = 1/3.

2.4. Greenhouse climate system

The greenhouse climate system creates a favourable climate,
represented by y, in Fig. 1, for crop growth. The model predicts
the greenhouse climate based on the control inputs ug, defined
in (6). The model of the greenhouse climate is based on the
model presented in van Beveren et al. (2015). The model
consists of an energy balance, absolute humidity balance and
CO, balance. The absolute humidity balance is affected by
crop transpiration and the CO, balance by crop assimilation,
both quantities are contained in y., see Fig. 1. The outside
radiation Qgn (W.m=2), temperature Toy (°C), absolute hu-
midity Heyt (9. m~3), CO, concentration COy oy (9.m~3), and wind
speed Uying (Mm.s~!) are contained in d, affect the various
balances.

The model for condensation conductance g, (m.s~1) of the
cover, the temperature of which is denoted by Ty (°C), is
based on the model by Stanghellini and de Jong (1995) given

by,
), (10)

by van Beveren et al. (2015) is not continuously differentiable
due to the max operator. Parameter p, represents the specific

Tim

g =max (07 Pg. (Tm‘v - Tcou)

properties of the cover (m.°C3.s71). To ensure the continuous
differentiability of (10), the max operator is replaced by the
approximation of a smoothed if-else function S : R®*—> R,
proposed by Vanthoor (2011).

8505k, =i (1)

1+ ekl

where s} () and s; (— ) represent the slope and the switching
value of the smoothed if-else. In (11), s, (— ) represents the
value that determines the value of S. To smooth (10), we
choose s, = (Tair — Teov), Ss = 1°Cand sL = — 2. The third-order

root is approximated by a fourth-order polynomial, repre-
sented here by P : R—R, defined as

P(x)= —4.03-107°+x* +2.4:107%x> — 0.05-x? + 0.49-x + 0.30.
(12)
Resulting in
9c=Pg. * S((Tuiv - Tcov)«, -2, 1) 'P(Tair - Tcuv)* (13)

The error introduced due to the approximation of g. in (13)
is at most 0.7 m.s7! in the interval — oo < (Tyr — Teo) <28 °C.
The model of the convective heat loss through the cover, Q.
(m2.s71) in van Beveren et al. (2015), is extended with an
energy screen. The screen and the greenhouse cover are
modelled as two heat conductors in a series composition

1
1 A -
(uscvascr) + <acuvA;::Y>

Qruv = 1 (Tair - Tout)«, (14)

Acoy
Afioor

where the term gy, denotes the conductance of the

greenhouse cover, in which A., and A, denote the green-

house cover and floor area, respectively, with ACOU-(Aﬂw)’1 =
1.29. The value of the heat conductance of the screen
aser = 9.33 (W.m~1.°C~1) and has been taken in accordance with
Seginer et al. (2018), the value of the heat conductance of the
greenhouse cover ag, = 5.00 (W.m~1.°C~?) in accordance with
van Beveren et al. (2015). Lastly, the models for assimilation,
@cass (9.m2.s71) in van Beveren et al. (2015), are replaced by the
models for assimilation by Vanthoor (2011), for the sake of
coherence with respect to the chosen crop growth model.

To ensure the greenhouse air relative humidity is bounded
between 10% and 95%, an additional constraint is added, in
h(x(t),u(t)) in (2). The heat and radiation generated by the
lighting is modelled to affect the greenhouse energy balance
according to subsection 2.3. The output of the greenhouse
climate model to the crop model, y, in Fig. 1, is a vector
containing

Yg= [RPAR:, Rtot:, Tuir; Haiy:, COZ.aiY] (15)

where Rpar and Ry, are as defined in (8) and (9). Tar, Har and
CO,qir belong to the states of this model, see Table 1.

2.5. Crop growth and transpiration

The crop model predicts the growth, transpiration and
respiration of the crop based on the greenhouse climate, y,
n (15). The crop model employed in this paper is based on
the model by Vanthoor (2011). The model by Vanthoor pre-
dicts the assimilate content of the assimilate buffer (Cyyf),
the leafs (Ciqs), the stem and roots and the fruits (Cq), the
states of the model. The prediction of transpiration and
assimilation of the crop, represented by y. in Fig. 1, are
output to the greenhouse climate system. The model de-
scribes how PAR Rpagr, greenhouse air temperature Ty, and
greenhouse air CO, concentration CO,,, affect the crop
growth, also the effect of undesirable temperatures is


https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006

202 BIOSYSTEMS ENGINEERING 202 (2021) 195—216

included in the model by Vanthoor (2011) through growth
inhibition functions.

The model by Vanthoor employs a fixed boxcar train
method to model the development of the fruit between fruit
set and harvest. The expected increase in accuracy by using
this method compared to directly selling the partitioned as-
similates does not outweigh the additional (near-)disconti-
nuities and extra state variables. To model the amount of
fruits produced, the description of the assimilates partitioned
to the fruits MCpypr (9-m2.s7') by Vanthoor is used. The
controller will then optimise the climate for fruit growth (as-
similates partitioned to the fruit buffer Cg;). Fruit development
will, however, be guaranteed as the climate for fruit devel-
opment does not differ significantly from the climate for fruit
set. To cope with the development time for fruit a strategy
similar to Seginer et al. (2018) is employed: all assimilates
partitioned to the fruits minus those used for maintenance
respiration, are counted as yield. The price for which it is sold
at the time instance of partitioning is the price 30 days after
this time instance. This is in line with the observation in
chapter 3 of Heuvelink (2018), where a harvested fruit has
already had the majority of its assimilates transported 30 days
after fruit set. The part of the model by Vanthoor that de-
scribes the assimilate content of the stem and roots is
removed as it does not affect the objective function.

The model by Vanthoor also describes leaf harvest using a
(smoothed) if-else model to compare the current leaf area
index to a maximal leaf area index. To avoid the (smoothed)
discontinuity and allow for more freedom for the controller,
the MCieqpmor (9.m2.57%) in Vanthoor is replaced by a control
input u,. To impose a maximal leaf area index LAInqy, a state
constraint on Cis was added, see Table 1. Also, the fruit
harvest is selected as a control input ug;. A state constraint is
imposed Cfy > Criofr- The offset Cpyoff = 140 g.m~2, represents
the estimated fixed amount of developing fruit biomass on the
crop and results in a more realistic fruit maintenance respi-
ration compared to Cprof =0 gm=2,

The transpiration model of Vanthoor requires the vapour
pressure of the canopy which is not modelled by the green-
house climate model presented in the subsection 2.4. The
transpiration model used in this research is the one by van
Beveren et al. (2015).

2.6. Performance models

The controller (= in Fig. 1) aims to optimise the operational
return by proposing a control strategy for the inputs of the
greenhouse system, u in Fig. 1. Here, the operational return is
defined as

1(u, €) = Cfrt * Ugt + Cese * Uese — Cehp * Uchp — Choi * Uboi — Ceby * Uchy
— Ceby * Ueby,
(16)

where ¢y represents the unit cost of input uyy. The (positive)
inputs Ucnp, Upi, Uy and Uqy, Tepresent the resource use and
these therefore lead to a decrease in the objective function
I( +). Selling electrical power u., and fruit yield ug lead to an
increase of the objective function. The operational return only
reflects the costs and incomes relevant through the inputs

specified in Table 2, fixed or capital costs are not included.
Thus, e.g. the capital cost difference between a LED installa-
tion as compared to an HPS installation are not included.

To allow for comparison with respect to economic figures
in budget G56 in KWIN (Vermeulen, 2016, p. 330), the param-
eterisation of the objective function, cyp, Cpois Ceby, Ceses Cepy and
¢t in (16), is taken according to the values in KWIN. Values for
parameters taken from KWIN are given in subsection 2.9
(Table 3). The electricity bought (ucy), electricity sold (uese)
and the CO, bought (uqy) in KWIN are not specified on a 4-
weekly period basis, for these values only a seasonal total is
presented. When comparing operational return to the KWIN,
we assume that the average value of the evaluated period is
equal to the seasonal average. To allow for a more detailed
comparison of the yield versus gas use trade-off, the values
available in KWIN on a 4-weekly basis are combined into the
pi-performance p1(+) : R™ x R™*—>R

P1(U, €) = Cirt * Ugrt — Cehp * Uchp — Choi * Upoi- (17)

The p;-performance represents income through yield
minus cost of gas use and consists of a subset of terms in the
operational return in (16).

Apart from the performance indicators I(+) and pi(-),
simulations will also be compared based on gas use
s(*) : R>R

S(M) = ag_l (uchp + uboi)a (18)

where oy = 31.65 MJ.m=3 (Vermeulen, 2016, p. 330) represents
the energy content per cube of gas. The gas use is defined here
as a separate performance indicator, but is also required for
both I( ) and p;( +) and is included in cqp and cy.

Additionally, simulations are compared based on envi-
ronmental footprint py(+) : R™ x R™ >R expressed in kilo-
grams of CO, equivalents per square meter greenhouse area
(kg.m"2),

pz(“, 7) = Yboi * Sboi + Ychp *Schp + Y cby * Ucby + Yeby * Ueby — Vese * Uese-
(19)

The contribution of a unit input to the carbon footprint p, is
yER™, ie. vui(t) represents the contribution of input
ie{1,...,n,} to the carbon footprint and is expressed in kilo-
grams of CO, equivalents. The gas use by the boiler is denoted
by s €R (M*.m~2), gas use by the CHP by sg,y €R (m*>.m~2). The
gas use by the boiler sy, is calculated using (18) for ug, = 0,
and vice versa for the gas use by the CHP sg,. Also, for com-
parisons between simulations and the KWIN based on envi-
ronment footprint p, assumed is that the average value of the
evaluated period is equal to the seasonal average, due to un-
availability of more detailed data.

2.7. Control approach

This subsection describes the approach for implementing
optimal control according to the optimisation problem in (2).
The inputs to the greenhouse system u can typically be
updated every 15 min, t; = 15-60 = 900 s, and are held con-
stant in-between samples. For the sake of computational ef-
ficiency, the greenhouse model and the objective function are
discretised using a zero-order hold with discretization interval


https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006

BIOSYSTEMS ENGINEERING 202 (2021) I195—216 203

Table 3 — The weights used to multiply the control inputs with to arrive at the performance indicators operational return,
weights Ceny, Chois Ceby, Cese, Ceby and Cpy, and environmental footprint, weights yyoi; Yehp, Yeby: Vese aNA Yepy- Crop price cpy

varies throughout the season between 0.74 in summer and 1.92 euro.kg™! in winter. These values originate from the KWIN

(Vermeulen, 2016, p. 330).

Operational Return [euro.m=2

Ch [0.74 — 1.92] euro.kg—?t Choi 0.19 euro.m=3
@ 0.037 euro. kRWh! @iy 0.057 euro.kWh—1
Gt 0.17 euro.m—3 iy 0.11 euro.kg—?
Environmental Footprint [kg.m2|

Yhoi 1.87 kg.m3 iy 0.64 kg.kWh~!
Vi 2.25 kg.m—3 Yese 0.57 kg.kWh~!

Y cby 1 kg'k971

7. As the employed solver in this research works efficiently
with sparse problems (Wachter & Biegler, 2006), the optimi-
sation problem is presented to the solver in a multiple-
shooting formulation. Reformulation of the optimal control
problem in (2) according to the latter steps, yields

J(xe) =maxy_La(ua(li), (i), (20)
a (-t =0
subject to:

Xa(j + 1/i) = F(xa(j[i), ua(jli), d(11)),
(xa(jli), ua(jli)) € X x U,

0, < h(xa(jli), uaGl) < Vj={0,..., N}

x4(0]i) =x%;.

where u4(jli):==u(jt|in)is the predicted-(k|t):(k+t)t sampled
input signal u at future discrete steps (j +i)t; computed at time
in. Similarly, x4(j|i) :=x(ju|in))and da(j|i) == d(jv|it)represent the
predicted sampled state x and predicted disturbance d. The
discretised system, F(-), is obtained by a zero-order hold
discretization of the system in (1) with discretization interval
Ts (S).

As the state of the system x; will evolve as predicted by
propagation of F, ie. there is no uncertainty or model
mismatch, an update step of 1day is considered sufficient.
The algorithm in (20) is thus recomputed every day using the
state at that moment x;, after which the first day of the opti-
mised trajectories in uy is applied to the system.

To ensure all (fast) physical phenomena are accurately
represented by the discretised system by the map F( -) which
runs at a smaller sampling period, s <t with 75 = 7 N_;Mlb,
where Ng, > 1 and Ny, is assumed to take on integer values.
By this we mean that, given the control inputs u4(j|li) and
dq(jli), F( +) maps x4(j|i) into x4(j +1|i) according to

x3((q+ 1)t + (41w i ) =F (xa(qrs + G+ 1) [in ), ua(ili)da(li)),
qe {O: ---7Nsub - 1}7
(21)

with Xd((] +i)11 ‘I.’tl) = Xd(}|l) and
X4(j +1|1) = Xa( Nswp ts +(j +1)7 |im; ) and where F( -) represents a
discretization of the differential Equation (1) with sampling
time t,. The prediction horizon is definedas N = (t; —to)/ ©.In

the remainder of this subsection, the selection of the sub-
sampling factor Ny and prediction horizon N are discussed.
Then, the solver used to solve (20) is presented.

2.7.1. Subsampling factor Ng,;,

By increasing N, ts will decrease such that F( +) in (20) will
more accurately model the (continuous) behaviour of f( +) as
in (1). However, the computation time of the problem will
increase. This subsection presents a simulation experiment,
different values for N, are used to analyze the trade-off be-
tween accurately describing the behaviour of the system and
the computation time of the problem in (20).

To analyse the loss in accuracy when discretizing the tra-
jectory, the (continuous) trajectory would have to be obtained
from the system in (1). The characteristic greenhouse climate
time scale is in the order of 15 min to 1h, according to van
Straten et al. (2000). For this analysis we assume that a
simulation with Ng,;, = 10, resulting in a discretization inter-
val of 7 = 7;+N;} = 900s-10~! = 90, is accurate enough to
provide reliable estimates of the solutions of the system in (1).
The optimisation problem in (20) is solved and a control
strategy is obtained and applied to the system in open-loop
simulations with Ng,;, €{1,...,10}.

As the greenhouse climate states have the shortest time
constant, the effects of a low Ng,;, and thus a long discretiza-
tion interval is most visible in these variables. Figure 2 pre-
sents the resulting trajectories from the simulations. Note
that the trajectories corresponding to Ny, = 1 have been left
out for the sake of clarity, these resulted in near-unstable
behaviour due to the long discretization interval. One can
observe from Fig. 2 that the trajectories are close for Ng,;, > 3.
The simulations with Ng,;, <10, are compared to the simula-
tion with Ny, = 10, the resulting root-mean-squared-errors
(RMSE) are presented in the bottom row of Fig. 2. From Fig. 2,
one can observe that the further decrease of RMSE for Ny, > 4,
is small, therefore in this research we choose Ngy = 4,
yielding a discretization interval for the state equation of ©s =
9005471 =225s.

2.7.2. Prediction horizon N

Intuitively, by increasing the prediction horizon N, better
performance with respect to the objective function is ob-
tained. However, the computation time of the problem (20)
will increase. This subsection presents a simulation experi-
ment, different values for the prediction horizon N are used to
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Fig. 2 — (top row) Greenhouse climate state trajectories for an input sequence applied to models with different subsampling
intervals Ny, values for inside temperature T,;,, greenhouse air humidity H,;, and greenhouse air CO, concentration. CO, 4;,
are presented. (bottom row) RMSE with respect to N, = 10 reference trajectory for the different subsampling intervals.

analyze the trade-off between suboptimality of the problem in
(20) and the computation time.

Processes with slow time constants cause outputs to be
affected by inputs for longer periods of time. According to van
Straten et al. (2000), the greenhouse climate is characterised
by a time constant in the order of 15 min to one hour (in open
loop) and the time constant of a growing crop is in the order of
weeks. Note that the inputs to a (near) pure integrator (in open
loop) affect the output for a (near) infinite period. The fully-
grown crop as described in subsection 2.5, is not a (near) pure
integrator. First, the fact that the LAl is attained and is kept
(close to) constant through leaf pruning, through control,
lowers the time constant of the leaf buffer Cy,. Second, the
fruit development as described in Vanthoor (2011) is omitted,
unripe fruit is sold after being partitioned, removing this delay.
Third, the temperature sum is compared to a threshold to
indicate the start of generative phase, for a fully grown crop this
temperature sum will have exceed the threshold described in
Vanthoor and the value of the temperature sum is obsolete.

To analyse the decrease in performance for a shrinking
prediction horizon, the optimisation problem in (20) is solved
for various values of N. Choosing a value of N>2 - 96, will
ensure the effects of the inputs have diminished and the
performance is (near) optimal, to this extent we choose N =
696 = 480. Figure 3 presents the optimised state trajec-
tories for the greenhouse climate for Ne{96,192, 288,384,480,
576}. For N = 192, one can observe coinciding trajectories for
the first day of the simulation with the reference N = 480. The
simulation studies presented in this paper use a prediction
horizon of N = 288, which represents a length of 3 days. One
can also observe the greediness of optimal control, the

controller does not consider what happens after the predic-
tion horizon. After the last radiation in the horizon, the
objective function cannot be impacted in a positive way for
the remainder of the horizon, therefore the heating, CO, in-
jection are switched off. Also, the leaves are harvested to
minimise transpiration avoiding a heating demand to main-
tain the system within the constraints.

2.7.3. Solver

The optimisation problem in (20) is solved using the nonlinear
optimisation software package IPOPT solver (Wachter &
Biegler, 2006), with linear solver MA57 from HSL (HSL, 2019).
The IPOPT solver is interfaced using CasADI (Andersson et al.,
2019). Due to the multiple-shooting approach to solving the
optimisation problem, the number of optimisation variables is
(ny +ny)+N, with n, = 13 and ny = 8 the number of inputs and
states. With a prediction horizon of three days and 15 minute
discretization interval, N = 96-3, yielding 6048 variables to be
optimised. The combination of IPOPT with CasADI allows an
efficient solving process of this problem, as CasADI provides
Jacobian and Hessian information to the IPOPT solver
(Andersson et al., 2019).

2.8. Rule-based controller

In order to be able to validate the models and their intercon-
nection, a control strategy is designed resembling KWIN
(Vermeulen, 2016, p. 330) and therefore the state-of-the-
practice. To this effect a rule-based controller is employed.
The ventilation rules are based on Vanthoor et al. (2011). Key
features of this rule-based controller are:
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Fig. 3 — Optimal trajectories for greenhouse air temperature T,;,, greenhouse air humidity H,;, and greenhouse air CO,
concentration CO, ,;, for different values of the prediction horizon N, here N={96, 192, 288, 384, 480, 576}.

e lamps are on from 2:00 to 18:00, except when instanta-
neous global radiation exceeds 600 W.m~2 or when the
predicted radiation sum exceeds 14 MJ.m~2.day .

e greenhouse air temperature setpoint is 19.5°C while

lamps are on or radiation from the sun is present,

18.5 °C otherwise. The setpoint is maintained using a P-

controller.

CHP is on when lamps are on, unless heat cannot be

directed to the greenhouse or to the buffer. Only

after the heat buffer depleted, a heating demand
switches on the CHP. Excess electricity produced by

CHP is sold.

e CO, setpoint is 1000 ppm (1.83 g.m~2 at 20 °C), controlled

by a P-controller. If more CO; is produced by the CHP

and/or buffer than required, the surplus is injected.
the ventilation is forced to close if greenhouse air tem-
perature is 1°C below temperature setpoint. The
ventilation opens when greenhouse temperature ex-
ceeds the setpoint by 5°C or when greenhouse air
relative humidity exceeds 85 %. Both ventilation in-
centives are P-controlled.

e Screens are closed if outdoor temperature is below 5 °C
during the day or 10 °C during the night. The screens
open when ventilation is required.

2.9. KWIN

The Kwantitatieve Informatie voor de Glastuinbouw (KWIN)
(Vermeulen, 2016, p. 330) periodically summarises actual
information on Dutch greenhouse horticulture. Aside from
other relevant horticultural information, it also contains
reference operational figures, such as crop yield, gas use and
electricity use. The information from the KWIN will be used
in this research as a representation of the state-of-the-
practice. The operational figures used in this research are
those for a greenhouse with truss tomatoes, planted in week
42, with a CHP and with HPS lighting, specifically budget
G56. To be able to compare the performance of the

controlled greenhouse system here, the costs (16) and con-
tributions to the carbon footprint (19) of all inputs are taken
from the KWIN, these have been summarised in Table 3.
Also, the limitations of the control inputs, presented in
Table 2, have been adopted from KWIN. The remainder of
this subsection will state some remarks with respect to the
use of the KWIN.

The crop price provided in the KWIN is the price that is
required toreach the break-even point. The resulting crop price
does reflect the seasonal differences. As the KWIN will be used
to compare the results to the state-of-the-practice, the crop
price from the KWINis adopted. To mitigate the inaccuracy due
to notincluding fruit growth in the crop model, as discussed in
subsection 2.5, the crop price from the KWIN is shifted 30 days
forward in time. The assimilates partitioned to the fruits are
sold at that time instance for the price of 30 days later. Also, the
KWINis based on the average prevailing weather during a year.
The simulations in this paper are based on weather data, the
source of which is presented in subsection 2.10.

2.10. Weather data

The uncontrollable inputs d represent the outside weather
variables, namely: global radiation sum Qg,, outside temper-
ature Ty, outside CO, concentration CO, o, outside absolute
air humidity Hoy and wind speed vy,,g. The data is measured
at 5 min interval, for the years 2011—-2014, although only year
2014 is used in this research. The weather data originates from
an experiment described in Kempkes et al. (2014), where
various energy-saving options in greenhouses were investi-
gated in a Venlow Energy kas located in Bleijswijk, The
Netherlands. The daily global radiation sum QZ,, outside
temperature Ty, outside absolute air humidity Hey, wind
speed Uyinq are presented in Fig. 4. The areas in Fig. 4 that
envelop the lines indicate the daily variation (maximum and
minimum) of the variable, except for the global radiation
which is expressed as a daily sum. Note, that only the weather
data is used, the parameters of the greenhouse and the
experiment are not relevant here.
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3. Results

To evaluate to what extent LED lighting improves the perfor-
mance of an optimally controlled greenhouse system, several
simulation studies are performed. The first simulation study
encompasses a simulation over an interval of 218 days with
generative crops. These simulations are performed for a
greenhouse equipped with HPS lighting, LED lighting and no
lighting, all controlled using the optimal control algorithm
presented in subsection 2.7. Also, a greenhouse equipped with
HPS lighting is simulated when controlled using the rule-
based controller presented in subsection 2.8. The results of
this simulation study are presented in subsection 3.1. In
subsection 3.2, the optimally controlled system is simulated
for four 7—day intervals, using the different quantisation step
sizes as discussed in subsection 2.3.

3.1. Season simulations

The operation of the controlled greenhouse system is simu-
lated for a period of 218 days, from the 11th of January to the
16th of August. The start of the simulation period is offset
compared to the period in which data is available in the KWIN.
This is due to (a) the unavailability of weather data, see sub-
section 2.10 and (b) the requirement for a fully-grown, pro-
ducing crop introduced in subsection 2.7.2. To ensure the state
of the system in the simulations here at the 11th of January
reflects the state of the system at the 11th of January in the
KWIN, the state is estimated through simulations with the
crop model as presented in Vanthoor (2011) using the same
planting date. The end of the simulation period is advanced to
the 16th of August as the crop growth and transpiration model
presented in subsection 2.5 does not predict the behaviour of a
topped tomato crop. As Vermeulen (2016, p. 330) does not
detail the topping of the crop, the crop is assumed to be topped
4 weeks prior to the end of the cropping cycle.

3 %104
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sun
—
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Q
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time [month] 2014

[S>]
=]

Huu,t [g-mgx]
S
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In practice, the integration of a lighting systems might be
coupled to a different configuration of the system, e.g. larger
heat buffer and/or larger CHP. The simulations studies
presented in this paper apply to a greenhouse which is
characterised by the parameterisation of the chosen models
and the systems those models have been validated with. In
the simulations presented here only the lighting system
changes.

For the sake of clarity and direct comparison with the 4-
week average of KWIN, the 4-week average value of all rele-
vant signals will also be plotted, using the same averaging
intervals as in KWIN. The 4-week average values of a simu-
lation denoted by, e.g., OC is PA(OC) (periodic average).

For the sake of clarity, the results of the six simulations are
splitinto two sets. In subsection 3.1.1, the simulations with the
greenhouse system with HPS lighting controlled by the rule-
based controller and the optimal control algorithm are pre-
sented along with relevant data from the KWIN. The second
set, presented in subsection 3.1.2, presents the simulations
with the optimal control algorithm in (20) for a greenhouse
system with LED lighting, HPS lighting or no lighting installed.

3.1.1. Set 1: rule-based control, optimal control and KWIN

The yearly totals of the operational return ] for the three
simulations in the first set are presented in Table 4, along with
the components that determine its value through (16), i.e. crop
harvest ug, gas use by the CHP sy, gas use by the boiler sy,
(pure) CO, bought ugy,, electricity sold ues and electricity
bought u.y. The carbon footprint p,, according to (19), is pre-
sented in the last column of Table 4. One can observe the
highest operational return in the simulation with the optimal
controller OC, 65.14 euroom~2, an increase of 6.18 euro.m 2
(+10 %) with respect to the date in KWIN. The simulations with
the rule-based controller, Rule, realised the worst operational
return, a decrease of 9.78 euro.m=2 (— 17 %) with respect to the
date in KWIN. The high operational return of the simulation

30 ¢

Jan Feb Mar Apr May Jun Jul Aug Sep
time [month] 2014

0
Jan FebMar Apr May Jun Jul Aug Sep
time [month] 2014

Fig. 4 — The weather data input to the uncontrollable inputs of the greenhouse system d during the simulations presented in
this paper. (left-to-right, top-to-bottom) The daily global radiation sum Q2,,, outside temperature To.:, outside absolute air

humidity Hy,: and wind speed vyng.
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with the optimal controller OC can be explained by the higher
fruit harvest ugy, 12.54 kg.m=2 (+19 %) with respect to the date
in KWIN. From the unit prices in Table 3, one can observe that
fruit harvest contributes considerably to the operational re-
turn, inducing the difference between the data from KWIN and
simulations with OC. To achieve this increased fruit harvest,
the optimal controller OC uses 5.64 m3.m~2 more gas (+ 14 %)
compared to KWIN. The rule-based controller uses the least
amount of gas but injects more CO, and therefore has to buy
considerably more CO, than is used in the other simulations.
Also the price of buying (pure) CO, is considerable,
0.11 euro.kg™!, resulting in a total expense of 1.62 euro.m=2 on
bought CO, for the rule-based controller. The increased CO,
bought by the rule-based controller compensates the
decreased gas use when evaluating the carbon footprint p,,
which is as high as the carbon footprint of the optimal
controller.

To be able to analyse the seasonal differences, the daily
sums of the combined gas use of the CHP and boiler sP, elec-

thy — Uese @and CO, bought ug,/

tricity exchange with the grid u
are presented in Fig. 5. One can observe that the increased
yearly total gas used by the optimal controller as presented in
Table 4, is primarily due to an increased gas use throughout
the period from May to August. The gas use throughout the
season is similar for the simulations with the rule-based
controller and the data from the KWIN. As the KWIN only
provides a yearly total for the electricity exchange with the
grid it cannot be compared on a seasonal timescale. One can
observe, however, that the rule-based controller uses more
electricity from the grid, especially in wintertime. As a CO,
demand is not coupled to the level of operation of the CHP
Uchp and boiler uy,; in the rule-based controller, the rule-based
controller has to buy CO, for injection throughout a significant
part of the season in which the CHP is used less. The daily sum
of fruit harvest for the three simulations in the first set is
presented in Fig. 6. One can observe in Fig. 6 that the differ-
ence in fruit harvest presented in Table 4 between KWIN and
OC results from an increased fruit harvest throughout most of
the season, most notably during March and April. Also, in
Fig. 6 one can observe that the daily sums of the rule-based
controller and the KWIN are similar throughout the season.
The daily sum of the p; performance for the three simulations
in this set is presented in Fig. 7. The effect of the decreasing
crop prices ¢g; throughout summer is clearly visible. The latter
induces the decrease in the difference in p;-performance
throughout summer even though the crop yield in the simu-
lations with OC are higher throughout summer.

The sudden decrease and subsequent increase of crop
growth at the 13th of June is found to be due to an increase in
the fruit price cq;, 30 days later, 13th of July. The controller
chooses to harvest less fruits before the 13th of June, such that
more fruits can be sold after the 13th of June. The latter is
comparable to a grower that, knowing a price increase is ex-
pected in the near future, will try to postpone harvesting as
much as possible.

3.1.2.  Set 2: No lighting, HPS lighting and LED lighting

The yearly totals of the operational return J for the three
simulations in the second set are presented in Table 5 which is
structured similar as Table 4. The simulation with HPS dis-
cussed here is the same as the one in the first set, where it was
denoted by OC. One can observe that the operation return J for
the LED-equipped greenhouse is 6.28 euro.m=2 higher (+9 %)
with respect to the HPS-equipped greenhouse. Table 5 shows
that the biggest difference between both simulations is the
electricity exchange with the grid. The LED-equipped green-
house buys 24.34 kWh.m=2 and sells 64.00 kWh.m=2, the
HPS-equipped greenhouse buys 71.86 kWh.m~2 more and sells
16.39 kWh.m=2 less electricity. This results in a net difference
of 88.51kWh.m~2, note, however, that buying and selling
electricity are not weighted with the same factor to arrive at
operational return, i.e. Cese #Cepy, See Table 3. The resulting
difference expressed in monetary units, after multiplication
with cese and cgy, indicates a 3.60 euro.m 2 difference. The
different electricity consumption accounts for 57 % of the
difference in operational return between the HPS and
LED-equipped greenhouse. The latter also affects the carbon
footprint, the LED-equipped greenhouse has a footprint which
is 41.09 kgm~? lower, a decrease of 30 % compared to the
HPS-equipped greenhouse. Other differences can be observed
in the use of the boiler, sy, although this difference is rather
low compared to the use of the CHP. Both greenhouses harvest
a similar amount of fruits, the LED-equipped greenhouse
harvests 2.58 kg.m~2 more, an increase of 3% compared to the
HPS-equipped greenhouse. The lowest operational return is
obtained for the greenhouse without artificial lighting No,
which achieves 15.13 euro.m~2 less (— 23 %) with respect to the
HPS- equipped greenhouse. As the greenhouse without artifi-
cial lighting No uses a similar amount of gas as the
HPS-equipped greenhouse, most of the resulting energy can be
sold, selling 96.42 kWh.m~2 more than HPS, an increase of
202 %, resulting in a low carbon footprint. The greenhouse
without artificial lighting No, emits the least CO, equivalents
per produced kilo of tomatoes 0.19 kg.kg~?, the HPS and LED —

Table 4 — The yearly sums of the operational return J, crop harvest ug:, gas use by the CHP sy,;,, gas use by the boiler sy,
(pure) CO, bought uy,y, electricity sold u.s., electricity bought u.,, and carbon footprint p; for the three simulations in the

first set. The first set encompasses simulations with the rule-based controller, denoted by Rule, the optimal controller,

denoted by OC, and the respective data in the KWIN.

J Ufrt Schp Spoi Ucpy Uese Uepy b2
[euro.m~?] [kg.m™2] [m3.m=? [m3.m=2 [kg.m™?] [kWh.m~2] [kWh.m~2] [kg.m™2]
Rule 49.18 64.63 31.90 0 14.72 18.38 93.39 135.80
KWIN 58.96 67.46 39.21 0 39.42 101.54 130.90
ocC 65.14 80.00 44.78 0.07 0.0019 47.61 96.52 135.53
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Fig. 5 — The daily sums of the (top) gas use s®, (middle) electricity exchange with the grid u}_— uZ, and (bottom) pure CO,

D

bought ug,

eby ~

for simulations with the controlled greenhouse. Rule denotes the simulations with rule-based controller, as

presented in subsection 2.8. OC denotes the simulations with the optimal controller, presented in subsection 2.7. The latter
simulations are compared to the data from the KWIN, denoted by KWIN. PA(") is used to denote the 4-week average of the

daily signals.

equipped greenhouse achieve 1.69kg.kg~! and 1.14 kg.kg!,
respectively.

To be able to analyse the seasonal differences in the
second set, the daily sums of the combined gas use of the
CHP and boiler sP, electricity exchange with the grid ug, —

ug,, and CO, injection ug,,
observe in the top panel of Fig. 8 that the increased gas use
of the LED-equipped greenhouse mainly results from the
winter period. During this period, January to April, the
LED-equipped greenhouse sells more electricity to the grid
as compared to the HPS-equipped greenhouse, the latter
buys considerable amounts of energy in this period. This
indicates that it does not pay off for the HPS-equipped
greenhouse to generate the electricity itself, possibly due to
a heat demand. Where both the HPS and LED-equipped
greenhouse use the energy to power the artificial lighting,

are presented in Fig. 8. One can

the greenhouse without artificial lighting No sells all the
produced electricity as by product of the heat demand. From
the bottom panel of Fig. 8, one can observe that the reduced
gas use of the HPS-equipped greenhouse does result in a
small increase in (pure) CO, bought ucDby. To be able to
analyse these seasonal differences on a more detailed level,
Fig. 9 presents optimised trajectories for artificial lighting
Unps and upq, CHP level of operation ucp, electricity exchange
with the grid uepy — Uese, inside and outside temperature Tg;
and T,y and CO, concentration CO, 4, for January 12th and
June 20th. In the winter season, January 12th, the
LED-equipped greenhouse also operates the CHP at night,
resulting in more electricity sold to the grid. One can
observe that the temperature Ty, however, is not signifi-
cantly different, the CO, concentration CO,g; is consider-
ably different at night, however. In the summer season, June
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Fig. 6 — The daily sum of the fruit harvest ugt for simulations with the controlled greenhouse. Rule denotes the simulations
with rule-based controller, as presented in subsection 2.8. OC denotes the simulations with the optimal controller,
presented in subsection 2.7. The latter simulations are compared to the data from the KWIN, denoted by KWIN. PA(") is used
to denote the 4-week average of the daily signals.
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Fig. 7 — The daily sum of the p1-performance p? for simulations with the controlled greenhouse. OC denotes the simulations
with rule-based controller, as presented in subsection 2.8. Rule denotes the simulations with the optimal controller,
presented in subsection 2.7. The latter simulations are compared to the data from the KWIN, denoted by KWIN. PA(") is used
to denote the 4-week average of the daily signals.

Table 5 — The yearly sums of the operational return J, crop harvest ug:, gas use by the CHP sy, gas use by the boiler sy,
(pure) CO, bought u,, electricity sold u.s., electricity bought u.,, and carbon footprint p, for the three simulations in the

second set. The second set encompasses simulations with the optimal controller for a greenhouse equipped with HPS
lighting, LED lighting and No lighting.

J Usrt Schp Spoi [m3~m_2] Uchy [kgm—Z] Uese [kWhm_z] Uepy [kWhm_z} b2 [kgm—Z]
[euro.m™2] [kg.m=2] [m3.m=?
HPS 65.14 80.00 4478 0.07 0.0019 47.61 96.52 135.53
LED 71.24 82.58 50.95 0.38 0.0019 64.00 24.34 94 .47

No 50.01 57.05 40.93 0.30 0.0018 144.03 0.10 10.63
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D
— Uese
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for simulations with the controlled greenhouse. The HPS-equipped greenhouse is denoted by HPS, the LED-

equipped greenhouse is denoted by LED and the greenhouse without artificial lighting is denoted by No.

20th, the artificial lighting is not employed throughout the
entire day as compared to January 12th. The latter effect
causes the differences between resource use of the HPS and
the LED-equipped greenhouse, as presented in Fig. 8.

The daily sum of fruit harvest for the three simulations in
this set is presented in Fig. 10. One can observe in Fig. 10, that,
all throughout the season, the LED-equipped greenhouse
achieves a higher fruit harvest as compared to the
HPS-equipped greenhouse, which supports the figures in
Table 5. The added fruit harvest through artificial lighting is
largest throughout the winter season, as can be observed by
comparing the both greenhouse with artificial lighting to the
one without. The daily sum of the p; performance for the three
simulations in this set is presented in Fig. 11. One can observe,
similar as in Fig. 7, that due to decrease fruit prices cg; the
added benefit of the increase in crop harvest becomes smaller.
However, the CHP is operated less in the summer season, less
energy is sold as can be observed in Fig. 8 and that all three
greenhouse operate more alike as compared to the winter
season.

3.2. Simulations with quantisation effects
To quantify the effect of quantisation in the system, as
referred to in subsection 2.3, the optimised trajectories uy,

and u{‘ed are quantised to on-off signals, referred to as A =1,
and to signals with four possible values, referred to as A =
0.33. The value A is here referred to as the quantisation step
size. After quantisation the trajectory for u,; or u,, is fixed
and the optimization algorithm in (20) is used to optimise the
other control inputs. The latter approach ensures that the
imposed constraints are satisfied also after the quantisation
has been applied. The three different quantisation strategies
have been applied in simulations with three different lighting
systems over the course of four 7 — day periods in January,
April, June and August. For the simulations without a lighting
system no quantised signals have to be applied. The state of
the system at the first day in the interval is based on the state
of the system at the specific day in the simulations with HPS
lighting in subsection 3.1.
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Fig. 9 — Relevant control trajectories for simulations with the LED-equipped greenhouse and HPS-equipped greenhouse
during January 12th (left) and June 20th (right). Plotted are (row 1) artificial lighting uy,,s and uyey, (row 2) CHP level of
operation Uy, (row 3) electricity exchange with the grid u.,y — Uese, (row 4) greenhouse air and outside temperature T,;, and

Tout, (row 5) greenhouse air CO, concentration.CO ;.

The average operational return for the resulting seven-day
simulations are presented in Table 6. One can observe that the
quantisation step size does not significantly affect the average
operational return in the intervals tested here. The algorithm
with a lower quantisation step size can produce the same
trajectories as the next increased level of quantisation step
size, i.e. the trajectories denoted by u* in Table 6 can be exactly
the same as those denoted by A = 1/3. Note, therefore, that
the increase in average operational return going from A =1/3
to A =1 for a LED-equipped greenhouse in April and the in-
crease from u” to A = 1/3 result from numerical inaccuracies
in the solution of the optimisation algorithm in (20). Figure 12
presents the original and quantised trajectories for April 15th
for both an HPS and LED-equipped greenhouse. One can
observe how quantisation will typically result in a value lower
or higher. The original trajectories indicate the optimal tra-
jectory, if through quantisation more power is directed to the
light, this will reduce the operational return.

4, Discussion

In this section, the results of the simulation studies presented
in section 3 are discussed in the context of the main question
of this paper: to what extent does LED lighting improves the
performance of an optimally controlled greenhouse system,
measured in operational return and carbon footprint. Sub-
section 4.1 discusses the validation of the interconnection of
the models presented in subsection 2.2, 2.3, 2.4 and 2.5. The
performance of the optimal controller based on (20) is
compared with respect to the state-of-the-practice, here
KWIN, and the rule-based controller in subsection 4.2. Sub-
section 4.3 discusses the observed differences between an HPS
and LED-equipped greenhouse, answering and discussing the
main question of this paper. The effect of quantisation in the
context of the estimated performance increase from subsec-
tion 4.3 is discussed in subsection 4.4.
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Fig. 10 — The daily sum of the crop yield uﬁt of the HPS-equipped greenhouse, denoted by HPS, the LED-equipped
greenhouse, denoted by LED and the greenhouse without artificial lighting, denoted by No. PA( -) is used to denote the 4-

week average of the daily signals.

0.6

0.3+

pP [euro.m~2.d1]

0.1+

0.1 I I !
Jan Feb Mar Apr

time [month]|

|
May Jun Jul Aug Sep

2014

Fig. 11 — The daily sum of the p;-performance p? of the HPS-equipped greenhouse, denoted by HPS, the LED-equipped
greenhouse, denoted by LED and the greenhouse without artificial lighting, denoted by No. PA( +) is used to denote the 4-

week average of the daily signals.

Table 6 — The average operational return J (€. m~2) per day
in the seven-day interval for January, April and June. For

each interval No lighting, HPS lighting and LED lighting
are compared using two quantisation step sizes,i.e.A =1
and A = 1/3.

Jan Apr Jun
No HPS LED No HPS LED No HPS LED

u 004 016 021 031 035 037 017 019 020
A=1/3 0.15 0,20 0,35 0,36 0,19 0,21
A=1 0,15 0,20 0,35 0,37 0,19 0,20

4.1. Model validation

The parts of the model presented in subsection 2.2, 2.3, 2.4 and
2.5 have already been validated in their respective publica-
tions. This subsection will, therefore, discuss the validation of
the interconnection of the parts of the model, instead of the
separate models and will therefore focus on the performance
indicators presented in subsection 2.6. The concept of model
validation has different meanings in different disciplines
(Eker et al., 2018). Here, we use the term in the sense of having
“usefulness with respect to some purpose [...] and suitability
for its intended use” (Eker et al., 2018). The model will be
validated using data from the KWIN. Since KWIN provides
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Fig. 12 — Original and quantised trajectories for 15th of April, for both the HPS-equipped greenhouse (left) and LED-equipped
greenhouse (right). The continuous control inputs are denoted by uj,; and u;ps. Resulting trajectories for a quantisation step

size of A =1 and A = 1/3 have also been depicted.

high-level numbers on the performance of a greenhouse in
the state-of-the-practice, we believe that this data suffices for
evaluating the interconnection of the parts of the model. The
rule-based controller presented in subsection 2.8 arguably
controls the greenhouse to a similar performance compared
to the state-of-the-practice. Therefore, if the performance
indicators of the simulation with the rule-based controller
match those of the KWIN, the model describes the behaviour
of the system in a way that is consistent with what is known
about current practice, in terms of the performance indicators
used in this study. As such, the model is deemed suitable for
use in subsequent contributions presented in this section.

One can observe from the results presented in subsection
3.1.1 that the performance indicators of the simulation with
the rule-based controller match those of the KWIN to a large
extent. The total operational return of the greenhouse system
controlled by the rule-based controller is 9.78 euro.m™2 lower
than the data from the KWIN. The overall resource use, as
presented in Fig. 5 and the crop yield, presented in Fig. 6, show
similar behaviour throughout the simulations. Some of the
discrepancies may be caused by the differences in the pre-
vailing weather conditions between the simulations with the
rule-based controller and those used in the KWIN. The KWIN
uses an typical meteorological year, the effects of different
prevailing weather conditions are, therefore, hypothesised to
affect the seasonal results but the yearly totals to a lesser
extent. We conclude that the model describes the behaviour of
the system sufficiently accurate for the subsequent contri-
butions presented in this section.

By choosing the initial state of the system to reflect that of
a fully-grown crop, the behaviour of the model can only be
validated for that part of the season. It cannot be concluded
whether the model also describes the vegetative phase of crop
growth sufficiently accurate. The assumption of a fully-grown
crop, however, affects only the state of the crop growth and
transpiration model. Since these models are based on physi-
ological principles that take crop growth processes (e.g. leaf
area index) into account, we hypothesise that the model can

also be used to describe the vegetative phase of crop growth
sufficiently.

4.2. Optimal control performance

In the results presented in subsection 3.1.1, an increase in
operational return of 10 % was observed when comparing the
greenhouse system controlled by the optimal controller to the
data representing the state-of-the-practice in KWIN. By
combining the various elements that make up the operational
return ] in Table 4 and the resource costs in subsection 2.9 we
conclude that the difference is mainly induced by an
increased crop yield. The optimal controller harvests 12.54 kg.
m~2 more fruit while using 557 m>.m=2 more gas and
exchanging 13.21 kWh.m™2 net less electricity than the KWIN.
The latter trade-off combined with a more efficient allocation
of the resources is hypothesised to result in the increased
operational return. The carbon footprint of the optimally
controlled greenhouse is similar to that of the KWIN.

None of the simulations in subsection 3.1 or subsection 3.2
lead to a parameterisation of the optimisation algorithm in
(20) for which the solver did not converge to a solution. As
undesirable configurations of the greenhouse system are
penalised through explainable white-box models into the
economic objective function, the constraints can reflect the
domain of the models. Due to the assumptions presented in
subsection 2.7.2, the proposed optimisation algorithm in (20)
and its configuration only apply to fully-grown, producing
crops. In order to be able to apply receding horizon optimal
control also in the case of a vegetative crop, i.e. the period in
which the resource costs are not balanced by crop yield, one
should resort to e.g. the time-scale decomposition as
described in van Henten & Bontsema, 2009, in order for the
optimisation algorithm to remain computationally feasible.
As a non-producing crop will not balance the costs of re-
sources through crop yield, in the case of a purely economic
cost function, a long horizon, exceeding the length of the
vegetative phase would be required.
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Upon execution of the optimisation algorithm in (20), the
actual and future prevailing weather d and actual and future
crop price cp; are input to the optimisation algorithm. In
practice, however, the weather d cannot be predicted
perfectly. The crop price cg; in practice will also result from a
prediction of the crop price 30 days into the future. Addition-
ally, the simulated state of the system x; is input to the opti-
misation algorithm in (20) upon execution. In practice, the
state of the system will be the result of measurements with a
limited accuracy, resulting in errors and uncertainty. The 10 %
increase in operational return should therefore be seen as a
performance bound, i.e. the performance that can be achieved
if perfect predictions and measurements are available to the
optimisation algorithm in (20).

Concluding, the optimal controller achieves a 10 % increase
in operational return over part of the season that was simu-
lated. The latter 10 %, however, does indicate a performance
bound as perfect predictions of the weather and crop price as
well as perfect measurements of the system are used here.
The proposed approach is valid for greenhouses with fully-
grown, producing crops.

4.3. Comparison of lighting systems

In the simulations presented in subsection 3.1.2, the
LED-equipped greenhouse controlled by an optimal controller
achieved an operational return which is 6.28 euro.m=2 higher
than an HPS-equipped greenhouse controlled by an optimal
controller, an increase of 9 %. Also, the carbon footprint of
the LED-equipped greenhouse is 30 % lower as compared to
the HPS-equipped greenhouse, in the simulations presented
here. The results of the simulations presented in Table 5,
combined with the prices presented in subsection 2.9, show
that this difference is for 57 % induced by a decreased elec-
tricity use of the LED-equipped greenhouse system. Cheaper
electricity from the grid, a decreased cq,y, Or a decreased sales
price of electricity to the grid will mitigate the observed in-
crease. Also, if the electricity from the grid is more sustain-
able, i.e. a lower Yeby> 8S it e.g. would originate from renewable
resources, the decreased carbon footprint will also be miti-
gated. Due to the mechanistic nature of the presented model,
new additions to the heating or energy generation, such as
geo-thermal energy, windmills and/or solar panels, can be
changed in the proposed model.

The performance increase discussed here is obtained in
simulations in which the control inputs result from the opti-
misation algorithm which aims to solely optimise the opera-
tional return. A lower carbon footprint, which is not the
current aim of the optimal controller, could be added to the
cost function by penalizing carbon emissions. Potentially, an
even lower carbon footprint could be obtained, however, most
likely at the expense of operational return.

The models used in this paper do not take into account the
potential positive (e.g. increased dry mass partitioning to
fruits) and negative (e.g. Botrytis cinereal resistance) spectral
effects that LED light can have on crop physiology, for
instance by supplying far-red light (Ji et al., 2019). However, it
does allow for the future inclusion of these effects as the
selected crop model is mechanistic (white box) and variables
such as partitioning are explicitly modelled.

As the system assumes the crop is just producing and start
simulating from that point on, no conclusions can be drawn
on the potential benefits or drawback of using LED lighting in
the vegetative phase of the crop. In order to add this to the
proposed approach a solution as presented in subsection 4.2
would have to be added to the approach presented here.

4.4. Effect of quantisation on performance

The observed 9% performance increases discussed above,
when comparing optimal control to the state-of-the-practice
and when comparing a LED-equipped greenhouse to one
with HPS, assume that the artificial lighting can be dimmed,
i.e. any value between 0% and 100% can be achieved. In
practice, as explained in subsection 2.3, this cannot be ach-
ieved. Based on the results presented in subsection 3.2 we
hypothesise that the effect of the quantisation in the system
on this performance increase will not be significant if the
optimisation algorithm is executed once more after quanti-
sation. In Table 6, one can observe that the decrease in
average operational return is not significant when various
quantisation step sizes are used.

Removing the optimisation step after quantisation could
lead to constraint violation, e.g. the optimal controller might
find an optimum at 80 % power at a specific time instant, the
100 % power after quantisation, however, might increase the
temperature such that it violates the constraint. As the aim of
this research was to find to what extent it would change the
performance of the greenhouse, no computationally optimal
method was employed. A viable way to solve an optimisation
algorithm as in (20) with the effects of quantisation included
would be with employing an mixed-integer non-linear opti-
misation problem solver, as is used in van Beveren et al. (2019)
to optimise the operation of boiler and CHP.

5. Conclusions & recommendations

The aim of this simulation study is to quantify the difference
in operational return and carbon footprint in simulations
using an optimally controlled greenhouse with HPS and LED
lighting. To this extent, existing models in literature have
been combined to arrive at a model of the greenhouse system.
As the components have been validated in their respective
publication, the interconnection of the models was validated
using data representing the state-of-the-practice. An optimal
control algorithm is proposed which, in combination with the
aforementioned model, can control the greenhouse system
using a purely economic cost function (no penalty functions).
The simulations in this paper suggest a performance increase
of 10 % in the operational return when comparing an opti-
mally controlled greenhouse to the state-of-the-practice.
Using the optimal control algorithm, the simulations pre-
sented here suggest an 9 % increase in operational return
when comparing a greenhouse with HPS to one with LED
lighting. Due to decreased electrical energy demand and an
increased sale of electricity generated by a CHP in the green-
house with LED lighting compared to HPS lighting, the simu-
lations suggest a 30 % decrease in carbon footprint when
adopting LED lighting systems, for tomatoes cultivated in
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Dutch weather conditions. Simulations suggest that the effect
of quantisation in the system, as the lamps can only be on or
off, is not considerable.

The optimal controller here is configured using perfect
predictions of the weather and crop price as well as perfect
measurements of the system are assumed. The 10 % increase
in operational return due to the integration of optimal control
should be viewed as a theoretical bound on the performance
increase. To the best of our knowledge the effect of the un-
certainty inherited in predictions and models on the perfor-
mance of the greenhouse system is unknown.
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Appendix A. Heat Buffer Model

The model for the greenhouse heat buffer is taken from
Seginer et al. (2018), it is represented by the differential
equation

Xs = Usto — H,, (22)

where x; (J.m~2) represents the energy stored in the buffer, ug,
(W.m™2) the energy supplied to and released from the buffer,
see Table 2. The thermal losses are represented by H, (W.m2),
see (3). In (3), the value « (s7?) represents the thermal insu-
lation of the heat buffer, this is given by.

kA'SA
7mW°Cw'dA7

o (23)

where ks (J.m~1.s71.K1) represents the thermal conductiv-
ity of the heat buffer surface, this has been chosen as 1.28 W.
m~1.K! equal to concrete. The surface area of the heat buffer
sa = 309.81 (m?) and mass of the water m,, = 3.98-10° (kg), have

been chosen based on a heat buffer with a height of 5.68 m and
a radius of 4.73m, using the same ratio as in van
Steekelenburg et al. (2011, p. 23), but matching the heat ca-
pacity of the heat buffer from Seginer et al. (2018). The
maximum water temperature has been chosen 90°C, the
lowest temperature 40 °C. Using the heat capacity of water
cw = 4182 (J.kg 1K), the energy for an empty heat buffer is
Xsoff = 40+Cyyomy, = 1.67-108 (J). The thickness of the heat buffer
wall was chosen dy = 0.6 m., hence a« = 3.96:1077. (s7!). The
resulting trajectories of (22) matched with those presented in
van Steekelenburg et al. (2011, p. 23).
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