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LED lighting is appointed as the successor of HPS lighting in greenhouses since it can lead

to a more sustainable cultivation, i.e. it converts electrical energy into photosynthetically

active radiation more efficiently. To quantify the effect of this more efficient conversion

within the operation of the greenhouse system, an optimal controller is proposed to

generate optimal control trajectories for the controllable inputs of the greenhouse. The

optimal controller makes use of an economic objective function, i.e. the difference between

income (yield � product price) and cost of resources (resource use � cost). The performance

of this optimally controlled greenhouse system is compared with respect to the state-of-

the-practice. Simulation experiments suggest optimal control can increase the economic

objective by 10 % to 65:14 V:m�2 compared to 58:96 V:m�2 for the state-of-the-practice, for

tomatoes cultivated in a Dutch weather conditions. The model of the optimally controlled

greenhouse is used to compare the performance of different lighting systems, i.e. no

lighting, HPS lighting and LED lighting. An increase of 9 % in the operational return is

observed for LED lighting compared to HPS lighting. The electricity that is saved due to the

more energy-efficient conversion in the LED lighting results in a 30 % decrease in carbon

footprint when comparing a greenhouse with LED lighting to a greenhouse with HPS

lighting.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The cultivation of fruit and vegetables in greenhouses in the

Netherlands consumes a vast amount of energy. From the

total energy of 100:5 PJ consumed in 2018, 77 % was due to

heating and 23 % due to electricity for artificial lighting (van

der Velden & Smit, 2019). The Dutch horticultural industry
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the total energy consumption and its environmental footprint

(van der Velden & Smit, 2019). One of the potential solutions

for decreasing the environmental footprint of the horticul-

tural industry is to reduce the electricity consumption by

switching from High-Pressure Sodium (HPS) lighting to Light

Emitting Diode (LED) lighting (G�omez & Mitchell, 2014).
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Nomenclature

Sub- and Superscripts

,d discretised signal or function

,* optimal signal or value

,D daily sum of signal

Greek Symbols

a thermal insulation constant of the heat buffer, s�1

ag energy content per cube of gas, J:m�3

ascr heat conductance of the screen, J:m�1:s�1:�C�1

acov heat conductance of the cover, J:m�1:s�1:�C�1

gboi contribution of boiler use to the carbon footprint,

kg:m�3

gcby contribution of CO2 bought to the carbon

footprint, kg:kg�1

geby contribution of electricity bought from grid to the

carbon footprint, kg:kWh�1

gese contribution of electricity sold to grid to the

carbon footprint, kg:kWh�1

D quantisation factor, ð � Þ
gchp contribution of CHP use to the carbon footprint,

kg:m�3

hEc fraction of CHP input power converted to electrical

power, ð � Þ
hXb conversion of boiler input power to CO2 output,

g:J�1

hXc conversion of CHP input power to CO2 output, g:J�1

hXY
fraction of input power to light source X converted

to Y radiation, where X2fled;hps; sung and Y2

fPAR;NIRg. ð � Þ
ql lower bound to inequality equations hð ,Þ
qu upper bound to inequality equations hð ,Þ
Sx reference to model component x

tl discretization interval of the greenhouse system, s

ts sampling interval of signals, s

fc;ass assimilation rate, g:m�2:s�1

Alphabetical Symbols

aXY crop absorption for Y radiation from light source

X, where X2fled;hps; sung and Y2fPAR;NIRg ð � Þ
Acov area of the greenhouse cover, m2

Afloor floor area of the greenhouse, m2

c vector of input unit prices

cboi cost of boiler gas, V:m�3

ccby cost of pure CO2, V:kg�1

cchp cost of CHP gas, V:m�3

ceby cost of electricity from grid, V:kWh�1

cese return on sold electricity to grid, V:kWh�1

cfrt return on fruit harvest, V:kg�1

cw heat capacity of water, J:kg�1:K�1

Cbuf crop carbohydrates in assimilate buffer, g:m�2

Cfrt crop carbohydrates in fruit, g:m�2

Cfrt;off offset in fruit buffer, g:m�2

Cleaf crop carbohydrates in leaves, g:m�2

CO2;air greenhouse air CO2 concentration, g:m�3

CO2;out outside air CO2 concentration, g:m�3

d uncontrollable inputs to the greenhouse system

dA thickness of the heat buffer wall, m

fð ,Þ continuous time model of the greenhouse system

fvminð ,Þ function describing the minimum ventilation rate

as a function of wind speed, m3:m�2:s�1

fvmaxð ,Þ function describing themaximumventilation rate

as a function of wind speed, m3:m�2:s�1

Fð ,Þ discrete time model of the greenhouse system,

with sampling time ts

Fð ,Þ discrete time model of the greenhouse system,

with sampling time tl

gc condensation conductance of the cover, m:s�1

hð ,Þ inequality equations

Ha energy loss from the heat buffer, J:m�2:s�1

Hair greenhouse air humidity, g:m�3

Hs energy supplied to a released from the heat buffer,

J:m�2:s�1

Hout outside absolute air humidity, element in d, g:m�3

i integer variable

j integer variable

J optimised operational return, V:m�2

k extinction coefficient of the canopy, ð� Þ
kA thermal conductivity of the heat buffer surface,

J:m�1:s�1:K�1

lð ,Þ operational return of the greenhouse system,

V:m�2

LAI leaf area index, m2:m�2

LAImax maximal leaf area index, m2:m�2

mw water mass, kg

MCBufFrt assimilates partitioned to the fruit buffer,

g:m�2:s�1

MCLeafHar leaf harvest, g:m�2:s�1

nd number of uncontrollable inputs

ne number of inequality constraints

nu number of inputs

nx number of states

N prediction horizon

Nsub number of subsamples

p1ð ,Þ income through yield minus costs for gas, V:m�2

p2ð ,Þ carbon footprint, kg:m�2

pgc properties of the cover, m:�C�1
3:s�1

PðxÞ polynomial function in x

q integer variable

Qcov convective heat loss through the cover, J:m�2:s�1

Qsun global radiation, element in d, W:m�2

RPAR total PAR absorbed by the canopy, W:m�2

Rtot total radiation, PAR and NIR, absorbed by the

canopy, W:m�2

RXY Y radiation by lighting source X, where

X2fled;hpsg and Y2fPAR;NIRg. W:m�2

sð ,Þ gas use function, m3:m�2

sboi gas use by boiler, m3:m�2

schp gas use by CHP, m3:m�2

slk slope parameter in S, ( � Þ
ss switching value parameter in S, ( � Þ
sv value that determines value of S, ( � Þ
Sð ,Þ smoothed if-else function by Vanthoor (2011)

SLA specific leaf area, g:m�2

t time

t0 start time of the optimal control horizon
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tf end time of the optimal control horizon

Tair greenhouse air temperature, �C
Tcov cover temperature, �C
Tc24 24-hr average greenhouse air temperature, �C
Tout outside temperature, element in d, �C
u controllable inputs to the greenhouse system

uboi the level of operation of the boiler, W:m�2

ucby (pure) CO2 bought, g:m�2:s�1

uchp the level of operation of the combined heat and

power (CHP), W:m�2

uCO2 greenhouse CO2 injection, g:m�2:s�1

ueby electrical power bought, W:m�2

uese electrical power sold, W:m�2

ufrt fruit harvest, g:m�2:s�1

ug controlled inputs to the greenhouse climatemodel

uhea heating input to greenhouse, J:m�2:s�1

uhps electrical power to HPS lighting, W:m�2

ulea leaf harvest, g:m�2:s�1

uled electrical power to LED lighting, W:m�2

uscr screen set (1 represents fully deployed), (� )

usto energy flux to heat buffer, W:m�2

uven ventilation rate, m3:m�2:s�1

U set of admissible values for the inputs

vwind outside wind speed, element in d, m:s�1

x state vector of the greenhouse system

xs heat stored in heat buffer, J:m�2

xs;off lowest energy content of the heat buffer, J:m�2

xt initial state

X set of admissible values for the states

yc effect of the crop on the greenhouse climate

yg effect of the greenhouse climate on the crop

Acronyms

AI artificial intelligence

CHP combined heat and power

HPS high pressure Sodium

LAI leaf area index

LED light emitting diode

PA periodic average

OC optimal control

RMSE root mean squared error
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Existing literature on HPS lighting and LED lighting mainly

focusses at the energy conversion efficiency. For example,

these lighting systems are compared in Nelson and Bugbee

(2015) based on energy conversion efficiencies and in Dueck

et al. (2012) and G�omez and Mitchell (2014) the lighting sys-

tems are compared in a greenhouse experiment with to-

matoes. Data from the experiment by Dueck et al. (2012) has

been used to evaluate a model by Katzin et al. (2020) which

aims to describe the qualitative difference between HPS

lighting and LED lighting. Xu, Wei, & Xu, 2019 proposed a

switching strategy for turning on and off LED lights using

multi-objective optimisation is proposed, reporting an energy

reduction of 30% with respect to rule-based control. Other

research into the effects on crop growth by Lee et al. (2014) and

Olle and Vir�sile (2013) and optimal positioning of the lighting

system by Ferentinos and Albright (2005), solely focuses on

LED lighting, not on HPS lighting. Overall, LED lighting is

attributed a higher efficiency in converting electrical power to

photosynthetically active radiation (PAR). The installed elec-

trical capacity of LED lighting can be lower while achieving

similar levels of PAR, while emitting less radiative energy.

This paper provides insight on to what extent LED lighting

improves the performance of an optimally controlled green-

house system, measured in operational return (yield income �
resource costs) and carbon footprint. To this extent, this paper

will quantify the difference in operational return and carbon

footprint in simulations using an optimally controlled green-

house with HPS and LED lighting. The control inputs to the

greenhouse result from an optimisation problem which en-

sures a fair comparison between both lighting systems. To-

wards this end, amodel is developed that predicts the effect of

the lighting systems on the crop, the greenhouse climate and

the production of electricity for the lighting systems. As a

lighting system influences the greenhouse climate, all rele-

vant inputs e.g. heating, must also be included in this
simulation. The control strategy for the greenhouse aims at

optimising the operational return defined as the difference

between income (yield� product prices) and cost of resources

(resource use � costs). Taking these steps, the two lighting

systems can be compared.

Models have been developed for individual components of

the greenhouse system, such as energy management system

models (de Zwart, 1996; Seginer et al., 2018; van Beveren et al.,

2019; van Ooteghem, 2007), greenhouse climate models (de

Zwart, 1996; Katzin et al., 2020; van Beveren et al., 2015;

Vanthoor, 2011) and crop growth and transpiration models

(Heuvelink & Challa, 1989; Kuijpers et al., 2019; Vanthoor,

2011). The present paper builds upon the existing validated

models, by combining them into a complete model for the

greenhouse system. A set of existingmodels has been selected

based on inclusion of physical and crop physiological phe-

nomena and accuracy of validation. The complete greenhouse

systemmodel is validated with respect to the state-of-the-art,

represented by economic figures in a reference budget

(Vermeulen, 2016, p. 330), using a rule-based controller.

Several approaches to the greenhouse control challenge

have been presented such as Hamiltonian maximization

(Seginer et al., 2018), receding horizon optimal control (RHOC)

(Ramı́rez-Arias et al., 2012; Tap, 2000; van Ooteghem, 2007)

and optimal control using grower defined bounds (van

Beveren et al., 2015). The present paper employs optimal

control to provide a control strategy aimed at maximizing the

operational return. The few published approaches that have

employed an economic objective function use penalty factors,

i.e. empirically determined factors converting undesirable

configurations of the system (e.g. extreme temperatures) into

an economic quantity. The economic quantity is used to

penalise the occurrence of undesirable configurations through

the objective function of the optimisation problem. In the

approach proposed here, explainable white-box models are

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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used to estimate the effect of an undesirable configuration of

the system. In Xu et al. (2018) also an economic objective

function without penalty factors is considered. However, with

respect to the aim of this paper a model detailing the origin of

electricity and heat is not present in Xu et al. (2018) which

therefore follows a different approach.

The contribution of this paper is four-fold. A model, capable

of describing how the inputs to the greenhouse system

(including the energy management system and artificial light-

ing) affect the crop growth and production, is selected and the

interconnection is validated using data representing the state-

of-the-practice. Secondly, an optimal control algorithm is pro-

posed which, in combination with the aforementioned model,

can control the greenhouse system using a purely economic

cost function (no penalty functions). Thirdly, the effects of

different lighting systems employed in the greenhouse system

are analysed, and conclusions are drawn with respect to the

potential economic benefits and carbon footprint reduction of

LED lighting in tomato greenhouses. Lastly, the effect of the

quantisation in the system, due to the ability of only switching

on/off the lighting is researched, aiming to increase the accu-

racy of the third contribution by removing the assumption that

the lights can be controlled to attain any value.

The remainder of this paper is organised as follows,

Section 2 will elaborate on the selected models, the inter-

connection of the selected models and the control of the

greenhouse system. The simulation studies will be presented

in Section 3 and the results will be discussed in Section 4.

Directions for future work and the conclusion of this research

are presented in Section 5.
2. Models & methods

In order to be able to compare various lighting systems, a

model is developed to predict the effect of a lighting system on

the operation of the greenhouse system. As a different lighting

system might also affect the selected greenhouse climate

control strategy, the controlled greenhouse system must be

considered. The greenhouse control problem is presented in

subsection 2.1. The model used to simulate the greenhouse

system, consists of three parts, the energy management

system, the greenhouse climate and lighting system

and crop growth and transpiration, these are detailed in

subsection 2.2, 2.3, 2.4 and 2.5, respectively. The derivation of

the economic objective function is detailed in subsection 2.6.

The implementation of the proposed controller is presented

in subsection 2.7. The rule-based controller used in the vali-

dation of the model is presented in subsection 2.8. The rele-

vant data from the state-of-the-practice and the weather data

are presented in subsection 2.9 and 2.10, respectively.

2.1. Greenhouse control problem

The greenhouse control problem is graphically represented by

the block diagram as depicted in Fig. 1. The model of the

greenhouse system is composed of the energy management

system SE, greenhouse climate and lighting system model SG

and crop growth and transpiration model SC. The greenhouse

system is affected by controllable inputs u2Rnu and
uncontrollable inputs d2Rnd . The interaction between the

greenhouse climate model and the crop (temperature, CO2

concentration, radiation and relative humidity) and vice versa

(assimilation and transpiration), are denoted by yg and yc in

Fig. 1, respectively. The controlled inputs to the greenhouse

climate model are represented by ug. The dynamical model of

the system is represented by

_xðtÞ¼ fðxðtÞ;uðtÞ;dðtÞÞ; (1)

where xðtÞ2Rnx is the state of the greenhouse system.

For the simulations presented in this paper, the inputs to

the greenhouse system u will result from an optimisation

problem run by controllerSM. The controller optimises the

operational return lðuðtÞ; cðtÞÞ : Rnu � Rnu/R over a horizon

t2½t0; tf �, referred to as the prediction horizon. The prediction

horizon has to be larger than the timescales of the relevant

slow dynamics of the system F, to be able to properly optimise

the control inputs. The cost/return of a unit input is cðtÞ2Rnu ,

i.e. ciðtÞuiðtÞ represents the contribution of input i2f1;…;nug to
the operational return and is expressed in monetary units.

This is mathematically represented by

JðxtÞ¼max
uðtÞ

Ztf

t0

lðuðtÞ; cðtÞÞ dt (2)

subject to :

_xðtÞ¼ fðxðtÞ;uðtÞ;dðtÞÞ

ðxðtÞ;uðtÞÞ2X�U;

ql �hðxðtÞ;uðtÞÞ� qu; for t2
�
t0; tf

�

xðt0Þ¼xt;

where xt2Rnx , represents the state at t ¼ t0. xðtÞ is the state of

the actual greenhouse system at time t. The controller is

assumed to have full state information. The inequality equa-

tions are expressed in terms of functions hð ,Þwhich are lower

and upper bounded by ql2Rne and qu2Rne respectively. The

sets X3Rnx and U3Rnu represent admissible values for the

states and inputs, respectively.

All bounds are fixed except for the bounds on the ventila-

tion rate control input uven. The bounds on uven,

fvminð ,Þ : R/R and fvmaxð ,Þ : R/R, originate from themodel

in chapter 6 of de Jong (1990) and depend on the wind speed, a

similar approach as presented in van Beveren et al. (2015). The

states x and inputs u for the model in (1), are listed in Tables 1

and 2, respectively. The values of states and inputs will be

presented per square meter of ground area. The upper bound

of the carbohydrates buffer in the leaves Cleaf , is determined

by maximal leaf area index input by the user LAImax, in this

paper LAImax ¼ 3m2:m�2 and SLA ¼ 26:6 kg:m�2 (Vanthoor,

2011). The lower bound of the fruit carbohydrates buffer Cfrt

is set to Cfrt;off , see subsection 2.5.

Subsections 2.2, 2.3, 2.4 and 2.5 present the three compo-

nents of themodel in (1), depicted inFig. 1. The subsections start

with an introduction of the model that is used and afterwards

elaborate on the changesmade to thesemodels. The changes to

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Fig. 1 e Block diagram representation of the greenhouse control problem, composed of controller SM, energy management

system SE, greenhouse climate and lighting system model SG and crop growth and transpiration model SC. The control

inputs to the greenhouse system are denoted by u, the elements input to SC encompass the harvest of fruits and leaves. The

controlled inputs to the greenhouse climate model are denoted by ug, see (6). The uncontrolled inputs to the greenhouse

climate model are denoted by d, the outside weather. Variables yg and yc denote the effect of the greenhouse climate on the

crop (temperature, CO2 concentration, radiation and relative humidity) and the effect of the crop on the greenhouse

(assimilation and transpiration), respectively.
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the models mostly encompass removing discontinuities from

the models and ensuring continuous differentiability. Discon-

tinuities and a deficient degree of continuous differentiability

will generally decrease the performance of the gradient-based

optimisation methods and were therefore avoided whenever

possible. The parameters of the models have been taken in

accordancewith thepublication inwhich themodels havebeen

validated (Segineret al., 2018; vanBeverenet al., 2015;Vanthoor,

2011) unless stated otherwise.

2.2. Energy management system

As a different lighting system might also affect the use of re-

sources, the energy management system is a crucial compo-

nent in the greenhouse system model. The model of the

energy management system is based on the model presented

in Seginer et al. (2018) and is composed of a combined heat

and power unit (CHP), a boiler and a heat buffer. This model

has one state xs which represents the stored heat in the buffer.

The buffer is supplied and depleted using control input usto.

The inputs to this model encompass the setpoints given to the

CHP (uchp) and boiler (uboi). Pure CO2 is bought (ucby) to

compensate for a difference between the CO2 produced on-
Table 1e States in the greenhouse systemmodel x and correspo

States x ¼ ½xs;Tair;Hair;CO2;air;Cbuf ;Cleaf ; Cfrt; Tc24�
Symbol Lower bound Upper bound

xs 0 3,106

Tair 10 35

Hair 5 35

CO2;air 0:69 2:79

Cbuf 0 20

Cleaf 0 LAImax=SLA

Cfrt Cfrt;off ∞
Tc24 10 35
site (CHP and boiler) and the injection rate (uCO2). Electricity

is bought (ueby) and sold (uese) to counterbalance the difference

between the electricity demand by the lighting (uhps and uled)

and electricity generated on-site (CHP).

Themodel itself only contains dynamics related to the heat

buffer. The description for the energy loss from the heat buffer

Ha (W:m�2) was changed from a discontinuous description to a

continuously differentiable description

Ha ¼ �a$xs (3)

where xs (J:m�2) represents the energy stored in the buffer, see

Table 1. The lowest energy content in the heat buffer is rep-

resented by a constant value xs;off2R (J:m�2). The thermal

insulation constant is represented by a. With this proposed

new description, Ha is now a function of xs more accurately

describing the energy loss when storing energy in the heat

buffer for a long time, as indicated by Seginer et al. (2018). The

derivation of the thermal insulation a ¼ 3:96,10�7 ðs�1Þ is

presented in Appendix A.

The fraction of the input power to the CHP that is converted

to electrical power is given by hEc ¼ 0:4 (� ) (Seginer et al.,

2018), the balance of produced and consumed electricity is

therefore
nding constraints represented by lower and upper bounds.

Unit Description

J:m�2 heat stored in heat buffer
�C greenhouse air temperature

gfH2Og:m�3 greenhouse air humidity

gfCO2g:m�3 greenhouse air CO2 concentration

gfCH2Og:m�2 crop carbohydrates in assimilate buffer

gfCH2Og:m�2 crop carbohydrates in leaves

gfCH2Og:m�2 crop carbohydrates in fruit
�C 24-hr average greenhouse air temperature

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Table 2 e Inputs to the greenhouse system model u and corresponding constraints represented by lower and upper
bounds.

Inputs u ¼ ½uchp;uboi;uhps;uled;ueby;uese;uCO2;ucby;usto;uven;uscr;ulea;ufrt�
Symbol Lower bound Upper bound Unit Description

uchp 0 125 W:m�2 the level of operation of the combined heat and power (CHP)

uboi 0 83:33 W:m�2 the level of operation of the boiler

uhps 0 100 W:m�2 electrical power to HPS lighting

uled 0 61:67 W:m�2 electrical power to LED lighting

ueby 0 250 W:m�2 electrical power bought

uese 0 250 W:m�2 electrical power sold

uCO2 0 250 gfCO2g:m�2:s�1 greenhouse CO2 injection

ucby 0 250 gfCO2g:m�2:s�1 (pure) CO2 bought

usto � 250 250 W:m�2 energy flux to heat buffer

uven fvminðdÞ fvmaxðdÞ m3:m�2:s�1 ventilation rate

uscr 0 1 � screen set (1 represents fully deployed)

ulea 0 0:4,10�6 gfCH2Og:m�2:s�1 leaf harvest

ufrt 0 0:4,10�4 gfCH2Og:m�2:s�1 fruit harvest
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hEcuchp þueby � uese � uhps � uled ¼ 0; (4)

and it is added to the constraints, hðxðtÞ;uðtÞÞ in (2), by setting

ql;i ¼ qu;i ¼ 0 for the corresponding constraint i. Also, the bal-

ance equation for the CO2 is added to the constraint equation

hXcuchp þ hXbuboi þ ucby � uCO2 ¼ 0; (5)

here hXc ¼ 7:22,10�5 (� ) and hXb ¼ 7:22,10�5 (� ) (Seginer

et al., 2018) represent the production of CO2 per unit of en-

ergy that is consumed by the CHP and the boiler, respectively.

A similar constraint has been added tomatch heat supply and

demand. The output to the greenhouse climate model ug (see

Fig. 1).

ug ¼
�
uhea;uCO2;uhps;uled;uscr;uven

�
; (6)

where uhea (W:m�2) and uCO2 (g:m�2:s�1) refer to the resulting

heat flux to the heating pipes and the CO2 injection rate.
2.3. Lighting system

In the present paper, three different lighting systems are

compared no lighting, HPS lighting and LED lighting. To allow

for a comparison with respect to economic figures in budget

G56 in KWIN (Vermeulen, 2016, p. 330), the photosynthetic

photon flux density (PPFD) of HPS lighting used in this

research matches that of budget G56, 185 mmol:s�1:m�2. In

KWIN, the HPS electrical input power is 100W:m�2, resulting

in an efficacy of 1:85 mmol:J�1. For the sake of comparison, the

PPFD of LED lighting is modelled as 185 mmol:s�1:m�2, with an

efficacy of 3 mmol:J�1 (Kusuma et al., 2020). Themodels are part

of the greenhouse climate and lighting system model SG, in

Fig. 1.

In this research, all electrical energy input to the lights is

modelled to contribute to the energy balance. The energy

used to transpire water in the crop, the latent heat, is

accounted for in the transpiration model. The lamps are

modelled to radiate both PAR and near-infrared (NIR), the

radiation is described by
RXY ¼ hXYuX; (7)

where X2fled;hpsg and Y2fPAR; NIRg. The fraction of the

electrical input of the lights that is converted to PAR is rep-

resented by hLEDPAR ¼ 0:55 (� ) and hHPSPAR ¼ 0:35 (� ) according

to Katzin et al. (2021). The fraction of the electrical input of the

lights that is converted to NIR is chosen hLEDNIR ¼ 0:02 (� ) and

hHPSNIR ¼ 0:22 (� ) according to Katzin et al. (2021).

The total PAR absorbed by the canopy RPAR (W:m�2) is given

by,

RPAR ¼
�
1� e�k,LAI

�
ðasunPARhsunPARQsun þaLEDPAR

RLEDPAR
þaHPSPARRHPSPARÞ;

(8)

where k (� ) is the extinction coefficient of the canopy for PAR,

LAI (m2:m�2) the leaf area index and Qsun (W:m�2) the global

radiation in d. The total PAR absorbed by the canopy RPAR is

substituted for PARCan in the photosynthesis model in equa-

tion (9.14) of Vanthoor (2011), which is part of the crop growth

model presented in subsection 2.5. The fraction of PAR in the

global radiation hsunPAR ¼ 0:44 (� ), according to Nelson and

Bugbee (2015). The absorption parameters have been chosen

asunPAR ¼ 0:894 (� ), aLEDPAR
¼ 0:943 (� ) and aHPSPAR ¼ 0:870 (� )

according to Nelson and Bugbee (2015).

The total radiation Rtot (W:m�2), PAR and NIR, absorbed by

the crop is described by

Rtot ¼RPAR þ
�
1� e�k,LAI

�
ðasunNIRhsunNIRQsun þaLEDNIRRLEDNIR þ aHPSNIRRHPSNIRÞ:

(9)

where Rtot is substituted for Rn in Equations (8) and (10) of van

Beveren et al. (2015), which is part of the greenhouse climate

systemmodel presented in subsection 2.4. The fraction of NIR

in the global radiation is set to hsunNIR ¼ 0:5 (� ), according to

Vanthoor (2011). The absorption parameters have been cho-

sen asunNIR
¼ 0:214 (� ), aLEDNIR

¼ 0:923 (� ) and aHPSNIR
¼ 0:263 (� )

according to Nelson and Bugbee (2015).

In the simulation studies with this model, three lighting

systems are compared. For simulations with no lighting, uled

and uhps are zero. For simulations with HPS, uled is zero and for

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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simulations with LED lighting uhps is zero. To make a realistic

comparison, the PAR output of both types is chosen equal,

185 mmol:s�1:m�2, but different input power ratings uhps and

uled are employed, 100 J:m�2:s�1 and 61:67 J:m�2:s�1, respec-

tively, see Table 2.

The typical electrical implementation of the artificial

lighting systems in practice only allows for switching lamps

on or off, no value in-between. The control inputs uhps and uled

resulting from (2) have a continuous domain, i.e. they can take

any value between the bounds in Table 2. This restriction can

be modelled by a quantisation process, applied to the control

input. A viable method to obtain a value in between is to only

switch on a spatially distributed group of lights, e.g. one third

of the total amount of lights, in which way the average radi-

ation per squaremeter will be one third of the bounds in Table

2. In the simulation study presented here, the effect of this

quantisation on the performance of the controlled systemwill

be analysed for a system with no quantisation, a system with

two possible values, referred to as D ¼ 1 and a system with

four possible values, referred to as. D ¼ 1=3:

2.4. Greenhouse climate system

The greenhouse climate system creates a favourable climate,

represented by yg in Fig. 1, for crop growth. Themodel predicts

the greenhouse climate based on the control inputs ug, defined

in (6). The model of the greenhouse climate is based on the

model presented in van Beveren et al. (2015). The model

consists of an energy balance, absolute humidity balance and

CO2 balance. The absolute humidity balance is affected by

crop transpiration and the CO2 balance by crop assimilation,

both quantities are contained in yc, see Fig. 1. The outside

radiation Qsun (W:m�2Þ, temperature Tout ð�CÞ, absolute hu-

midityHout (g:m�3Þ, CO2 concentration CO2;out (g:m�3Þ, andwind

speed vwind (m:s�1Þ are contained in d, affect the various

balances.

The model for condensation conductance gc (m:s�1) of the

cover, the temperature of which is denoted by Tcov (�C), is

based on the model by Stanghellini and de Jong (1995) given

by,

gc ¼max

�
0;pgc ðTair � TcovÞ

1
3

�
; (10)

by van Beveren et al. (2015) is not continuously differentiable

due to the max operator. Parameter pgc represents the specific

properties of the cover (m:�C�1
3:s�1). To ensure the continuous

differentiability of (10), the max operator is replaced by the

approximation of a smoothed if-else function S : R3/ R,

proposed by Vanthoor (2011).

S
�
sv; s

l
k; ss

�¼ 1

1þ es
l
k
ðs�ssÞ

; (11)

where slk (� ) and ss (� ) represent the slope and the switching

value of the smoothed if-else. In (11), sv (� ) represents the

value that determines the value of S. To smooth (10), we

choose sv ¼ ðTair � TcovÞ, ss ¼ 1 �C and slk ¼ � 2. The third-order
root is approximated by a fourth-order polynomial, repre-

sented here by P : R/R, defined as

PðxÞ¼ � 4:03,10�5,x4 þ 2:4,10�3,x3 � 0:05,x2 þ 0:49,xþ 0:30:

(12)

Resulting in

gc ¼pgc , SððTair �TcovÞ; � 2; 1Þ,PðTair �TcovÞ: (13)

The error introduced due to the approximation of gc in (13)

is at most 0:7 m:s�1 in the interval � ∞< ðTair � TcovÞ<28 �C.

The model of the convective heat loss through the cover, Qcov

(J:m�2:s�1Þ in van Beveren et al. (2015), is extended with an

energy screen. The screen and the greenhouse cover are

modelled as two heat conductors in a series composition

Qcov ¼ 1

ðuscrascrÞ�1 þ
�
acov

Acov
Afloor

��1 ðTair �ToutÞ; (14)

where the term acov
Acov
Afloor

denotes the conductance of the

greenhouse cover, in which Acov and Afloor denote the green-

house cover and floor area, respectively, with Acov,ðAfloorÞ�1 ¼
1:29. The value of the heat conductance of the screen

ascr ¼ 9:33 (W:m�1:�C�1) and has been taken in accordance with

Seginer et al. (2018), the value of the heat conductance of the

greenhouse cover acov ¼ 5:00 (W:m�1:�C�1) in accordance with

van Beveren et al. (2015). Lastly, the models for assimilation,

4c;ass (g:m
2:s�1) in van Beveren et al. (2015), are replaced by the

models for assimilation by Vanthoor (2011), for the sake of

coherence with respect to the chosen crop growth model.

To ensure the greenhouse air relative humidity is bounded

between 10% and 95%, an additional constraint is added, in

hðxðtÞ;uðtÞÞ in (2). The heat and radiation generated by the

lighting is modelled to affect the greenhouse energy balance

according to subsection 2.3. The output of the greenhouse

climate model to the crop model, yg in Fig. 1, is a vector

containing

yg ¼
�
RPAR;Rtot;Tair;Hair;CO2;air

�
(15)

where RPAR and Rtot are as defined in (8) and (9). Tair, Hair and

CO2;air belong to the states of this model, see Table 1.

2.5. Crop growth and transpiration

The crop model predicts the growth, transpiration and

respiration of the crop based on the greenhouse climate, yg
in (15). The crop model employed in this paper is based on

the model by Vanthoor (2011). The model by Vanthoor pre-

dicts the assimilate content of the assimilate buffer (Cbuf Þ,
the leafs (Cleaf Þ, the stem and roots and the fruits (CfrtÞ, the
states of the model. The prediction of transpiration and

assimilation of the crop, represented by yc in Fig. 1, are

output to the greenhouse climate system. The model de-

scribes how PAR RPAR, greenhouse air temperature Tair and

greenhouse air CO2 concentration CO2;air affect the crop

growth, also the effect of undesirable temperatures is

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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included in the model by Vanthoor (2011) through growth

inhibition functions.

The model by Vanthoor employs a fixed boxcar train

method to model the development of the fruit between fruit

set and harvest. The expected increase in accuracy by using

this method compared to directly selling the partitioned as-

similates does not outweigh the additional (near-)disconti-

nuities and extra state variables. To model the amount of

fruits produced, the description of the assimilates partitioned

to the fruits MCBufFrt (g:m�2:s�1) by Vanthoor is used. The

controller will then optimise the climate for fruit growth (as-

similates partitioned to the fruit buffer Cfrt). Fruit development

will, however, be guaranteed as the climate for fruit devel-

opment does not differ significantly from the climate for fruit

set. To cope with the development time for fruit a strategy

similar to Seginer et al. (2018) is employed: all assimilates

partitioned to the fruits minus those used for maintenance

respiration, are counted as yield. The price for which it is sold

at the time instance of partitioning is the price 30 days after

this time instance. This is in line with the observation in

chapter 3 of Heuvelink (2018), where a harvested fruit has

already had themajority of its assimilates transported 30 days

after fruit set. The part of the model by Vanthoor that de-

scribes the assimilate content of the stem and roots is

removed as it does not affect the objective function.

The model by Vanthoor also describes leaf harvest using a

(smoothed) if-else model to compare the current leaf area

index to a maximal leaf area index. To avoid the (smoothed)

discontinuity and allow for more freedom for the controller,

the MCLeafHar (g:m�2:s�1) in Vanthoor is replaced by a control

input ulea. To impose a maximal leaf area index LAImax, a state

constraint on Cleaf was added, see Table 1. Also, the fruit

harvest is selected as a control input ufrt. A state constraint is

imposed Cfrt >Cfrt;off : The offset Cfrt;off ¼ 140 g:m�2, represents

the estimated fixed amount of developing fruit biomass on the

crop and results in a more realistic fruit maintenance respi-

ration compared to Cfrt;off ¼ 0 g:m�2.

The transpiration model of Vanthoor requires the vapour

pressure of the canopy which is not modelled by the green-

house climate model presented in the subsection 2.4. The

transpiration model used in this research is the one by van

Beveren et al. (2015).
2.6. Performance models

The controller (SM in Fig. 1) aims to optimise the operational

return by proposing a control strategy for the inputs of the

greenhouse system, u in Fig. 1. Here, the operational return is

defined as

lðu; cÞ¼ cfrt ,ufrt þ cese ,uese � cchp ,uchp � cboi ,uboi � ccby ,ucby

� ceby,ueby;

(16)

where cxxx represents the unit cost of input uxxx. The (positive)

inputs uchp, uboi, ueby and ucby, represent the resource use and

these therefore lead to a decrease in the objective function

lð ,Þ. Selling electrical power uese and fruit yield ufrt lead to an

increase of the objective function. The operational return only

reflects the costs and incomes relevant through the inputs
specified in Table 2, fixed or capital costs are not included.

Thus, e.g. the capital cost difference between a LED installa-

tion as compared to an HPS installation are not included.

To allow for comparison with respect to economic figures

in budget G56 in KWIN (Vermeulen, 2016, p. 330), the param-

eterisation of the objective function, cchp; cboi; ccby; cese; ceby and

cfrt in (16), is taken according to the values in KWIN. Values for

parameters taken from KWIN are given in subsection 2.9

(Table 3). The electricity bought (uebyÞ, electricity sold (ueseÞ
and the CO2 bought (ucbyÞ in KWIN are not specified on a 4-

weekly period basis, for these values only a seasonal total is

presented. When comparing operational return to the KWIN,

we assume that the average value of the evaluated period is

equal to the seasonal average. To allow for a more detailed

comparison of the yield versus gas use trade-off, the values

available in KWIN on a 4-weekly basis are combined into the

p1-performance p1ð ,Þ : Rnu � Rnu/R

p1ðu; cÞ¼ cfrt ,ufrt � cchp ,uchp � cboi,uboi: (17)

The p1-performance represents income through yield

minus cost of gas use and consists of a subset of terms in the

operational return in (16).

Apart from the performance indicators lð ,Þ and p1ð ,Þ,
simulations will also be compared based on gas use

sð ,Þ : Rnu/R

sðuÞ¼a�1
g

�
uchp þuboi

�
; (18)

where ag ¼ 31:65MJ:m�3 (Vermeulen, 2016, p. 330) represents

the energy content per cube of gas. The gas use is defined here

as a separate performance indicator, but is also required for

both lð ,Þ and p1ð ,Þ and is included in cchp and cboi.

Additionally, simulations are compared based on envi-

ronmental footprint p2ð,Þ : ℝnu � ℝnu/ℝ expressed in kilo-

grams of CO2 equivalents per square meter greenhouse area

(kg:m�2),

p2ðu;gÞ ¼ gboi,sboi þ gchp,schp þ gcby,ucby þ geby,ueby � gese,uese:

(19)

The contribution of a unit input to the carbon footprint p2 is

g2Rnu , i.e. giuiðtÞ represents the contribution of input

i2f1;…;nug to the carbon footprint and is expressed in kilo-

grams of CO2 equivalents. The gas use by the boiler is denoted

by sboi2R (m3:m�2), gas use by the CHP by schp2R (m3:m�2). The

gas use by the boiler sboi is calculated using (18) for uchp ¼ 0,

and vice versa for the gas use by the CHP schp. Also, for com-

parisons between simulations and the KWIN based on envi-

ronment footprint p2 assumed is that the average value of the

evaluated period is equal to the seasonal average, due to un-

availability of more detailed data.

2.7. Control approach

This subsection describes the approach for implementing

optimal control according to the optimisation problem in (2).

The inputs to the greenhouse system u can typically be

updated every 15 min, tl ¼ 15,60 ¼ 900 s, and are held con-

stant in-between samples. For the sake of computational ef-

ficiency, the greenhouse model and the objective function are

discretised using a zero-order holdwith discretization interval

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Table 3 e The weights used to multiply the control inputs with to arrive at the performance indicators operational return,
weights cchp; cboi; ccby; cese; ceby and cfrt, and environmental footprint, weights gboi;gchp; gcby; gese and geby. Crop price cfrt
varies throughout the season between 0:74 in summer and 1:92 euro:kg�1 in winter. These values originate from the KWIN
(Vermeulen, 2016, p. 330).

Operational Return ½euro:m�2�
cfrt ½0:74 � 1:92� euro:kg�1 cboi 0:19 euro:m�3

cese 0:037 euro:kWh�1 ceby 0:057 euro:kWh�1

cchp 0:17 euro:m�3 ccby 0:11 euro:kg�1

Environmental Footprint ½kg:m�2�
gboi 1:87 kg:m�3 geby 0:64 kg:kWh�1

gchp 2:25 kg:m�3 gese 0:57 kg:kWh�1

gcby 1 kg:kg�1
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tl. As the employed solver in this research works efficiently

with sparse problems (W€achter & Biegler, 2006), the optimi-

sation problem is presented to the solver in a multiple-

shooting formulation. Reformulation of the optimal control

problem in (2) according to the latter steps, yields

JðxtÞ¼max
udð,jiÞ

XN
j¼0

ldðudðjjiÞ; cðjjiÞÞ; (20)

subject to:

xdðjþ 1jiÞ¼ Fð xdðjjiÞ;udðjjiÞ;dðjjiÞÞ;

ðxdðjjiÞ;udðjjiÞÞ2X�U;

ql �hðxdðjjiÞ;udðjjiÞÞ� qu; cj¼f0;… ; Ng

xdð0jiÞ¼ xt:

where udðjjiÞduðjtljitlÞis the predicted,ðkjtÞ,ðkþtÞt sampled

input signal u at future discrete steps ðjþiÞtl computed at time

itl. Similarly, xdðjjiÞdxðjtljitlÞand ddðjjiÞddðjtljitlÞrepresent the
predicted sampled state x and predicted disturbance d. The

discretised system, Fð ,Þ, is obtained by a zero-order hold

discretization of the system in (1) with discretization interval

ts (s).

As the state of the system xd will evolve as predicted by

propagation of F, i.e. there is no uncertainty or model

mismatch, an update step of 1 day is considered sufficient.

The algorithm in (20) is thus recomputed every day using the

state at that moment xt, after which the first day of the opti-

mised trajectories in ud is applied to the system.

To ensure all (fast) physical phenomena are accurately

represented by the discretised system by the map Fð ,Þ which

runs at a smaller sampling period, ts < tl with ts ¼ tl, N�1
sub,

where Nsub � 1 and Nsub is assumed to take on integer values.

By this we mean that, given the control inputs udðjjiÞ and

ddðjjiÞ, Fð ,Þ maps xdðjjiÞ into xdðjþ1jiÞ according to

xdððqþ 1Þts þðjþ iÞtl jitl Þ ¼ F ðxdðqts þðjþ iÞtl jitl Þ; udðjjiÞddðjjiÞÞ;
q2 f0;…;Nsub �1g;

(21)

with xdððjþiÞtl jitlÞ ¼ xdðjjiÞ and
xdðjþ1jiÞ¼ xdð Nsub ts þðjþiÞtl jitl Þ andwhere Fð ,Þ represents a
discretization of the differential Equation (1) with sampling

time ts. The prediction horizon is defined asN ¼ ðtf � t0Þ= tl. In
the remainder of this subsection, the selection of the sub-

sampling factor Nsub and prediction horizon N are discussed.

Then, the solver used to solve (20) is presented.
2.7.1. Subsampling factor Nsub

By increasing Nsub, ts will decrease such that Fð ,Þ in (20) will

more accurately model the (continuous) behaviour of fð ,Þ as
in (1). However, the computation time of the problem will

increase. This subsection presents a simulation experiment,

different values for Nsub are used to analyze the trade-off be-

tween accurately describing the behaviour of the system and

the computation time of the problem in (20).

To analyse the loss in accuracy when discretizing the tra-

jectory, the (continuous) trajectory would have to be obtained

from the system in (1). The characteristic greenhouse climate

time scale is in the order of 15min to 1 h, according to van

Straten et al. (2000). For this analysis we assume that a

simulation with Nsub ¼ 10, resulting in a discretization inter-

val of ts ¼ tl,N
�1
sub ¼ 900 s,10�1 ¼ 90 s, is accurate enough to

provide reliable estimates of the solutions of the system in (1).

The optimisation problem in (20) is solved and a control

strategy is obtained and applied to the system in open-loop

simulations with Nsub2f1;…;10g.
As the greenhouse climate states have the shortest time

constant, the effects of a low Nsub and thus a long discretiza-

tion interval is most visible in these variables. Figure 2 pre-

sents the resulting trajectories from the simulations. Note

that the trajectories corresponding to Nsub ¼ 1 have been left

out for the sake of clarity, these resulted in near-unstable

behaviour due to the long discretization interval. One can

observe from Fig. 2 that the trajectories are close for Nsub >3.

The simulations with Nsub <10, are compared to the simula-

tion with Nsub ¼ 10, the resulting root-mean-squared-errors

(RMSE) are presented in the bottom row of Fig. 2. From Fig. 2,

one can observe that the further decrease of RMSE for Nsub > 4,

is small, therefore in this research we choose Nsub ¼ 4,

yielding a discretization interval for the state equation of ts ¼
900 s,4�1 ¼ 225 s.
2.7.2. Prediction horizon N
Intuitively, by increasing the prediction horizon N, better

performance with respect to the objective function is ob-

tained. However, the computation time of the problem (20)

will increase. This subsection presents a simulation experi-

ment, different values for the prediction horizonN are used to

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Fig. 2 e (top row) Greenhouse climate state trajectories for an input sequence applied to models with different subsampling

intervalsNsub, values for inside temperature Tair, greenhouse air humidity Hair, and greenhouse air CO2 concentration. CO2;air

are presented. (bottom row) RMSE with respect to Nsub ¼ 10 reference trajectory for the different subsampling intervals.
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analyze the trade-off between suboptimality of the problem in

(20) and the computation time.

Processes with slow time constants cause outputs to be

affected by inputs for longer periods of time. According to van

Straten et al. (2000), the greenhouse climate is characterised

by a time constant in the order of 15 min to one hour (in open

loop) and the time constant of a growing crop is in the order of

weeks. Note that the inputs to a (near) pure integrator (in open

loop) affect the output for a (near) infinite period. The fully-

grown crop as described in subsection 2.5, is not a (near) pure

integrator. First, the fact that the LAImax is attained and is kept

(close to) constant through leaf pruning, through control,

lowers the time constant of the leaf buffer Cleaf . Second, the

fruit development as described in Vanthoor (2011) is omitted,

unripe fruit is sold after being partitioned, removing this delay.

Third, the temperature sum is compared to a threshold to

indicate the start of generative phase, for a fully grown crop this

temperature sum will have exceed the threshold described in

Vanthoor and the value of the temperature sum is obsolete.

To analyse the decrease in performance for a shrinking

prediction horizon, the optimisation problem in (20) is solved

for various values of N. Choosing a value of N[2 , 96, will

ensure the effects of the inputs have diminished and the

performance is (near) optimal, to this extent we choose N ¼
6 , 96 ¼ 480. Figure 3 presents the optimised state trajec-

tories for the greenhouse climate for N2f96;192;288;384;480;
576g. For N ¼ 192, one can observe coinciding trajectories for

the first day of the simulation with the referenceN ¼ 480. The

simulation studies presented in this paper use a prediction

horizon of N ¼ 288, which represents a length of 3 days. One

can also observe the greediness of optimal control, the
controller does not consider what happens after the predic-

tion horizon. After the last radiation in the horizon, the

objective function cannot be impacted in a positive way for

the remainder of the horizon, therefore the heating, CO2 in-

jection are switched off. Also, the leaves are harvested to

minimise transpiration avoiding a heating demand to main-

tain the system within the constraints.

2.7.3. Solver
The optimisation problem in (20) is solved using the nonlinear

optimisation software package IPOPT solver (W€achter &

Biegler, 2006), with linear solver MA57 from HSL (HSL, 2019).

The IPOPT solver is interfaced using CasADI (Andersson et al.,

2019). Due to the multiple-shooting approach to solving the

optimisation problem, the number of optimisation variables is

ðnu þnxÞ,N, with nu ¼ 13 and nx ¼ 8 the number of inputs and

states. With a prediction horizon of three days and 15minute

discretization interval, N ¼ 96,3, yielding 6048 variables to be

optimised. The combination of IPOPT with CasADI allows an

efficient solving process of this problem, as CasADI provides

Jacobian and Hessian information to the IPOPT solver

(Andersson et al., 2019).

2.8. Rule-based controller

In order to be able to validate the models and their intercon-

nection, a control strategy is designed resembling KWIN

(Vermeulen, 2016, p. 330) and therefore the state-of-the-

practice. To this effect a rule-based controller is employed.

The ventilation rules are based on Vanthoor et al. (2011). Key

features of this rule-based controller are:
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Fig. 3 e Optimal trajectories for greenhouse air temperature Tair, greenhouse air humidity Hair and greenhouse air CO2

concentration CO2;air for different values of the prediction horizon N, here N2f96; 192; 288; 384; 480; 576g.
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� lamps are on from 2:00 to 18:00, except when instanta-

neous global radiation exceeds 600W:m�2 or when the

predicted radiation sum exceeds 14MJ:m�2:day�1.

� greenhouse air temperature setpoint is 19:5 �C while

lamps are on or radiation from the sun is present,

18:5 �C otherwise. The setpoint is maintained using a P-

controller.

� CHP is on when lamps are on, unless heat cannot be

directed to the greenhouse or to the buffer. Only

after the heat buffer depleted, a heating demand

switches on the CHP. Excess electricity produced by

CHP is sold.

� CO2 setpoint is 1000 ppm (1:83 g:m�3 at 20 �C), controlled
by a P-controller. If more CO2 is produced by the CHP

and/or buffer than required, the surplus is injected.

� the ventilation is forced to close if greenhouse air tem-

perature is 1 �C below temperature setpoint. The

ventilation opens when greenhouse temperature ex-

ceeds the setpoint by 5 �C or when greenhouse air

relative humidity exceeds 85 %. Both ventilation in-

centives are P-controlled.

� Screens are closed if outdoor temperature is below 5 �C
during the day or 10 �C during the night. The screens

open when ventilation is required.
2.9. KWIN

The Kwantitatieve Informatie voor de Glastuinbouw (KWIN)

(Vermeulen, 2016, p. 330) periodically summarises actual

information on Dutch greenhouse horticulture. Aside from

other relevant horticultural information, it also contains

reference operational figures, such as crop yield, gas use and

electricity use. The information from the KWIN will be used

in this research as a representation of the state-of-the-

practice. The operational figures used in this research are

those for a greenhouse with truss tomatoes, planted in week

42, with a CHP and with HPS lighting, specifically budget

G56. To be able to compare the performance of the
controlled greenhouse system here, the costs (16) and con-

tributions to the carbon footprint (19) of all inputs are taken

from the KWIN, these have been summarised in Table 3.

Also, the limitations of the control inputs, presented in

Table 2, have been adopted from KWIN. The remainder of

this subsection will state some remarks with respect to the

use of the KWIN.

The crop price provided in the KWIN is the price that is

required to reach thebreak-evenpoint.The resultingcropprice

does reflect the seasonal differences. As the KWINwill be used

to compare the results to the state-of-the-practice, the crop

price fromtheKWINisadopted.Tomitigate the inaccuracydue

to not including fruit growth in the cropmodel, as discussed in

subsection 2.5, the crop price from the KWIN is shifted 30 days

forward in time. The assimilates partitioned to the fruits are

sold at that time instance for the price of 30 days later. Also, the

KWIN is basedon theaverageprevailingweatherduringayear.

The simulations in this paper are based on weather data, the

source of which is presented in subsection 2.10.

2.10. Weather data

The uncontrollable inputs d represent the outside weather

variables, namely: global radiation sum Qsun, outside temper-

ature Tout, outside CO2 concentration CO2;out, outside absolute

air humidity Hout and wind speed vwind. The data is measured

at 5 min interval, for the years 2011e2014, although only year

2014 is used in this research. Theweather data originates from

an experiment described in Kempkes et al. (2014), where

various energy-saving options in greenhouses were investi-

gated in a Venlow Energy kas located in Bleijswijk, The

Netherlands. The daily global radiation sum QD
sun, outside

temperature Tout, outside absolute air humidity Hout, wind

speed vwind are presented in Fig. 4. The areas in Fig. 4 that

envelop the lines indicate the daily variation (maximum and

minimum) of the variable, except for the global radiation

which is expressed as a daily sum. Note, that only the weather

data is used, the parameters of the greenhouse and the

experiment are not relevant here.
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3. Results

To evaluate to what extent LED lighting improves the perfor-

mance of an optimally controlled greenhouse system, several

simulation studies are performed. The first simulation study

encompasses a simulation over an interval of 218 days with

generative crops. These simulations are performed for a

greenhouse equipped with HPS lighting, LED lighting and no

lighting, all controlled using the optimal control algorithm

presented in subsection 2.7. Also, a greenhouse equippedwith

HPS lighting is simulated when controlled using the rule-

based controller presented in subsection 2.8. The results of

this simulation study are presented in subsection 3.1. In

subsection 3.2, the optimally controlled system is simulated

for four 7eday intervals, using the different quantisation step

sizes as discussed in subsection 2.3.

3.1. Season simulations

The operation of the controlled greenhouse system is simu-

lated for a period of 218 days, from the 11th of January to the

16th of August. The start of the simulation period is offset

compared to the period inwhich data is available in the KWIN.

This is due to (a) the unavailability of weather data, see sub-

section 2.10 and (b) the requirement for a fully-grown, pro-

ducing crop introduced in subsection 2.7.2. To ensure the state

of the system in the simulations here at the 11th of January

reflects the state of the system at the 11th of January in the

KWIN, the state is estimated through simulations with the

crop model as presented in Vanthoor (2011) using the same

planting date. The end of the simulation period is advanced to

the 16th of August as the crop growth and transpirationmodel

presented in subsection 2.5 does not predict the behaviour of a

topped tomato crop. As Vermeulen (2016, p. 330) does not

detail the topping of the crop, the crop is assumed to be topped

4 weeks prior to the end of the cropping cycle.
Fig. 4 e Theweather data input to the uncontrollable inputs of th

this paper. (left-to-right, top-to-bottom) The daily global radiati

humidity Hout and wind speed vwind.
In practice, the integration of a lighting systems might be

coupled to a different configuration of the system, e.g. larger

heat buffer and/or larger CHP. The simulations studies

presented in this paper apply to a greenhouse which is

characterised by the parameterisation of the chosen models

and the systems those models have been validated with. In

the simulations presented here only the lighting system

changes.

For the sake of clarity and direct comparison with the 4-

week average of KWIN, the 4-week average value of all rele-

vant signals will also be plotted, using the same averaging

intervals as in KWIN. The 4-week average values of a simu-

lation denoted by, e.g., OC is PAðOCÞ (periodic average).

For the sake of clarity, the results of the six simulations are

split into two sets. In subsection 3.1.1, the simulationswith the

greenhouse system with HPS lighting controlled by the rule-

based controller and the optimal control algorithm are pre-

sented along with relevant data from the KWIN. The second

set, presented in subsection 3.1.2, presents the simulations

with the optimal control algorithm in (20) for a greenhouse

systemwith LED lighting, HPS lighting or no lighting installed.
3.1.1. Set 1: rule-based control, optimal control and KWIN
The yearly totals of the operational return J for the three

simulations in the first set are presented in Table 4, alongwith

the components that determine its value through (16), i.e. crop

harvest ufrt, gas use by the CHP schp, gas use by the boiler sboi,

(pure) CO2 bought ucby, electricity sold uese and electricity

bought ueby. The carbon footprint p2, according to (19), is pre-

sented in the last column of Table 4. One can observe the

highest operational return in the simulation with the optimal

controller OC, 65:14 euro:m�2, an increase of 6:18 euro:m�2

(þ10 %)with respect to the date in KWIN. The simulationswith

the rule-based controller, Rule, realised the worst operational

return, a decrease of 9:78 euro:m�2 (� 17 %) with respect to the

date in KWIN. The high operational return of the simulation
e greenhouse system d during the simulations presented in

on sum QD
sun, outside temperature Tout, outside absolute air
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with the optimal controller OC can be explained by the higher

fruit harvest ufrt, 12:54 kg:m�2 (þ19 %) with respect to the date

in KWIN. From the unit prices in Table 3, one can observe that

fruit harvest contributes considerably to the operational re-

turn, inducing the difference between the data from KWIN and

simulations with OC. To achieve this increased fruit harvest,

the optimal controller OC uses 5:64m3:m�2 more gas (þ 14 %)

compared to KWIN. The rule-based controller uses the least

amount of gas but injects more CO2 and therefore has to buy

considerably more CO2 than is used in the other simulations.

Also the price of buying (pure) CO2 is considerable,

0:11 euro:kg�1, resulting in a total expense of 1:62 euro:m�2 on

bought CO2 for the rule-based controller. The increased CO2

bought by the rule-based controller compensates the

decreased gas use when evaluating the carbon footprint p2,

which is as high as the carbon footprint of the optimal

controller.

To be able to analyse the seasonal differences, the daily

sums of the combined gas use of the CHP and boiler sD, elec-

tricity exchange with the grid uD
eby � uD

ese and CO2 bought uD
cby

are presented in Fig. 5. One can observe that the increased

yearly total gas used by the optimal controller as presented in

Table 4, is primarily due to an increased gas use throughout

the period from May to August. The gas use throughout the

season is similar for the simulations with the rule-based

controller and the data from the KWIN. As the KWIN only

provides a yearly total for the electricity exchange with the

grid it cannot be compared on a seasonal timescale. One can

observe, however, that the rule-based controller uses more

electricity from the grid, especially in wintertime. As a CO2

demand is not coupled to the level of operation of the CHP

uchp and boiler uboi in the rule-based controller, the rule-based

controller has to buy CO2 for injection throughout a significant

part of the season inwhich the CHP is used less. The daily sum

of fruit harvest for the three simulations in the first set is

presented in Fig. 6. One can observe in Fig. 6 that the differ-

ence in fruit harvest presented in Table 4 between KWIN and

OC results from an increased fruit harvest throughout most of

the season, most notably during March and April. Also, in

Fig. 6 one can observe that the daily sums of the rule-based

controller and the KWIN are similar throughout the season.

The daily sum of the p1 performance for the three simulations

in this set is presented in Fig. 7. The effect of the decreasing

crop prices cfrt throughout summer is clearly visible. The latter

induces the decrease in the difference in p1-performance

throughout summer even though the crop yield in the simu-

lations with OC are higher throughout summer.
Table 4 e The yearly sums of the operational return J, crop har
(pure) CO2 bought ucby, electricity sold uese, electricity bought u
first set. The first set encompasses simulations with the rule-b
denoted by OC, and the respective data in the KWIN.

J
½euro:m�2�

ufrt

½kg:m�2�
schp

½m3:m�2�
sboi

½m3:m�2�
Rule 49:18 64:63 31:90 0

KWIN 58:96 67:46 39:21

OC 65:14 80:00 44:78 0:07
The sudden decrease and subsequent increase of crop

growth at the 13th of June is found to be due to an increase in

the fruit price cfrt, 30 days later, 13th of July. The controller

chooses to harvest less fruits before the 13th of June, such that

more fruits can be sold after the 13th of June. The latter is

comparable to a grower that, knowing a price increase is ex-

pected in the near future, will try to postpone harvesting as

much as possible.
3.1.2. Set 2: No lighting, HPS lighting and LED lighting
The yearly totals of the operational return J for the three

simulations in the second set are presented in Table 5which is

structured similar as Table 4. The simulation with HPS dis-

cussed here is the same as the one in the first set, where it was

denoted by OC. One can observe that the operation return J for

the LED-equipped greenhouse is 6:28 euro:m�2 higher (þ9 %)

with respect to the HPS-equipped greenhouse. Table 5 shows

that the biggest difference between both simulations is the

electricity exchange with the grid. The LED-equipped green-

house buys 24:34 kWh:m�2 and sells 64:00 kWh:m�2, the

HPS-equipped greenhouse buys 71:86 kWh:m�2 more and sells

16:39 kWh:m�2 less electricity. This results in a net difference

of 88:51 kWh:m�2, note, however, that buying and selling

electricity are not weighted with the same factor to arrive at

operational return, i.e. cesesceby, see Table 3. The resulting

difference expressed in monetary units, after multiplication

with cese and ceby, indicates a 3:60 euro:m�2 difference. The

different electricity consumption accounts for 57 % of the

difference in operational return between the HPS and

LED-equipped greenhouse. The latter also affects the carbon

footprint, the LED-equipped greenhouse has a footprint which

is 41:09 kg:m�2 lower, a decrease of 30 % compared to the

HPS-equipped greenhouse. Other differences can be observed

in the use of the boiler, sboi, although this difference is rather

low compared to the use of the CHP. Both greenhouses harvest

a similar amount of fruits, the LED-equipped greenhouse

harvests 2:58 kg:m�2 more, an increase of 3% compared to the

HPS-equipped greenhouse. The lowest operational return is

obtained for the greenhouse without artificial lighting No,

which achieves 15:13 euro:m�2 less (� 23 %) with respect to the

HPS- equipped greenhouse: As the greenhouse without artifi-

cial lighting No uses a similar amount of gas as the

HPS-equipped greenhouse,most of the resulting energy can be

sold, selling 96:42 kWh:m�2 more than HPS, an increase of

202 %, resulting in a low carbon footprint. The greenhouse

without artificial lighting No, emits the least CO2 equivalents

per produced kilo of tomatoes 0:19 kg:kg�1, the HPS and LED�
vest ufrt, gas use by the CHP schp, gas use by the boiler sboi,

eby and carbon footprint p2 for the three simulations in the
ased controller, denoted by Rule, the optimal controller,

ucby

½kg:m�2�
uese

½kWh:m�2�
ueby

½kWh:m�2�
p2

½kg:m�2�
14:72 18:38 93:39 135:80

0 39:42 101:54 130:90

0:0019 47:61 96:52 135:53
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Fig. 5 e The daily sums of the (top) gas use sD, (middle) electricity exchange with the grid uD
eby � uD

ese and (bottom) pure CO2

bought uD
cby for simulations with the controlled greenhouse. Rule denotes the simulations with rule-based controller, as

presented in subsection 2.8. OC denotes the simulations with the optimal controller, presented in subsection 2.7. The latter

simulations are compared to the data from the KWIN, denoted by KWIN. PA(·) is used to denote the 4-week average of the

daily signals.
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equipped greenhouse achieve 1:69 kg:kg�1 and 1:14 kg:kg�1,

respectively.

To be able to analyse the seasonal differences in the

second set, the daily sums of the combined gas use of the

CHP and boiler sD, electricity exchange with the grid uD
eby�

uD
ese and CO2 injection uD

cby are presented in Fig. 8. One can

observe in the top panel of Fig. 8 that the increased gas use

of the LED-equipped greenhouse mainly results from the

winter period. During this period, January to April, the

LED-equipped greenhouse sells more electricity to the grid

as compared to the HPS-equipped greenhouse, the latter

buys considerable amounts of energy in this period. This

indicates that it does not pay off for the HPS-equipped

greenhouse to generate the electricity itself, possibly due to

a heat demand. Where both the HPS and LED-equipped

greenhouse use the energy to power the artificial lighting,
the greenhouse without artificial lighting No sells all the

produced electricity as by product of the heat demand. From

the bottom panel of Fig. 8, one can observe that the reduced

gas use of the HPS-equipped greenhouse does result in a

small increase in (pure) CO2 bought uD
cby. To be able to

analyse these seasonal differences on a more detailed level,

Fig. 9 presents optimised trajectories for artificial lighting

uhps and uled, CHP level of operation uchp, electricity exchange

with the grid ueby � uese, inside and outside temperature Tair

and Tout and CO2 concentration CO2;air for January 12th and

June 20th. In the winter season, January 12th, the

LED-equipped greenhouse also operates the CHP at night,

resulting in more electricity sold to the grid. One can

observe that the temperature Tair, however, is not signifi-

cantly different, the CO2 concentration CO2;air is consider-

ably different at night, however. In the summer season, June

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Fig. 6 e The daily sum of the fruit harvest uD
frt for simulations with the controlled greenhouse. Rule denotes the simulations

with rule-based controller, as presented in subsection 2.8. OC denotes the simulations with the optimal controller,

presented in subsection 2.7. The latter simulations are compared to the data from the KWIN, denoted by KWIN. PA(·) is used

to denote the 4-week average of the daily signals.

Fig. 7 e The daily sum of the p1-performance pD
1 for simulations with the controlled greenhouse. OC denotes the simulations

with rule-based controller, as presented in subsection 2.8. Rule denotes the simulations with the optimal controller,

presented in subsection 2.7. The latter simulations are compared to the data from the KWIN, denoted by KWIN. PA(·) is used

to denote the 4-week average of the daily signals.

Table 5 e The yearly sums of the operational return J, crop harvest ufrt, gas use by the CHP schp, gas use by the boiler sboi,
(pure) CO2 bought ucby, electricity sold uese, electricity bought ueby and carbon footprint p2 for the three simulations in the
second set. The second set encompasses simulations with the optimal controller for a greenhouse equipped with HPS
lighting, LED lighting and No lighting.

J
½euro:m�2�

ufrt

½kg:m�2�
schp

½m3:m�2�
sboi ½m3:m�2� ucby ½kg:m�2� uese ½kWh:m�2� ueby ½kWh:m�2� p2 ½kg:m�2�

HPS 65:14 80:00 44:78 0:07 0:0019 47:61 96:52 135:53

LED 71:24 82:58 50:95 0:38 0:0019 64:00 24:34 94:47

No 50:01 57:05 40:93 0:30 0:0018 144:03 0:10 10:63
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Fig. 8 e The daily sums of the (top) gas use sD, (middle) electricity exchange with the grid uD
eby � uD

ese and (bottom) pure CO2

bought uD
cby for simulations with the controlled greenhouse. The HPS-equipped greenhouse is denoted by HPS, the LED-

equipped greenhouse is denoted by LED and the greenhouse without artificial lighting is denoted by No.

b i o s y s t em s e n g i n e e r i n g 2 0 2 ( 2 0 2 1 ) 1 9 5e2 1 6210
20th, the artificial lighting is not employed throughout the

entire day as compared to January 12th. The latter effect

causes the differences between resource use of the HPS and

the LED-equipped greenhouse, as presented in Fig. 8.

The daily sum of fruit harvest for the three simulations in

this set is presented in Fig. 10. One can observe in Fig. 10, that,

all throughout the season, the LED-equipped greenhouse

achieves a higher fruit harvest as compared to the

HPS-equipped greenhouse, which supports the figures in

Table 5. The added fruit harvest through artificial lighting is

largest throughout the winter season, as can be observed by

comparing the both greenhouse with artificial lighting to the

onewithout. The daily sumof the p1 performance for the three

simulations in this set is presented in Fig. 11. One can observe,

similar as in Fig. 7, that due to decrease fruit prices cfrt the

added benefit of the increase in crop harvest becomes smaller.

However, the CHP is operated less in the summer season, less

energy is sold as can be observed in Fig. 8 and that all three

greenhouse operate more alike as compared to the winter

season.
3.2. Simulations with quantisation effects

To quantify the effect of quantisation in the system, as

referred to in subsection 2.3, the optimised trajectories u*
hps

and u*
led are quantised to on-off signals, referred to as D ¼ 1,

and to signals with four possible values, referred to as D ¼
0:33. The value D is here referred to as the quantisation step

size. After quantisation the trajectory for u*
hps or u*

led is fixed

and the optimization algorithm in (20) is used to optimise the

other control inputs. The latter approach ensures that the

imposed constraints are satisfied also after the quantisation

has been applied. The three different quantisation strategies

have been applied in simulations with three different lighting

systems over the course of four 7� day periods in January,

April, June and August. For the simulations without a lighting

system no quantised signals have to be applied. The state of

the system at the first day in the interval is based on the state

of the system at the specific day in the simulations with HPS

lighting in subsection 3.1.

https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006


Fig. 9 e Relevant control trajectories for simulations with the LED-equipped greenhouse and HPS-equipped greenhouse

during January 12th (left) and June 20th (right). Plotted are (row 1) artificial lighting uhps and uled, (row 2) CHP level of

operation uchp, (row 3) electricity exchange with the grid ueby � uese, (row 4) greenhouse air and outside temperature Tair and

Tout, (row 5) greenhouse air CO2 concentration.CO2;air:
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The average operational return for the resulting seven-day

simulations are presented in Table 6. One can observe that the

quantisation step size does not significantly affect the average

operational return in the intervals tested here. The algorithm

with a lower quantisation step size can produce the same

trajectories as the next increased level of quantisation step

size, i.e. the trajectories denoted by u* in Table 6 can be exactly

the same as those denoted by D ¼ 1=3. Note, therefore, that

the increase in average operational return going from D ¼ 1= 3

to D ¼ 1 for a LED-equipped greenhouse in April and the in-

crease from u* to D ¼ 1=3 result from numerical inaccuracies

in the solution of the optimisation algorithm in (20). Figure 12

presents the original and quantised trajectories for April 15th

for both an HPS and LED-equipped greenhouse. One can

observe how quantisation will typically result in a value lower

or higher. The original trajectories indicate the optimal tra-

jectory, if through quantisation more power is directed to the

light, this will reduce the operational return.
4. Discussion

In this section, the results of the simulation studies presented

in section 3 are discussed in the context of the main question

of this paper: to what extent does LED lighting improves the

performance of an optimally controlled greenhouse system,

measured in operational return and carbon footprint. Sub-

section 4.1 discusses the validation of the interconnection of

the models presented in subsection 2.2, 2.3, 2.4 and 2.5. The

performance of the optimal controller based on (20) is

compared with respect to the state-of-the-practice, here

KWIN, and the rule-based controller in subsection 4.2. Sub-

section 4.3 discusses the observed differences between anHPS

and LED-equipped greenhouse, answering and discussing the

main question of this paper. The effect of quantisation in the

context of the estimated performance increase from subsec-

tion 4.3 is discussed in subsection 4.4.
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Fig. 10 e The daily sum of the crop yield uD
frt of the HPS-equipped greenhouse, denoted by HPS, the LED-equipped

greenhouse, denoted by LED and the greenhouse without artificial lighting, denoted by No. PAð ,Þ is used to denote the 4-

week average of the daily signals.

Fig. 11 e The daily sum of the p1-performance pD
1 of the HPS-equipped greenhouse, denoted by HPS, the LED-equipped

greenhouse, denoted by LED and the greenhouse without artificial lighting, denoted by No. PAð ,Þ is used to denote the 4-

week average of the daily signals.

Table 6eThe average operational return J ðV:m�2Þ per day
in the seven-day interval for January, April and June. For
each interval No lighting, HPS lighting and LED lighting
are compared using two quantisation step sizes, i.e. D ¼ 1
and D ¼ 1=3.

Jan Apr Jun

No HPS LED No HPS LED No HPS LED

u* 0:04 0:16 0:21 0:31 0:35 0:37 0:17 0:19 0:20

D ¼ 1=3 0:15 0; 20 0;35 0;36 0; 19 0; 21

D ¼ 1 0; 15 0; 20 0;35 0;37 0; 19 0; 20
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4.1. Model validation

The parts of themodel presented in subsection 2.2, 2.3, 2.4 and

2.5 have already been validated in their respective publica-

tions. This subsection will, therefore, discuss the validation of

the interconnection of the parts of the model, instead of the

separate models and will therefore focus on the performance

indicators presented in subsection 2.6. The concept of model

validation has different meanings in different disciplines

(Eker et al., 2018). Here, we use the term in the sense of having

“usefulness with respect to some purpose [...] and suitability

for its intended use” (Eker et al., 2018). The model will be

validated using data from the KWIN. Since KWIN provides

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Fig. 12 e Original and quantised trajectories for 15th of April, for both the HPS-equipped greenhouse (left) and LED-equipped

greenhouse (right). The continuous control inputs are denoted by u*
led and u*

hps. Resulting trajectories for a quantisation step

size of D ¼ 1 and D ¼ 1=3 have also been depicted.
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high-level numbers on the performance of a greenhouse in

the state-of-the-practice, we believe that this data suffices for

evaluating the interconnection of the parts of the model. The

rule-based controller presented in subsection 2.8 arguably

controls the greenhouse to a similar performance compared

to the state-of-the-practice. Therefore, if the performance

indicators of the simulation with the rule-based controller

match those of the KWIN, the model describes the behaviour

of the system in a way that is consistent with what is known

about current practice, in terms of the performance indicators

used in this study. As such, the model is deemed suitable for

use in subsequent contributions presented in this section.

One can observe from the results presented in subsection

3.1.1 that the performance indicators of the simulation with

the rule-based controller match those of the KWIN to a large

extent. The total operational return of the greenhouse system

controlled by the rule-based controller is 9:78 euro:m�2 lower

than the data from the KWIN. The overall resource use, as

presented in Fig. 5 and the crop yield, presented in Fig. 6, show

similar behaviour throughout the simulations. Some of the

discrepancies may be caused by the differences in the pre-

vailing weather conditions between the simulations with the

rule-based controller and those used in the KWIN. The KWIN

uses an typical meteorological year, the effects of different

prevailing weather conditions are, therefore, hypothesised to

affect the seasonal results but the yearly totals to a lesser

extent.We conclude that themodel describes the behaviour of

the system sufficiently accurate for the subsequent contri-

butions presented in this section.

By choosing the initial state of the system to reflect that of

a fully-grown crop, the behaviour of the model can only be

validated for that part of the season. It cannot be concluded

whether themodel also describes the vegetative phase of crop

growth sufficiently accurate. The assumption of a fully-grown

crop, however, affects only the state of the crop growth and

transpiration model. Since these models are based on physi-

ological principles that take crop growth processes (e.g. leaf

area index) into account, we hypothesise that the model can
also be used to describe the vegetative phase of crop growth

sufficiently.

4.2. Optimal control performance

In the results presented in subsection 3.1.1, an increase in

operational return of 10 % was observed when comparing the

greenhouse system controlled by the optimal controller to the

data representing the state-of-the-practice in KWIN. By

combining the various elements that make up the operational

return J in Table 4 and the resource costs in subsection 2.9 we

conclude that the difference is mainly induced by an

increased crop yield. The optimal controller harvests 12:54 kg:

m�2 more fruit while using 5:57m3:m�2 more gas and

exchanging 13:21 kWh:m�2 net less electricity than the KWIN.

The latter trade-off combined with a more efficient allocation

of the resources is hypothesised to result in the increased

operational return. The carbon footprint of the optimally

controlled greenhouse is similar to that of the KWIN.

None of the simulations in subsection 3.1 or subsection 3.2

lead to a parameterisation of the optimisation algorithm in

(20) for which the solver did not converge to a solution. As

undesirable configurations of the greenhouse system are

penalised through explainable white-box models into the

economic objective function, the constraints can reflect the

domain of the models. Due to the assumptions presented in

subsection 2.7.2, the proposed optimisation algorithm in (20)

and its configuration only apply to fully-grown, producing

crops. In order to be able to apply receding horizon optimal

control also in the case of a vegetative crop, i.e. the period in

which the resource costs are not balanced by crop yield, one

should resort to e.g. the time-scale decomposition as

described in van Henten & Bontsema, 2009, in order for the

optimisation algorithm to remain computationally feasible.

As a non-producing crop will not balance the costs of re-

sources through crop yield, in the case of a purely economic

cost function, a long horizon, exceeding the length of the

vegetative phase would be required.

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Upon execution of the optimisation algorithm in (20), the

actual and future prevailing weather d and actual and future

crop price cfrt are input to the optimisation algorithm. In

practice, however, the weather d cannot be predicted

perfectly. The crop price cfrt in practice will also result from a

prediction of the crop price 30 days into the future. Addition-

ally, the simulated state of the system xt is input to the opti-

misation algorithm in (20) upon execution. In practice, the

state of the system will be the result of measurements with a

limited accuracy, resulting in errors and uncertainty. The 10 %

increase in operational return should therefore be seen as a

performance bound, i.e. the performance that can be achieved

if perfect predictions and measurements are available to the

optimisation algorithm in (20).

Concluding, the optimal controller achieves a 10 % increase

in operational return over part of the season that was simu-

lated. The latter 10 %, however, does indicate a performance

bound as perfect predictions of the weather and crop price as

well as perfect measurements of the system are used here.

The proposed approach is valid for greenhouses with fully-

grown, producing crops.

4.3. Comparison of lighting systems

In the simulations presented in subsection 3.1.2, the

LED-equipped greenhouse controlled by an optimal controller

achieved an operational return which is 6:28 euro:m�2 higher

than an HPS-equipped greenhouse controlled by an optimal

controller, an increase of 9 %. Also, the carbon footprint of

the LED-equipped greenhouse is 30 % lower as compared to

the HPS-equipped greenhouse, in the simulations presented

here. The results of the simulations presented in Table 5,

combined with the prices presented in subsection 2.9, show

that this difference is for 57 % induced by a decreased elec-

tricity use of the LED-equipped greenhouse system. Cheaper

electricity from the grid, a decreased ceby, or a decreased sales

price of electricity to the grid will mitigate the observed in-

crease. Also, if the electricity from the grid is more sustain-

able, i.e. a lower geby, as it e.g. would originate from renewable

resources, the decreased carbon footprint will also be miti-

gated. Due to the mechanistic nature of the presented model,

new additions to the heating or energy generation, such as

geo-thermal energy, windmills and/or solar panels, can be

changed in the proposed model.

The performance increase discussed here is obtained in

simulations in which the control inputs result from the opti-

misation algorithm which aims to solely optimise the opera-

tional return. A lower carbon footprint, which is not the

current aim of the optimal controller, could be added to the

cost function by penalizing carbon emissions. Potentially, an

even lower carbon footprint could be obtained, however, most

likely at the expense of operational return.

Themodels used in this paper do not take into account the

potential positive (e.g. increased dry mass partitioning to

fruits) and negative (e.g. Botrytis cinereal resistance) spectral

effects that LED light can have on crop physiology, for

instance by supplying far-red light (Ji et al., 2019). However, it

does allow for the future inclusion of these effects as the

selected crop model is mechanistic (white box) and variables

such as partitioning are explicitly modelled.
As the system assumes the crop is just producing and start

simulating from that point on, no conclusions can be drawn

on the potential benefits or drawback of using LED lighting in

the vegetative phase of the crop. In order to add this to the

proposed approach a solution as presented in subsection 4.2

would have to be added to the approach presented here.

4.4. Effect of quantisation on performance

The observed 9% performance increases discussed above,

when comparing optimal control to the state-of-the-practice

and when comparing a LED-equipped greenhouse to one

with HPS, assume that the artificial lighting can be dimmed,

i.e. any value between 0% and 100% can be achieved. In

practice, as explained in subsection 2.3, this cannot be ach-

ieved. Based on the results presented in subsection 3.2 we

hypothesise that the effect of the quantisation in the system

on this performance increase will not be significant if the

optimisation algorithm is executed once more after quanti-

sation. In Table 6, one can observe that the decrease in

average operational return is not significant when various

quantisation step sizes are used.

Removing the optimisation step after quantisation could

lead to constraint violation, e.g. the optimal controller might

find an optimum at 80 % power at a specific time instant, the

100 % power after quantisation, however, might increase the

temperature such that it violates the constraint. As the aim of

this research was to find to what extent it would change the

performance of the greenhouse, no computationally optimal

method was employed. A viable way to solve an optimisation

algorithm as in (20) with the effects of quantisation included

would be with employing an mixed-integer non-linear opti-

misation problem solver, as is used in van Beveren et al. (2019)

to optimise the operation of boiler and CHP.
5. Conclusions & recommendations

The aim of this simulation study is to quantify the difference

in operational return and carbon footprint in simulations

using an optimally controlled greenhouse with HPS and LED

lighting. To this extent, existing models in literature have

been combined to arrive at a model of the greenhouse system.

As the components have been validated in their respective

publication, the interconnection of the models was validated

using data representing the state-of-the-practice. An optimal

control algorithm is proposed which, in combination with the

aforementioned model, can control the greenhouse system

using a purely economic cost function (no penalty functions).

The simulations in this paper suggest a performance increase

of 10 % in the operational return when comparing an opti-

mally controlled greenhouse to the state-of-the-practice.

Using the optimal control algorithm, the simulations pre-

sented here suggest an 9 % increase in operational return

when comparing a greenhouse with HPS to one with LED

lighting. Due to decreased electrical energy demand and an

increased sale of electricity generated by a CHP in the green-

house with LED lighting compared to HPS lighting, the simu-

lations suggest a 30 % decrease in carbon footprint when

adopting LED lighting systems, for tomatoes cultivated in

https://doi.org/10.1016/j.biosystemseng.2020.12.006
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Dutch weather conditions. Simulations suggest that the effect

of quantisation in the system, as the lamps can only be on or

off, is not considerable.

The optimal controller here is configured using perfect

predictions of the weather and crop price as well as perfect

measurements of the system are assumed. The 10 % increase

in operational return due to the integration of optimal control

should be viewed as a theoretical bound on the performance

increase. To the best of our knowledge the effect of the un-

certainty inherited in predictions and models on the perfor-

mance of the greenhouse system is unknown.
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Appendix A. Heat Buffer Model

The model for the greenhouse heat buffer is taken from

Seginer et al. (2018), it is represented by the differential

equation

_xs ¼usto � Ha; (22)

where xs (J:m�2) represents the energy stored in the buffer, usto

(W:m�2) the energy supplied to and released from the buffer,

see Table 2. The thermal losses are represented by Ha (W:m�2),

see (3). In (3), the value a (s�1) represents the thermal insu-

lation of the heat buffer, this is given by.

a¼ kA,sA
mW,cW,dA

; (23)

where kA (J:m�1:s�1:K�1Þ represents the thermal conductiv-

ity of the heat buffer surface, this has been chosen as 1:28 W:

m�1:K�1 equal to concrete. The surface area of the heat buffer

sA ¼ 309:81 (m2) andmass of thewatermw ¼ 3:98,105 (kg), have
been chosen based on a heat buffer with a height of 5:68m and

a radius of 4:73m, using the same ratio as in van

Steekelenburg et al. (2011, p. 23), but matching the heat ca-

pacity of the heat buffer from Seginer et al. (2018). The

maximum water temperature has been chosen 90 �C, the

lowest temperature 40 �C. Using the heat capacity of water

cw ¼ 4182 (J:kg�1:K�1Þ, the energy for an empty heat buffer is

xs;off ¼ 40,cw,mw ¼ 1:67,106 (J). The thickness of the heat buffer

wall was chosen dA ¼ 0:6 m., hence a ¼ 3:96,10�7. (s�1). The

resulting trajectories of (22) matched with those presented in

van Steekelenburg et al. (2011, p. 23).
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