
A COMMON, OPEN SOURCE INTERFACE

BETWEEN EARTH OBSERVATION DATA

INFRASTRUCTURES AND FRONT-END

APPLICATIONS

Deliverable 15
Version 1.0 from 2019/05/03

openEO dataset and process descrip-
tions

D15: Dataset & process descriptions

Change history

Issue Date Author(s) Description
0.1 2019/03/12 Matthias Mohr, WWU First draft.
0.2 2019/03/18 Claudio Navacchi, TU Wien

Milutin Milenkovic, WUR
Review of chapter 5.

0.3 2019/03/25 Luca Foresta, EODC Internal review.
0.4 2019/04/25 Matthias Mohr, WWU Finalised version of processes
1.0 2019/05/03 Matthias Schramm, TU Wien Final review and adaptations for sub-

mission.

Number of pages: 126

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 776242. Any dissemination of results
reflects only the author’s view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

c© openEO Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated other-
wise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

openEO
Grant agreement No 776242 Page 2 of 126

D15: Dataset & process descriptions

Table of Contents

1 Executive summary 7

2 Specification for processes 7

3 List of openEO processes 8
3.1 absolute: Absolute value . 9
3.2 add_dimension: Add a new dimension . 10
3.3 aggregate_polygon: Compute zonal statistics for polygons 11
3.4 aggregate_temporal: Temporal aggregations 13
3.5 and: Are all of the values true? . 16
3.6 apply_dimension: Applies an n-ary process to all pixels 17
3.7 apply: Applies a unary process to each pixel 19
3.8 arccos: Inverse cosine . 19
3.9 arcosh: Inverse hyperbolic cosine . 20
3.10 arcsin: Inverse sine . 21
3.11 arctan: Inverse tangent . 21
3.12 arctan2: Inverse tangent of two numbers. 22
3.13 array_contains: List contains an element 23
3.14 array_element: Get an element from an array 24
3.15 arsinh: Inverse hyperbolic sine . 25
3.16 artanh: Inverse hyperbolic tangent . 25
3.17 between: Between comparison . 26
3.18 ceil: Round fractions up . 28
3.19 clip: Clips values between minimum and maximum values. 28
3.20 cos: Cosine . 29
3.21 cosh: Hyperbolic cosine . 30
3.22 count: Count the number of elements . 31
3.23 create_raster_cube: Create an empty raster data cube 32
3.24 cummax: Cumulative maxima . 32
3.25 cummin: Cumulative minima . 33
3.26 cumproduct: Cumulative products . 34
3.27 cumsum: Cumulative sums . 34
3.28 debug: Send debugging information to subscribed clients 35
3.29 divide: Division of a sequence of numbers 36
3.30 e: Euler’s number (e) . 37
3.31 eq: Equal to comparison . 37
3.32 exp: Exponentiation to the base e . 39
3.33 extrema: Minimum and maximum values 40
3.34 filter_bands: Filter the bands by name . 41
3.35 filter_bbox: Spatial filter using a bounding box 43
3.36 filter_polygon: Spatial filter using polygons 45
3.37 filter_temporal: Temporal filter for a date and/or time intervals 45
3.38 filter: Filter based on a logical expression. 47
3.39 find_collections: Search for collections by metadata properties 48

openEO
Grant agreement No 776242 Page 3 of 126

D15: Dataset & process descriptions

3.40 first: First element . 49
3.41 floor: Round fractions down . 50
3.42 gt: Greater than comparison . 50
3.43 gte: Greater than or equal to comparison 52
3.44 if: If-Then-Else conditional . 53
3.45 int: Integer part of a number . 54
3.46 is_nan: Value is not a number . 55
3.47 is_nodata: Value is not a no-data value . 55
3.48 is_valid: Value is valid data . 56
3.49 last: Last element . 57
3.50 linear_scale_range: Linear transformation between two ranges 57
3.51 ln: Natural logarithm . 59
3.52 load_collection: Load a collection . 59
3.53 load_result: Load batch job results . 64
3.54 log: Logarithm to a base . 64
3.55 lt: Less than comparison . 65
3.56 lte: Less than or equal to comparison . 66
3.57 mask: Apply a mask . 68
3.58 max: Maximum value . 69
3.59 mean: Arithmetic mean (average) . 70
3.60 median: Statistical median . 71
3.61 merge_cubes: Merging two data cubes . 72
3.62 min: Minimum value . 73
3.63 mod: Modulo . 74
3.64 multiply: Multiplication of a sequence of numbers 75
3.65 ndvi: Normalized Difference Vegetation Index 76
3.66 neq: Not equal to comparison . 77
3.67 normalized_difference: Normalized difference for two bands 79
3.68 not: Inverting a boolean . 80
3.69 or: Is at least one value true? . 81
3.70 order: Create a permutation . 82
3.71 output: Send data to subscribed clients . 84
3.72 pi: Pi (Π) . 84
3.73 power: Exponentiation . 85
3.74 product: Multiplication of a sequence of numbers 86
3.75 property: Get metadata for data cubes or collections 86
3.76 quantiles: Quantiles . 87
3.77 rearrange: Rearranges an array based on a permutation 89
3.78 reduce: Reduce dimensions . 90
3.79 rename_dimension: Renames a dimension 92
3.80 resample_cube_spatial: Resample the spatial dimensions to a target data

cube . 93
3.81 resample_cube_temporal: Resample a temporal dimension to a target

data cube . 94
3.82 resample_spatial: Resample and warp the spatial dimensions 95
3.83 round: Rounds to a specified precision . 98

openEO
Grant agreement No 776242 Page 4 of 126

D15: Dataset & process descriptions

3.84 run_process_graph: Load and run a stored process graph 99
3.85 run_udf_externally: Run an externally hosted UDF container 100
3.86 run_udf: Run an UDF . 101
3.87 save_result: Save processed data to storage 102
3.88 sd: Standard deviation . 103
3.89 sgn: Signum . 104
3.90 sin: Sine . 105
3.91 sinh: Hyperbolic sine . 106
3.92 sort: Sort data . 106
3.93 sqrt: Square root . 108
3.94 subtract: Subtraction of a sequence of numbers 109
3.95 sum: Addition of a sequence of numbers 110
3.96 tan: Tangent . 111
3.97 tanh: Hyperbolic tangent . 112
3.98 text_begins: Text begins with another text 112
3.99 text_contains: Text contains another text 113
3.100 text_ends: Text ends with another text . 114
3.101 text_merge: Concatenate elements to a string 115
3.102 trim: Remove slices with no-data values 116
3.103 variance: Variance . 116
3.104 xor: Is exactly one value true? . 117

4 Specification for datasets 118

5 List of datasets 123
5.1 Sentinel 1 GRD . 123
5.2 Sentinel 2 . 124

6 References 126

openEO
Grant agreement No 776242 Page 5 of 126

D15: Dataset & process descriptions

List of Acronyms

JSON JavaScript Object Notation

MSI Multi-Spectral Instrument

OLCI Ocean and Land Colour Instrument

SAR Synthetic-Aperture Radar

STAC SpatioTemporal Asset Catalog

openEO
Grant agreement No 776242 Page 6 of 126

D15: Dataset & process descriptions

1 Executive summary

This report covers the description frameworks we use in the openEO API to communicate the
metadata for the datasets and processes between back-ends and clients.

The description frameworks are designed to be most useful for the openEO API. Therefore,
we reviewed existing standards for both process and dataset descriptions. None of the stan-
dards fully suited our requirements and therefore we had to specify a new process description
framework, which was influenced by existing standards. For the dataset description framework
we joined the SpatioTemporal Asset Catalog (STAC) initiative to align with them and to push the
still evolving STAC specification towards a specification that is not only useful for data providers,
but also for data processing platforms.

The datasets required by the use cases were defined in the projects proposal and in Deliv-
erable 09 [1]. To solve the use cases, processes were specified by the openEO consortium.
We have specified more processes than required by our use cases to cover a wider range of
applications and thus create a useful specification for a wider user base. Several project meet-
ings were held to specify the processes. This report lists and describes the result of the work
undertaken to specify dataset and process catalogues. This report represents therefore also a
more detailed, evolved and general version of Deliverable 09.

2 Specification for processes

The openEO processes’ specification describes a workflow that can be used to process data
on a cloud back–end with client code. As the openEO API uses JSON as content encoding,
the encoding should be based on JSON, too. The specification must allow the openEO project
to standardise interoperable processes, but also make sure that back–end providers can add
custom processes to their process catalogue. It must ensure that back–end implementers,
client libraries and client users can understand the process descriptions correctly. This also
means that client libraries should make openEO processes available to client users as if they
were working with native functions in the respective programming language.

As none of the related specifications met our criteria, we had to come up with a new speci-
fication. It is influenced by OGC WPS1 1.0 and 2.0, JSON Schema2 and OpenAPI 3.03. Each
process can be described with the following properties:

· id (string, required): A unique identifier, the process name used by users and for com-
munication.

· summary (string): A short summary to get a quick overview.

· description (string, required): A full human-readable description of the process, which
is mainly targeted towards client users and back-end implementers. It should describe
precisely how the process works.

1https://www.opengeospatial.org/standards/wps
2https://json-schema.org/
3https://github.com/OAI/OpenAPI-Specification

openEO
Grant agreement No 776242 Page 7 of 126

https://www.opengeospatial.org/standards/wps
https://json-schema.org/
https://github.com/OAI/OpenAPI-Specification
https://www.opengeospatial.org/standards/wps
https://json-schema.org/
https://github.com/OAI/OpenAPI-Specification

D15: Dataset & process descriptions

· categories (array<string>, required): A list of categories the process belongs to, in order
to simplify finding related processes.

· parameters (object, required): Describes the input of the process as a set of named
parameters. Each parameter must be described with a human-oriented description and
machine-oriented JSON schema. Each parameter can be specified to be required, dep-
recated and/or experimental. The latter two share the same definition as for processes
described below.

· parameter_order (array<string>): Describes the order of the parameter for any program-
ming languages that don’t support named parameters. This property is required for all
processes with two or more parameters.

· returns (object, required): Describes the output of the process with a human-oriented
description and machine-oriented JSON schema.

· deprecated (boolean): Specifies that a process is deprecated with the potential to be
removed in any of the next versions. The process should be transitioned out of usage as
soon as possible and users should refrain from using the process in new implementations.

· experimental (boolean): Declares this process to be experimental, which means that it
is likely to change or may produce unpredictable behaviour. Users should refrain from
using the process in production, but still feel encouraged to try it out and give feedback.

· exceptions (object): Declares potential exceptions / errors that might occur during ex-
ecution of this process and abort the processing chain. A name for the exception and
a message intended to be displayed to the client user are required. The message may
contain variables, enclosed by curly brackets. A detailed description and a HTTP status
code can optionally be added.

· examples (array<object>): A list of examples for client users, but not specific to any pro-
gramming language. Can be either a process graph or just the arguments passed to the
parameters. Both allow a return value to be specified so that the examples could poten-
tially also be used as unit tests for the processes. A title and description can be specified,
too.

· links (array<object>): A list of related links, e.g. additional external documentation for
this process. Consists of a URL and optionally a relation type4, a media type and a
human-readable title.

The full specification for process discovery is available in the OpenAPI document5.

3 List of openEO processes

In the following chapters all predefined openEO processes are listed in alphabetical order. The
processes are converted to a human-readable representation of the JSON files. The original
files are available in the openEO GitHub repository6. The processes described here will be

4https://www.iana.org/assignments/link-relations/link-relations.xml
5https://open-eo.github.io/openeo-api/apireference/#tag/Process-Discovery
6https://github.com/Open-EO/openeo-processes

openEO
Grant agreement No 776242 Page 8 of 126

https://www.iana.org/assignments/link-relations/link-relations.xml
https://open-eo.github.io/openeo-api/apireference/#tag/Process-Discovery
https://github.com/Open-EO/openeo-processes
https://www.iana.org/assignments/link-relations/link-relations.xml
https://open-eo.github.io/openeo-api/apireference/#tag/Process-Discovery
https://github.com/Open-EO/openeo-processes

D15: Dataset & process descriptions

released with openEO API version 0.4. Since their description is a living document, this De-
liverable only describes their actual state. The most recent version of the processes is always
available at processes.openeo.org7. Back-end providers are recommended to implement these
standard processes whenever feasible on their infrastructure, and may choose to specify cus-
tom ones. Custom processes could also be added to the standardised openEO processes in
a next version if they are found to be useful for a broader audience. With each new version of
the openEO API it is likely that the processes will evolve to incorporate feedback from partners
and externals. We plan to add more processes once required by new use cases.

3.1 absolute: Absolute value

Computes the absolute value of a real number x, which is the “unsigned” portion of x and often
denoted as |x|.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed absolute value.

· Data type: number / null

· Minimum value: 0

Examples

1. absolute(x = 0) => 0

2. absolute(x = 3.5) => 3.5

3. absolute(x = -0.4) => 0.4

4. absolute(x = -3.5) => 3.5

See Also

· Absolute value explained by Wolfram MathWorld8

7http://processes.openeo.org
8http://mathworld.wolfram.com/AbsoluteValue.html

openEO
Grant agreement No 776242 Page 9 of 126

http://processes.openeo.org
http://mathworld.wolfram.com/AbsoluteValue.html
http://processes.openeo.org
http://mathworld.wolfram.com/AbsoluteValue.html

D15: Dataset & process descriptions

3.2 add_dimension: Add a new dimension

Adds a new named dimension to the data cube.

Afterwards, the dimension can be referenced with the specified name. If a dimension with the
specified name already exists, a DimensionExists exception is thrown. The dimension value
of the dimension is set to the specified value.

Parameters

data (required) A data cube to add the dimension to.

· Data type: raster-cube (object)

name (required) Name for the dimension.

· Data type: string

value (required) A dimension value (not a pixel value).

· Data types:

· number

· string

· date-time (string)

· date (string)

· time (string)

type The type of dimension, defaults to other.

· Data type: string

· Allowed values:

1. spatial

2. temporal

3. bands

4. other

· Default value: other

Return Value

The data cube with a newly added dimension.

openEO
Grant agreement No 776242 Page 10 of 126

D15: Dataset & process descriptions

· Data type: raster-cube (object)

Exceptions

· DimensionExists: A dimension with the specified name already exists.

3.3 aggregate_polygon: Compute zonal statistics for polygons

Aggregates zonal statistics for one or multiple polygons over the spatial dimensions.

The process considers all pixels for which the point at the pixel center intersects with the
corresponding polygon (as defined in the Simple Features standard by the OGC).

The data cube must have been reduced to only contain two raster dimensions and a third
dimension the values are aggregated for, for example the temporal dimension to get a time
series. Otherwise this process fails with the TooManyDimensions error.

The number of total and valid pixels is returned together with the calculated values.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

polygons (required) One or more polygons to calculate zonal statistics for. Either specified
as GeoJSON or vector data cube.

For GeoJSON this can be one of the following GeoJSON types:

· A Polygon geometry,

· a GeometryCollection containing Polygons,

· a Feature with a Polygon geometry or

· a FeatureCollection containing Features with a Polygon geometry.

· Data types:

· geojson (object)

· vector-cube (object)

reducer (required) A reducer to be applied on all values of each geometry. The reducer
must be a callable process (or a set of processes as process graph) such as mean that accepts
by default array as input. The process can also work on two values by setting the parameter
binary to true.

openEO
Grant agreement No 776242 Page 11 of 126

D15: Dataset & process descriptions

· Data types:

· callback (object): Passes two values to the reducer.

· Callback parameters:

· x: The first value. Any data type could be passed.

· y: The second value. Any data type could be passed.

name The property name (for GeoJSON) or the new dimension name (for vector cubes) to
be used for storing the results. Defaults to result.

· Data type: string

· Default value: result

binary Specifies whether the process should pass two values to the reducer or a list of values
(default).

If the process passes two values, the reducer must be both associative and commutative as
the execution may be executed in parallel and therefore the order of execution is arbitrary.

This parameter is especially useful for UDFs passed as reducers. Back-ends may still opti-
mize and parallelize processes that work on list of values.

· Data type: boolean

· Default value: false

Return Value

A vector data cube or a GeoJSON object, depending on the input of the polygons parameter.

The computed value is stored in a property (GeoJSON) or dimension (vector cube) with the
name that was specified in the parameter name.

The computation also stores information about the total count of pixels (valid + invalid pixels)
and the number of valid pixels (see is_valid) in each geometry. In GeoJSON these are stored
as properties with the names {name}_total_count and {name}_valid_count (replace {name}
with the value of the name parameter). In a vector data cube, these values are stored as
attributes of the result value with the attribute names total_count and valid_count.

If the input was GeoJSON and the therefore the return value is also a GeoJSON object, the
geometries (Polygon or GeometryCollection) get wrapped in a Feature or FeatureCollection
respectively. The results of the computations are stored in the properties of each GeoJSON
Feature.

· Data types:

· geojson (object)

· vector-cube (object)

openEO
Grant agreement No 776242 Page 12 of 126

D15: Dataset & process descriptions

Exceptions

· TooManyDimensions: The number of dimensions must be reduced to three for ’aggre-
gate_polygon’.

See Also

· More information about the experimental status of the process9

· Aggregation explained in the openEO glossary10

· Simple Features standard by the OGC11

· Background information on reduction operators (binary reducers) by Wikipedia12

3.4 aggregate_temporal: Temporal aggregations

Computes a temporal aggregation based on an array of date and/or time intervals.

Calendar hierarchies such as year, month, week etc. must be transformed into specific
intervals by the clients. For each interval, all data along the dimension will be passed through
the reducer. The computed values will be projected to the labels, so the number of labels and
the number of intervals need to be equal.

If the dimension is not set or is set to null, the data cube is expected to only have one
temporal dimension.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

intervals (required) Left-closed temporal intervals, which are allowed to overlap. Each tem-
poral interval in the array has exactly two elements:

1. The first element is the start of the date and/or time interval. The specified instance in
time is included in the interval.

2. The second element is the end of the date and/or time interval. The specified instance in
time is excluded from the interval.

9https://github.com/Open-EO/openeo-processes/issues/2
10https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
11http://www.opengeospatial.org/standards/sfa
12https://en.wikipedia.org/wiki/Reduction_Operator

openEO
Grant agreement No 776242 Page 13 of 126

https://github.com/Open-EO/openeo-processes/issues/2
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
http://www.opengeospatial.org/standards/sfa
https://en.wikipedia.org/wiki/Reduction_Operator
https://github.com/Open-EO/openeo-processes/issues/2
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
http://www.opengeospatial.org/standards/sfa
https://en.wikipedia.org/wiki/Reduction_Operator

D15: Dataset & process descriptions

The specified temporal strings follow RFC 333913. Although RFC 3339 prohibits the hour to
be ‘24’14, this process allows the value ‘24’ for the hour of an end time in order to make it
possible that left-closed time intervals can fully cover the day.

· Data type: temporal-intervals (array<temporal-interval:array>)

· Array items:

· Data type: temporal-interval (array)

· Min. number of items: 2

· Max. number of items: 2

· Array items:

· Data types:

· date-time (string)

· date (string)

· time (string)

· null

· Examples:

1. [["2015-01-01","2016-01-01"],["2016-01-01","2017-01-01"],["2017-01-01","2018-
01-01"]]

2. [["00:00:00Z","12:00:00Z"],["12:00:00Z","24:00:00Z"]]

labels (required) Labels for the intervals, which can contain dates and/or times. The number
of labels and the number of groups need to be equal.

· Data type: array

· Array items:

· Data types:

· date-time (string)

· date (string)

· time (string)

· string

reducer (required) A reducer to be applied on all values along the specified dimension. The
reducer must be a callable process (or a set of processes as process graph) such as mean
that accepts by default array as input. The process can also work on two values by setting the
parameter binary to true.

13https://tools.ietf.org/html/rfc3339
14https://tools.ietf.org/html/rfc3339#section-5.7

openEO
Grant agreement No 776242 Page 14 of 126

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7

D15: Dataset & process descriptions

· Data types:

· callback (object): Passes two values to the reducer.

· Callback parameters:

· x: The first value. Any data type could be passed.

· y: The second value. Any data type could be passed.

dimension The temporal dimension for aggregation. All data along the dimension will be
passed through the specified reducer. If the dimension is not set or set to null, the data cube
is expected to only have one temporal dimension.

Note: The default dimensions a data cube provides are described in the collection’s metadata
field cube:dimensions.

· Data type: string / null

· Default value: null

binary Specifies whether the process should pass two values to the reducer or a list of values
(default).

If the process passes two values, the reducer must be both associative and commutative as
the execution may be executed in parallel and therefore the order of execution is arbitrary.

This parameter is especially useful for UDFs passed as reducers. Back-ends may still opti-
mize and parallelize processes that work on list of values.

· Data type: boolean

· Default value: false

Return Value

A data cube with potentially lower resolution and potentially lower cardinality, but the same
number of dimensions as the original data cube.

· Data type: raster-cube (object)

See Also

· Information about the supported temporal formats.15

· Aggregation explained in the openEO glossary16

· Background information on reduction operators (binary reducers) by Wikipedia17

15https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
16https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
17https://en.wikipedia.org/wiki/Reduction_Operator

openEO
Grant agreement No 776242 Page 15 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
https://en.wikipedia.org/wiki/Reduction_Operator
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
https://en.wikipedia.org/wiki/Reduction_Operator

D15: Dataset & process descriptions

3.5 and: Are all of the values true?

Checks if all of the values are true. Evaluates each expression from the first to the last element
and stops once the outcome is unambiguous.

If only one value is given the process evaluates to the given value. If no value is given (i.e.
the array is empty) the process returns null.

By default all no-data values are ignored so that the process returns true if all other values
are true and otherwise returns false. Setting the ignore_nodata flag to false considers no-
data values so that null is a valid logical object. If a component is null, the result will be null
if the outcome is ambiguous. See the following truth table:

| | n u l l | f a l s e | t r ue
−−−−− | | −−−−− | −−−−− | −−−−−
n u l l | | n u l l | f a l s e | n u l l
f a l s e | | f a l s e | f a l s e | f a l s e
t rue | | n u l l | f a l s e | t r ue

Parameters

expressions (required) A set of boolean values.

· Data type: array<boolean|null>

ignore_nodata Indicates whether no-data values are ignored or not and ignores them by
default.

· Data type: boolean

· Default value: true

Return Value

Boolean result of the logical expressions.

· Data type: boolean / null

Examples

1. and(expressions = [false,null]) => false

2. and(expressions = [true,null]) => true

3. and(expressions = [false,null], ignore_nodata = false) => false

4. and(expressions = [true,null], ignore_nodata = false) => null

5. and(expressions = [true,false,true,false]) => false

openEO
Grant agreement No 776242 Page 16 of 126

D15: Dataset & process descriptions

6. and(expressions = [true,false]) => false

7. and(expressions = [true,true]) => true

8. and(expressions = [true]) => true

9. and(expressions = []) => null

3.6 apply_dimension: Applies an n-ary process to all pixels

Applies an n-ary process (i.e. takes an array of pixel values instead of a single pixel value) to a
raster data cube. In contrast, the process apply applies an unary process to all pixel values.

By default, apply_dimension applies the process on all pixel values in the data cube as apply
does, but the parameter dimension can be specified to work only on a particular dimension only.
For example, if the temporal dimension is specified the process will work on a time series of
pixel values.

The n-ary process must return as many elements in the returned array as there are in the
input array. Otherwise a CardinalityChanged error must be returned.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

process (required) A process (callback) to be applied on each dimension. The specified
process needs to accept an array as parameter and must return as many elements in the
returned array as there are in the input array.

· Data type: callback (object)

· Callback parameters:

· data: An array with elements of any data type.

· Data type: array

· Array items: Any data type.

dimension The name of the dimension to apply the process on. By default, applies the
process on all pixel values (as apply does).

· Data type: string / null

· Default value: null

openEO
Grant agreement No 776242 Page 17 of 126

D15: Dataset & process descriptions

Return Value

A data cube with the newly computed values for the specified . The resolution, cardinality and
the number of dimensions are the same as for the original data cube.

· Data type: raster-cube (object)

Exceptions

· CardinalityChanged: The callback returned less or more elements than it received.

t

Applies a focal operation based on a weighted kernel to each value of the specified dimen-
sions in the data cube.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

kernel (required) The kernel to be applied on the data cube. The kernel has to be as many
dimensions as the data cube has dimensions.

· Data type: kernel (array)

· Array items: Usually a multi-dimensional array of numbers.

factor A factor that is multiplied to each value computed by the focal operation.

This is basically a shortcut for explicitly multiplying each value by a factor afterwards, which
is often required for some kernel-based algorithms such as the Gaussian blur.

· Data type: number

· Default value: 1

Return Value

A data cube with the newly computed values. The resolution, cardinality and the number of
dimensions are the same as for the original data cube.

· Data type: raster-cube (object)

openEO
Grant agreement No 776242 Page 18 of 126

D15: Dataset & process descriptions

3.7 apply: Applies a unary process to each pixel

Applies a unary process which takes a single value such as abs or sqrt to each pixel value
in the data cube (i.e. a local operation). In contrast, the process apply_dimension applies an
n-ary process to a particular dimension.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

process (required) A process (callback) to be applied on each value. The specified process
must be unary meaning that it must work on a single value.

· Data type: callback (object)

· Callback parameters:

· x: A value of any type could be passed.

Return Value

A data cube with the newly computed values. The resolution, cardinality and the number of
dimensions are the same as for the original data cube.

· Data type: raster-cube (object)

3.8 arccos: Inverse cosine

Computes the arc cosine of x. The arc cosine is the inverse function of the cosine so that
arccos(cos(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed angle in radians.

openEO
Grant agreement No 776242 Page 19 of 126

D15: Dataset & process descriptions

· Data type: number / null

Examples

1. arccos(x = 1) => 0

See Also

· Inverse cosine explained by Wolfram MathWorld18

3.9 arcosh: Inverse hyperbolic cosine

Computes the inverse hyperbolic cosine of x. It is the inverse function of the hyperbolic cosine
so that arcosh(cosh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. arcosh(x = 1) => 0

See Also

· Inverse hyperbolic cosine explained by Wolfram MathWorld19

18http://mathworld.wolfram.com/InverseCosine.html
19http://mathworld.wolfram.com/InverseHyperbolicCosine.html

openEO
Grant agreement No 776242 Page 20 of 126

http://mathworld.wolfram.com/InverseCosine.html
http://mathworld.wolfram.com/InverseHyperbolicCosine.html
http://mathworld.wolfram.com/InverseCosine.html
http://mathworld.wolfram.com/InverseHyperbolicCosine.html

D15: Dataset & process descriptions

3.10 arcsin: Inverse sine

Computes the arc sine of x. The arc sine is the inverse function of the sine so that arcsin(sin(x))
= x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. arcsin(x = 0) => 0

See Also

· Inverse sine explained by Wolfram MathWorld20

3.11 arctan: Inverse tangent

Computes the arc tangent of x. The arc tangent is the inverse function of the tangent so that
arctan(tan(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

20http://mathworld.wolfram.com/InverseSine.html

openEO
Grant agreement No 776242 Page 21 of 126

http://mathworld.wolfram.com/InverseSine.html
http://mathworld.wolfram.com/InverseSine.html

D15: Dataset & process descriptions

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. arctan(x = 0) => 0

See Also

· Inverse tangent explained by Wolfram MathWorld21

3.12 arctan2: Inverse tangent of two numbers.

Computes the arc tangent of two numbers x and y. It is similar to calculating the arc tangent of
y / x, except that the signs of both arguments are used to determine the quadrant of the result.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated if any of the arguments is null.

Parameters

y (required) A number to be used as dividend.

· Data type: number / null

x (required) A number to be used as divisor.

· Data type: number / null

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. arctan2(y = 0, x = 0) => 0

2. arctan2(y = null, x = 1.5) => null
21http://mathworld.wolfram.com/InverseTangent.html

openEO
Grant agreement No 776242 Page 22 of 126

http://mathworld.wolfram.com/InverseTangent.html
http://mathworld.wolfram.com/InverseTangent.html

D15: Dataset & process descriptions

See Also

· Two-argument inverse tangent explained by Wikipedia22

3.13 array_contains: List contains an element

Checks whether the list (also known as array) specified for data contains the value specified in
element.

Remarks:

· Data types MUST be checked strictly, for example a string with the content 1 is not equal
to the number 1.

· An integer 1 is equal to a floating point number 1.0 as integer is a sub-type of number.
Still, this process may return unexpectedly false when comparing floating point numbers
due to floating point inaccuracy in machine-based computation.

· Temporal strings are treated as normal strings and MUST NOT be interpreted.

Parameters

data (required) List in which to find a value in.

· Data type: array

· Array items: Any data type is allowed.

element (required) Value to find in data.

Return Value

Returns true if the list contains the value, false‘ otherwise.

· Data type: boolean

Examples

1. array_contains(data = [1,2,3], element = 2) => true

2. array_contains(data = ["A","B","C"], element = "b") => false

3. array_contains(data = [1,2,3], element = "2") => false

4. array_contains(data = [1,2,3], element = 2) => true

5. array_contains(data = [1,2,null], element = null) => true
22https://en.wikipedia.org/wiki/Atan2

openEO
Grant agreement No 776242 Page 23 of 126

https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Atan2

D15: Dataset & process descriptions

6. array_contains(data = [[1,2],[3,4]], element = [1,2]) => true

7. array_contains(data = [[1,2],[3,4]], element = 2) => false

8. array_contains(data = [{"a":"b"},{"c":"d"}], element = {"a":"b"}) => true

3.14 array_element: Get an element from an array

Returns the element at the specified index from the array.

Parameters

data (required) An array.

· Data type: array

· Array items: Any data type is allowed.

index (required) The zero-based index of the element to retrieve.

· Data type: integer

return_nodata By default this process throws an IndexOutOfBounds exception if the index is
invalid. If you want to return null instead, set this flag to true.

· Data type: boolean

· Default value: false

Return Value

The value of the requested element.

Exceptions

· IndexOutOfBounds: The array has no element with the specified index.

Examples

1. array_element(data = [9,8,7,6,5], index = 2) => 7

2. array_element(data = ["A","B","C"], index = 0) => "A"

3. array_element(data = [], index = 0, return_nodata = true) => null

openEO
Grant agreement No 776242 Page 24 of 126

D15: Dataset & process descriptions

3.15 arsinh: Inverse hyperbolic sine

Computes the inverse hyperbolic sine of x. It is the inverse function of the hyperbolic sine so
that arsinh(sinh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. arsinh(x = 0) => 0

See Also

· Inverse hyperbolic sine explained by Wolfram MathWorld23

3.16 artanh: Inverse hyperbolic tangent

Computes the inverse hyperbolic tangent of x. It is the inverse function of the hyperbolic tangent
so that artanh(tanh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) A number.

· Data type: number / null

23http://mathworld.wolfram.com/InverseHyperbolicSine.html

openEO
Grant agreement No 776242 Page 25 of 126

http://mathworld.wolfram.com/InverseHyperbolicSine.html
http://mathworld.wolfram.com/InverseHyperbolicSine.html

D15: Dataset & process descriptions

Return Value

The computed angle in radians.

· Data type: number / null

Examples

1. artanh(x = 0) => 0

See Also

· Inverse hyperbolic tangent explained by Wolfram MathWorld24

3.17 between: Between comparison

By default this process checks whether x is greater than or equal to min and lower than or
equal to max. Therefore, this process is an alias for and([gte(x, min), lte(x, max)]) and
all definitions from these processes apply here as well.

If exclude_max is set to true the upper bound is excluded so that the process checks whether
x is greater than or equal to min and lower than max. In this case the process works the same
as executing and([gte(x, min), lt(x, max)]).

Lower and upper bounds are not allowed to be swapped. So min MUST be lower than or
equal to max or otherwise the process always returns false.

Parameters

x (required)

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

min (required) Lower boundary (inclusive) to check against.

· Data types:

24http://mathworld.wolfram.com/InverseHyperbolicTangent.html

openEO
Grant agreement No 776242 Page 26 of 126

http://mathworld.wolfram.com/InverseHyperbolicTangent.html
http://mathworld.wolfram.com/InverseHyperbolicTangent.html

D15: Dataset & process descriptions

· number

· date-time (string)

· date (string)

· time (string)

max (required) Upper boundary (inclusive) to check against.

· Data types:

· number

· date-time (string)

· date (string)

· time (string)

exclude_max Exclude the upper boundary max if set to true. Defaults to false.

· Data type: boolean

· Default value: false

Return Value

true if x is between the specified bounds, otherwise false.

· Data type: boolean

Examples

1. between(x = null, min = 0, max = 1) => null

2. between(x = 1, min = 0, max = 1) => true

3. between(x = 1, min = 0, max = 1, exclude_max = true) => false

4. between(x = 0.5, min = 1, max = 0) => false

5. between(x = -0.5, min = -1, max = 0) => true

6. between(x = "00:59:59Z", min = "01:00:00+01:00", max = "01:00:00Z") => true

7. between(x = "2018-07-23T17:22:45Z", min = "2018-01-01T00:00:00Z", max = "2018-12-
31T23:59:59Z") => true

8. between(x = "2000-01-01", min = "2018-01-01", max = "2020-01-01") => false

9. between(x = "2018-12-31T17:22:45Z", min = "2018-01-01", max = "2018-12-31")
=> true

openEO
Grant agreement No 776242 Page 27 of 126

D15: Dataset & process descriptions

10. between(x = "2018-12-31T17:22:45Z", min = "2018-01-01", max = "2018-12-31",
exclude_max = true) => false

3.18 ceil: Round fractions up

The least integer greater than or equal to the number x.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number to round up.

· Data type: number / null

Return Value

The number rounded up.

· Data type: integer / null

Examples

1. ceil(x = 0) => 0

2. ceil(x = 3.5) => 4

3. ceil(x = -0.4) => 0

4. ceil(x = -3.5) => -3

See Also

· Ceiling explained by Wolfram MathWorld25

3.19 clip: Clips values between minimum and maximum values.

Clips an array of numbers between specified minimum and maximum values. All values larger
than the maximal value will have the maximal value, all values lower than minimal value will
have the minimal value.

25http://mathworld.wolfram.com/CeilingFunction.html

openEO
Grant agreement No 776242 Page 28 of 126

http://mathworld.wolfram.com/CeilingFunction.html
http://mathworld.wolfram.com/CeilingFunction.html

D15: Dataset & process descriptions

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

min (required) Minimum value. All values lower than this value will be set to the value of this
parameter.

· Data type: number

max (required) Maximum value. All values greater than this value will be set to the value of
this parameter.

· Data type: number

Return Value

An array with the values clipped to the specified range.

· Data type: array<number|null>

Examples

1. clip(data = [-2,-1,0,1,2], min = -1, max = 1) => [-1,-1,0,1,1]

2. clip(data = [-0.1,-0.001,null,0,0.25,0.75,1.001,null], min = 0, max = 1) =>
[0,0,null,0,0.25,0.75,1,null]

3.20 cos: Cosine

Computes the cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

openEO
Grant agreement No 776242 Page 29 of 126

D15: Dataset & process descriptions

Return Value

The computed cosine of x.

· Data type: number / null

Examples

1. cos(x = 0) => 1

See Also

· Cosine explained by Wolfram MathWorld26

3.21 cosh: Hyperbolic cosine

Computes the hyperbolic cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

Return Value

The computed hyperbolic cosine of x.

· Data type: number / null

Examples

1. cosh(x = 0) => 1

See Also

· Hyperbolic cosine explained by Wolfram MathWorld27

26http://mathworld.wolfram.com/Cosine.html
27http://mathworld.wolfram.com/HyperbolicCosine.html

openEO
Grant agreement No 776242 Page 30 of 126

http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/HyperbolicCosine.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/HyperbolicCosine.html

D15: Dataset & process descriptions

3.22 count: Count the number of elements

Gives the number of elements in an array that matches a certain criterion / expression.

Remarks:

· By default counts the number of valid elements. A valid element is every element for
which is_valid returns true.

· To count all elements in a list set the expression parameter to boolean true.

Parameters

data (required) An array with elements of any data type.

· Data type: array

· Array items: Any data type is allowed.

expression An expression that is evaluated against each element in the array. An element
is counted only if the expression returns true. Defaults to count valid elements in a list (see
is_valid). Setting this parameter to boolean true counts all elements in the list.

· Data types:

· callback (object): An expression that is evaluated against each element in the array.

· Callback parameters:

· x: A single value from the array. Any data type could be passed.

· boolean: Boolean ‘true‘ counts all elements in the list.

· Constant value: true

· null: ‘null‘ counts valid elements in the list.

Return Value

The counted number of elements.

· Data type: number

Examples

1. count(data = []) => 0

2. count(data = [1,0,3,2]) => 4

3. count(data = ["ABC",null]) => 1

4. count(data = [false,null], expression = true) => 2

openEO
Grant agreement No 776242 Page 31 of 126

D15: Dataset & process descriptions

5. count(data = [0,1,2,3,4,5,null], expression = {"gt":{"process_id":"gt","arguments":{"x":{"from_argument":"element"},"y":2},"result":true}})
=> 3

3.23 create_raster_cube: Create an empty raster data cube

Creates a new raster data cube without dimensions.

Parameters

Return Value

An empty raster data cube.

· Data type: raster-cube (object)

3.24 cummax: Cumulative maxima

Finds cumulative maxima of an array of numbers. Every computed element is equal to the
bigger one between current element and the previously computed element. The returned array
and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag
to true makes that once a no-data value / null is reached all following elements are set to
null in the result.

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is set for all the following
elements.

· Data type: boolean

· Default value: true

Return Value

An array with the computed cumulative maxima.

· Data type: array<number|null>

openEO
Grant agreement No 776242 Page 32 of 126

D15: Dataset & process descriptions

Examples

1. cummax(data = [1,3,5,3,1]) => [1,3,5,5,5]

2. cummax(data = [1,3,null,5,1]) => [1,3,null,5,5]

3. cummax(data = [1,3,null,5,1], ignore_nodata = false) => [1,3,null,null,null]

3.25 cummin: Cumulative minima

Finds cumulative minima of an array of numbers. Every computed element is equal to the
smaller one between current element and the previously computed element. The returned
array and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag
to true makes that once a no-data value / null is reached all following elements are set to
null in the result.

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is set for all the following
elements.

· Data type: boolean

· Default value: true

Return Value

An array with the computed cumulative minima.

· Data type: array<number|null>

Examples

1. cummin(data = [5,3,1,3,5]) => [5,3,1,1,1]

2. cummin(data = [5,3,null,1,5]) => [5,3,null,1,1]

3. cummin(data = [5,3,null,1,5], ignore_nodata = false) => [5,3,null,null,null]

openEO
Grant agreement No 776242 Page 33 of 126

D15: Dataset & process descriptions

3.26 cumproduct: Cumulative products

Computes cumulative products of an array of numbers. Every computed element is equal to the
product of current and all previous values. The returned array and the input array have always
the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag
to true makes that once a no-data value / null is reached all following elements are set to
null in the result.

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is set for all the following
elements.

· Data type: boolean

· Default value: true

Return Value

An array with the computed cumulative products.

· Data type: array<number|null>

Examples

1. cumproduct(data = [1,3,5,3,1]) => [1,3,15,45,45]

2. cumproduct(data = [1,2,3,null,3,1]) => [1,2,6,null,18,18]

3. cumproduct(data = [1,2,3,null,3,1], ignore_nodata = false) => [1,2,6,null,null,null]

3.27 cumsum: Cumulative sums

Computes cumulative sums of an array of numbers. Every computed element is equal to the
sum of current and all previous values. The returned array and the input array have always the
same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag
to true makes that once a no-data value / null is reached all following elements are set to
null in the result.

openEO
Grant agreement No 776242 Page 34 of 126

D15: Dataset & process descriptions

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is set for all the following
elements.

· Data type: boolean

· Default value: true

Return Value

An array with the computed cumulative sums.

· Data type: array<number|null>

Examples

1. cumsum(data = [1,3,5,3,1]) => [1,4,9,12,13]

2. cumsum(data = [1,3,null,3,1]) => [1,4,null,7,8]

3. cumsum(data = [1,3,null,3,1], ignore_nodata = false) => [1,4,null,null,null]

3.28 debug: Send debugging information to subscribed clients

Sends debugging information about the data to clients, which are subscribed to the topic
openeo.jobs.debug.

Parameters

data (required) Data to send.

id An identifier to help identify the message in a bunch of other messages.

· Data type: string

Return Value

false if the information could not be sent, true otherwise.

openEO
Grant agreement No 776242 Page 35 of 126

D15: Dataset & process descriptions

· Data type: boolean

See Also

· Information about the openEO API for Subscriptions28

3.29 divide: Division of a sequence of numbers

Divides the first element in a sequential array of numbers by all other elements.

The computations should follow IEEE Standard 75429 so that for example a division by zero
should result in śinfinity if the processing environment supports it. Otherwise an exception must
the thrown for incomputable results.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data
values so that null is returned if any element is such a value.

Parameters

data (required) An array of numbers with at least two elements.

· Data type: array<number|null>

· Min. number of items: 2

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed result of the sequence of numbers.

· Data type: number / null

Exceptions

· DivisorMissing: Division requires at least two numbers (a dividend and one or more
divisors).

28https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsdebug
29https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 36 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsdebug
https://ieeexplore.ieee.org/document/4610935
https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsdebug
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

Examples

1. divide(data = [15,5]) => 3

2. divide(data = [-2,4,2.5]) => -0.2

3. divide(data = [1,null], ignore_nodata = false) => null

See Also

· Division explained by Wolfram MathWorld30

· IEEE Standard 754-2008 for Floating-Point Arithmetic31

3.30 e: Euler’s number (e)

The real number e is a mathematical constant that is the base of the natural logarithm such
that ln(e) = 1. The numerical value is approximately 2.71828.

Parameters

Return Value

The numerical value of Euler’s number.

· Data type: number

See Also

· Mathematical constant e explained by Wolfram MathWorld32

3.31 eq: Equal to comparison

Compares whether x is strictly equal to y.

Remarks:

· Data types MUST be checked strictly, for example a string with the content 1 is not equal
to the number 1. Nevertheless, an integer 1 is equal to a floating point number 1.0 as
integer is a sub-type of number.

· If any of the operands is null, the return value is null.

30http://mathworld.wolfram.com/Division.html
31https://ieeexplore.ieee.org/document/4610935
32http://mathworld.wolfram.com/e.html

openEO
Grant agreement No 776242 Page 37 of 126

http://mathworld.wolfram.com/Division.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/e.html
http://mathworld.wolfram.com/Division.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/e.html

D15: Dataset & process descriptions

· Strings are expected to be encoded in UTF-8 by default.

· Temporal strings MUST be compared differently than other strings and MUST NOT be
compared based on their string representation due to different possible representations.
For example, the UTC time zone representation Z has the same meaning as +00:00.

Parameters

x (required) First operand.

· Data types:

· number

· boolean

· null

· string

· date-time (string)

· date (string)

· time (string)

y (required) Second operand.

· Data types:

· number

· boolean

· null

· string

· date-time (string)

· date (string)

· time (string)

delta Only applicable for comparing two numbers. If this optional parameter is set to a pos-
itive non-zero number the equality of two numbers is checked against a delta value. This is
especially useful to circumvent problems with floating point inaccuracy in machine-based com-
putation.

This option is basically an alias for the following computation: lte(abs(minus([x, y]),
delta)

· Data type: number / null

· Default value: null

openEO
Grant agreement No 776242 Page 38 of 126

D15: Dataset & process descriptions

case_sensitive Only applicable for comparing two strings. Case sensitive comparison can
be disabled by setting this parameter to false.

· Data type: boolean

· Default value: true

Return Value

Returns true if x is equal to y, null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. eq(x = 1, y = null) => null

2. eq(x = 1, y = 1) => true

3. eq(x = 1, y = "1") => false

4. eq(x = 1.02, y = 1, delta = 0.01) => false

5. eq(x = -1, y = -1.001, delta = 0.01) => true

6. eq(x = 115, y = 110, delta = 10) => true

7. eq(x = "Test", y = "test") => false

8. eq(x = "Test", y = "test", case_sensitive = false) => true

9. eq(x = "Ä", y = "ä", case_sensitive = false) => true

10. eq(x = "00:00:00+00:00", y = "00:00:00Z") => true

11. eq(x = "2018-01-01T12:00:00Z", y = "2018-01-01T12:00:00") => false

12. eq(x = "2018-01-01T00:00:00Z", y = "2018-01-01T01:00:00+01:00") => true

See Also

· Information about the supported temporal formats.33

3.32 exp: Exponentiation to the base e

Exponential function to the base e raised to the power of p. This process is an alias for ep /
power(e(), p).

The no-data value null is passed through and therefore gets propagated.

33https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 39 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

Parameters

p (required) The numerical exponent.

· Data type: number / null

Return Value

The computed value for e raised to the power of p.

· Data type: number / null

Examples

1. exp(p = 0) => 1

2. exp(p = null) => null

See Also

· Exponential function explained by Wolfram MathWorld34

3.33 extrema: Minimum and maximum values

Two element array containing the minimum and the maximum values of data.

This process is basically an alias for calling both min and max, but may be implemented more
performant by back-ends as it only needs to iterate over the data once instead of twice.

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that an array with two null values is
returned if any value is such a value.

· Data type: boolean

· Default value: true

34http://mathworld.wolfram.com/ExponentialFunction.html

openEO
Grant agreement No 776242 Page 40 of 126

http://mathworld.wolfram.com/ExponentialFunction.html
http://mathworld.wolfram.com/ExponentialFunction.html

D15: Dataset & process descriptions

Return Value

An array containing the minimum and maximum values for the specified numbers. The first
element is the minimum, the second element is the maximum. If the input array is empty both
elements are set to null.

· Data types:

· array<number>:

· Min. number of items: 2

· Max. number of items: 2

· array<null>:

· Min. number of items: 2

· Max. number of items: 2

Examples

1. extrema(data = [1,0,3,2]) => [0,3]

2. extrema(data = [5,2.5,null,-0.7]) => [-0.7,5]

3. extrema(data = [1,0,3,null,2], ignore_nodata = false) => [null,null]

4. extrema(data = []) => [null,null]

3.34 filter_bands: Filter the bands by name

Filters the bands in the data cube so that bands that don’t match any of the criteria are dropped
from the data cube. The data cube is expected to have only one dimension of type bands.

The following criteria can be used to select bands:

· bands: band name (e.g. B01 or B8A)

· common_names: common band names (e.g. red or nir)

· wavelengths: ranges of wavelengths in micrometres (µm) (e.g. 0.5 - 0.6)

To keep algorithms interoperable it is recommended to prefer the common bands names or the
wavelengths over collection and/or back-end specific band names.

If multiple criteria are specified, any of them must match and not all of them, i.e. they are
combined with an OR-operation. If no criteria is specified, the BandFilterParameterMissing
exception must be thrown.

Important: The order of the specified array defines the order of the bands in the data cube,
which can be important for subsequent processes. If multiple bands are matched by a single
criterion (e.g. a range of wavelengths), they are ordered alphabetically by band names. Bands
without names have an arbitrary order.

openEO
Grant agreement No 776242 Page 41 of 126

D15: Dataset & process descriptions

Parameters

data (required) A data cube with bands.

· Data type: raster-cube (object)

bands A list of band names.

The order of the specified array defines the order of the bands in the data cube.

· Data type: array<string>

common_names A list of common band names.

The order of the specified array defines the order of the bands in the data cube.

· Data type: array<string>

wavelengths A list of sub-lists with each sub-list consisting of two elements. The first element
is the minimum wavelength and the second element is the maximum wavelength. Wavelengths
are specified in micrometres (µm).

The order of the specified array defines the order of the bands in the data cube.

· Data type: array<array<number»

· Array items:

· Data type: array<number>

· Min. number of items: 2

· Max. number of items: 2

· Examples:

1. [[0.45,0.5],[0.6,0.7]]

Return Value

A data cube limited to a subset of its original bands. Therefore, the cardinality is potentially
lower, but the resolution and the number of dimensions are the same as for the original data
cube.

· Data type: raster-cube (object)

Exceptions

· BandFilterParameterMissing: The process ’filter_bands’ requires any of the parameters
’bands’, ’common_names’ or ’wavelengths’ to be set.

openEO
Grant agreement No 776242 Page 42 of 126

D15: Dataset & process descriptions

See Also

· List of common band names as specified by the STAC specification35

3.35 filter_bbox: Spatial filter using a bounding box

Limits the data cube to the specified bounding box.

The filter retains a pixel in the data cube if the point at the pixel center intersects with the
bounding box (as defined in the Simple Features standard by the OGC).

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

extent (required) A bounding box, which may include a vertical axis (see base and height).

The coordinate reference system of the extent must be specified as EPSG36 code or PROJ37

definition.

· Data type: bounding-box (object)

· Required:

1. west

2. south

3. east

4. north

· Properties:

· west: West (lower left corner, coordinate axis 1).

· Data type: number

· south: South (lower left corner, coordinate axis 2).

· Data type: number

· east: East (upper right corner, coordinate axis 1).

· Data type: number

· north: North (upper right corner, coordinate axis 2).

· Data type: number

35https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names
36http://www.epsg.org
37https://proj4.org

openEO
Grant agreement No 776242 Page 43 of 126

https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names
http://www.epsg.org
https://proj4.org
https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names
http://www.epsg.org
https://proj4.org

D15: Dataset & process descriptions

· base: Base (optional, lower left corner, coordinate axis 3).

· Data type: number / null

· Default value: null

· height: Height (optional, upper right corner, coordinate axis 3).

· Data type: number / null

· Default value: null

· crs: Coordinate reference system of the extent specified as EPSG code or PROJ
definition. Whenever possible, it is recommended to use EPSG codes instead of
PROJ definitions. Defaults to ‘4326‘ (EPSG code 4326) unless the client explicitly
requests a different coordinate reference system.

· Schema:

· Data types:

· epsg-code (integer):

· Examples:

1. 7099

· proj-definition (string):

· Examples:

1. "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
+units=m +no_defs"

Return Value

A data cube restricted to the bounding box. Therefore, the cardinality is potentially lower, but
the resolution and the number of dimensions are the same as for the original data cube.

· Data type: raster-cube (object)

See Also

· PROJ parameters for cartographic projections38

· Official EPSG code registry39

· Unofficial EPSG code database40

· Simple Features standard by the OGC41

38https://proj4.org/usage/projections.html
39http://www.epsg-registry.org
40http://www.epsg.io
41http://www.opengeospatial.org/standards/sfa

openEO
Grant agreement No 776242 Page 44 of 126

https://proj4.org/usage/projections.html
http://www.epsg-registry.org
http://www.epsg.io
http://www.opengeospatial.org/standards/sfa
https://proj4.org/usage/projections.html
http://www.epsg-registry.org
http://www.epsg.io
http://www.opengeospatial.org/standards/sfa

D15: Dataset & process descriptions

3.36 filter_polygon: Spatial filter using polygons

Limits the data cube over the spatial dimensions to the specified polygons.

The filter retains a pixel in the data cube if the point at the pixel center intersects with at least
one of the polygons (as defined in the Simple Features standard by the OGC).

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

polygons (required) One or more polygons used for filtering, either specified as GeoJSON
or vector data cube.

For GeoJSON this can be one of the following GeoJSON types:

· A Polygon geometry,

· a GeometryCollection containing Polygons,

· a Feature with a Polygon geometry or

· a FeatureCollection containing Features with a Polygon geometry.

· Data types:

· geojson (object)

· vector-cube (object)

Return Value

A data cube restricted to the specified polygons. Therefore, the cardinality is potentially lower,
but the resolution and the number of dimensions are the same as for the original data cube.

· Data type: raster-cube (object)

See Also

· Simple Features standard by the OGC42

3.37 filter_temporal: Temporal filter for a date and/or time intervals

Limits the data cube to the specified interval of dates and/or times.

42http://www.opengeospatial.org/standards/sfa

openEO
Grant agreement No 776242 Page 45 of 126

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

D15: Dataset & process descriptions

More precisely, the filter checks whether the temporal dimension value is greater than or
equal to the lower boundary (start date/time) and the temporal dimension value is less than the
value of the upper boundary (end date/time). This corresponds to a left-closed interval, which
contains the lower boundary but not the upper boundary.

If the dimension is set to null (it’s the default value), the data cube is expected to only have
one temporal dimension.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

extent (required) Left-closed temporal interval, i.e. an array with exactly two elements:

1. The first element is the start of the date and/or time interval. The specified instance in
time is included in the interval.

2. The second element is the end of the date and/or time interval. The specified instance in
time is excluded from the interval.

The specified temporal strings follow RFC 333943. Although RFC 3339 prohibits the hour to
be ‘24’44, this process allows the value ‘24’ for the hour of an end time in order to make it
possible that left-closed time intervals can fully cover the day.

Also supports open intervals by setting one of the boundaries to null, but never both.

· Data type: temporal-interval (array)

· Min. number of items: 2

· Max. number of items: 2

· Array items:

· Data types:

· date-time (string)

· date (string)

· time (string)

· null

· Examples:

1. ["2015-01-01","2016-01-01"]

2. ["12:00:00Z","24:00:00Z"]

43https://tools.ietf.org/html/rfc3339
44https://tools.ietf.org/html/rfc3339#section-5.7

openEO
Grant agreement No 776242 Page 46 of 126

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7

D15: Dataset & process descriptions

dimension The temporal dimension to filter on. If the dimension is not set or is set to null,
the data cube is expected to only have one temporal dimension.

Note: The default dimensions a data cube provides are described in the collection’s metadata
field cube:dimensions.

· Data type: string / null

· Default value: null

Return Value

A data cube restricted to the specified temporal extent. Therefore, the cardinality is potentially
lower, but the resolution and the number of dimensions are the same as for the original data
cube.

· Data type: raster-cube (object)

See Also

· Information about the supported temporal formats.45

3.38 filter: Filter based on a logical expression.

Filters the dimension values based on a logical expression so that afterwards each dimension
value in the data cube conforms to the expression.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

expression (required) An expression that is evaluated against each dimension value in the
specified dimension. A dimension value is dropped from the data cube if the expression re-
turns false. The data type of the parameter depends on the dimension values stored for the
dimension.

· Data type: callback (object)

· Callback parameters:

· value: A single dimension value to compare against.

· Data types:

45https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 47 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

· number

· string

· date-time (string)

· date (string)

· time (string)

dimension (required) The dimension to filter on.

Remarks:

· The default dimensions a data cube provides are described in the collection’s metadata
field cube:dimensions.

· There could be multiple spatial dimensions such as x, y or z.

· For multi-spectral imagery there is usually a separate dimension of type bands for the
bands.

· Data type: string

Return Value

A data cube restricted by the specified expression. Therefore, the cardinality is potentially
lower, but the resolution and the number of dimensions are the same as for the original data
cube.

· Data type: raster-cube (object)

3.39 find_collections: Search for collections by metadata properties

Searches for collections available on the current back-end by metadata properties and returns
ids of collections that match all criteria. property can be used to get metadata properties.

A single collection can be selected using array operations such as first, last and array_element
and afterwards be loaded using load_collection.

Parameters

expression (required) An expression that is evaluated against each collection the back-end
offers. The expression filters the collections to include only collection ids which the given ex-
pression returns true for. property can be used to retrieve metadata properties.

· Data type: callback (object)

· Callback parameters:

· id: The collection id.

openEO
Grant agreement No 776242 Page 48 of 126

D15: Dataset & process descriptions

· Data type: collection-id (string)

· Pattern: ^[A-Za-z0-9_\-\.~/]+$

Return Value

An array of collection ids.

· Data type: array<collection-id:string>

· Array items:

· Data type: collection-id (string)

· Pattern: ^[A-Za-z0-9_\-\.~/]+$

3.40 first: First element

Gives the first element of an array. For an empty array null is returned.

Parameters

data (required) An array with elements of any data type. An empty array resolves always
with null.

· Data type: array

· Array items: Any data type is allowed.

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if the first value is
such a value.

· Data type: boolean

· Default value: true

Return Value

The first element of the input array.

Examples

1. first(data = [1,0,3,2]) => 1

2. first(data = [null,"A","B"]) => "A"

openEO
Grant agreement No 776242 Page 49 of 126

D15: Dataset & process descriptions

3. first(data = [null,2,3], ignore_nodata = false) => null

4. first(data = []) => null

3.41 floor: Round fractions down

The greatest integer less than or equal to the number x.

This process is not an alias for the int process as defined by some mathematicians, see the
examples for negative numbers in both processes for differences.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number to round down.

· Data type: number / null

Return Value

The number rounded down.

· Data type: integer / null

Examples

1. floor(x = 0) => 0

2. floor(x = 3.5) => 3

3. floor(x = -0.4) => -1

4. floor(x = -3.5) => -4

See Also

· Floor explained by Wolfram MathWorld46

3.42 gt: Greater than comparison

Compares whether x is strictly greater than y.

Remarks:

46http://mathworld.wolfram.com/FloorFunction.html

openEO
Grant agreement No 776242 Page 50 of 126

http://mathworld.wolfram.com/FloorFunction.html
http://mathworld.wolfram.com/FloorFunction.html

D15: Dataset & process descriptions

· If any of the operands is null, the return value is null.

· Temporal strings can not be compared based on their string representation due to the
time zone / time-offset representations.

· Comparing strings is currently not supported, but is planned to be added in the future.

Parameters

x (required) First operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

y (required) Second operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

Return Value

true if x is strictly greater than y or null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. gt(x = 1, y = null) => null

2. gt(x = 0, y = 0) => false

3. gt(x = 2, y = 1) => true

4. gt(x = -0.5, y = -0.6) => true

5. gt(x = "00:00:00Z", y = "00:00:00+01:00") => true

openEO
Grant agreement No 776242 Page 51 of 126

D15: Dataset & process descriptions

6. gt(x = "1950-01-01T00:00:00Z", y = "2018-01-01T12:00:00Z") => false

7. gt(x = "2018-01-01T12:00:00+00:00", y = "2018-01-01T12:00:00Z") => false

See Also

· Information about the supported temporal formats.47

3.43 gte: Greater than or equal to comparison

Compares whether x is greater than or equal to y.

Remarks:

· If any of the operands is null, the return value is null.

· Temporal strings can not be compared based on their string representation due to the
time zone / time-offset representations.

· Comparing strings is currently not supported, but is planned to be added in the future.

Parameters

x (required) First operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

y (required) Second operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

47https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 52 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

Return Value

true if x is greater than or equal to y or null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. gte(x = 1, y = null) => null

2. gte(x = 0, y = 0) => true

3. gte(x = 1, y = 2) => false

4. gte(x = -0.5, y = -0.6) => true

5. gte(x = "00:00:00Z", y = "00:00:00+01:00") => true

6. gte(x = "1950-01-01T00:00:00Z", y = "2018-01-01T12:00:00Z") => false

7. gte(x = "2018-01-01T12:00:00+00:00", y = "2018-01-01T12:00:00Z") => true

See Also

· Information about the supported temporal formats.48

3.44 if: If-Then-Else conditional

Returns the value of the accept parameter if the expression is true or the value of the reject
parameter if the expression is false. This works similar to an if-then-else construct.

The no-data value null is passed through and therefore gets propagated.

Parameters

expression (required) A boolean value.

· Data type: boolean / null

accept A value that is returned if the boolean expression is true. Defaults to true.

· Default value: true

reject A value that is returned if the boolean expression is false. Defaults to false.

· Default value: false
48https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 53 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

Return Value

Either the accept or reject argument depending on the given boolean expression.

Examples

1. if(expression = true) => true

2. if(expression = null) => null

3. if(expression = false) => false

4. if(expression = true, accept = "A") => "A"

5. if(expression = false, accept = [1,2,3], reject = [4,5,6]) => [4,5,6]

3.45 int: Integer part of a number

The integer part of the real number x.

This process is not an alias for the floor process as defined by some mathematicians, see
the examples for negative numbers in both processes for differences.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

Integer part of the number.

· Data type: integer / null

Examples

1. int(x = 0) => 0

2. int(x = 3.5) => 3

3. int(x = -0.4) => 0

4. int(x = -3.5) => -3

openEO
Grant agreement No 776242 Page 54 of 126

D15: Dataset & process descriptions

See Also

· Integer Part explained by Wolfram MathWorld49

3.46 is_nan: Value is not a number

Checks whether the specified value x is not a number (often abbreviated as NaN). The definition
of NaN follows the IEEE Standard 75450. All non-numeric data types MUST also return true.

Parameters

x (required) The data to check.

Return Value

true if the data is not a number, otherwise false

· Data type: boolean

Examples

1. is_nan(x = 1) => false

2. is_nan(x = "Test") => true

See Also

· IEEE Standard 754-2008 for Floating-Point Arithmetic51

3.47 is_nodata: Value is not a no-data value

Checks whether the specified data is a missing data, i.e. equals to any of the no-data values /
null.

Parameters

x (required) The data to check.

49http://mathworld.wolfram.com/IntegerPart.html
50https://ieeexplore.ieee.org/document/4610935
51https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 55 of 126

http://mathworld.wolfram.com/IntegerPart.html
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/IntegerPart.html
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

Return Value

true if the data is a no-data value, otherwise false

· Data type: boolean

Examples

1. is_nodata(x = 1) => false

2. is_nodata(x = "Test") => false

3. is_nodata(x = null) => true

3.48 is_valid: Value is valid data

Checks whether the specified value x is valid. A value is considered valid if it is

1. not a no-data value (null) and

2. a finite number (only if x is a number). The definition of finite and infinite numbers follows
the IEEE Standard 75452.

Parameters

x (required) The data to check.

Return Value

true if the data is valid, otherwise false.

· Data type: boolean

Examples

1. is_valid(x = 1) => true

2. is_valid(x = "Test") => true

3. is_valid(x = null) => false

See Also

· IEEE Standard 754-2008 for Floating-Point Arithmetic53

52https://ieeexplore.ieee.org/document/4610935
53https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 56 of 126

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

3.49 last: Last element

Gives the last element of an array. For an empty array null is returned.

Parameters

data (required) An array with elements of any data type. An empty array resolves always
with null.

· Data type: array

· Array items: Any data type is allowed.

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if the last value is
such a value.

· Data type: boolean

· Default value: true

Return Value

The last element of the input array.

Examples

1. last(data = [1,0,3,2]) => 2

2. last(data = ["A","B",null]) => "B"

3. last(data = [0,1,null], ignore_nodata = false) => null

4. last(data = []) => null

3.50 linear_scale_range: Linear transformation between two ranges

Performs a linear transformation between the input and output range.

The underlying formula is: ((x - inputMin) / (inputMax - inputMin)) * (outputMax -
outputMin) + outputMin.

Potential use case include

· scaling values to the 8-bit range (0 - 255) often used for numeric representation of values
in one of the channels of the RGB colour model54 or

54https://en.wikipedia.org/wiki/RGB_color_model#Numeric_representations

openEO
Grant agreement No 776242 Page 57 of 126

https://en.wikipedia.org/wiki/RGB_color_model#Numeric_representations
https://en.wikipedia.org/wiki/RGB_color_model#Numeric_representations

D15: Dataset & process descriptions

· calculating percentages (0 - 100).

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number to transform.

· Data type: number / null

inputMin (required) Minimum value the input can obtain.

· Data type: number

inputMax (required) Maximum value the input can obtain.

· Data type: number

outputMin Minimum value of the desired output range.

· Data type: number

· Default value: 0

outputMax Maximum value of the desired output range.

· Data type: number

· Default value: 1

Return Value

The transformed number.

· Data type: number / null

Examples

1. linear_scale_range(x = 0.3, inputMin = -1, inputMax = 1, outputMin = 0, outputMax
= 255) => 165.75

2. linear_scale_range(x = 25.5, inputMin = 0, inputMax = 255) => 0.1

3. linear_scale_range(x = null, inputMin = 0, inputMax = 100) => null

openEO
Grant agreement No 776242 Page 58 of 126

D15: Dataset & process descriptions

3.51 ln: Natural logarithm

The natural logarithm is the logarithm to the base e of the number x. This process is an alias
for the log process with the base set to e: log(x, e()). The natural logarithm is the inverse
function of taking e to the power x.

The computations should follow IEEE Standard 75455 so that for example ln(0) should result
in śinfinity if the processing environment supports it. Otherwise an exception must the thrown
for incomputable results.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number to compute the natural logarithm for.

· Data type: number / null

Return Value

The computed natural logarithm.

· Data type: number / null

Examples

1. ln(x = 1) => 0

See Also

· Natural logarithm explained by Wolfram MathWorld56

· IEEE Standard 754-2008 for Floating-Point Arithmetic57

3.52 load_collection: Load a collection

Loads a collection from the current back-end by its id and returns it as processable data cube.
The data that is added to the data cube can be restricted with the additional spatial_extent,
temporal_extent, bands and properties.

Remarks:

55https://ieeexplore.ieee.org/document/4610935
56http://mathworld.wolfram.com/NaturalLogarithm.html
57https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 59 of 126

https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/NaturalLogarithm.html
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/NaturalLogarithm.html
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

· The bands (and all dimensions that specify nominal dimension values) are expected to
be ordered as specified in the metadata if the bands parameter is set to null.

· If no additional parameter is specified this would imply that the whole data set is expected
to be loaded. Due to the large size of many data sets this is not recommended and may
be optimized by back-ends to only load the data that is actually required after evaluating
subsequent processes such as filters. This means that the pixel values should be pro-
cessed only after the data has been limited to the required extents and as a consequence
also to a manageable size.

Parameters

id (required) The collection id.

· Data type: collection-id (string)

· Pattern: ^[A-Za-z0-9_\-\.~/]+$

spatial_extent (required) Limits the data to load from the collection to the specified bounding
box or polygons.

The process puts a pixel into the data cube if the point at the pixel center intersects with the
bounding box or any of the polygons (as defined in the Simple Features standard by the OGC).

The coordinate reference system of the bounding box must be specified as EPSG58 code or
PROJ59 definition.

The GeoJSON can be one of the following GeoJSON types:

· A Polygon geometry,

· a GeometryCollection containing Polygons,

· a Feature with a Polygon geometry or

· a FeatureCollection containing Features with a Polygon geometry.

Set this parameter to null to set no limit for the spatial extent. Be careful with this when loading
large datasets!

· Data types:

· bounding-box (object):

· Required:

1. west

2. south

3. east

58http://www.epsg.org
59https://proj4.org

openEO
Grant agreement No 776242 Page 60 of 126

http://www.epsg.org
https://proj4.org
http://www.epsg.org
https://proj4.org

D15: Dataset & process descriptions

4. north

· Properties:

· west: West (lower left corner, coordinate axis 1).

· Data type: number

· south: South (lower left corner, coordinate axis 2).

· Data type: number

· east: East (upper right corner, coordinate axis 1).

· Data type: number

· north: North (upper right corner, coordinate axis 2).

· Data type: number

· base: Base (optional, lower left corner, coordinate axis 3).

· Data type: number / null

· Default value: null

· height: Height (optional, upper right corner, coordinate axis 3).

· Data type: number / null

· Default value: null

· crs: Coordinate reference system of the extent specified as EPSG code or
PROJ definition. Whenever possible, it is recommended to use EPSG codes
instead of PROJ definitions. Defaults to ‘4326‘ (EPSG code 4326) unless the
client explicitly requests a different coordinate reference system.

· Schema:

· Data types:

· epsg-code (integer):

· Examples:

1. 7099

· proj-definition (string):

· Examples:

1. "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
+units=m +no_defs"

· geojson (object)

· null

temporal_extent (required) Limits the data to load from the collection to the specified left-
closed temporal interval. Applies to all temporal dimensions if there are multiple of them. The
interval has to be specified as an array with exactly two elements:

openEO
Grant agreement No 776242 Page 61 of 126

D15: Dataset & process descriptions

1. The first element is the start of the date and/or time interval. The specified instance in
time is included in the interval.

2. The second element is the end of the date and/or time interval. The specified instance in
time is excluded from the interval.

The specified temporal strings follow RFC 333960. Although RFC 3339 prohibits the hour to
be ‘24’61, this process allows the value ‘24’ for the hour of an end time in order to make it
possible that left-closed time intervals can fully cover the day.

Also supports open intervals by setting one of the boundaries to null, but never both.

Set this parameter to null to set no limit for the spatial extent. Be careful with this when
loading large datasets!

· Data types:

· temporal-interval (array):

· Min. number of items: 2

· Max. number of items: 2

· Array items:

· Data types:

· date-time (string)

· date (string)

· time (string)

· null

· Examples:

1. ["2015-01-01","2016-01-01"]

2. ["12:00:00Z","24:00:00Z"]

· null

bands Only adds the specified bands into the data cube so that bands that don’t match the
list of band names are not available. Applies to all dimensions of type bands if there are multiple
of them.

The order of the specified array defines the order of the bands in the data cube.

· Data types:

· array<string>

· null

60https://tools.ietf.org/html/rfc3339
61https://tools.ietf.org/html/rfc3339#section-5.7

openEO
Grant agreement No 776242 Page 62 of 126

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339#section-5.7
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#section-5.7

D15: Dataset & process descriptions

properties Limits the data by metadata properties to include only data in the data cube which
all given expressions return true for (AND operation).

Specify key-value-pairs with the keys being the name of the metadata property, which can be
retrieved with the openEO Data Discovery for Collections. The values must be expressions to
be evaluated against the collection metadata, see the example.

Note: Back-ends may not pass the actual value to the expressions, but pass a proprietary
index or a placeholder so that they can use the expressions to query against another data
source. So debugging on the callback parameter value may lead to unexpected results.

· Data types:

· object:

· AdditionalProperties:

· Data type: callback (object)

· Callback parameters:

· value: The property value. Any data type could be passed.

· null

Return Value

A data cube for further processing.

· Data types:

· raster-cube (object)

· vector-cube (object)

See Also

· PROJ parameters for cartographic projections62

· Official EPSG code registry63

· Unofficial EPSG code database64

· Simple Features standard by the OGC65

· Information about the supported temporal formats.66

62https://proj4.org/usage/projections.html
63http://www.epsg-registry.org
64http://www.epsg.io
65http://www.opengeospatial.org/standards/sfa
66https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 63 of 126

https://proj4.org/usage/projections.html
http://www.epsg-registry.org
http://www.epsg.io
http://www.opengeospatial.org/standards/sfa
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://proj4.org/usage/projections.html
http://www.epsg-registry.org
http://www.epsg.io
http://www.opengeospatial.org/standards/sfa
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

3.53 load_result: Load batch job results

Loads batch job results by job id from the local user workspace / data store. The job must have
been stored by the authenticated user on the back-end currently connected to.

Parameters

id (required) The id of a batch job with results.

· Data type: job-id (string)

· Pattern: ^[A-Za-z0-9_\-\.~]+$

Return Value

A data cube for further processing.

· Data types:

· raster-cube (object)

· vector-cube (object)

3.54 log: Logarithm to a base

Logarithm to the base base of the number x is defined to be the inverse function of taking b to
the power of x.

The computations should follow IEEE Standard 75467 so that for example log(0, 2) should
result in śinfinity if the processing environment supports it. Otherwise an exception must the
thrown for incomputable results.

The no-data value null is passed through and therefore gets propagated if any of the argu-
ments is null.

Parameters

x (required) A number to compute the logarithm for.

· Data type: number / null

base (required) The numerical base.

· Data type: number / null

67https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 64 of 126

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

Return Value

The computed logarithm.

· Data type: number / null

Examples

1. log(x = 10, base = 10) => 1

2. log(x = 2, base = 2) => 1

3. log(x = 4, base = 2) => 2

4. log(x = 1, base = 16) => 0

See Also

· Logarithm explained by Wolfram MathWorld68

· IEEE Standard 754-2008 for Floating-Point Arithmetic69

3.55 lt: Less than comparison

Compares whether x is strictly less than y.

Remarks:

· If any of the operands is null, the return value is null.

· Temporal strings can not be compared based on their string representation due to the
time zone / time-offset representations.

· Comparing strings is currently not supported, but is planned to be added in the future.

Parameters

x (required) First operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

68http://mathworld.wolfram.com/Logarithm.html
69https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 65 of 126

http://mathworld.wolfram.com/Logarithm.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/Logarithm.html
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

· time (string)

y (required) Second operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

Return Value

true if x is strictly less than y, null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. lt(x = 1, y = null) => null

2. lt(x = 0, y = 0) => false

3. lt(x = 1, y = 2) => true

4. lt(x = -0.5, y = -0.6) => false

5. lt(x = "00:00:00+01:00", y = "00:00:00Z") => true

6. lt(x = "1950-01-01T00:00:00Z", y = "2018-01-01T12:00:00Z") => true

7. lt(x = "2018-01-01T12:00:00+00:00", y = "2018-01-01T12:00:00Z") => false

See Also

· Information about the supported temporal formats.70

3.56 lte: Less than or equal to comparison

Compares whether x is less than or equal to y.

Remarks:

· If any of the operands is null, the return value is null.

70https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 66 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

· Temporal strings can not be compared based on their string representation due to the
time zone / time-offset representations.

· Comparing strings is currently not supported, but is planned to be added in the future.

Parameters

x (required) First operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

y (required) Second operand.

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

Return Value

true if x is less than or equal to y, null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. lte(x = 1, y = null) => null

2. lte(x = 0, y = 0) => true

3. lte(x = 1, y = 2) => true

4. lte(x = -0.5, y = -0.6) => false

5. lte(x = "00:00:00+01:00", y = "00:00:00Z") => true

6. lte(x = "1950-01-01T00:00:00Z", y = "2018-01-01T12:00:00Z") => true

openEO
Grant agreement No 776242 Page 67 of 126

D15: Dataset & process descriptions

7. lte(x = "2018-01-01T12:00:00+00:00", y = "2018-01-01T12:00:00Z") => true

See Also

· Information about the supported temporal formats.71

3.57 mask: Apply a mask

Applies a mask to a raster data cube. A mask can either be specified as:

· Raster data cube for which parallel pixels among data and mask are compared and those
pixels in data are replaced, which are non-zero (for numbers) or true (for boolean values)
in mask.

· GeoJSON or vector data cube containing one or more polygons. All pixels for which
the point at the pixel center intersects with the corresponding polygon (as defined in the
Simple Features standard by the OGC) are replaced.

The pixel values are replaced with the value specified for replacement, which defaults to null
(no data). No data values will be left untouched by the masking operation.

Parameters

data (required) A raster data cube.

· Data type: raster-cube (object)

mask (required) Either a raster data cube, a GeoJSON object or a vector data cube.

For raster data cubes, both data cubes must be compatible so that every pixel in data has
a parallel element in mask.

For GeoJSON the provided types can be one of the following:

· A Polygon geometry,

· a GeometryCollection containing Polygons,

· a Feature with a Polygon geometry or

· a FeatureCollection containing Features with a Polygon geometry.

· Data types:

· geojson (object)

· vector-cube (object)

· raster-cube (object)

71https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

openEO
Grant agreement No 776242 Page 68 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats

D15: Dataset & process descriptions

replacement The value used to replace non-zero and true values with.

· Data type: number / boolean / string / null

· Default value: null

Return Value

The masked raster data cube.

· Data type: raster-cube (object)

See Also

· Simple Features standard by the OGC72

3.58 max: Maximum value

Computes the largest value of an array of numbers, which is is equal to the first element of a
sorted (i.e., ordered) version the array.

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The maximum value.

· Data type: number / null

72http://www.opengeospatial.org/standards/sfa

openEO
Grant agreement No 776242 Page 69 of 126

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

D15: Dataset & process descriptions

Examples

1. max(data = [1,0,3,2]) => 3

2. max(data = [5,2.5,null,-0.7]) => 5

3. max(data = [1,0,3,null,2], ignore_nodata = false) => null

4. max(data = []) => null

See Also

· Maximum explained by Wolfram MathWorld73

3.59 mean: Arithmetic mean (average)

The arithmetic mean of an array of numbers is the quantity commonly called the average. It is
defined as the sum of all elements divided by the number of elements.

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed arithmetic mean.

· Data type: number / null

Examples

1. mean(data = [1,0,3,2]) => 1.5

2. mean(data = [9,2.5,null,-2.5]) => 3

73http://mathworld.wolfram.com/Maximum.html

openEO
Grant agreement No 776242 Page 70 of 126

http://mathworld.wolfram.com/Maximum.html
http://mathworld.wolfram.com/Maximum.html

D15: Dataset & process descriptions

3. mean(data = [1,null], ignore_nodata = false) => null

4. mean(data = []) => null

See Also

· Arithmetic mean explained by Wolfram MathWorld74

3.60 median: Statistical median

The statistical median of an array of numbers is the value separating the higher half from the
lower half of the data.

Remarks:

· For a symmetric arrays, the result is equal to the mean.

· The median can also be calculated by computing the quantile (see process quantiles)
with the probability of 0.5: quantiles(data, [0.5]).

· An empty input array returns null.

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed statistical median.

· Data type: number / null

Examples

1. median(data = [1,3,3,6,7,8,9]) => 6
74http://mathworld.wolfram.com/ArithmeticMean.html

openEO
Grant agreement No 776242 Page 71 of 126

http://mathworld.wolfram.com/ArithmeticMean.html
http://mathworld.wolfram.com/ArithmeticMean.html

D15: Dataset & process descriptions

2. median(data = [1,2,3,4,5,6,8,9]) => 4.5

3. median(data = [-1,-0.5,null,1]) => -0.5

4. median(data = [-1,0,null,1], ignore_nodata = false) => null

5. median(data = []) => null

See Also

· Statistical Median explained by Wolfram MathWorld75

3.61 merge_cubes: Merging two data cubes

The data cubes have to be compatible. A merge is the inverse of a split if there is no overlap.
If data overlaps the parameter overlap_resolver must be specified to resolve the overlap. It
doesn’t add dimensions.

Parameters

cube1 (required) The first data cube.

· Data type: raster-cube (object)

cube2 (required) The second data cube.

· Data type: raster-cube (object)

overlap_resolver A reducer that resolves the conflict if the data overlaps. The reducer must
be a callable process (or a set of processes as process graph) such as mean that accepts by
default array as input. The process can also work on two values by setting the parameter
binary to true. The reducer must return a value of the same data type as the input values in
the array. null (default) can be specified if no overlap resolver is required.

· Data types:

· callback (object): Passes two values to the reducer.

· Callback parameters:

· x: The first value. Any data type could be passed.

· y: The second value. Any data type could be passed.

· null

75http://mathworld.wolfram.com/StatisticalMedian.html

openEO
Grant agreement No 776242 Page 72 of 126

http://mathworld.wolfram.com/StatisticalMedian.html
http://mathworld.wolfram.com/StatisticalMedian.html

D15: Dataset & process descriptions

binary Specifies whether the process should pass two values to the reducer or a list of values
(default).

If the process passes two values, the reducer must be both associative and commutative as
the execution may be executed in parallel and therefore the order of execution is arbitrary.

This parameter is especially useful for UDFs passed as reducers. Back-ends may still opti-
mize and parallelize processes that work on list of values.

· Data type: boolean

· Default value: false

Return Value

The merged data cube.

· Data type: raster-cube (object)

Exceptions

· OverlapResolverMissing: Two data cubes with overlap but without an overlap resolver
have been specified.

See Also

· Background information on reduction operators (binary reducers) by Wikipedia76

3.62 min: Minimum value

Computes the smallest value of an array of numbers, which is is equal to the last element of a
sorted (i.e., ordered) version the array.

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

76https://en.wikipedia.org/wiki/Reduction_Operator

openEO
Grant agreement No 776242 Page 73 of 126

https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

D15: Dataset & process descriptions

· Data type: boolean

· Default value: true

Return Value

The minimum value.

· Data type: number / null

Examples

1. min(data = [1,0,3,2]) => 0

2. min(data = [5,2.5,null,-0.7]) => -0.7

3. min(data = [1,0,3,null,2], ignore_nodata = false) => null

4. min(data = []) => null

See Also

· Minimum explained by Wolfram MathWorld77

3.63 mod: Modulo

Remainder after division of x by y.

The result of a modulo operation has the sign of the divisor. The handling regarding the sign
of the result differs between programming languages78 and needs careful consideration while
implementing this process.

The no-data value null is passed through and therefore gets propagated if any of the argu-
ments is null.

Parameters

x (required) A number to be used as dividend.

· Data type: number / null

y (required) A number to be used as divisor.

· Data type: number / null

77http://mathworld.wolfram.com/Minimum.html
78https://en.wikipedia.org/wiki/Modulo_operation

openEO
Grant agreement No 776242 Page 74 of 126

http://mathworld.wolfram.com/Minimum.html
https://en.wikipedia.org/wiki/Modulo_operation
http://mathworld.wolfram.com/Minimum.html
https://en.wikipedia.org/wiki/Modulo_operation

D15: Dataset & process descriptions

Return Value

The remainder after division.

· Data type: number / null

Examples

1. mod(x = 27, y = 5) => 2

2. mod(x = -27, y = 5) => 3

3. mod(x = 27, y = -5) => -3

4. mod(x = -27, y = -5) => -2

5. mod(x = 27, y = null) => null

6. mod(x = null, y = 5) => null

See Also

· Modulo explained by Wikipedia79

3.64 multiply: Multiplication of a sequence of numbers

Multiplies all elements in a sequential array of numbers and returns the computed product.

The computations should follow IEEE Standard 75480 whenever the processing environment
supports it. Otherwise an exception must the thrown for incomputable results.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data
values so that null is returned if any element is such a value.

Parameters

data (required) An array of numbers with at least two elements.

· Data type: array<number|null>

· Min. number of items: 2

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

79https://en.wikipedia.org/wiki/Modulo_operation
80https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 75 of 126

https://en.wikipedia.org/wiki/Modulo_operation
https://ieeexplore.ieee.org/document/4610935
https://en.wikipedia.org/wiki/Modulo_operation
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

· Data type: boolean

· Default value: true

Return Value

The computed product of the sequence of numbers.

· Data type: number / null

Exceptions

· MultiplicandMissing: Multiplication requires at least two numbers.

Examples

1. multiply(data = [5,0]) => 0

2. multiply(data = [-2,4,2.5]) => -20

3. multiply(data = [1,null], ignore_nodata = false) => null

See Also

· Product explained by Wolfram MathWorld81

· IEEE Standard 754-2008 for Floating-Point Arithmetic82

3.65 ndvi: Normalized Difference Vegetation Index

Computes the Normalized Difference Vegetation Index (NDVI). The NDVI is computed as (nir -
red) / (nir + red).

The data parameter expects a raster data cube with two bands that have the common names
red and nir assigned. The process returns a raster data cube with two bands being replaced
with a new band that holds the computed values. The newly created band is named ndvi by
default. This name can be changed with the name parameter.

This process is very similar to the process normalized_difference, but determines the
bands automatically based on the common name (red/nir) specified in the metadata.

81http://mathworld.wolfram.com/Product.html
82https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 76 of 126

http://mathworld.wolfram.com/Product.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/Product.html
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

Parameters

data (required) A raster data cube with two bands that have the common names red and nir
assigned.

· Data type: raster-cube (object)

name Name of the newly created band with the computed values. Defaults to normalized_difference.

· Data type: string

· Default value: normalized_difference

· Pattern: ^[A-Za-z0-9_]+$

Return Value

A raster data cube with the two bands being replaced with a new band that holds the computed
values.

· Data type: raster-cube (object)

See Also

· NDVI explained by Wikipedia83

· NDVI explained by NASA84

3.66 neq: Not equal to comparison

Compares whether x is not strictly equal to y. This process is an alias for: not(eq(val1,
val2)).

Remarks:

· Data types MUST be checked strictly, for example a string with the content 1 is not equal
to the number 1. Nevertheless, an integer 1 is equal to a floating point number 1.0 as
integer is a sub-type of number.

· If any of the operands is null, the return value is null.

· Strings are expected to be encoded in UTF-8 by default.

· Temporal strings MUST be compared differently than other strings and MUST NOT be
compared based on their string representation due to different possible representations.
For example, the UTC time zone representation Z has the same meaning as +00:00.

83https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
84https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

openEO
Grant agreement No 776242 Page 77 of 126

https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

D15: Dataset & process descriptions

Parameters

x (required) First operand.

· Data types:

· number

· boolean

· null

· string

· date-time (string)

· date (string)

· time (string)

y (required) Second operand.

· Data types:

· number

· boolean

· null

· string

· date-time (string)

· date (string)

· time (string)

delta Only applicable for comparing two numbers. If this optional parameter is set to a pos-
itive non-zero number the non-equality of two numbers is checked against a delta value. This
is especially useful to circumvent problems with floating point inaccuracy in machine-based
computation.

This option is basically an alias for the following computation: gt(abs(minus([x, y]),
delta)

· Data type: number / null

· Default value: null

case_sensitive Only applicable for comparing two strings. Case sensitive comparison can
be disabled by setting this parameter to false.

· Data type: boolean

· Default value: true

openEO
Grant agreement No 776242 Page 78 of 126

D15: Dataset & process descriptions

Return Value

Returns true if x is not equal to y, null if any of the operands is null, otherwise false.

· Data type: boolean / null

Examples

1. neq(x = 1, y = null) => null

2. neq(x = 1, y = 1) => false

3. neq(x = 1, y = "1") => true

4. neq(x = 1.02, y = 1, delta = 0.01) => true

5. neq(x = -1, y = -1.001, delta = 0.01) => false

6. neq(x = 115, y = 110, delta = 10) => false

7. neq(x = "Test", y = "test") => true

8. neq(x = "Test", y = "test", case_sensitive = false) => false

9. neq(x = "Ä", y = "ä", case_sensitive = false) => false

10. neq(x = "00:00:00+00:00", y = "00:00:00Z") => false

11. neq(x = "2018-01-01T12:00:00Z", y = "2018-01-01T12:00:00") => true

12. neq(x = "2018-01-01T00:00:00Z", y = "2018-01-01T01:00:00+01:00") => false

See Also

· Information about the supported temporal formats.85

3.67 normalized_difference: Normalized difference for two bands

Computes the normalized difference for two bands. The normalized difference is computed as
(band1 - band2) / (band1 + band2).

Each of the parameters expects a raster data cube with exactly one band. The process
returns a raster data cube with exactly one band that holds the computed values. The newly
created band is named normalized_difference by default. This name can be changed with
the name parameter.

This process could be used for a number of remote sensing indices such as:

· NDVI86

85https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
86https://eos.com/ndvi/

openEO
Grant agreement No 776242 Page 79 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://eos.com/ndvi/
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://eos.com/ndvi/

D15: Dataset & process descriptions

· NDWI87

· NDSI88

Please note that some back-ends may have native processes available for convenience such
as the ndvi.

Parameters

band1 (required) A raster data cube with exactly one band to be used as first band.

· Data type: raster-cube (object)

band2 (required) A raster data cube with exactly one band to be used as second band.

· Data type: raster-cube (object)

name Name of the newly created band with the computed values. Defaults to normalized_difference.

· Data type: string

· Default value: normalized_difference

· Pattern: ^[A-Za-z0-9_]+$

Return Value

A raster data cube with exactly one band that holds the computed values.

· Data type: raster-cube (object)

See Also

· NDVI explained by EOS89

· NDWI explained by EOS90

· NDSI explained by EOS91

3.68 not: Inverting a boolean

Inverts a single boolean so that true gets false and false gets true.
87https://eos.com/ndwi/
88https://eos.com/ndsi/
89https://eos.com/ndvi/
90https://eos.com/ndwi/
91https://eos.com/ndsi/

openEO
Grant agreement No 776242 Page 80 of 126

https://eos.com/ndwi/
https://eos.com/ndsi/
https://eos.com/ndvi/
https://eos.com/ndwi/
https://eos.com/ndsi/
https://eos.com/ndwi/
https://eos.com/ndsi/
https://eos.com/ndvi/
https://eos.com/ndwi/
https://eos.com/ndsi/

D15: Dataset & process descriptions

The no-data value null is passed through and therefore gets propagated.

Parameters

expression (required) Boolean value to invert.

· Data type: boolean / null

Return Value

Inverted boolean value.

· Data type: boolean / null

Examples

1. not(expression = null) => null

2. not(expression = false) => true

3. not(expression = true) => false

3.69 or: Is at least one value true?

Checks if at least one of the values is true. Evaluates each expression from the first to the last
element and stops once the outcome is unambiguous.

If only one value is given the process evaluates to the given value. If no value is given (i.e.
the array is empty) the process returns null.

By default all no-data values are ignored so that the process returns true if at least one of
the other values is true and otherwise returns false. Setting the ignore_nodata flag to false
considers no-data values so that null is a valid logical object. If a component is null, the result
will be null if the outcome is ambiguous. See the following truth table:

| | n u l l | f a l s e | t r ue
−−−−− | | −−−− | −−−−− | −−−−
n u l l | | n u l l | n u l l | t r ue
f a l s e | | n u l l | f a l s e | t r ue
t rue | | t r ue | t r ue | t r ue

Parameters

expressions (required) A set of boolean values.

· Data type: array<boolean|null>

openEO
Grant agreement No 776242 Page 81 of 126

D15: Dataset & process descriptions

ignore_nodata Indicates whether no-data values are ignored or not and ignores them by
default.

· Data type: boolean

· Default value: true

Return Value

Boolean result of the logical expressions.

· Data type: boolean / null

Examples

1. or(expressions = [false,null]) => false

2. or(expressions = [true,null]) => true

3. or(expressions = [false,null], ignore_nodata = false) => null

4. or(expressions = [true,null], ignore_nodata = false) => true

5. or(expressions = [true,false,true,false]) => true

6. or(expressions = [true,false]) => true

7. or(expressions = [false,false]) => false

8. or(expressions = [true]) => true

9. or(expressions = []) => null

3.70 order: Create a permutation

Computes a permutation which allows rearranging the data into ascending or descending order.
In other words, this process computes the ranked (sorted) element positions in the original list.

Remarks:

· The positions in the result are zero-based.

· Ties will be left in their original ordering.

· Temporal strings can not be compared based on their string representation due to the
time zone / time-offset representations.

Parameters

data (required) An array to compute the order for.

· Data type: array

openEO
Grant agreement No 776242 Page 82 of 126

D15: Dataset & process descriptions

· Array items:

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

asc The default sort order is ascending, with smallest values first. To sort in reverse (de-
scending) order, set this parameter to false.

· Data type: boolean

· Default value: true

nodata Controls the handling of no-data values (null). By default they are removed. If true,
missing values in the data are put last; if false, they are put first.

· Data type: boolean / null

· Default value: null

Return Value

The computed permutation.

· Data type: array<integer>

· Array items:

· Data type: integer

· Minimum value: 0

Examples

1. order(data = [6,-1,2,null,7,4,null,8,3,9,9]) => [1,2,8,5,0,4,7,9,10]

2. order(data = [6,-1,2,null,7,4,null,8,3,9,9], nodata = true) => [1,2,8,5,0,4,7,9,10,3,6]

3. order(data = [6,-1,2,null,7,4,null,8,3,9,9], asc = false, nodata = true) =>
[9,10,7,4,0,5,8,2,1,3,6]

4. order(data = [6,-1,2,null,7,4,null,8,3,9,9], asc = false, nodata = false) =>
[3,6,9,10,7,4,0,5,8,2,1]

openEO
Grant agreement No 776242 Page 83 of 126

D15: Dataset & process descriptions

See Also

· Information about the supported temporal formats.92

· Permutation explained by Wolfram MathWorld93

3.71 output: Send data to subscribed clients

Outputs the data to clients, which are subscribed to the topic openeo.jobs.output.

Parameters

data (required) Data to send.

id An identifier to help identify the message in a bunch of other messages.

· Data type: string

Return Value

false if the information could not be sent, true otherwise.

· Data type: boolean

See Also

· Information about the openEO API for Subscriptions94

3.72 pi: Pi (Π)

The real number Pi (Π) is a mathematical constant that is the ratio of the circumference of a
circle to its diameter. The numerical value is approximately 3.14159.

Parameters

Return Value

The numerical value of Pi.

· Data type: number
92https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
93http://mathworld.wolfram.com/Permutation.html
94https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsoutput

openEO
Grant agreement No 776242 Page 84 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
http://mathworld.wolfram.com/Permutation.html
https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsoutput
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
http://mathworld.wolfram.com/Permutation.html
https://open-eo.github.io/openeo-api/v/0.4.0/apireference-subscriptions/#publish-openeojobsoutput

D15: Dataset & process descriptions

See Also

· Mathematical constant Pi explained by Wolfram MathWorld95

3.73 power: Exponentiation

Computes the exponentiation for the base base raised to the power of p.

The no-data value null is passed through and therefore gets propagated if any of the argu-
ments is null.

Parameters

base (required) The numerical base.

· Data type: number / null

p (required) The numerical exponent.

· Data type: number / null

Return Value

The computed value for base raised to the power of p.

· Data type: number / null

Examples

1. power(base = 0, p = 2) => 0

2. power(base = 2.5, p = 0) => 1

3. power(base = 3, p = 3) => 27

4. power(base = 5, p = -1) => 0.2

5. power(base = 1, p = 0.5) => 1

6. power(base = 1, p = null) => null

7. power(base = null, p = 2) => null

95http://mathworld.wolfram.com/Pi.html

openEO
Grant agreement No 776242 Page 85 of 126

http://mathworld.wolfram.com/Pi.html
http://mathworld.wolfram.com/Pi.html

D15: Dataset & process descriptions

See Also

· Power explained by Wolfram MathWorld96

3.74 product: Multiplication of a sequence of numbers

This process is an exact alias for the multiply process. See multiply for more information.

Parameters

data (required) See multiply for more information.

· Data type: array<number|null>

ignore_nodata See multiply for more information.

· Data type: boolean

· Default value: true

Return Value

See multiply for more information.

· Data type: number / null

3.75 property: Get metadata for data cubes or collections

Retrieves metadata properties for a data cube (if a raster-cube or vector-cube is passed) or
a collection (if a collection id is passed). Properties for a single dimension can be queried with
the dimension parameter.

Available metadata properties can be retrieved with the openEO Data Discovery for Collec-
tions, but for data cubes only a subset may be available after processing.

Parameters

data (required) A data cube.

· Data types:

· raster-cube (object)

· vector-cube (object)

96http://mathworld.wolfram.com/Power.html

openEO
Grant agreement No 776242 Page 86 of 126

http://mathworld.wolfram.com/Power.html
http://mathworld.wolfram.com/Power.html

D15: Dataset & process descriptions

· collection-id (string): A collection id.

· Pattern: ^[A-Za-z0-9_\-\.~/]+$

name (required) Name of the metadata property.

· Data type: string

dimension Optionally, a dimension to get the property for. null by default, which gets a
property globally for the collection/data cube.

· Data type: string / null

· Default value: null

Return Value

The value for the metadata property or null if no information are available.

3.76 quantiles: Quantiles

Calculates quantiles, which are cut points dividing the range of a probability distribution into
either

· intervals corresponding to the given probabilities or

· (nearly) equal-sized intervals (q-quantiles based on the parameter q).

Either the parameter probabilites or q must be specified, otherwise the QuantilesParameterMissing
exception must be thrown. If both parameters are set the QuantilesParameterConflict ex-
ception must be thrown.

Parameters

data (required) An array of numbers.

· Data type: array<number|null>

probabilities A list of probabilities to calculate quantiles for. The probabilities must be be-
tween 0 and 1.

· Data type: array<number>

· Array items:

· Data type: number

openEO
Grant agreement No 776242 Page 87 of 126

D15: Dataset & process descriptions

· Minimum value: 0

· Maximum value: 1

q A number of intervals to calculate quantiles for. Calculates q-quantiles with (nearly) equal-
sized intervals.

· Data type: integer

· Minimum value: 2

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that an array with null values is returned
if any element is such a value.

· Data type: boolean

· Default value: true

Return Value

An array with the computed quantiles. The list has either

· as many elements as the given list of probabilities had or

· q-1 elements.

If the input array is empty the resulting array is filled with as many null values as required
according to the list above. For an example, see the ‘Empty array example’.

· Data type: array<number|null>

Exceptions

· QuantilesParameterMissing: The process ’quantiles’ requires either the ’probabilities’
or ’q’ parameter to be set.

· QuantilesParameterConflict: The process ’quantiles’ only allows that either the ’prob-
abilities’ or the ’q’ parameter is set.

Examples

1. quantiles(data = [2,4,4,4,5,5,7,9], probabilities = [0.005,0.01,0.02,0.05,0.1,0.5])
=> [2.07,2.14,2.28,2.7,3.4,4.5]

2. quantiles(data = [2,4,4,4,5,5,7,9], q = 4) => [4,4.5,5.5]

3. quantiles(data = [-1,-0.5,null,1], q = 2) => [-0.5]

openEO
Grant agreement No 776242 Page 88 of 126

D15: Dataset & process descriptions

4. quantiles(data = [-1,-0.5,null,1], q = 4, ignore_nodata = false) => [null,null,null]

5. quantiles(data = [], probabilities = [0.1,0.5]) => [null,null]

See Also

· Quantiles explained by Wikipedia97

3.77 rearrange: Rearranges an array based on a permutation

Rearranges an array based on a permutation.

Parameters

data (required) An array to rearrange.

· Data type: array

· Array items: Any data type is allowed.

order (required) A permutation used for rearranging, i.e. a ranked list of element positions in
the original list. The positions must be zero-based.

· Data type: array<integer>

· Array items:

· Data type: integer

· Minimum value: 0

Return Value

The rearranged array.

· Data type: array

· Array items: Any data type is allowed.

Examples

1. rearrange(data = [5,4,3], order = [2,1,0]) => [3,4,5]

2. rearrange(data = [5,4,3,2], order = [1,3]) => [4,2]

3. rearrange(data = [5,4,3,2], order = [0,2,1,3]) => [5,3,4,2]

97https://en.wikipedia.org/wiki/Quantile

openEO
Grant agreement No 776242 Page 89 of 126

https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Quantile

D15: Dataset & process descriptions

See Also

· Permutation explained by Wolfram MathWorld98

3.78 reduce: Reduce dimensions

Applies a reducer to a data cube dimension by collapsing all the input values along the specified
dimension into an output value computed by the reducer.

The reducer must be a callable process (or a set of processes as process graph) that accepts
by default array as input. The process can also work on two values by setting the parameter
binary to true. The reducer must compute a single or multiple return values of the same
type as the input values were. Multiple values must be wrapped in an array. An example for
a process returning a single value is median. In this case the specified dimension would be
removed. If a callback such as extrema returns multiple values, a new dimension with the
specified name in target_dimension is created (see the description of the parameter for more
information).

A special case is that the reducer can be set to null, which is the default if no reducer
is specified. It acts as a no-operation reducer so that the remaining value is treated like a
reduction result and the dimension gets dropped. This only works on dimensions with a single
dimension value left (e.g. after filtering for a single band), otherwise the process fails with a
TooManyDimensionValues error.

Nominal values can be reduced too, but need to be mapped. For example date strings to
numeric timestamps since 1970 etc.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

reducer A reducer to be applied on the specified dimension (see the process description for
more details).

· Data types:

· callback (object): Passes two values to the reducer.

· Callback parameters:

· x: The first value. Any data type could be passed.

· y: The second value. Any data type could be passed.

98http://mathworld.wolfram.com/Permutation.html

openEO
Grant agreement No 776242 Page 90 of 126

http://mathworld.wolfram.com/Permutation.html
http://mathworld.wolfram.com/Permutation.html

D15: Dataset & process descriptions

· null: Specifying ‘null‘ works only on dimensions with a single dimension value left.
In this case the remaining value is treated like a reduction result and the dimension
gets dropped.

dimension (required) The dimension over which to reduce.

Remarks:

· The default dimensions a data cube provides are described in the collection’s metadata
field cube:dimensions.

· There could be multiple spatial dimensions such as x, y or z.

· For multi-spectral imagery there is usually a separate dimension of type bands for the
bands.

· Data type: string

target_dimension The name of the target dimension. Only required if the reducer returns
multiple values, otherwise ignored. By default creates a new dimension with the specified
name and the type other (see add_dimension). If a dimension with the specified name exists,
the dimension is replaced, but keeps the original type.

· Data type: string / null

· Default value: null

binary Specifies whether the process should pass two values to the reducer or a list of values
(default).

If the process passes two values, the reducer must be both associative and commutative as
the execution may be executed in parallel and therefore the order of execution is arbitrary.

This parameter is especially useful for UDFs passed as reducers. Back-ends may still opti-
mize and parallelize processes that work on list of values.

This parameter can’t be used with the reducer set to null. If a reducer is specified but only
a single value is available, the reducer doesn’t get executed.

· Data type: boolean

· Default value: false

Return Value

A data cube with the newly computed values. The number of dimensions is reduced for call-
backs returning a single value or doesn’t change if the callback returns multiple values. The
resolution and cardinality are the same as for the original data cube.

· Data type: raster-cube (object)

openEO
Grant agreement No 776242 Page 91 of 126

D15: Dataset & process descriptions

Exceptions

· TooManyDimensionValues: The number of dimension values exceeds one, which requires
a reducer.

See Also

· Background information on reduction operators (binary reducers) by Wikipedia99

3.79 rename_dimension: Renames a dimension

Renames a dimension in the data cube.

Afterwards, the dimension can be referenced with the new name. If a dimension with the
specified name already exists, a DimensionExists exception is thrown.

Parameters

data (required) The data cube.

· Data types:

· raster-cube (object)

· vector-cube (object)

old (required) The current name of the dimension.

· Data type: string

new (required) A new Name for the dimension.

· Data type: string

Return Value

The data cube with the renamed dimension. The old name can not be referenced any longer.

· Data types:

· raster-cube (object)

· vector-cube (object)

99https://en.wikipedia.org/wiki/Reduction_Operator

openEO
Grant agreement No 776242 Page 92 of 126

https://en.wikipedia.org/wiki/Reduction_Operator
https://en.wikipedia.org/wiki/Reduction_Operator

D15: Dataset & process descriptions

Exceptions

· DimensionExists: A dimension with the specified name already exists.

3.80 resample_cube_spatial: Resample the spatial dimensions to a target data cube

Resamples the spatial dimensions (x,y) from a source data cube to a target data cube and
return the results as a new data cube.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

target (required) A data cube that describes the spatial target resolution.

· Data type: raster-cube (object)

method Resampling method. Methods are inspired by GDAL, see gdalwarp100 for more in-
formation.

· Data type: string

· Default value: near

· Allowed values:

1. near

2. bilinear

3. cubic

4. cubicspline

5. lanczos

6. average

7. mode

8. max

9. min

10. med

11. q1

12. q3

100https://www.gdal.org/gdalwarp.html

openEO
Grant agreement No 776242 Page 93 of 126

https://www.gdal.org/gdalwarp.html
https://www.gdal.org/gdalwarp.html

D15: Dataset & process descriptions

Return Value

A data cube with potentially lower spatial resolution and potentially lower cardinality, but the
same number of dimensions as the original data cube.

· Data type: raster-cube (object)

See Also

· Resampling explained in the openEO glossary101

3.81 resample_cube_temporal: Resample a temporal dimension to a target data cube

Resamples a temporal dimension from a source data cube to a target data cube and return the
results as a new data cube.

If the dimension is not set or is set to null, the data cube is expected to only have one
temporal dimension.

Parameters

data (required) A data cube.

· Data type: raster-cube (object)

target (required) A data cube that describes the temporal target resolution.

· Data type: raster-cube (object)

method (required) A resampling method to be applied, could be a reducer for downsampling
or other methods for upsampling. The reducer must be a callable process (or a set of processes
as process graph) such as mean that accepts by default array as input. The process can also
work on two values by setting the parameter binary to true.

· Data types:

· callback (object): Passes two values to the reducer.

· Callback parameters:

· x: The first value. Any data type could be passed.

· y: The second value. Any data type could be passed.

101https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling

openEO
Grant agreement No 776242 Page 94 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling

D15: Dataset & process descriptions

dimension The temporal dimension to resample, which must exist with this name in both data
cubes. If the dimension is not set or is set to null, the data cube is expected to only have one
temporal dimension.

Note: The default dimensions a data cube provides are described in the collection’s metadata
field cube:dimensions.

· Data type: string / null

· Default value: null

binary Specifies whether the process should pass two values to the reducer specified as
resampling method or a list of values (default).

If the process passes two values, the reducer must be both associative and commutative as
the execution may be executed in parallel and therefore the order of execution is arbitrary.

This parameter is especially useful for UDFs passed as reducers. Back-ends may still opti-
mize and parallelize processes that work on list of values.

· Data type: boolean

· Default value: false

Return Value

A data cube with potentially lower temporal resolution and potentially lower cardinality, but the
same number of dimensions as the original data cube.

· Data type: raster-cube (object)

See Also

· Information about the supported temporal formats.102

· Resampling explained in the openEO glossary103

· Background information on reduction operators (binary reducers) by Wikipedia104

3.82 resample_spatial: Resample and warp the spatial dimensions

Resamples the spatial dimensions (x,y) of the data cube to a specified resolution and/or warps
the data cube to the target projection. At least resolution or projection must be specified.

Use filter_bbox to set the target spatial extent.

102https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
103https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
104https://en.wikipedia.org/wiki/Reduction_Operator

openEO
Grant agreement No 776242 Page 95 of 126

https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
https://en.wikipedia.org/wiki/Reduction_Operator
https://open-eo.github.io/openeo-api/v/0.4.0/processes/#openeo-specific-formats
https://open-eo.github.io/openeo-api/v/0.4.0/glossary/#aggregation-and-resampling
https://en.wikipedia.org/wiki/Reduction_Operator

D15: Dataset & process descriptions

Parameters

data (required) A raster data cube.

· Data type: raster-cube (object)

resolution Resamples the data cube to the target resolution, which can be specified either
as separate values for x and y or as a single value for both axes. Specified in the units of the
target projection. Doesn’t change the resolution by default (0).

· Data types:

· number: A single number used as resolution for both x and y.

· Minimum value: 0

· array<number>: A two-element array to specify separate resolutions for x (first ele-
ment) and y (second element).

· Min. number of items: 2

· Max. number of items: 2

· Array items:

· Data type: number

· Minimum value: 0

projection Warps the data cube to the target projection. Target projection specified as EPSG105

code or PROJ106 definition. Doesn’t change the projection by default (null).

· Data types:

· epsg-code (integer):

· Examples:

1. 7099

· proj-definition (string):

· Examples:

1. "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m
+no_defs"

· null

method Resampling method. Methods are inspired by GDAL, see gdalwarp107 for more in-
formation.

105http://www.epsg.org
106https://proj4.org
107https://www.gdal.org/gdalwarp.html

openEO
Grant agreement No 776242 Page 96 of 126

http://www.epsg.org
https://proj4.org
https://www.gdal.org/gdalwarp.html
http://www.epsg.org
https://proj4.org
https://www.gdal.org/gdalwarp.html

D15: Dataset & process descriptions

· Data type: string

· Default value: near

· Allowed values:

1. near

2. bilinear

3. cubic

4. cubicspline

5. lanczos

6. average

7. mode

8. max

9. min

10. med

11. q1

12. q3

align Specifies to which corner of the spatial extent the new resampled data is aligned to.

· Data type: string

· Allowed values:

1. lower-left

2. upper-left

3. lower-right

4. upper-right

· Default value: lower-left

Return Value

A raster data cube with values warped onto the new projection.

· Data type: raster-cube (object)

See Also

· PROJ parameters for cartographic projections108

108https://proj4.org/usage/projections.html

openEO
Grant agreement No 776242 Page 97 of 126

https://proj4.org/usage/projections.html
https://proj4.org/usage/projections.html

D15: Dataset & process descriptions

· Official EPSG code registry109

· Unofficial EPSG code database110

3.83 round: Rounds to a specified precision

Rounds a real number x to specified precision p.

If the fractional part of x is halfway between two integers, one of which is even and the other
odd, then the even number is returned. This behaviour follows IEEE Standard 754111. This kind
of rounding is also called “rounding to nearest” or “banker’s rounding”. It minimizes rounding
errors that result from consistently rounding a midpoint value in a single direction.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number to round.

· Data type: number / null

p A positive number specifies the number of digits after the decimal point to round to. A
negative number means rounding to a power of ten, so for example -2 rounds to the nearest
hundred. Defaults to 0.

· Data type: integer

· Default value: 0

Return Value

The rounded number.

· Data type: number / null

Examples

1. round(x = 0) => 0

2. round(x = 3.56, p = 1) => 3.6

3. round(x = -0.4444444, p = 2) => -0.44

4. round(x = -2.5) => -2

109http://www.epsg-registry.org
110http://www.epsg.io
111https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 98 of 126

http://www.epsg-registry.org
http://www.epsg.io
https://ieeexplore.ieee.org/document/4610935
http://www.epsg-registry.org
http://www.epsg.io
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

5. round(x = -3.5) => -4

6. round(x = 1234.5, p = -2) => 1200

See Also

· Absolute value explained by Wolfram MathWorld112

· IEEE Standard 754-2008 for Floating-Point Arithmetic113

3.84 run_process_graph: Load and run a stored process graph

Loads and executes a stored process graph.

The process can either load

· a locally stored process graph by id, which is stored by the authenticated user on the
back-end currently connected to or

· a remotely stored and published process graph by absolute URI, for example from ope-
nEO Hub114.

Parameters

id (required) A process graph id or an absolute URI to an externally hosted process graph.

· Data types:

· uri (string): URI

· process-graph-id (string): Process graph id

· Pattern: ^[A-Za-z0-9_\-\.~]+$

variables Key-value-pairs with values for variables that are defined by the process graph.
The key of the pair has to be the corresponding variable_id for the value specified. The
replacement for the variable is the value of the pair.

· Data type: process-graph-variables (object)

· Default value: {} (Empty object)

Return Value

The result of processing the process graph.

112http://mathworld.wolfram.com/AbsoluteValue.html
113https://ieeexplore.ieee.org/document/4610935
114https://hub.openeo.org

openEO
Grant agreement No 776242 Page 99 of 126

http://mathworld.wolfram.com/AbsoluteValue.html
https://ieeexplore.ieee.org/document/4610935
https://hub.openeo.org
https://hub.openeo.org
http://mathworld.wolfram.com/AbsoluteValue.html
https://ieeexplore.ieee.org/document/4610935
https://hub.openeo.org

D15: Dataset & process descriptions

See Also

· More information about the experimental status of the process115

3.85 run_udf_externally: Run an externally hosted UDF container

Runs a compatible UDF container that is either externally hosted by a service provider or run-
ning on a local machine of the user. The UDF container must follow the openEO UDF specifi-
cation116.

The referenced UDF service can be executed as callback in several processes such as
aggregate_temporal, apply, apply_dimension, filter and reduce. In this case an array
is passed instead of a raster data cube. The user must ensure that the data is properly passed
as an array so that the UDF can make sense of it.

Parameters

data (required) The data to be passed to the UDF as array or raster data cube.

· Data types:

· raster-cube (object)

· array:

· Min. number of items: 1

· Array items: Any data type.

url (required) URL to a remote UDF service.

· Data type: uri (string)

context Additional data such as configuration options that should be passed to the UDF.

· Data type: object

· Default value: {} (Empty object)

Return Value

The data processed by the UDF service. Returns a raster data cube if a raster data cube was
passed for data. If an array was passed for data, the returned value is defined by the context
and is exactly what the UDF returned.

115https://github.com/Open-EO/openeo-processes/issues/5
116https://open-eo.github.io/openeo-udf/

openEO
Grant agreement No 776242 Page 100 of 126

https://github.com/Open-EO/openeo-processes/issues/5
https://open-eo.github.io/openeo-udf/
https://open-eo.github.io/openeo-udf/
https://github.com/Open-EO/openeo-processes/issues/5
https://open-eo.github.io/openeo-udf/

D15: Dataset & process descriptions

· Data types:

· raster-cube (object)

· any: Any data type.

See Also

· openEO UDF specification117

· openEO UDF repository118

3.86 run_udf: Run an UDF

Runs an UDF in one of the supported runtime environments.

The process can either:

1. load and run a locally stored UDF from a file in the workspace of the authenticated user.
The path to the UDF file must be relative to the root directory of the user’s workspace, so
without the user id in the path.

2. fetch and run a remotely stored and published UDF by absolute URI, for example from
openEO Hub119).

3. run the source code specified inline as string.

The loaded UDF can be executed as callback in several processes such as aggregate_temporal,
apply, apply_dimension, filter and reduce. In this case an array is passed instead of a
raster data cube. The user must ensure that the data is properly passed as an array so that the
UDF can make sense of it.

Parameters

data (required) The data to be passed to the UDF as array or raster data cube.

· Data types:

· raster-cube (object)

· array:

· Min. number of items: 1

· Array items: Any data type.

udf (required) Either source code, an absolute URL or a path to an UDF script.

117https://open-eo.github.io/openeo-udf/
118https://github.com/Open-EO/openeo-udf
119https://hub.openeo.org

openEO
Grant agreement No 776242 Page 101 of 126

https://open-eo.github.io/openeo-udf/
https://github.com/Open-EO/openeo-udf
https://hub.openeo.org
https://open-eo.github.io/openeo-udf/
https://github.com/Open-EO/openeo-udf
https://hub.openeo.org

D15: Dataset & process descriptions

· Data types:

· uri (string): URI to an UDF

· string: Source code as string

runtime (required) An UDF runtime identifier available at the back-end.

· Data type: string

version An UDF runtime version. If set to null, the default runtime version specified for each
runtime is used.

· Data type: string / null

· Default value: null

context Additional data such as configuration options that should be passed to the UDF.

· Data type: object

· Default value: {} (Empty object)

Return Value

The data processed by the UDF. Returns a raster data cube if a raster data cube was passed
for data. If an array was passed for data, the returned value is defined by the context and is
exactly what the UDF returned.

· Data types:

· raster-cube (object)

· any: Any data type.

Exceptions

· InvalidVersion: The specified UDF runtime version is not supported.

3.87 save_result: Save processed data to storage

Saves processed data to the local user workspace / data store of the authenticated user. This
process aims to be compatible to GDAL/OGR formats and options. STAC-compatible metadata
should be stored with the processed data.

Calling this process may be rejected by back-ends in the context of secondary web services.

openEO
Grant agreement No 776242 Page 102 of 126

D15: Dataset & process descriptions

Parameters

data (required) The data to save.

· Data types:

· raster-cube (object)

· vector-cube (object)

format (required) The file format to save to. It must be one of the values that the server
reports as supported output formats, which usually correspond to the short GDAL/OGR codes.
This parameter is case insensitive.

· Data type: output-format (string)

options The file format options to be used to create the file(s). Must correspond to the options
that the server reports as supported options for the chosen format. The option names and valid
values usually correspond to the GDAL/OGR format options.

· Data type: output-format-options (object)

· Default value: {} (Empty object)

Return Value

false if saving failed, true otherwise.

· Data type: boolean

See Also

· GDAL Raster Formats120

· OGR Vector Formats121

3.88 sd: Standard deviation

Computes the sample standard deviation, which quantifies the amount of variation of an array
of numbers. It is defined to be the square root of the corresponding variance (see variance).

A low standard deviation indicates that the values tend to be close to the expected value,
while a high standard deviation indicates that the values are spread out over a wider range.

120https://www.gdal.org/formats_list.html
121https://www.gdal.org/ogr_formats.html

openEO
Grant agreement No 776242 Page 103 of 126

https://www.gdal.org/formats_list.html
https://www.gdal.org/ogr_formats.html
https://www.gdal.org/formats_list.html
https://www.gdal.org/ogr_formats.html

D15: Dataset & process descriptions

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed sample standard deviation.

· Data type: number / null

Examples

1. sd(data = [-1,1,3,null]) => 2

2. sd(data = [-1,1,3,null], ignore_nodata = false) => null

3. sd(data = []) => null

See Also

· Standard deviation explained by Wolfram MathWorld122

3.89 sgn: Signum

The signum (also known as sign) of x is defined as:

· 1 if x > 0

· 0 if x = 0

· -1 if x < 0

The no-data value null is passed through and therefore gets propagated.

122http://mathworld.wolfram.com/StandardDeviation.html

openEO
Grant agreement No 776242 Page 104 of 126

http://mathworld.wolfram.com/StandardDeviation.html
http://mathworld.wolfram.com/StandardDeviation.html

D15: Dataset & process descriptions

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed signum value of x.

· Data type: number / null

Examples

1. sgn(x = -2) => -1

2. sgn(x = 3.5) => 1

3. sgn(x = 0) => 0

4. sgn(x = null) => null

See Also

· Sign explained by Wolfram MathWorld123

3.90 sin: Sine

Computes the sine of x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

Return Value

The computed sine of x.

· Data type: number / null

123http://mathworld.wolfram.com/Sign.html

openEO
Grant agreement No 776242 Page 105 of 126

http://mathworld.wolfram.com/Sign.html
http://mathworld.wolfram.com/Sign.html

D15: Dataset & process descriptions

Examples

1. sin(x = 0) => 0

See Also

· Sine explained by Wolfram MathWorld124

3.91 sinh: Hyperbolic sine

Computes the hyperbolic sine of x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

Return Value

The computed hyperbolic sine of x.

· Data type: number / null

Examples

1. sinh(x = 0) => 0

See Also

· Hyperbolic sine explained by Wolfram MathWorld125

3.92 sort: Sort data

Sorts an array into ascending (default) or descending order.

124http://mathworld.wolfram.com/Sine.html
125http://mathworld.wolfram.com/HyperbolicSine.html

openEO
Grant agreement No 776242 Page 106 of 126

http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/HyperbolicSine.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/HyperbolicSine.html

D15: Dataset & process descriptions

This process is an alias to call order and rearrange consecutively: rearrange(data, order(data,
nodata)). This process could be faster though. See order for more information on sorting be-
haviour.

Parameters

data (required) An array with data to sort.

· Data type: array

· Array items:

· Data types:

· number

· null

· date-time (string)

· date (string)

· time (string)

asc The default sort order is ascending, with smallest values first. To sort in reverse (de-
scending) order, set this parameter to false.

· Data type: boolean

· Default value: true

nodata Controls the handling of no-data values (null). By default they are removed. If true,
missing values in the data are put last; if false, they are put first.

· Data type: boolean / null

· Default value: null

Return Value

The sorted array.

· Data type: array

· Array items:

· Data types:

· number

· null

· date-time (string)

openEO
Grant agreement No 776242 Page 107 of 126

D15: Dataset & process descriptions

· date (string)

· time (string)

Examples

1. sort(data = [6,-1,2,null,7,4,null,8,3,9,9]) => [-1,2,3,4,6,7,8,9,9]

2. sort(data = [6,-1,2,null,7,4,null,8,3,9,9], asc = false, nodata = true) => [9,9,8,7,6,4,3,2,-1,null,null]

3.93 sqrt: Square root

Computes the square root of a real number x. This process is an alias for x to the power of 0.5:
power(x, 0.5).

A square root of x is a number a such that a2 = x. Therefore, the square root is the inverse
function of a to the power of 2, but only for a >= 0.

The no-data value null is passed through and therefore gets propagated.

Parameters

x (required) A number.

· Data type: number / null

Return Value

The computed square root.

· Data type: number / null

Examples

1. sqrt(x = 0) => 0

2. sqrt(x = 1) => 1

3. sqrt(x = 9) => 3

4. sqrt(x = null) => null

See Also

· Square root explained by Wolfram MathWorld126

126http://mathworld.wolfram.com/SquareRoot.html

openEO
Grant agreement No 776242 Page 108 of 126

http://mathworld.wolfram.com/SquareRoot.html
http://mathworld.wolfram.com/SquareRoot.html

D15: Dataset & process descriptions

3.94 subtract: Subtraction of a sequence of numbers

Takes the first element of a sequential array of numbers and subtracts all other elements from
it.

The computations should follow IEEE Standard 754127 whenever the processing environment
supports it. Otherwise an exception must the thrown for incomputable results.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data
values so that null is returned if any element is such a value.

Parameters

data (required) An array of numbers with at least two elements.

· Data type: array<number|null>

· Min. number of items: 2

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed result of the sequence of numbers.

· Data type: number / null

Exceptions

· SubtrahendMissing: Subtraction requires at least two numbers (a minuend and one or
more subtrahends).

Examples

1. subtract(data = [5,10]) => -5

2. subtract(data = [-2,4,-2]) => -4

3. subtract(data = [1,null], ignore_nodata = false) => null

127https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 109 of 126

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

See Also

· Subtraction explained by Wolfram MathWorld128

· IEEE Standard 754-2008 for Floating-Point Arithmetic129

3.95 sum: Addition of a sequence of numbers

Sums up all elements in a sequential array of numbers and returns the computed sum.

The computations should follow IEEE Standard 754130 whenever the processing environment
supports it. Otherwise an exception must the thrown for incomputable results.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data
values so that null is returned if any element is such a value.

Parameters

data (required) An array of numbers with at least two elements.

· Data type: array<number|null>

· Min. number of items: 2

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

· Data type: boolean

· Default value: true

Return Value

The computed sum of the sequence of numbers.

· Data type: number / null

Exceptions

· SummandMissing: Addition requires at least two numbers.

128http://mathworld.wolfram.com/Subtraction.html
129https://ieeexplore.ieee.org/document/4610935
130https://ieeexplore.ieee.org/document/4610935

openEO
Grant agreement No 776242 Page 110 of 126

http://mathworld.wolfram.com/Subtraction.html
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/Subtraction.html
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

D15: Dataset & process descriptions

Examples

1. sum(data = [5,1]) => 6

2. sum(data = [-2,4,2.5]) => 4.5

3. sum(data = [1,null], ignore_nodata = false) => null

See Also

· Sum explained by Wolfram MathWorld131

· IEEE Standard 754-2008 for Floating-Point Arithmetic132

3.96 tan: Tangent

Computes the tangent of x. The tangent is defined to be the sine of x divided by the cosine of
x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

Return Value

The computed tangent of x.

· Data type: number / null

Examples

1. tan(x = 0) => 0

See Also

· Tangent explained by Wolfram MathWorld133

131http://mathworld.wolfram.com/Sum.html
132https://ieeexplore.ieee.org/document/4610935
133http://mathworld.wolfram.com/Tangent.html

openEO
Grant agreement No 776242 Page 111 of 126

http://mathworld.wolfram.com/Sum.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/Tangent.html
http://mathworld.wolfram.com/Sum.html
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/Tangent.html

D15: Dataset & process descriptions

3.97 tanh: Hyperbolic tangent

Computes the hyperbolic tangent of x. The tangent is defined to be the hyperbolic sine of x
divided by the hyperbolic cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propa-
gated.

Parameters

x (required) An angle in radians.

· Data type: number / null

Return Value

The computed hyperbolic tangent of x.

· Data type: number / null

Examples

1. tanh(x = 0) => 0

See Also

· Hyperbolic tangent explained by Wolfram MathWorld134

3.98 text_begins: Text begins with another text

Checks whether the text (also known as string) specified for data contains the text specified for
pattern at the very beginning. Both are expected to be encoded in UTF-8 by default. Regular
expressions are not supported.

Parameters

data (required) Text in which to find something at the beginning.

· Data type: string

134http://mathworld.wolfram.com/HyperbolicTangent.html

openEO
Grant agreement No 776242 Page 112 of 126

http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/HyperbolicTangent.html

D15: Dataset & process descriptions

pattern (required) Text to find at the beginning of data.

· Data type: string

case_sensitive Case sensitive comparison can be disabled by setting this parameter to
false.

· Data type: boolean

· Default value: true

Return Value

true if data begins with pattern, false‘ otherwise.

· Data type: boolean

Examples

1. text_begins(data = "Lorem ipsum dolor sit amet", pattern = "amet") => false

2. text_begins(data = "Lorem ipsum dolor sit amet", pattern = "Lorem") => true

3. text_begins(data = "Lorem ipsum dolor sit amet", pattern = "lorem") => false

4. text_begins(data = "Lorem ipsum dolor sit amet", pattern = "lorem", case_sensitive
= false) => true

5. text_begins(data = "Ä", pattern = "ä", case_sensitive = false) => true

3.99 text_contains: Text contains another text

Checks whether the text (also known as string) specified for data contains the text specified for
pattern. Both are expected to be encoded in UTF-8 by default. Regular expressions are not
supported.

Parameters

data (required) Text in which to find something in.

· Data type: string

pattern (required) Text to find in data.

· Data type: string

openEO
Grant agreement No 776242 Page 113 of 126

D15: Dataset & process descriptions

case_sensitive Case sensitive comparison can be disabled by setting this parameter to
false.

· Data type: boolean

· Default value: true

Return Value

true if data contains the pattern, false‘ otherwise.

· Data type: boolean

Examples

1. text_contains(data = "Lorem ipsum dolor sit amet", pattern = "openEO") => false

2. text_contains(data = "Lorem ipsum dolor sit amet", pattern = "ipsum dolor")
=> true

3. text_contains(data = "Lorem ipsum dolor sit amet", pattern = "Ipsum Dolor")
=> false

4. text_contains(data = "Lorem ipsum dolor sit amet", pattern = "SIT", case_sensitive
= false) => true

5. text_contains(data = "ÄÖÜ", pattern = "ö", case_sensitive = false) => true

3.100 text_ends: Text ends with another text

Checks whether the text (also known as string) specified for data contains the text specified
for pattern at the very end. Both are expected to be encoded in UTF-8 by default. Regular
expressions are not supported.

Parameters

data (required) Text in which to find something at the end.

· Data type: string

pattern (required) Text to find at the end of data.

· Data type: string

case_sensitive Case sensitive comparison can be disabled by setting this parameter to
false.

openEO
Grant agreement No 776242 Page 114 of 126

D15: Dataset & process descriptions

· Data type: boolean

· Default value: true

Return Value

true if data ends with pattern, false‘ otherwise.

· Data type: boolean

Examples

1. text_ends(data = "Lorem ipsum dolor sit amet", pattern = "amet") => true

2. text_ends(data = "Lorem ipsum dolor sit amet", pattern = "AMET") => false

3. text_ends(data = "Lorem ipsum dolor sit amet", pattern = "Lorem") => false

4. text_ends(data = "Lorem ipsum dolor sit amet", pattern = "AMET", case_sensitive
= false) => true

5. text_ends(data = "Ä", pattern = "ä", case_sensitive = false) => true

3.101 text_merge: Concatenate elements to a string

Merges string representations of a set of elements together to a single string, with the separator
between each element.

Parameters

data (required) A set of elements. Numbers, boolean values and null values get converted to
their (lower case) string representation. For example: 1 (integer), -1.5 (number), true / false
(boolean values)

· Data type: array<string|number|boolean|null>

separator A separator to put between each of the individual texts. Defaults to an empty string.

· Data type: string / number / boolean / null

Return Value

Returns a string containing a string representation of all the array elements in the same order,
with the separator between each element.

· Data type: string

openEO
Grant agreement No 776242 Page 115 of 126

D15: Dataset & process descriptions

Examples

1. text_merge(data = ["Hello","World"], separator = " ") => "Hello World"

2. text_merge(data = [1,2,3,4,5,6,7,8,9,0]) => "1234567890"

3. text_merge(data = [null,true,false,1,-1.5,""], separator = "\n") => "null\ntrue\nfalse\n1\n-1.5\n"

4. text_merge(data = [2,0], separator = 1) => "210"

5. text_merge(data = []) => ""

3.102 trim: Remove slices with no-data values

Removes slices solely containing no-data values. If the dimension is irregular categorical then
slices in the middle can be removed.

Parameters

data (required) A raster data cube to trim.

· Data type: raster-cube (object)

Return Value

A trimmed raster data cube.

· Data type: raster-cube (object)

3.103 variance: Variance

Computes the sample variance of an array of numbers by calculating the square of the standard
deviation (see sd). It is defined to be the expectation of the squared deviation of a random
variable from its expected value. Basically, it measures how far the numbers in the array are
spread out from their average value.

Parameters

data (required) An array of numbers. An empty array resolves always with null.

· Data type: array<number|null>

ignore_nodata Indicates whether no-data values are ignored or not. Ignores them by default.
Setting this flag to false considers no-data values so that null is returned if any value is such
a value.

openEO
Grant agreement No 776242 Page 116 of 126

D15: Dataset & process descriptions

· Data type: boolean

· Default value: true

Return Value

The computed sample variance.

· Data type: number / null

Examples

1. variance(data = [-1,1,3]) => 4

2. variance(data = [2,3,3,null,4,4,5]) => 1.1

3. variance(data = [-1,1,null,3], ignore_nodata = false) => null

4. variance(data = []) => null

See Also

· Variance explained by Wolfram MathWorld135

3.104 xor: Is exactly one value true?

Checks if exactly one of the values is true. Evaluates each expression from the first to the last
element and stops once the outcome is unambiguous.

If only one value is given the process evaluates to the given value. If no value is given (i.e.
the array is empty) the process returns null.

By default all no-data values are ignored so that the process returns true if exactly one of
the other values is true and otherwise returns false. Setting the ignore_nodata flag to false
considers no-data values so that null is a valid logical object. If a component is null, the result
will be null if the outcome is ambiguous. See the following truth table:

| | n u l l | f a l s e | t r ue
−−−−− | | −−−− | −−−−− | −−−−−
n u l l | | n u l l | n u l l | n u l l
f a l s e | | n u l l | f a l s e | t r ue
t rue | | n u l l | t r ue | f a l s e

135http://mathworld.wolfram.com/Variance.html

openEO
Grant agreement No 776242 Page 117 of 126

http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/Variance.html

D15: Dataset & process descriptions

Parameters

expressions (required) A set of boolean values.

· Data type: array<boolean|null>

ignore_nodata Indicates whether no-data values are ignored or not and ignores them by
default.

· Data type: boolean

· Default value: true

Return Value

Boolean result of the logical expressions.

· Data type: boolean / null

Examples

1. xor(expressions = [false,null]) => false

2. xor(expressions = [true,null]) => true

3. xor(expressions = [false,null], ignore_nodata = false) => null

4. xor(expressions = [true,null], ignore_nodata = false) => null

5. xor(expressions = [true,false,true,false]) => false

6. xor(expressions = [true,false]) => true

7. xor(expressions = [false,false]) => false

8. xor(expressions = [true]) => true

9. xor(expressions = []) => null

4 Specification for datasets

For data discovery, openEO aimed for a lightweight and extensible approach based on JSON
that is capable of describing data on the dataset136 level. We reviewed existing standards for
both dataset descriptions. Most of the standards use XML to encode the information and are
often more focused on describing granules. None of the established standards fully suited
our requirements. We found the STAC specification to be lightweight, but still extensible. The
136A dataset (called collection in the openEO specification) is an aggregation of granules sharing the same product

specification. A granule typically refers to a limited area and a single overpass leading to a very short observation
period (seconds) or a temporal aggregation of such data.

openEO
Grant agreement No 776242 Page 118 of 126

D15: Dataset & process descriptions

specification lead is Chris Holmes from the Radiant Earth Foundation, but in general it is an
open-source specification with multiple organisations being involved. The specification had not
matured to a stable specification yet and was also focused on granule137 level metadata due to
the early state of the project. This allowed the openEO project to join the STAC initiative to align
with them and to push the specification towards also being useful for data processing platforms
and not only data providers. In cooperation with the Google Earth Engine Team we introduced
the STAC Collection specification. Since then, openEO also contributed several extensions to
better describe several of our main datasets:

· Data Cube Extension138: Describe data Cube related metadata, especially their dimen-
sions.

· Non-Common Properties Extension139 (draft): Gives summaries of properties which are
not common across collections in the collection metadata. This is very useful as back-
ends doesn’t necessarily provide information about individual granules and therefore
users need to be able to request summaries of available metadata.

· SAR Extension140: Covers synthetic-aperture radar data..

· Scientific Extension141: Indicate from which publication data originates and how the data
itself should be cited or referenced.

In addition, openEO integrated multiple other extensions into the openEO API:

· EO Extension142: Covers electro-optical data, which may consist of multiple spectral
bands.

· STAC API143: A small API specification for data discovery, which is also closely bound
to the evolving OGC WFS 3.0 specification144 so that implementing STAC API leads to
also implementing OGC WFS 3.0. Therefore, openEO implementations can also conform
easily to STAC API and OGC WFS 3.0.

Therefore, the openEO API is able to describe all datasets that STAC currently supports,
which includes Synthetic-Aperture Radar (SAR) datasets such as Sentinel-1, Multi-Spectral
Instrument (MSI) datasets such as Sentinel-2 and Ocean and Land Colour Instrument (OLCI)
datasets such as Sentinel-3. The fields described in the next paragraphs are ported over from
the STAC specification to be explicitly available in the openEO API for dataset descriptions.
We included the fields in a way that they are fully compatible to STAC, but may be restricted
or forced to be always required. The field descriptions are ported over from STAC. For full
definitions see the STAC specification and its extensions.

General metadata

137Granules are called items in STAC.
138https://github.com/radiantearth/stac-spec/blob/master/extensions/datacube/README.md
139https://github.com/radiantearth/stac-spec/pull/416
140https://github.com/radiantearth/stac-spec/blob/master/extensions/sar/README.md
141https://github.com/radiantearth/stac-spec/blob/master/extensions/scientific/README.md
142https://github.com/radiantearth/stac-spec/blob/master/extensions/eo/README.md
143https://github.com/radiantearth/stac-spec/blob/master/api-spec/README.md
144https://github.com/opengeospatial/WFS_FES

openEO
Grant agreement No 776242 Page 119 of 126

https://github.com/radiantearth/stac-spec/blob/master/extensions/datacube/README.md
https://github.com/radiantearth/stac-spec/pull/416
https://github.com/radiantearth/stac-spec/blob/master/extensions/sar/README.md
https://github.com/radiantearth/stac-spec/blob/master/extensions/scientific/README.md
https://github.com/radiantearth/stac-spec/blob/master/extensions/eo/README.md
https://github.com/radiantearth/stac-spec/blob/master/api-spec/README.md
https://github.com/opengeospatial/WFS_FES
https://github.com/radiantearth/stac-spec/blob/master/extensions/datacube/README.md
https://github.com/radiantearth/stac-spec/pull/416
https://github.com/radiantearth/stac-spec/blob/master/extensions/sar/README.md
https://github.com/radiantearth/stac-spec/blob/master/extensions/scientific/README.md
https://github.com/radiantearth/stac-spec/blob/master/extensions/eo/README.md
https://github.com/radiantearth/stac-spec/blob/master/api-spec/README.md
https://github.com/opengeospatial/WFS_FES

D15: Dataset & process descriptions

· stac_version (string, required): The STAC version the collection implements.

· id (string, required): Identifier for the collection that is unique across the back-end.

· title (string): A short descriptive one-line title for the collection.

· description (string, required): Detailed description to fully explain the collection.

· keywords (array<string>): List of keywords describing the collection.

· version (string): Version of the collection.

· license (string, required): Collection’s license(s) as a SPDX License identifier145 or ex-
pression146, or proprietary if the license is not on the SPDX license list. Proprietary
licensed data SHOULD add a link to the license text with the license relation in the links
section.

· providers (array<object>): A list of providers, which may include all organisations cap-
turing or processing the data or the hosting provider. Providers are listed in chronological
order and each entry must provide the organisation name, any may add additional in-
formation such as a description, roles (any of producer, licensor, processor or host),
and/or an URL.

· extent (object, required): Describes the spatio-temporal extents of the collection.

· links (array<object>): A list of related links, e.g. additional external documentation for
this collection. Consists of a URL and optionally a relation type147, a media type and a
human-readable title.

· properties (object, required): A list of all metadata properties, which are common across
the whole collection. Can be any of the fields in the following paragraphs.

· other_properties (object, required): A list of all metadata properties, which don’t have
common values across the whole collection. Can be any of the fields in the following
paragraphs. It allows to specify a summary of the values as extent or set of values.

Data cubes

· cube:dimensions (object, required): Describes the dimensions that are available once
the collection is loaded with the load_collection process. Each dimension consists of
a type (spatial, temporal, bands or any custom type) and either an extent or a set of
values. Optionally, a step, a unit, a reference system and, for spatial dimensions, the axis
can be specified.

EO (Electro-Optical)

· eo:gsd (number): The nominal Ground Sample Distance for the data, as measured in
meters on the ground. Since GSD can vary across a scene depending on projection, this
should be the average or most commonly used GSD in the center of the image. If the

145https://spdx.org/licenses/
146https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
147https://www.iana.org/assignments/link-relations/link-relations.xml

openEO
Grant agreement No 776242 Page 120 of 126

https://spdx.org/licenses/
https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
https://www.iana.org/assignments/link-relations/link-relations.xml
https://spdx.org/licenses/
https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
https://www.iana.org/assignments/link-relations/link-relations.xml

D15: Dataset & process descriptions

data includes multiple bands with different GSD values, this should be the value for the
greatest number or most common bands. For instance, Landsat optical and short-wave
IR bands are all 30 meters, but the panchromatic band is 15 meters. The eo:gsd should
be 30 meters in this case since those are the bands most commonly used.

· eo:platform (string): Unique name of the specific platform the instrument is attached to.
For satellites this would be the name of the satellite (e.g., landsat-8, sentinel-2A).

· eo:constellation (string): The name of the group of satellites that have similar payloads
and have their orbits arranged in a way to increase the temporal resolution of acquisitions
of data with similar geometric and radiometric characteristics. Examples are the Sentinel-
2 constellation, which has S2A and S2B and RapidEye. This field allows users to search
for Sentinel-2 data, for example, without needing to specify which specific platform the
data came from.

· eo:instrument (string): The name of the sensor used, although for Items which contain
data from multiple sensors this could also name multiple sensors. For example, data from
the Landsat-8 platform is collected with the OLI sensor as well as the TIRS sensor, but
the data is distributed together and commonly referred to as OLI_TIRS.

· eo:epsg (number|null): EPSG code of the datasource, null if no EPSG code.

· eo:bands (array<object>): This is a list of the available bands. Each band may be de-
scribed with a name, a common name, a description, the ground sample distance, the
accuracy, a center wavelength and full width at half maximum (FWHM).

Not all fields from this extension have been ported over to openEO yet as they are usu-
ally only applicable on the item level. The missing fields are eo:cloud_cover, eo:off_nadir,
eo:azimuth, eo:sun_azimuth and eo:sun_elevation, which may still be used in other_properties
(see above).

SAR

· sar:platform (string): Unique name of the specific platform the instrument is attached
to.

· sar:constellation (string): The name of the group of satellites that have similar pay-
loads and have their orbits arranged in a way to increase the temporal resolution of ac-
quisitions of data with similar geometric and radiometric characteristics. Examples are
the Sentinel-1 constellation, entailing S1A, S1B and in future S1C and S1D as well as
RADARSAT with RADARSAT-1 and RADARSAT-2. This field allows users to search for
Sentinel-1 data, for example, without needing to specify which specific platform the data
came from.

· sar:instrument (string): Name of the sensor used, although for Items which contain data
from multiple sensors this could also name multiple sensors.

· sar:instrument_mode (string): The name of the sensor acquisition mode that is com-
monly used. This should be the short name, if available. For example, WV for "Wave
mode" of Sentinel-1 and Envisat ASAR satellites.

· sar:frequence_band (string): The common name for the frequency band to make it eas-

openEO
Grant agreement No 776242 Page 121 of 126

D15: Dataset & process descriptions

ier to search for bands across instruments. One of P, L, S, C, X, Ku, K or Ka.

· sar:center_wavelength (number): The center wavelength of the instrument, in centime-
ters (cm).

· sar:center_frequency (number): The center frequency of the instrument, in gigahertz
(GHz).

· sar:polarization (array<string>): A single polarization or a polarization combination
specified as array. For single polarized radars one of HH, VV, HV or VH must be set. Fully
polarimetric radars add all four polarizations to the array. Dual polarized radars and alter-
nating polarization add the corresponding polarizations to the array, for instance for HH+HV
add both HH and HV.

· sar:bands (array<object>): This is a list of the available bands. Each band may be
described with a name, a description, a data_type, a unit and a polarization (either HH, VV,
HV, VH or null if not applicable).

· sar:type (string): The product type, for example RAW, GRD, OCN or SLC for Sentinel-1.

· sar:resolution (array<number>): The maximum ability to distinguish two adjacent tar-
gets, in meters (m). The first element of the array is the range resolution, the second
element is the azimuth resolution.

· sar:pixel_spacing (array<number>): The distance between adjacent pixels, in meters
(m). The first element of the array is the range pixel spacing, the second element is the
azimuth pixel spacing. Strongly RECOMMENDED to be specified for products of type
GRD.

· sar:looks (array<number>): The number of groups of signal samples (looks). The first
element of the array must be the number of range looks, the second element must be
the number of azimuth looks, the optional third element is the equivalent number of looks
(ENL).

Not all fields from this extension have been ported over to openEO yet as they are usually only
applicable on the item level. The missing fields are sar:pass_direction and sar:absolute_orbit,
which may still be used in other_properties (see above).

Scientific

· sci:doi (string): The DOI name of the collection.

· sci:citation (string): The recommended human-readable reference (citation) to be
used by publications citing this collection.

· sci:publications (array<object>): A list of publications describing and referencing the
collection. Each may include the DOI name and the human-readable reference (citation).

openEO
Grant agreement No 776242 Page 122 of 126

D15: Dataset & process descriptions

5 List of datasets

As discussed in Deliverable 09 [1] the project’s use cases require Sentinel-1, -2 and -3 to be
available at the back-ends. The following chapter will provide human-readable examples based
on the STAC specification. The descriptions will vary between back-ends thus we can’t provide
more than examples. Two of the reasons are that back-ends provide different processing levels
(e.g. Sentinel-2 L1C / L2A) of the data or cover different areas.

5.1 Sentinel 1 GRD

General Collection Metadata

· ID: Sentinel-1-GRD

· Title: Sentinel-1 SAR GRD

· Description: The dataset provides data from a dual-polarization C-band SAR instrument.
It includes GRD148 scenes, processed using the Sentinel-1 Toolbox. [...]

· License: proprietary149

· Provider(s):

1. European Commission / ESA150 (producer, licensor)

2. openEO (processor, host)

· Temporal Extent: 2014-10-03 until present

· Spatial Extent (west, south, east, north): 180, -90, -180, 90 (WGS 84)

· STAC Version: 0.6.2

Common Properties

· Data Cube Dimensions:

1. x (spatial, x): -180 to 180 (WGS 84)

2. y (spatial, y): -90 to 90 (WGS 84)

3. time (temporal): 2014-10-03 until present, irregular spaced steps

4. bands (bands): amplitude_VV, amplitude_VH, amplitude_HV, amplitude_HH

· Constellation: Sentinel-1

· Instrument: C-SAR

· Frequency Band: C

· Center Wavelength: 5.546576466235 cm
148https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1
149https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_

Conditions.pdf
150https://sentinel.esa.int/web/sentinel/missions/sentinel-2

openEO
Grant agreement No 776242 Page 123 of 126

https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://sentinel.esa.int/web/sentinel/missions/sentinel-2

D15: Dataset & process descriptions

· Center Frequency: 5.405 GHz

· Product Type: GRD

· Bands:

1. amplitude_VV (Data type: amplitude, Polarization: VV)

2. amplitude_VH (Data type: amplitude, Polarization: VH)

3. amplitude_HV (Data type: amplitude, Polarization: HV)

4. amplitude_HH (Data type: amplitude, Polarization: HH)

Non-Common Properties

· Platform: Sentinel-1A or Sentinel-1B

· Instrument Mode: SM, IW or EW

· Polarization: VV, HH, VV+VH or HH+HV

· Resolution: Range: 8.1 to 95.1 m, Azimuth: 8.1 to 90.6 m

· Pixel Spacing: 3.5 x 3.5 m, 10 x 10 m, 25 x 25 m or 40 x 40 m

· Looks: Range: 2 to 22, Azimuth: 1 to 22

· Equivalent Number of Looks (ENL): 2.7 to 398.4

· Pass Direction: ascending or descending

5.2 Sentinel 2

General Collection Metadata

· ID: Sentinel-2

· Title: Sentinel-2 MSI L1C

· Description: The dataset provides images from a high-resolution, multi-spectral imaging
instrument. It includes Level-1C151 scenes in UTM/WGS84 projection. [...]

· License: proprietary152

· Provider(s):

1. European Commission / ESA153 (producer, licensor)

2. openEO (processor, host)

· Temporal Extent: 2015-06-23 until present

· Spatial Extent (west, south, east, north): 180, -56, -180, 83 (WGS 84)

151https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
152https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_

Conditions.pdf
153https://sentinel.esa.int/web/sentinel/missions/sentinel-2

openEO
Grant agreement No 776242 Page 124 of 126

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://sentinel.esa.int/web/sentinel/missions/sentinel-2

D15: Dataset & process descriptions

· STAC Version: 0.6.2

Common Properties

· Data Cube Dimensions:

1. x (spatial, x): -180 to 180 (WGS 84)

2. y (spatial, y): -56 to 83 (WGS 84)

3. time (temporal): 2015-06-23 until present, irregular spaced steps

4. spectral (bands): B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B10, B11, B12

· Constellation: Sentinel-2

· Instrument: MSI

· Bands:

1. B1 (coastal): 60 m

2. B2 (blue): 10 m

3. B3 (green): 10 m

4. B4 (red): 10 m

5. B5: 20 m

6. B6: 20 m

7. B7: 20 m

8. B8 (nir): 10 m

9. B8A (nir): 20 m

10. B9: 60 m

11. B10 (cirrus): 60 m

12. B11 (swir16): 20 m

13. B12 (swir22): 60 m

Non-Common Properties

· Platform: Sentinel-2A or Sentinel-2B

· EPSG Code(s): 32601, 32602, 32603, 32604, 32605, 32606, 32607, 32608, 32609,
32610, 32611, 32612, 32613, 32614, 32615, 32616, 32617, 32618, 32619, 32620, 32621,
32622, 32623, 32624, 32625, 32626, 32627, 32628, 32629, 32630, 32631, 32632, 32633,
32634, 32635, 32636, 32637, 32638, 32639, 32640, 32641, 32642, 32643, 32644, 32645,
32646, 32647, 32648, 32649, 32650, 32651, 32652, 32653, 32654, 32655, 32656, 32657,
32658, 32659, 32660

· Cloud Cover: 0 to 100 %

· Viewing Angle (off nadir): 0 to 90 (in degree)

openEO
Grant agreement No 776242 Page 125 of 126

D15: Dataset & process descriptions

· Viewing Azimuth Angle: 0 to 360 (in degree)

· Sun Azimuth Angle: 0 to 360 (in degree)

· Sun Elevation Angle: 0 to 90 (in degree)

6 References

[1] M. Schramm, W. Wagner, A. Jacob, J. Dries, A. Dostalova, S. Carter, J. Verbesselt, and
M. Neteler, “openeo d09: First overview of needed processes from use cases,” May 2018.
[Online]. Available: https://zenodo.org/record/2542822

openEO
Grant agreement No 776242 Page 126 of 126

https://zenodo.org/record/2542822

	Executive summary
	Specification for processes
	List of openEO processes
	absolute: Absolute value
	add_dimension: Add a new dimension
	aggregate_polygon: Compute zonal statistics for polygons
	aggregate_temporal: Temporal aggregations
	and: Are all of the values true?
	apply_dimension: Applies an n-ary process to all pixels
	apply: Applies a unary process to each pixel
	arccos: Inverse cosine
	arcosh: Inverse hyperbolic cosine
	arcsin: Inverse sine
	arctan: Inverse tangent
	arctan2: Inverse tangent of two numbers.
	array_contains: List contains an element
	array_element: Get an element from an array
	arsinh: Inverse hyperbolic sine
	artanh: Inverse hyperbolic tangent
	between: Between comparison
	ceil: Round fractions up
	clip: Clips values between minimum and maximum values.
	cos: Cosine
	cosh: Hyperbolic cosine
	count: Count the number of elements
	create_raster_cube: Create an empty raster data cube
	cummax: Cumulative maxima
	cummin: Cumulative minima
	cumproduct: Cumulative products
	cumsum: Cumulative sums
	debug: Send debugging information to subscribed clients
	divide: Division of a sequence of numbers
	e: Euler's number (e)
	eq: Equal to comparison
	exp: Exponentiation to the base e
	extrema: Minimum and maximum values
	filter_bands: Filter the bands by name
	filter_bbox: Spatial filter using a bounding box
	filter_polygon: Spatial filter using polygons
	filter_temporal: Temporal filter for a date and/or time intervals
	filter: Filter based on a logical expression.
	find_collections: Search for collections by metadata properties
	first: First element
	floor: Round fractions down
	gt: Greater than comparison
	gte: Greater than or equal to comparison
	if: If-Then-Else conditional
	int: Integer part of a number
	is_nan: Value is not a number
	is_nodata: Value is not a no-data value
	is_valid: Value is valid data
	last: Last element
	linear_scale_range: Linear transformation between two ranges
	ln: Natural logarithm
	load_collection: Load a collection
	load_result: Load batch job results
	log: Logarithm to a base
	lt: Less than comparison
	lte: Less than or equal to comparison
	mask: Apply a mask
	max: Maximum value
	mean: Arithmetic mean (average)
	median: Statistical median
	merge_cubes: Merging two data cubes
	min: Minimum value
	mod: Modulo
	multiply: Multiplication of a sequence of numbers
	ndvi: Normalized Difference Vegetation Index
	neq: Not equal to comparison
	normalized_difference: Normalized difference for two bands
	not: Inverting a boolean
	or: Is at least one value true?
	order: Create a permutation
	output: Send data to subscribed clients
	pi: Pi ()
	power: Exponentiation
	product: Multiplication of a sequence of numbers
	property: Get metadata for data cubes or collections
	quantiles: Quantiles
	rearrange: Rearranges an array based on a permutation
	reduce: Reduce dimensions
	rename_dimension: Renames a dimension
	resample_cube_spatial: Resample the spatial dimensions to a target data cube
	resample_cube_temporal: Resample a temporal dimension to a target data cube
	resample_spatial: Resample and warp the spatial dimensions
	round: Rounds to a specified precision
	run_process_graph: Load and run a stored process graph
	run_udf_externally: Run an externally hosted UDF container
	run_udf: Run an UDF
	save_result: Save processed data to storage
	sd: Standard deviation
	sgn: Signum
	sin: Sine
	sinh: Hyperbolic sine
	sort: Sort data
	sqrt: Square root
	subtract: Subtraction of a sequence of numbers
	sum: Addition of a sequence of numbers
	tan: Tangent
	tanh: Hyperbolic tangent
	text_begins: Text begins with another text
	text_contains: Text contains another text
	text_ends: Text ends with another text
	text_merge: Concatenate elements to a string
	trim: Remove slices with no-data values
	variance: Variance
	xor: Is exactly one value true?

	Specification for datasets
	List of datasets
	Sentinel 1 GRD
	Sentinel 2

	References

