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5.5.1 Introduction

Manure is a valuable source of nutrients for crops. However, in regions with intensive
livestock farming systems and limited agricultural land, the amount of nutrients available
exceeds the nutrient demand of crops. In these regions, the surplus of nitrogen (N) and
phosphorus (P) results in an increase in soil nutrient status and high emissions of N and P
to groundwater, surface water, and the atmosphere [1]. A series of policies and measures
have been implemented in the European Union (EU) to decrease emissions of N and P
from agriculture to the environment [2]. Processing of manure is considered as an option
to increase the nutrient use efficiency of manure [3]. One treatment method is separation
of livestock slurry into a solid fraction (SF) and a liquid fraction (LF) followed by reverse
osmosis (RO) of the LF [4, 5]. The RO decreases the volume of the LF (Chapter 4.3), result-
ing in a concentrated N–potassium (K) solution (“mineral concentrate”), in which most of
the N is present as ammonium (NH4

+). The SF is rich in organic matter (OM) and P, and can
be used as a soil amendment. The water removed by RO has low concentrations of nutrients
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and can be discharged to sewer or surface water [6]. The reduction of the volume by RO
increases the ability to transport mineral concentrates from areas with high livestock density
to arable farming areas. This chapter presents an overview of the nitrogen fertilizer replace-
ment value (NFRV) of mineral concentrates from processed manure, based on a series of
studies carried out in the Netherlands. In Section 5.5.2, an assessment is made of the fertil-
izer value of manure concentrates on the basis of the composition. Section 5.5.3 presents
N fertilizer values obtained in pot and field experiments. Section 5.5.4 deals with N losses
from mineral concentrates as ammonia (NH3), nitrous oxide (N2O), and nitrate (NO3

−).

5.5.2 Product Characterization

Table 4.3.1 shows the average composition of mineral concentrates obtained from slurry
treatment based on separation and RO. The average total N content of the concentrates is
8.15 g N kg−1 product. The N in mineral concentrates is mainly found in the NH4

+ form
(on average, 90% of total N in the concentrate). The remaining N is organically bound. The
pH of mineral concentrates is high (about pH 8), thus it is likely that NH4

+ partly occurs in
the form of NH3 in mineral concentrates.

The efficiency of N in mineral concentrates as a fertilizer depends on the presence and
degradability of organic N and the gaseous N losses (as NH3 and via denitrification) during
and after application [7]. The NFRV of an organic fertilizer is the percentage of the applied
N that has the same effect on crop N yield as mineral N fertilizer. In the Netherlands, NFRV
is generally determined by comparison with broadcast mineral fertilizer calcium ammo-
nium nitrate (CAN), which is the most commonly used mineral N fertilizer in the country.

Part of the N in mineral concentrates becomes available for the crop via N mineraliza-
tion. According to fertilizer recommendations in the Netherlands (www.bemestingsadvies
.nl; www.kennisakker.nl), it is assumed that the NFRV of organic N in manure amounts
to 20–60% during the first 12 months after application. The NH3 emission from
surface-applied slurry amounts to 69–74% of applied NH4

+-N and that from slurry
injected in the soil (including injection) is 2–26% [8]. Assuming that these figures also
hold for mineral concentrates, it is estimated that the NFRV of surface-applied mineral
concentrates is 25–30% and that of injected slurry 70–90% compared to CAN. This
theoretical approximation of NFRV has been tested in experiments, the results of which
are presented in Section 5.5.3.

The P content in mineral concentrates is generally low (<0.2 g P kg−1; Chapter 4.3), and
therefore mineral concentrates have no agronomic value as P fertilizers.

The K content in mineral concentrates is about 8 g K kg−1 (Chapter 4.3). The exact chem-
ical form in which it occurs in mineral concentrates is not known, but based on chemical
analysis it is assumed that it is found bound to bicarbonate, chloride, and sulfate and in fatty
acids [9]. Therefore, it is likely that the K in mineral concentrates is fully available to the
crop. The supply of K in mineral concentrate reduces the need for other mineral K fertiliz-
ers. This is particularly advantageous for crops with a high K demand such as potato and
maize. The K demand of grassland is also high, but is partly met when cattle manure is pro-
duced on a farm. An excess supply of K to cattle can cause health problems (grass tetany).
The amounts of K in feed, fertilizer, and manure should hence be taken into consideration
when importing mineral concentrates to a dairy farm.

http://www.bemestingsadvies.nl
http://www.bemestingsadvies.nl
http://www.kennisakker.nl
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Mineral concentrates also contain other nutrients, including calcium (Ca), magnesium
(Mg), sulfur (S), sodium (Na), and trace elements. If a concentrate is applied at common N
and K application rates, the supply of most other nutrients is not of agronomic importance.
However, the levels of Na in mineral concentrates are approximately 20–25% (w/w) that
of K [9]. When using a mineral concentrate as an N or K fertilizer, a significant amount of
Na is applied (20–40 kg Na ha−1). Na has value in animal feeding, and some arable crops
(e.g. sugar beet) respond positively to its application. S is also a valuable component of
mineral concentrate, but the average total S application rate is low (about 4 kg per 100 kg N
as mineral concentrate, of which about 3 kg is in the form of sulfate-S). The availability of S
for the crop in mineral concentrates is unknown. The average CL concentration is 3 g kg−1

mineral concentrate [9]. Harmful effects to crops of excess Cl are not an issue when using
mineral concentrates, as long as the supply of Cl with other fertilizers is taken into account.

The contents of the heavy metals Cd, Cr, Ni, Pb, and As and of organic contaminants such
as dioxins, non-ortho PCBs, mono-ortho PCBs, indicator PCBs, organochlorine pesticides
residues, polyaromatic hydrocarbons (PAHs), and mineral oil in mineral concentrates are
low, and often below the detection limit. These contents meet the standards in the Fertilizer
Act of the Netherlands [10]. Consequently, it is unlikely that the use of a mineral concentrate
as fertilizer will lead to an unacceptable loading of soil with heavy metals and organic
contaminants.

5.5.3 Agronomic Response

5.5.3.1 Pot Experiments

Pot experiments to test the NFRV of mineral concentrates, using grass as a test crop and
CAN as a reference fertilizer, have been carried out by Ehlert et al. [11], Klop et al. [12],
and Rietra and Velthof [13]. CAN consists of 27% N, of which half is nitrate and half is
ammonium. In these pot experiments, the NFRV of injected mineral concentrate compared
to broadcast CAN was on average 91%, and higher than that of injected pig slurry (75%;
Table 5.5.1). These findings are in agreement with the theoretical NFRV estimated from the
chemical composition (Section 5.5.2).

In Klop et al.’s experiment [12], grass yields of surface-applied mineral concentrate were
low, partly due to scorching of the grass after surface application of the mineral concentrate.

Table 5.5.1 Average nitrogen fertilizer replacement value (NFRV) of injected mineral
concentrate and injected pig slurry compared to calcium ammonium nitrate (CAN) (in %) in
pot experiments.

References Crop NFRV, % of CAN

Mineral concentrate Pig slurry

Injected Surface-applied Injected Surface-applied

[12] Grass 96 50 79 41
[11] Grass 86 — 74 —
[11] Swiss chard 87 — 71 —
[13] Grass 93 72 76 —
Average 91 — 75 —
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The same held with surface-applied pig slurry. Scorching did not occur after injection of
mineral concentrate or pig slurry or after surface-application of CAN. Deposition of urine
during grazing has also been shown to induce scorching of grass [14]. Probably, salt, NH3,
and volatile fatty acids concentrations near the grass roots were too high after surface
application of mineral concentrate and pig slurry but not after injection. Part of the dif-
ference between surface application and injection is due to differences in NH3 emissions.
The NFRV of pig slurry was only 41% after surface application, and increased to 79% when
injected [12]. Measurements showed that NH3 emission was much lower from injected con-
centrate than from surface-applied concentrate. Emission of N2O from mineral concentrate
was higher than from CAN, but lower than from pig slurry.

In Ehlert et al.’s experiment [11], the NFRV of mineral concentrate was tested with
perennial rye grass and Swiss chard and with different types of mineral N fertilizer. The
NFRV of mineral concentrate compared to CAN was on average 87%. The NFRV of
liquid ammonium nitrate (AN), ammonium sulfate (AS), and ammonium chloride was on
average 100% compared to CAN. This indicates that the efficiency of solid ammonium
fertilizers was higher than that of mineral concentrate in this experiment. The NFRV of
urea was somewhat lower (except when applied to grass on a sandy soil), probably due to
NH3 emission [15].

In Rietra and Velthof’s experiment [13], the effects of soil moisture content and acidifi-
cation of mineral concentrate on NFRV were tested. Acidification is a measure to decrease
NH3 emission [16]. The NFRV of injected concentrates (84–93%, with the highest NFRV
at the highest moisture content) was significantly higher than that of surface-applied con-
centrate (64–79%). The NFRV of acidified concentrate was similar to that of CAN. Mea-
surements showed that acidification minimized NH3 emission.

5.5.3.2 Field Experiments

Field experiments in the Netherlands show NFRVs of injected (to a depth of 5 cm) mineral
concentrates ranging from 54 to 84% compared to broadcast CAN (Table 5.5.2). The lowest
NFRV, 54%, was observed on grassland in 2009. An explanation for this relative outlier is
as yet lacking. Averaged over all experiments, the NFRV of mineral concentrate compared
to CAN was 79% on arable land and 71% on grassland. These values are lower than those
obtained in the pot experiments (Table 5.5.2) and at the lower end of the theoretically esti-
mated NFRV values of 70–90% (Section 5.5.2). Van Geel et al. [21] also determined the
NFRV in field experiments, with a less detailed set-up than the experiments described in
Table 5.5.2. Their results showed a wide range in NFRV (0–130%). In 20 experiments, the
NFRV of mineral concentrate was similar to CAN, in 10 it was lower than CAN, and in 1
it was higher than CAN [21].

The NFRV of mineral concentrates was higher (79–117%, average 93%) when com-
pared to liquid ammonium nitrate injected with the same equipment as mineral concentrate.
Clearly, the application method and form of fertilizer affect N use efficiency; that is, the N
use efficiency of an injected liquid N fertilizer (liquid ammonium nitrate and mineral con-
centrate) was lower than that of broadcast CAN prills. The distribution of N in the soil
differed between broadcast-applied CAN and injected liquid fertilizers, and this could be a
factor in the differences in N use efficiency between CAN and the liquid fertilizers.
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Table 5.5.2 Average nitrogen fertilizer replacement value (NFRV) of injected mineral
concentrate compared to calcium ammonium nitrate (CAN) or liquid ammonium nitrate
(AN) (in %) in field experiments.

Crop Year Soil type NFRV, % References

Compared to
CAN

Compared to
liquid AN

Potato 2009 Clay 76 [17]
Potato 2009 Sand 84 [17]
Potato 2010 Clay 75 117 [17, 18]
Potato 2010 Sand 81 [17]
Maize 2010 Sand 72 [19]
Maize 2011 Sand 84 [19]
Grassland 2009 Sand/clay 54a 86 [20]
Grassland 2010 Sand/clay 71a 102 [20]
Grassland 2011 Sand 80a 79 [20]
Grassland 2012 Sand 81a 83 [20]

aFor each year, the average NFRV of two to four experiments is included.

The results of the experiments indicate that there is scope to increase NFRV in the field
by optimizing the use of mineral concentrate via low NH3 emission application techniques
and by decreasing the organic N content of mineral concentrate.

5.5.4 Risk of Nitrogen Losses

5.5.4.1 Ammonia Emission

Mineral concentrate is an NH4
+-containing fertilizer with a high pH (about 8), and therefore

it carries a risk of NH3 emission. Injection into the soil is a well-known NH3 emission abate-
ment technique [22]. A review by Hou et al. [23] showed that emissions of NH3 from slurries
following band spreading, incorporation, and injection were 55% (range: 37–67%), 70%
(50–82%), and 80% (72–86%) lower than those from surface applied manures, respectively.

In a series of incubation studies, the NH3 emissions from untreated pig slurry, mineral
concentrate, mineral fertilizers, and the SF of separated slurry were quantified [24].
The products were both surface-applied and injected in the soil at 5 cm depth. Surface
application of mineral concentrate, pig slurry, and urea resulted in high NH3 emissions
(Figure 5.5.1). The NH3 emission from injected mineral concentrate was low, similar to
that of surface-applied CAN (Figure 5.5.1). Averaged over three incubation tests, the NH3
emission from injected mineral concentrate was significantly lower than that of injected
pig slurry [24].

In a review, Hou et al. [23] found significantly lower NH3 emissions (reduction with 18%
based on 44 observations) for separated LF relative to untreated slurry. The NH3 emissions
from mineral concentrates and LF were not determined in the same experiment, so it is not
clear if NH3 emission from mineral concentrates differs from that from LF under the same
conditions. Differences in NH3 emission may be expected because of the higher NH4

+

concentration of mineral concentrates compared to the LF or the lower water content of
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Figure 5.5.1 NH3 emissions from calcium ammonium nitrate (CAN), urea, urean (liquid mix-
ture of urea and ammonium nitrate), pig slurry, mineral concentrate, and the SF of separated
slurry applied at equal amounts of total N. All fertilizers and manures were both surface-applied
and injected (indicated as incorporated). Source: Results of an incubation experiment with
arable sandy soil by Velthof and Hummelink [24].

mineral concentrates, as a result of which the infiltration rate into the soil may be reduced.
Because of these differences, the NH4

+ concentration gradient at the liquid–air interface
will be greater after application of mineral concentrate than after application of LF.

Field experiments in 2010 showed that the NH3 emission after sod injection in cereals
was 3% of the applied NH4

+-N in the mineral concentrate, or 12% when applied via trail-
ing hoses [25]. The NH3 emission from mineral concentrate applied to grassland via sod
injection averaged 8% of the applied NH4

+-N. These measurements were carried out in just
one year, and thus the emission factors cannot be generally applied, as weather conditions
have a major effect on NH3 emission [26].

The risk of NH3 emission from applied mineral concentrate is probably higher when
applied to soils containing lime than to neutral or acidic soils, as is the case for any other
NH4

+-based mineral fertilizer [15]. Additional NH3 abatement techniques may be applied
to decrease NH3 emission and increase N efficiency. Rietra and Velthof [13] showed in a
pot experiment that acidification of mineral concentrates minimized NH3 emission. The
NFRV of acidified mineral concentrate was equal to that of CAN.

5.5.4.2 Nitrous Oxide Emission

In a series of incubation studies, Velthof and Hummelink [24] quantified N2O emissions
from untreated pig slurry, mineral concentrate, and mineral fertilizers (see Figure 5.5.2
for the results of the experiment with grassland soils). The average N2O emission of
injected mineral concentrate was higher than the N2O emission from a similar N rate of
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Figure 5.5.2 N2O emission factors as per cent of N applied for calcium ammonium nitrate
(CAN), urea, urean, pig slurry, and mineral concentrate (MC) applied to intact grassland
columns (PVC columns with a diameter of 10 cm and height of 10 cm) from clay, sand, and
peat soils. The application rate was equivalent to 170 kg N ha−1. CAN, urea, and urean were
surface-applied and the pig slurry and mineral concentrates were injected in a row at 5 cm
depth with a knife. The soil moisture content was kept at field capacity and incubation was
carried out at 20 ∘C. Source: Results of a 14-day experiment under controlled conditions by
Velthof and Hummelink [24].

surface-applied CAN [24]. The N2O emission from mineral concentrate was approxi-
mately 1.5-fold higher than that from untreated pig slurry, averaged over all studies and
application techniques [24]. The injection of mineral concentrate and pig slurry resulted in
higher N2O emissions than surface application.

Both nitrification and denitrification may be sources of N2O after application of
mineral concentrates to a soil. Application of mineral concentrates may strongly increase
concentrations of NH3 in the soil. Ammonia is toxic for nitrifying organisms. A high NH3
concentration in soil may thus inhibit nitrification, leading to the production of nitrite and
N2O [27, 28]. These effects are likely to be similar to those found in urine patches [29]
and after application of anhydrous ammonia as fertilizer [30]. As for denitrification-related
N2O production, it must be noted that mineral concentrates contain organic carbon,
including volatile fatty acids [11]. When degradable OM is applied to a nitrate containing
soil under wet conditions, denitrifying bacteria may use the carbon as an energy source,
and nitrate can be transformed into gaseous N2O and N2. Paul and Beauchamp [31]
showed that volatile fatty acids are effective energy sources for denitrifiers. Accordingly,
Ehlert et al. [11] found that application of mineral concentrates to soil increased potential
denitrification. The higher N2O emission from injected mineral concentrate compared with
surface-applied mineral concentrate is probably related to the lower oxygen concentrations
in the soil, and the higher N concentrations after injection [32].
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Figure 5.5.3 Average NO3
−-N concentration (mg NO3

−-N per l−1) in the upper groundwater
in a field experiment with maize on sandy soil carried out in 2010 and 2011. Calcium ammo-
nium nitrate (CAN), mineral concentrate, pig slurry, and the solid fraction (SF) of separated
pig slurry were applied at 150 kg N ha−1. The experiment was carried out with and without a
rye winter crop [19].

The amount of N lost via N2O emission is low (usually less than 2% of the N applied as
fertilizer or manure; [33]). Similar amounts will be lost in the form of NOx [34]. Emissions
of N2 can be much higher than those of N2O, especially under wet conditions [35]. The total
gaseous N losses as N2O, NOX, and N2 by nitrification and denitrification may significantly
affect the N efficiency of mineral concentrates.

5.5.4.3 Nitrate Leaching

Mineral N in the soil in the fall is an indicator for the risk of NO3
− leaching in winter

in the Netherlands [36]. Measurements of mineral N contents in the soil after harvest in
fall showed overall no differences between CAN and mineral concentrates in experiments
with potato, maize, and grassland [17–20]. These results suggest that the use of mineral
concentrate does not increase the risk of NO3

− leaching compared to CAN.
Measurements in 2010 and 2011 of the NO3

− concentration in the groundwater of the
field experiments with maize showed that it was on average lower in the plots to which min-
eral concentrate was applied than in those that received CAN and pig slurry (Figure 5.5.3).
A winter cover crop significantly reduced leaching of NO3

−. In these maize experiments,
the NFRV of mineral concentrate was 72–84% that of CAN. The lower NFRV did not
increase N leaching losses from concentrates compared to CAN, however. Immobilization
of mineral N probably didn’t occur either [11]. A reduced availability of N from mineral
concentrate due to an incomplete mineralization is also not likely, given the low content
(5–10%) of organic N in mineral concentrates. These results indicate that the lower NFRV
of mineral concentrates compared to CAN in these experiments was most likely related to
gaseous N losses by denitrification and NH3 emission.
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Measurements of NO3
− concentrations in the upper groundwater in a grassland experi-

ment in 2012 showed no clear differences in nitrate concentration between mineral concen-
trate and CAN [20]. In an experiment by Schils et al. [37], NO3

− concentration in upper
groundwater was measured in 10 maize and 20 grassland farm fields. In one part of each
field, mineral fertilizer and cattle slurry were applied, while in another part, mineral fer-
tilizer was replaced by mineral concentrate at a comparable total N rate. The variation in
NO3

− concentration was large, and concentrations were higher in maize land than in grass-
land. There was no statistically significant difference in NO3

− concentration between the
two nutrient-management treatments.

These studies show that the risk of NO3
− leaching from applied mineral concentrates is

similar to or lower than that with CAN, for both grassland and arable land. The N leach-
ing losses from slurries were higher than those from mineral concentrate, probably due to
release of mineral N by mineralization outside the growing period of the crop. The organic
N contents of mineral concentrates were much lower than those of untreated slurries.

5.5.5 Conclusion

Mineral concentrates are N-K fertilizers produced by RO of the LF of separated livestock
slurry. About 90% of the N in mineral concentrate is present as ammonium, the other 10%
as organic N. Pot experiments showed that the NFRV of injected mineral concentrate was
on average 91% that of CAN, and higher than that of injected pig slurry (75%). In field
experiments in the Netherlands, NFRVs of injected mineral concentrates ranged from 54
to 84% compared to broadcast CAN. Injection of mineral concentrate into the soil strongly
decreased NH3 emission in incubation experiments, but increased N2O emission. Field
measurements show that the risk of nitrate leaching from applied mineral concentrates is
similar to or lower than that from CAN and untreated manure. Obviously, NH3 emission and
denitrification are the dominant N-loss pathways after application of mineral concentrate.
Losses of N after such applications can be decreased and NFRV can be increased by using
low-NH3-emission application techniques, acidification, and a reduction of the organic N
content of the concentrate.
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