
A COMMON, OPEN SOURCE INTERFACE

BETWEEN EARTH OBSERVATION DATA

INFRASTRUCTURES AND FRONT-END

APPLICATIONS

Deliverable 24
Version 1.0 from 2019/12/05

First Iteration of Use Case Chains

D24: 1st Iteration of Use Case Chains

Change history

Issue Date Author(s) Description
0.1 2019/11/28 Bernhard Gößwein, TU Wien

Claudio Navacchi, TU Wien
First draft.

0.2 2019/11/29 Peter Zellner, EURAC UC 4 - prototype with R client
0.3 2019/11/30 Bernhard Gößwein, TU Wien

Claudio Navacchi, TU Wien
Preliminary version to be submitted
to Wageningen.

0.4 2019/12/03 Milutin Milenković, WUR
Andrei Mirt, WUR
Dainius Masiliunas, WUR
Jan Verbesselt, WUR

1st internal review.

0.5 2019/12/04 Bernhard Gößwein, TU Wien
Claudio Navacchi, TU Wien

Fixed issues from the 1st internal re-
view.

1.0 2019/12/05 Matthias Schramm, TU Wien Final review for submission

For any clarifications please contact openEO@list.tuwien.ac.at.

Number of pages: 37

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 776242. Any dissemination of results
reflects only the author’s view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© openEO Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated other-
wise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both. Reproduction is authorised
provided the source is acknowledged.

openEO
Grant agreement No 776242 Page 2 of 37

mailto:openEO@list.tuwien.ac.at

D24: 1st Iteration of Use Case Chains

Table of Contents

1 Executive summary 6

2 Introduction 6

3 User Defined Functions - API 8
3.1 UDF - Endpoints . 10
3.2 UDF - Schemes . 11
3.2.1 UdfDataSchema . 11
3.2.2 HyperCubeSchema . 12
3.2.3 FeatureCollectionTileSchema . 13
3.2.4 StructuredDataSchema . 15
3.2.5 MachineLearnModelSchema . 16

3.3 UDF - Processes . 16
3.3.1 run_udf . 16
3.3.2 run_udf_externally . 18

4 UDF Implementations 19
4.1 Python . 19
4.1.1 Example . 20

4.2 R . 22
4.2.1 Example . 23

5 Use Case Chains 24
5.1 UC1: Radar Image Compositing . 24
5.2 UC2: Multi-Source Phenology Toolbox . 26
5.3 UC3: Forest Monitoring . 32
5.4 UC4: Snow Monitoring with radar and optical EO data 34

6 References 37

openEO
Grant agreement No 776242 Page 3 of 37

D24: 1st Iteration of Use Case Chains

List of Listings

1 Example request of the POST /udf_runtimes endpoint. 10
2 Example of a HyperCubeSchema. 13
3 Example of a FeatureCollectionTileSchema. 15
4 Example of a StructuredDataSchema. 15
5 Example of a MachineLearnModelSchema. 16
6 Python UDF example calculating the NDVI. 21
7 Example of a Python request, including hypercube data. Note that the data just

represents a snippet of the original example. 22
8 Example of an R request, including the R code and the hypercube data. Note

that the data just represents a snippet of the original example. 24
9 Use case 1 using Python client and predefined processes. 25
10 Use case 2: Connect to the openEO back-end, and create a Sentinel-2 datacube

containing 10m reflectance bands using the Python client. 27
11 Use case 2: Preprocessing step 1: EVI computation. 27
12 Use case 2: Displaying the result of the evi_cube. 27
13 Use case 2: Cloud masking. 28
14 Use case 2: Cloud masking kernel. 29
15 Use case 2: User Defined Function (UDF) for applying the ’Savitzky-Golay’ filter. 31
16 Use case 2: Applying the UDF ’Savitzky-Golay’ filter for the use case. 31
17 Use case 3: Python client code using the BFASTMonitor_code.py UDF. 34
18 Use case 3: The BFASTMonitor_code.py UDF code, called for use case 3. . . . 34
19 Use case 4: R client code using UDF. 37

List of Figures

3.1 Overview of the UDF workflow. 8
3.2 Overview of the UDF schemes. 11
4.1 Overview of the R UDF implementation setup. 23
5.1 Visualisation of the evi_cube from the code example in Listing 11. 28
5.2 Visualisation of the evi_cube unmasked (l), masked (m) and the mask itself (r)

from the code example in Listing 14. 30
5.3 Visualisation of the timeseries evi_raw, evi_masked and using the smoothing

’Savitzky-Golay’ filter UDF. 32

openEO
Grant agreement No 776242 Page 4 of 37

D24: 1st Iteration of Use Case Chains

List of Acronyms

API Application Programming Interface

EO Earth Observation

JSON JavaScript Object Notation

NDVI Normalised Difference Vegetation Index

UDF User Defined Function

openEO
Grant agreement No 776242 Page 5 of 37

D24: 1st Iteration of Use Case Chains

1 Executive summary

This deliverable focuses on describing the first iteration of the openEO use case chains. Some
of these use cases need a complex setup of functionalities, which cannot be realised by the
general processes provided by the openEO process specification1. To support users in de-
veloping algorithms and to not let their creativeness be hindered by a limited set of available
processes, the concept of User Defined Functions (UDFs) was initiated during the first project
year. The herein explained UDF API defines schemes, which enable a communication be-
tween the data and environment located at the back-end and the deployed algorithm of the
user. Moreover, the UDF needs to follow an API framework specified for each programming
language (currently available: Python and R). The API framework defines all relevant input and
output data types for a UDF. Based on that, preliminary implementations of use cases show
that UDFs can be easily combined with the clients, therefore diminishing the gaps between
user requirements and Earth Observation (EO) data processing via openEO.

2 Introduction

During the draft phase of the openEO project, a number of use cases, which should cover
different data sets, user interests and expertise of back-ends, were designed. The openEO
API with its predefined processes should then allow to run these use cases independently from
the back-end. However, after some process design iterations, it turned out, that only simple
tasks can be accomplished by such a general interface. It is possible to exploit common data
cube functionalities for EO data filtering (filter_bands, filter_temporal, ..), analysis (mean,
quantiles, ...) and processing (reduce, apply, ...), but more complex tasks, e.g. time series
analysis, pose a greater challenge. Such scientific algorithms often need a rather specific set
of methods. A general definition of these functionalities would extend the scope of openEO and
would affect its clarity and usability. Moreover, profit oriented users do not necessarily want to
share their code with others and would thus only need a user-friendly data access at the back-
end. Therefore, UDFs are introduced in openEO to enable a flexible interaction of common
openEO processes and data with functions defined by the user.

The complexity and knowledge about how UDFs work and what needs to be considered
strongly depends on the user itself, i.e. if one wants to create a UDF or wants to execute an
existing UDF. The latter case demands knowledge about the input and output parameters of the
UDF, whereas the former requires more expertise about the language-based UDF specification.
But, on whatever the user decides, UDFs should allow to bring the user one step closer to the
data not being too restrictively tied to predefined processes. To realise this and to deploy UDFs
at each back-end, some effort is needed to offer an interface for each supported programming
language, which are R and Python at the moment.

Revising the use case descriptions shows that only few can be implemented solely based on
openEO processes and most have to be realised via a UDF. This emphasises the necessity
of UDFs therefore being the main focus of this deliverable. It starts with an API description of
UDFs including an elaboration of API schemas and processes being responsible for sending a

1http://api.openeo.org/processreference/

openEO
Grant agreement No 776242 Page 6 of 37

http://api.openeo.org/processreference/

D24: 1st Iteration of Use Case Chains

UDF to a back-end. Then, some UDF interface implementations in R and Python are shown in
Chapter 4. This chapter should help to understand what tools are needed to create a UDF in
a specific programming language. Finally, the deliverable concludes with some exemplary use
case chains, where first realisations of the proposed openEO use cases are shown.

openEO
Grant agreement No 776242 Page 7 of 37

D24: 1st Iteration of Use Case Chains

3 User Defined Functions - API

UDFs are customised code snippets that can be executed at the back-end where the input and
output is embedded into a process graph. Figure 3.1 shows the workflow of this procedure.
The Process Graph Processing component represents the part of the back-end where the
processes of a process graph are executed. If there is a process that calls a UDF, it will send the
code and the data to the back-ends UDF service component. The process chain is interrupted
for the call of the UDF. It will then run the code and return the resulting data back to the process
to follow. If the UDF is defined to be executed at an external defined container, the code and
data will be forwarded to it and the resulting data returned.

Figure 3.1: Overview of the UDF workflow.

There are different approaches to achieve the UDF workflow at a back-end. In the following,
we will show different approaches to achieve parts of the UDF workflow:

UDF Service

There are three approaches to implement the UDF service component at the back-end:

1. REST Service
The UDF service is a stand-alone micro RESTful service. The transfer of the data and the
code is via HTTP calls. It has the advantage to be just loosely coupled to the back-end.
Therefore, the UDF service implementation can be re-used by other back-end providers.
The data needs to be serialised, so that it can be transferred via HTTP request. For
this purpose, JavaScript Object Notation (JSON) serialisation can be used by the UDF
services.

2. Command Line Tool
The UDF service is a command line tool and called via command line or starting a con-
tainer. Requires serialisation of the data into an image format. It is intended to run in a
container, since it makes it independent on the system configuration of the back-end.

3. In-Process Call

openEO
Grant agreement No 776242 Page 8 of 37

D24: 1st Iteration of Use Case Chains

The UDF service is implemented by an invocation of a script from the back-end with
in-memory objects. This strategy is dependent on the host system configuration. Ad-
ditionally, it is dependent on the programming language used for the script, but has the
possibility of exchanging data in memory.

Code Execution

1. Script
The code execution is implemented as a script, which provides high flexibility. The data
injection can be defined as a programming language dependent data cube structure.

2. Function
The code execution is implemented as a function call. The data can be injected as an
array. This approach has the advantage, that back-end provider can easily manage and
scale the execution. It may cause many requests in certain use cases, because the data
is too small e.g. time series.

Data Re-import

Data re-import describes how the result of the UDF is returned to the process chain of the
Process Graph Processing component. There are three approaches defined on that issue:

1. In-memory
The in-memory import of the result has the advantage of being faster than the other
approaches. The major disadvantage of this is that it is language dependent, since the
back-end implementation needs to have the same programming language as the UDF.

2. File based
The resulting data is stored in a file and the Process Graph Processing component
fetches the data directly from that file. In this approach the metadata exchange has to
be well defined e.g. by specifying dimensions.

3. JSON response
This approach suggests to return the results of the UDF via a JSON response back to
the Process Graph Processing component. This is an easy-to-implement solution for the
standalone REST service approach. Nevertheless, it is potentially huge because of the
plain text serialisation of JSON and may lack information.

The UDF API definition describes the endpoints necessary to execute the UDFs and get the
resulting data using an openEO back-end (see Section 3.1). Furthermore, it defines serialise-
able data schemes to have a standardised way of representing input and output data of the
UDFs (see Section 3.2). There are openEO processes defined to call UDFs inside of a process
graph (see Section 3.3).

openEO
Grant agreement No 776242 Page 9 of 37

D24: 1st Iteration of Use Case Chains

3.1 UDF - Endpoints

This section describes the endpoints of the UDF service, if hosted as a REST service. The
following endpoints describe how the UDF API defines the communication at the moment.

Execute UDF

– POST /udf
Run a user defined function (UDF) on the provided data.

· Request type: object

· Response: The result of the UDF computation.

· Request example

{
"code": {

"language": "python",
"source": "import numpy as np \n \ndef udf(data): \n pass\n"

},
"data": {

"proj": "EPSG:4326",
"hypercubes": [...],
"feature_collection_tiles": [...],
"structured_data": [...],
"machine_learn_models": [...]

}
}

Listing 1: Example request of the POST /udf_runtimes endpoint.

Machine learning

– POST /storage
Store a machine learn model in the UDF machine learn database and return the corre-
sponding md5 hash. The URL where the model is located must be provided as text in the
HTTP request.

· Request type: object

· Response: The md5 hash of the stred model.

– GET /storage
Return a list of all md5 hashes of the provided machine learn models

· Response: A list of md5 hashes of all stored machine learn models.

– DELETE /storage
Delete a machine learn model in the udf machine learn database that matches the pro-
vided md5 hash. The md5 hash of the model, which needs to be deleted, must be pro-
vided as text in the HTTP request.

· Request type: object

openEO
Grant agreement No 776242 Page 10 of 37

D24: 1st Iteration of Use Case Chains

3.2 UDF - Schemes

The UDF schemes define the format of the data objects used as in- and output data for UDFs.
They are defined in a standalone openAPI document, other than the openEO API. There, the
data objects are in JSON format following the schemes described in the following sections.

Figure 3.2: Overview of the UDF schemes.

3.2.1 UdfDataSchema

The UDF data object consists of the projection information, feature collection tiles, machine
learn models, structured data and a list of hypercubes. The mentioned data structures are de-
scribed in the following sections. The UDFDataSchema object is the argument for the UDF as
well as their return value. If a function needs a specific input data type, the data has to be set
in the corresponding part of the data object (e.g. hypercube).

openEO
Grant agreement No 776242 Page 11 of 37

D24: 1st Iteration of Use Case Chains

Properties

– proj (required)
The EPSG code or WKT projection string e.g.: EPSG:4326.

· Data type: string

– feature_collection_tiles
A list of feature collection tiles (see Section 3.2.3).

· Data type: array

· Array items: FeatureCollectionTileSchema

– hypercubes
A list of hypercubes (see Section 3.2.2).

· Data type: array

· Array items: HyperCubeSchema

– structured_data_list
A list of structured data objects that contain processing results that can not be represented
by hypercubes or feature collection tiles. (see Section 3.2.4).

· Data type: array

· Array items: StructuredDataSchema

– machine_learn_models
A list of machine learn models (see Section 3.2.5).

· Data type: array

· Array items: MachineLeanModelsSchema

3.2.2 HyperCubeSchema

A multi dimensional hypercube with configurable dimensions.

Properties

– Id (required)
The identifier of this hypercube.

· Data type: string

– data
A multi-dimensional array of integer (8,16,32,64 bit) or float (16, 32, 64 bit) values. By
default index dimension is as follows: [time][y][x]. Hence, the index data[0] returns the 2D
slice for the first time stamp. The y-indexing is counted from top to bottom and represents
the rows of the 2D array. The x-indexing is counted from left to right and represents
the columns of the 2D array. The dimension options must be used to describe other
dimension configurations.

openEO
Grant agreement No 776242 Page 12 of 37

D24: 1st Iteration of Use Case Chains

· Data type: multi-dimensional array (float[][][])

– dimensions
The description of each dimension and the value as an ordered list. The order of the
dimension in this array is the order of the dimension in the hypercube. The dimension
with the name value describes the cell value.

· Data type: array

· Array items: object

Example

{
"id":"test_data",
"data":[[[0.0, 0.1],

[0.2, 0.3]],
[[0.0, 0.1],
[0.2, 0.3]]

],
"dimension":[

{
"name":"time",
"unit":"ISO:8601",
"coordinates":["2001-01-01", "2001-01-02"]

},
{

"name":"X",
"unit":"degree",
"coordinates":[50, 60]

},
{

"name":"Y",
"unit":"degree",
"coordinates":[40, 50]

}
]

}

Listing 2: Example of a HyperCubeSchema.

3.2.3 FeatureCollectionTileSchema

The FeatureCollectionTileSchema is a tile of vector data that represents a spatio-temporal sub-
set of a spatio-temporal vector dataset. It consists of a mandatory identifier string and a manda-
tory list of feature data objects and optional start and end dates. The feature data objects are
defined as a GeoJSON2 FeatureCollection.

2https://geojson.org/

openEO
Grant agreement No 776242 Page 13 of 37

D24: 1st Iteration of Use Case Chains

Properties

– Id (required)
The identifier of this vector tile.

· Data type: string

– data (required)
A GeoJSON FeatureCollection.

· Data type: GeoJSON FeatureCollection

– start_times
The array contains start time values for each vector feature as a date-time string format
ISO 8601.

· Data type: array

· Array items: string (date-time ISO 8601 format)

– end_times
The array contains the end time values for each vector feature, in case the time stamps for
all or a subset of slices are intervals. For time instances the "from" and "to" time stamps
must be equal or empty as date-time string format ISO 8601.

· Data type: array

· Array items: string (date-time ISO 8601 format)

Example

{
"id": "test_data",
"start_times": ["2001-01-01T00:00:00", "2001-01-02T00:00:00"],
"end_times": ["2001-01-02T00:00:00", "2001-01-03T00:00:00"],
"data": {

"features": [
{

"id": "0",
"type": "Feature",
"properties": {"a": 1, "b": "a"},
"geometry": {

"coordinates": [24, 50],
"type": "Point"

}
},
{

"id": "1",
"type": "Feature",
"properties": {"a": 2, "b": "b"},
"geometry": {

"coordinates": [30, 53],
"type": "Point"

}
}

],
"type": "FeatureCollection"

openEO
Grant agreement No 776242 Page 14 of 37

D24: 1st Iteration of Use Case Chains

}
}

Listing 3: Example of a FeatureCollectionTileSchema.

3.2.4 StructuredDataSchema

The StructuredDataSchema represents structured data that can not be represented as a Hy-
perCube or FeatureCollectionTile, for example, the result of a statistical computation. The data
is self descriptive and supports the basic types dict/map, list and table. This data structure can
also be used to provide contextual data from the user to the UDF e.g., kernel size, re-sampling
pixel size, . . .

Properties

– description (required)
A detailed description of the output format.

· Data type: string

– data (required)
The structured data. This field contains the UDF specific values (argument or return) as
dictionary, list or table. A dictionary can be as complex as required by the UDF. A list must
contain simple data types e.g. "list": [1,2,3,4]. A table is a list of lists with a header e.g.
"table": [["id","value"], [1, 10], [2, 23], [3, 4]].

· Data type: object (dictionary, list or table)

– type (required)
The type of the structured data that may be of type dictionary, table or list. This is just a
hint for the user how to interpret the provided data.

· Data type: string enum [dict, table, list]

Example

{
"description": "Output of a statistical analysis. The univariate analysis of multiple raster

collection tiles. Each entry in the output dict/map contains min, mean and
max of all pixels in a raster collection tile. The key is the id of the
raster collection tile.",

"data": {
"RED": {"min": 0, "max": 100, "mean": 50},
"NIR": {"min": 0, "max": 100, "mean": 50}

},
"type": "dict"

}

Listing 4: Example of a StructuredDataSchema.

openEO
Grant agreement No 776242 Page 15 of 37

D24: 1st Iteration of Use Case Chains

3.2.5 MachineLearnModelSchema

A machine learn model that should be applied to the UDF data.

Properties

– framework (required)
The framework that was used to train the model.

· Data type: string enum [sklearn, pytorch, tensorflow, R]

– path (required)
The path to the machine learn model file to which the UDF must have read access.

· Data type: string

– name
The name of the machine learn model.

· Data type: string

– description
The description of the machine learn model.

· Data type: string

– md5_hash
The md5 checksum of the model that should be used to identify the machine learn model
in the UDF storage system. The machine learn model must be uploaded to the UDF
back-end.

· Data type: string

Example
{

"framework": "sklearn",
"name": "random_forest",
"description": "A random forest model",
"path": "/tmp/model.pkl.xz"

}

Listing 5: Example of a MachineLearnModelSchema.

3.3 UDF - Processes

3.3.1 run_udf

Runs an UDF in one of the supported runtime environments. The process can either:

1. load and run a locally stored UDF from a file in the workspace of the authenticated user.
The path to the UDF file must be relative to the root directory of the user’s workspace, so
without the user id in the path.

openEO
Grant agreement No 776242 Page 16 of 37

D24: 1st Iteration of Use Case Chains

2. fetch and run a remotely stored and published UDF by absolute URI, for example from
openEO Hub3).

3. run the source code specified inline as string.

The loaded UDF can be executed as a callback in several processes such as aggregate_temporal,
apply, apply_dimension, filter and reduce. In this case an array is passed instead of a
raster data cube. The user must ensure that the data is properly passed as an array so that the
UDF can make sense of it.

Parameters

– data (required)
The data to be passed to the UDF as array or raster data cube.

· Data types:

· raster-cube (object)

· array:

· Min. number of items: 1

· Array items: Any data type.

– urf (required)
Either source code, an absolute URL or a path to an UDF script.

· Data types:

· uri (string): URI to an UDF

· string: Source code as string

– runtime (required)
An UDF runtime identifier available at the back-end.

· Data type: string

– version
An UDF runtime version. If set to null, the default runtime version specified for each
runtime is used.

· Data type: string / null

· Default value: null

– context
Additional data such as configuration options that should be passed to the UDF.

· Data type: object

· Default value: {} (Empty object)

3https://hub.openeo.org

openEO
Grant agreement No 776242 Page 17 of 37

https://hub.openeo.org
https://hub.openeo.org

D24: 1st Iteration of Use Case Chains

Return Value The data processed by the UDF. Returns a raster data cube if a raster data
cube was passed for data. If an array was passed for data, the returned value is defined by
the context and is exactly what the UDF returned.

· Data types:

· raster-cube (object)

· any: Any data type.

3.3.2 run_udf_externally

Runs a compatible UDF container that is either externally hosted by a service provider or run-
ning on a local machine of the user. The UDF container must follow the openEO UDF specifi-
cation4.

The referenced UDF service can be executed as callback in several processes such as
aggregate_temporal, apply, apply_dimension, filter and reduce. In this case an array
is passed instead of a raster data cube. The user must ensure that the data is properly passed
as an array so that the UDF can make sense of it.

Parameters

– data (required)
The data to be passed to the UDF as array or raster data cube.

· Data types:

· raster-cube (object)

· array:

· Min. number of items: 1

· Array items: Any data type.

– url (required)
URL to a remote UDF service.

· Data type: uri (string)

– context
Additional data such as configuration options that should be passed to the UDF.

· Data type: object

· Default value: {} (Empty object)

Return Value The data processed by the UDF service. Returns a raster data cube if a raster
data cube was passed for data. If an array was passed for data, the returned value is defined
by the context and is exactly what the UDF returned.

4https://open-eo.github.io/openeo-udf/

openEO
Grant agreement No 776242 Page 18 of 37

https://open-eo.github.io/openeo-udf/
https://open-eo.github.io/openeo-udf/
https://open-eo.github.io/openeo-udf/

D24: 1st Iteration of Use Case Chains

· Data types:

· raster-cube (object)

· any: Any data type.

4 UDF Implementations

This chapter describes the UDF interface for both supported programming languages, Python
and R, and has an emphasis on advanced users. Beside giving a rather theoretical view on the
implementation, each section finishes with an example to show how a UDF could look like. How
one could execute UDFs by using the Python client is explained in more detail for the different
use case chains in Section 5.

4.1 Python

The current implementation of the Python 3 UDF framework can be found on the openEO
GitHub site5. It makes use of many Python libraries and provides functionality to access raster
and vector geo-data. Moreover, a command line tool is offered in addition to the API to test
code and process data locally in a user-friendly way. Currently, the Python UDF API has the
following components:

CollectionTile: includes the spatial and temporal extent for raster and vector
collection classes.

SpatialExtent: stands for an axis aligned spatial extent of a collection tile.

RasterCollectionTile: represents a three dimensional raster collection tile with time
information and x/y slices with a single scalar value for each pixel.
A tile represents a scalar field in space and time, for example a
time series of a single Landsat 8 or Sentinel-2A band. A tile may
be a spatio-temporal subset of a scalar time series or a whole
time series.

FeatureCollectionTile: is the vector complement of a RasterCollectionTile. It can be a
subset or a whole feature collection where single vector
features may have time stamps assigned.

StructuredData: represents structured data that is produced by a UDF and can not
be represented as a RasterCollectionTile or FeatureCollectionTile.
For example the result of a statistical computation.

5https://github.com/Open-EO/openeo-udf

openEO
Grant agreement No 776242 Page 19 of 37

https://github.com/Open-EO/openeo-udf

D24: 1st Iteration of Use Case Chains

HyperCube: is a hypercube representation of multi-dimensional data that stores
an xarray, i.e. an xarray.Dataset or an xarray.DataArray, and
provides methods to convert the xarray into the HyperCube JSON
representation.

MachineLearnModel: enables access and usage to machine learning tools. The model
will be loaded at construction, based on the machine learning
framework.

UdfData: stores the arguments for a UDF, which includes lists of the above
data types and information about the spatial reference system.

RasterCollectionTile will be deprecated in the future and will probably be replaced by Hyper-
cube, since a RasterCollectionTile can be also represented by a Hypercube.

The string representation of UDFs and data objects are defined by the UDF schemes de-
scribed in Section 3.2. In Python, three classes are used to store this information:

UdfRequestSchema: is the UDF request JSON specification. It contains two properties,
the code (UdfCodeSchema) and the data (UdfDataSchema).

UdfCodeSchema: stores the UDF code and language specification.

UdfDataSchema: data object that stores raster collection tiles, feature collection
tiles, hypercubes, projection information and machine learn
models. This object is argument for the UDF as well as its
return value.

It has to be noted, that the above classes are not part of the API, but can be used for testing
and debugging purposes.

4.1.1 Example

Building upon the functionalities offered by the Python API, one can now implement his/her
own Python code being only limited by the aforementioned data type conventions. This means
that the input and the output of a UDF are expected to be certain data types, which allow
to translate data to JSON objects. In the following example a simple Normalised Difference
Vegetation Index (NDVI) computation is realised as a UDF.

First, the data, i.e. an xarray.Dataset containing at least two data variables "red" and "nir",
is retrieved from the hypercube. The NDVI formula is then applied to the selected data vari-
ables/bands in a next step and the result is returned by creating a new HyperCube object.

openEO
Grant agreement No 776242 Page 20 of 37

D24: 1st Iteration of Use Case Chains

https://github.com/Open-EO/openeo-udf/blob/udf-api-sprint
/src/openeo_udf/functions/hypercube_ndvi.py
-*- coding: utf-8 -*-

from openeo_udf.api.hypercube import HyperCube
from openeo_udf.api.udf_data import UdfData
from typing import Dict
import xarray

__license__ = "Apache License, Version 2.0"
__author__ = "Soeren Gebbert"
__copyright__ = "Copyright 2018, Soeren Gebbert"
__maintainer__ = "Soeren Gebbert"
__email__ = "soerengebbert@googlemail.com"

def apply_hypercube(cube: HyperCube,context:Dict) -> HyperCube:
"""Compute the NDVI based on a hypercube
A hypercube with a 'band' dimension is required. A 'red' and 'nir' band should be available.
The NDVI computation will be applied to all hypercube dimensions.
Args:

cube (HyperCube): The hypercube object containing an xarray DaraArray
Returns:

a HyperCube containing the computed NDVI, the band dimension will be dropped.
"""
array:xarray.DataArray = cube.get_array()
red = array.sel(band='red')
nir = array.sel(band='nir')

ndvi = (nir - red) / (nir + red)
ndvi.name = "NDVI"

hc = HyperCube(array=ndvi)
return hc

Listing 6: Python UDF example calculating the NDVI.

In terms of a JSON request, one could call this code with some actual hypercube data being
encoded as a JSON object. The Python code (e.g., content of the code snippet shown before)
needs to be given as a string referring to the "source" attribute:

{
"code": {

"source": "{...}",
"language": "python"

},
"data": {

"id": "hypercube_example",
"hypercubes": [

{
"id": "multiband_hypercube",
"dimensions": [

{
"name": "time",

openEO
Grant agreement No 776242 Page 21 of 37

D24: 1st Iteration of Use Case Chains

"coordinates": ["2017-05-01 08:16:11", "2017-05-11 08:20:11", "2017-05-21 08:16:11"]
},
{

"name": "band",
"coordinates": ["blue", "red", "nir", ...]

},
{

"name": "x",
"coordinates": [699965, 699975, 699985, 699995, ...]

},
{

"name": "y",
"coordinates": [7899995, 7899985, 7899975, 7899965, ...]

}
],
"data": [

[[[1017, 1017, 1017, 1017, ...], [...], ...], ...], ...
]

}
],
"proj": "EPSG:32734"

}
}

Listing 7: Example of a Python request, including hypercube data. Note that the data just rep-
resents a snippet of the original example.

4.2 R

Other than the Python implementation, the R UDF implementation uses exclusively the REST
Service approach for the UDF Service component. Therefore, it is a stand-alone micro service.
The in-process approach is not implemented, since there is currently no back-end using R for
processing. To enable this approach in the future, libraries that can run R code in Python and
the other way around could be used, but that needs to be tested. The back-end communicates
with the UDF service via RESTful HTTP requests. The R implementation is by the time of
writing this document restricted to the data type of hypercubes. The input data of a UDF written
in R has to be a hypercube or the deprecated RasterCollectionTile data format, which will not
be further supported by openEO in the future. The output of a R UDF is always a hypercube.
The R UDF service needs the R code and the hypercube data to start the execution of the
UDF. Since this is decoupled from the back-end and other processes that can run in parallel,
it has the advantage of running multiple UDFs in parallel. Additionally, the back-end has the
possibility to scale the UDF executions via load balancing.

openEO
Grant agreement No 776242 Page 22 of 37

D24: 1st Iteration of Use Case Chains

Figure 4.1: Overview of the R UDF implementation setup.

4.2.1 Example

Listing 8 shows an example of a UDF request to the R service. It contains the R code to run a
minimum NDVI calculation over the hypercube data defined in the request. The hypercube has
the dimensions time, bands, x and y in the EPSG:3273 projection. The data element contains
the values of the hypercube as well as an identifier. The source code in the example can access
the input data via the data variable. First, it applies the NDVI formula on the input data resulting
in the variable ndvi_result, whereas the eighth band is the near-infrared band and the fourth
is the visible red band. Afterwards, it applies a minimum time reducer function on the ndvi. The
last line in the code (the min_ndvi variable) defines the return value of the UDF. The complete
JSON request can be viewed at the R UDF repository6.

{
"code": {

"source": "{\n all_dim = names(dim(data))\n
ndvi_result = st_apply(data, FUN = function(X, ...) {\n
(X[8] - X[4])/(X[8] + X[4])\n
}, MARGIN = all_dim[-which(all_dim == \"band\")])\n
all_dim = names(dim(ndvi_result))\n
min_ndvi = st_apply(ndvi_result, FUN = min, MARGIN = all_dim[-which(all_dim == \n
\"time\")])\n
min_ndvi\n}",

"language": "R"
},
"data": {

"id": "hypercube_example",
"hypercubes": [

{
"dimensions": [

{
"name": "time",
"coordinates": ["2017-05-01 08:16:11", "2017-05-11 08:20:11", "2017-05-21 08:16:11"]

},
{

6https://github.com/Open-EO/openeo-r-udf/blob/develop/examples/hypercube_post.json

openEO
Grant agreement No 776242 Page 23 of 37

https://github.com/Open-EO/openeo-r-udf/blob/develop/examples/hypercube_post.json

D24: 1st Iteration of Use Case Chains

"name": "band",
"coordinates": ["B01", "B02", "B03", "B04", ...]

},
{

"name": "x",
"coordinates": [699965, 699975, 699985, 699995, ...]

},
{

"name": "y",
"coordinates": [7899995, 7899985, 7899975, 7899965, ...]

}
],
"data": [

[[[1017, 1017, 1017, 1017, ...], [...], ...], ...], ...
]

}
],
"proj": "EPSG:32734"

}
}

Listing 8: Example of an R request, including the R code and the hypercube data. Note that the
data just represents a snippet of the original example.

5 Use Case Chains

This chapter demonstrates first, exemplary implementations of all use cases, i.e. radar image
compositing (cf. Sec. 5.1), multi-source phenology (cf. Sec. 5.2), forest monitoring (cf. Sec.
5.3) and snow monitoring (cf. Sec. 5.4). The first three use cases are realised by using the
Python client, whereas the last one is based on R code.

5.1 UC1: Radar Image Compositing

Use case 1 aims to create RGB composites from aggregated backscatter data over time. The
combination of the bands is either based on different points in time (e.g., different months)
or polarisations. Depending on the used compositing method these images can be used for
classification and crop monitoring [1]. The following example focuses on the latter case and
combines polarisations from monthly aggregated data from March 2017. VV polarised, average
backscatter is assigned to the red channel, VH polarised, average backscatter to the green
channel and a cross-ratio (VH-VV polarised backscatter in dB) to the blue channel. This use
case can be implemented by solely using the general processes in openEO.

import logging
import numpy as np

import openeo
from openeo import ImageCollection
from openeo.process.process import mean

openEO
Grant agreement No 776242 Page 24 of 37

D24: 1st Iteration of Use Case Chains

logging.basicConfig(level=logging.DEBUG)

connect with EODC back-end
session = openeo.session("nobody", "http://openeo.eodc.eu/openeo/0.4.0")

define region of interest
min_x = 16.1
min_y = 16.6
max_x = 48.6
max_y = 47.2
define start and end date of march
start_date = "2017-03-01"
end_date = "2017-04-01"
define bands
bands = ["VV", "VH"]

initialise/load data cubes
s1a_datacube = session.imagecollection("s1a_csar_grdh_iw")\

.filter_temporal(start_date, end_date)\

.filter_bbox(west=min_x, east=max_x, north=max_y, south=min_y, crs="EPSG:4326")\

.filter_bands(bands)
s1b_datacube = session.imagecollection("s1b_csar_grdh_iw")\

.filter_temporal(start_date, end_date)\

.filter_bbox(west=min_x, east=max_x, north=max_y, south=min_y, crs="EPSG:4326")\

.filter_bands(bands)

merge data cubes
datacube = s1a_datacube.merge(s1b_datacube)

compute mean
mean_datacube = datacube.reduce(mean, dimension="time")

compute cross ratio
vv_band = mean_datacube.band('VV')
vh_band = mean_datacube.band('VH')
cr_band = vh_band - vv_band

set label of spectral entry equal to "CR"
cr_band = cr_band.set_labels(['CR'], dimension='spectral')

apply scaling to each band
vv_band = vv_band.linear_scale_range(inp_min=-2000, inp_max=-1000, out_min=0, out_max=254)
vh_band = vh_band.linear_scale_range(inp_min=-2000, inp_max=-1000, out_min=0, out_max=254)
cr_band = cr_band.linear_scale_range(inp_min=-500, inp_max=0, out_min=0, out_max=254)

merge bands
composite_datacube = vv_band.merge(vh_band)
composite_datacube = composite_datacube.merge(cr_band)

export RGB composite as GeoTIFF
composite_datacube.save_result(format="GeoTIFF", options={"nodatavalue": "255",

"R": "VV",
"G": "VH",
"B": "CR"})

Listing 9: Use case 1 using Python client and predefined processes.

openEO
Grant agreement No 776242 Page 25 of 37

D24: 1st Iteration of Use Case Chains

5.2 UC2: Multi-Source Phenology Toolbox

This use case concentrates on data fusion tools, time-series generation and phenological met-
rics using Sentinel-2 data. It will be tested on several back-end platforms by pilot users from
the Action against Hunger and the International Centre for Integrated Mountain Development.
The here tested processes depend on the availability of orthorectified Sentinel-2 surface re-
flectance data including per pixel quality masks.

In this use case, the goal is to derive phenology information from Sentinel-2 time series data.
In this case, phenology is defined by:

1. Start of season, a date and the corresponding value of the biophysical indicator

2. The maximum value of the growing curve for the indicator

3. End of season, a date and the corresponding value of the biophysical indicator

Multiple biophysical indicators exist, but in this use case, the enhanced vegitation index (EVI)
is used.

We start by importing the necessary packages, and defining an area of interest. During the
algorithm development phase, we work on a limited study field, so that we can use the direct
execution capabilities of openEO to receive feedback on the implemented changes.

%matplotlib inline
import matplotlib.pyplot as plt
from rasterio.plot import show, show_hist
import rasterio

from shapely.geometry import Polygon

from openeo import ImageCollection

import openeo
import logging
import os
from pathlib import Path
import json

import numpy as np
import pandas as pd
import geopandas as gpd

import scipy.signal

#enable logging in requests library
from openeo.rest.imagecollectionclient import ImageCollectionClient

start = "2018-05-01"
end = "2018-10-01"

date = "2018-08-17"

parcels = gpd.read_file('potato_field.geojson')

polygon = parcels.geometry[0]

openEO
Grant agreement No 776242 Page 26 of 37

D24: 1st Iteration of Use Case Chains

minx,miny,maxx,maxy = polygon.bounds

session = openeo.session("nobody", "http://openeo.vgt.vito.be/openeo/0.4.0")

#retrieve the list of available collections
collections = session.list_collections()
s2_radiometry = session.imagecollection("CGS_SENTINEL2_RADIOMETRY_V102_001") \

.filter_bbox(west=minx,east=maxx,north=maxy,south=miny,crs="EPSG:4326")

Listing 10: Use case 2: Connect to the openEO back-end, and create a Sentinel-2 datacube
containing 10m reflectance bands using the Python client.

Preprocessing step 1: EVI computation

Create an EVI data cube, based on reflectance bands. The formula for the EVI index can be
expressed using plain Python. The bands retrieved from the back-end are unscaled reflectance
values with a valid range between 0 and 10000.

B02 = s2_radiometry.band('2')
B04 = s2_radiometry.band('4')
B08 = s2_radiometry.band('8')

evi_cube_nodate = (2.5 * (B08 - B04)) / ((B08 + 6.0 * B04 - 7.5 * B02) + 10000.0*1.0)

evi_cube = evi_cube_nodate.filter_temporal(start,end)

#write graph to json, as example
def write_graph(graph, filename):

with open(filename, 'w') as outfile:
json.dump(graph, outfile,indent=4)

write_graph(evi_cube.graph,"evi_cube.json")

Listing 11: Use case 2: Preprocessing step 1: EVI computation.

No actual processing has occurred until now, we have just been building a workflow consist-
ing of multiple steps.

def show_image(cube,cmap='RdYlGn'):
%time cube.filter_temporal(date,date).download("temp%s.tiff"%date,format='GTIFF')
with rasterio.open("temp%s.tiff"%date) as src:

band_temp = src.read(1)
fig, (ax) = plt.subplots(1,1, figsize=(7,7))
show(band_temp,ax=ax,cmap=cmap,vmin=0,vmax=1)

show_image(evi_cube_nodate)

Listing 12: Use case 2: Displaying the result of the evi_cube.

openEO
Grant agreement No 776242 Page 27 of 37

D24: 1st Iteration of Use Case Chains

Figure 5.1: Visualisation of the evi_cube from the code example in Listing 11.

Preprocessing step 2: Cloud masking

In Sen2cor sceneclassification these values are relevant for phenology:

· 4: vegetated

· 5: not-vegetated: everything else is cloud, snow, water, shadow ...

In openEO, the mask function will mask every value that is set to True.

s2_sceneclassification = session.imagecollection("S2_FAPAR_SCENECLASSIFICATION_V102_PYRAMID") \
.filter_bbox(west=minx,east=maxx,north=maxy,south=miny,crs="EPSG:4326")

mask = s2_sceneclassification.band('classification')

mask = (mask != 4) & (mask !=5)

Listing 13: Use case 2: Cloud masking.

Masks produced by sen2cor still include a lot of unwanted clouds and shadow. This problem
usually occurs in the proximity of detected clouds, so we try to extend our mask. To do that, we
use a bit of fuzzy logic: blur the binary mask using a gaussian filter so that our mask gives us
an indication of how close to a cloud we are.

By adjusting the window size, we can play around with how far from the detected clouds we
want to extend our mask. A 30 pixel kernel applied to a 10m resolution image will cover a 300m
area.

openEO
Grant agreement No 776242 Page 28 of 37

D24: 1st Iteration of Use Case Chains

def makekernel(iwindowsize):
kernel_vect = scipy.signal.windows.gaussian(iwindowsize, std = iwindowsize/4.0, sym=True)
kernel = np.outer(kernel_vect, kernel_vect)
kernel = kernel / kernel.sum()
return kernel

fuzzy_mask = mask.apply_kernel(makekernel(29))
mask_extended = fuzzy_mask > 0.1

write_graph(mask_extended.graph,"mask.json")
mask_for_date = mask_extended.filter_temporal(date,date)

time fuzzy_mask.filter_temporal(date,date).download("mask%s.tiff"%date,format='GTIFF')
#s2_sceneclassification.filter_temporal(date,date).download("scf%s.tiff"%date,format='GTIFF')
time evi_cube_nodate.filter_temporal(date,date).download("unmasked%s.tiff"%date,format='GTIFF')
time evi_cube_nodate.filter_temporal(date,date).mask(rastermask=mask_for_date,replacement=np.nan)

.download("masked%s.tiff"%date,format='GTIFF')

with rasterio.open("unmasked%s.tiff"%date) as src:
band_unmasked = src.read(1)

with rasterio.open("masked%s.tiff"%date) as src:
band_masked = src.read(1)

with rasterio.open("mask%s.tiff"%date) as src:
band_mask = src.read(1)

fig, (axr, axg,axb) = plt.subplots(1,3, figsize=(14,14))

show(band_unmasked,ax=axr,cmap='RdYlGn',vmin=0,vmax=1)
show(band_masked,ax=axg,cmap='RdYlGn',vmin=0,vmax=1)
show(band_mask,ax=axb,cmap='coolwarm',vmin=0.0,vmax=0.8)

Listing 14: Use case 2: Cloud masking kernel.

openEO
Grant agreement No 776242 Page 29 of 37

D24: 1st Iteration of Use Case Chains

Figure 5.2: Visualisation of the evi_cube unmasked (l), masked (m) and the mask itself (r) from
the code example in Listing 14.

Preprocessing step 3: Time series smoothing

Cloud masking has reduced the noise in our signal, but it is clearly not perfect. This is due to
the limitations of the pixel based cloud masking algorithm, which still leaves a lot of undetected,
bad pixels in our data.

A commonly used approach is to apply a smoothing on the timeseries. Here we suggest to
use a ’Savitzky-Golay’ filter.

In the end, the result should be a phenology map, so we need to apply our smoothing method
on the pixel values. We use a UDF to apply custom Python code to a data cube containing time
series per pixel.

The code for our UDF function is contained in a separate file, and shown below:

-*- coding: utf-8 -*-
Uncomment the import only for coding support
from openeo_udf.api.base import SpatialExtent, RasterCollectionTile,
FeatureCollectionTile, UdfData

__license__ = "Apache License, Version 2.0"

def rct_savitzky_golay(udf_data):
from scipy.signal import savgol_filter
import pandas as pd

openEO
Grant agreement No 776242 Page 30 of 37

D24: 1st Iteration of Use Case Chains

Iterate over each tile
for tile in udf_data.raster_collection_tiles:

timeseries_array = tile.data

first we ensure that there are no nodata values in our input,
as this will cause everything to become nodata.
array_2d = timeseries_array.reshape((timeseries_array.shape[0],

timeseries_array.shape[1] * timeseries_array.shape[2]))

df = pd.DataFrame(array_2d)
#df.fillna(method='ffill', axis=0, inplace=True)
df.interpolate(inplace=True,axis=0)
filled=df.as_matrix().reshape(timeseries_array.shape)

#now apply savitzky golay on filled data
smoothed_array = savgol_filter(filled, 5, 2,axis=0)
#print(smoothed_array)
tile.set_data(smoothed_array)

This function call is the entry point for the UDF.
The caller will provide all required data in the **data** object.
rct_savitzky_golay(data)

Listing 15: Use case 2: UDF for applying the ’Savitzky-Golay’ filter.

Now we apply our UDF to the temporal dimension of the data cube. The code block below
displays the API documentation:

smoothed_evi = evi_cube_masked.apply_dimension(smoothing_udf,runtime='Python', dimension='temporal')
timeseries_smooth = smoothed_evi.polygonal_mean_timeseries(polygon)

write_graph(timeseries_smooth.graph,"timeseries_udf.json")
ts_savgol = pd.Series(timeseries_smooth.execute()).apply(pd.Series)
ts_savgol.head(10)

Listing 16: Use case 2: Applying the UDF ’Savitzky-Golay’ filter for the use case.

openEO
Grant agreement No 776242 Page 31 of 37

D24: 1st Iteration of Use Case Chains

Figure 5.3: Visualisation of the timeseries evi_raw, evi_masked and using the smoothing
’Savitzky-Golay’ filter UDF.

Figure 5.3 shows the result of applying a smoothing per pixel. The noise in the time series
seems to be reduced.

5.3 UC3: Forest Monitoring

Use case 3 focus on a change detection method for tropical forest monitoring called Breaks For
Additive Season and Trend (BFASTmonitor) [2]. The algorithm is here applied on Sentinel-1
data acquired from SentinelHub via the VITO back-end. As specified in Listing 17, the UDF
functional approach and the openEO Python client are used with the functionalities of the
BFASTmonitor python module7 to detect breaks in time series for the year 2019. The time
period from 2016 to 2019 is selected to infer the stable historical behaviour of the time series.
The output of the UDF function (bfast4openeo, Listing 17) is a raster with integer values that
represent a day of the year in 2019 when the algorithm detected a break in the time series. The
pseudo-code example below illustrates the whole setup.

7https://bfast.readthedocs.io/en/latest/index.html

openEO
Grant agreement No 776242 Page 32 of 37

D24: 1st Iteration of Use Case Chains

import openeo
import logging
import os
from datetime import datetime, date, time, timedelta
from shapely.geometry import Polygon
from pathlib import Path

logging.basicConfig(level=logging.INFO)

initiate a session to the vito back-end:
VITO_DRIVER_URL = "https://openeo.vito.be/openeo/0.4.0/"
session = openeo.connect(VITO_DRIVER_URL)
load the image collection:
s1 = session.imagecollection("SENTINEL1_GAMMA0_SENTINELHUB",bands=["VV_DB","VH_DB"])

--
prepare a data cupe for the time and area of interest:
--
define the dates and area of interest:
start_date = date(2016,1,1)
end_date = date(2019,11,26)
aoi_polygon = Polygon(

shell=[[-55.8771, -6.7614], [-55.8771, -6.6503], [-55.7933, -6.6503], [-55.7933, -6.7614],
[-55.8771, -6.7614]])

myCRS = "EPSG:4326"

filter to a smaller datacube:
s1_vh = s1.filter_temporal([start_date.strftime("%Y-%m-%dT%H:%M:%S"),

end_date.strftime("%Y-%m-%dT%H:%M:%S")]) \
.filter_bbox(west=aoi_polygon.bounds[0], east=aoi_polygon.bounds[2],

north=aoi_polygon.bounds[3], south=aoi_polygon.bounds[1], crs=myCRS) \
.filter_bands(["VH_DB"])

prepare functions to load the udf code:

def get_resource(relative_path):

return str(Path(relative_path))

def load_udf(relative_path):
with open(get_resource(relative_path), 'r+') as f:

return f.read()

load and apply the udf code on data cube:

BFASTMonitor_udf = load_udf('/local/path/to/BFASTMonitor_code.py')

apply the udf code to reduce the data cube along the time
dimension and get a raster which values shows
the day of the year 2019 where the break was detected:
break_days = s1_vh.reduce(BFASTMonitor_udf, dimension='time')

--
download the deforestation probability map for a certain date:

openEO
Grant agreement No 776242 Page 33 of 37

D24: 1st Iteration of Use Case Chains

--
specify the raster output format
OUTFORMAT = "GTIFF"
download the particular map:
break_days.download("breaks_detected_in_2019.tiff", format=OUTFORMAT)
--

Listing 17: Use case 3: Python client code using the BFASTMonitor_code.py UDF.

def bfast4openeo(udf_data):
udf_data_xr = udf_data.get_array()
from bfast import BFASTMonitor
from bfast.utils import crop_data_dates
from datetime import datetime
import xarray as xr
start_hist = datetime(2016, 1, 1)
start_monitor = datetime(2019, 1, 1)
end_monitor = datetime(2019, 11, 26)
--- revisit parsing of time/labels -----
dates = udf_data_xr.coordinates['time']

data, dates = crop_data_dates(udf_data_xr.values, dates, start_hist, end_monitor)

model = BFASTMonitor(

start_monitor,
freq=365,
k=3,
hfrac=0.25,
trend=False,
level=0.05,
backend='Python',
device_id=0,

)

model.fit(data, dates, n_chunks=1, nan_value=-32768)
breaks_xr = xr.DataArray(model.breaks, coords=[udf_data_xr.coordinates['x'],

udf_data_xr.coordinates['y']], dim=['x', 'y'])
udf_data.set_array(breaks_xr)

bfast4openeo(data)

Listing 18: Use case 3: The BFASTMonitor_code.py UDF code, called for use case 3.

5.4 UC4: Snow Monitoring with radar and optical EO data

The implementation of "UC4: Snow Monitoring with radar and optical EO data" creates a wet
snow map using Sentinel-1 radar data in the first step. In a second step the resulting data cube
is merged with the Modis Snow Cover data cube created by Eurac. These two layers of infor-
mation allow to extract the four classes "no snow", "wet snow", "dry snow" and "snow" for every
available time step. The crucial part of the calculation relies on more complex thresholding and
nested if-else-statements which are expressed through user defined functions. The pseudo
code example below describes the workflow using the openEO R-client and R-UDFs.

openEO
Grant agreement No 776242 Page 34 of 37

D24: 1st Iteration of Use Case Chains

libraries
library(openeo)
library(dplyr)

connection to openEO Eurac back-end
driver_url = "https://openeo.eurac.edu"
user = "guest"
password = "guest_123"

conn = connect(host = driver_url,
user = user,
password = password,
login_type = "basic")

1. Preprocessing Sentinel 1 A radar data for wet snow detection ==============
define timespan
timespan = c("2014-09-01T00:00:00.000Z",

"2015-09-01T00:00:00.000Z")
start an empty process graph
graph = conn %>% process_graph_builder()
load data cubes
s1a_vv = graph$load_collection(id = graph$data$`s1a_t117_epsg3035_20m_VV`,

temporal_extent = timespan)
s1a_vh = graph$load_collection(id = graph$data$`s1a_t117_epsg3035_20m_VH`,

temporal_extent = timespan)
s1a_lia = graph$load_collection(id = graph$data$`s1a_t117_epsg3035_20m_LIA`,

temporal_extent = timespan)
create reference image VV
ref_vv = s1a_vv %>% graph$mean_time()
create reference image VH
ref_vh = s1a_vh %>% graph$mean_time()
calculate ratio vv to reference
rat_vv = s1a_vv %>% graph$calc_cubes(fun = "subtract", ref_vv)
calculate ratio vh to reference
rat_vh = s1a_vh %>% graph$calc_cubes(fun = "subtract", ref_vh)
prepare datacube as input for nagler wet snow algorithm
datacube = graph$merge_cubes(rat_vv, rat_vh, s1a_lia)

2. Wet snow detection using Nagler algorithm =================================
nagler algorithm input description
rat_vv, rat_vh -> vv and vh backscatter ratio of the image versus the
reference transformed to a logarithmic scale (dB).
lia -> local incidence angle in degrees
k,theta1,theta2 -> Tuning parameters used for the computation of the
combined vv-vh ratio image Rc. The values in (Nagler et
al.,2016) are k=0.5, theta1=20, theta2=45
thr -> Threshold in dB. In (Nagler et. al, 2016) THR=-2

2.1 calculate weight (w) for the combined vv-vh ratio (rc) -------------------
filter lia band
lia_band = datacube %>% filter_band("s1a_lia")
define the udf r script
udf_script = quote({

theta1 = 20
theta2 = 45

openEO
Grant agreement No 776242 Page 35 of 37

D24: 1st Iteration of Use Case Chains

k = 0.5
w = st_apply(data, MARGIN = "band", FUN = function(x){

case_when(x > theta1 ~ 1,
x < theta2 ~ k,
TRUE ~ k*(1+(theta2-x)/(theta2-theta1)))

})
return(w)

})
run the udf on the subsetted lia band
port = 5555
host = "http://euracrudfhost"
w = lia_band %>% graph$apply() %>%

graph$run_udf(code = script_udf, host = host, port = port)

2.2 calculate the combined vv-vh ratio (rc): w*rat_vh+(1-w)*rat_vv -----------
rc = datacube %>%

band_arithmetics(data = graph, formula = function(x){x[4]*x[2]+(1-x[4])*x[1]})

2.3 generation of the wet snow map ---
keep only rc and lia bands in datacube
datacube = datacube %>% filter_bands(bands = c("rc", "lia"))
classify based on bands rc and lia into:
1 = wet snow, 2 = no wet snow, 3 = shadow, 4 = overlay
udf_script = quote({

thr = -2
wet_snow = st_apply(data, MARGIN = "band", FUN = function(x){

case_when(x["rc"] < thr ~ 1,
x["rc"] >= thr ~ 2,
x["lia"] < 25 ~ 3,
x["lia"] >= 75 ~ 4)

})
return(wet_snow)

})
wet_snow = datacube %>% graph$reduce("band") %>%

graph$run_udf(code = script_udf, host = host, port = port)

3. Combine the wet snow map with modis snow cover product ====================
Identify the portion of snow which is wet snow
modis_snow: 1 = snow, 0 = no_snow
data_cube_wet_snow: 1 = wet_snow, 2 = no_wet_snow, 3 = shadow, 4 = overlay

load modis snow cover product produced by Eurac Research
modis_snow = graph$load_collection(id = graph$data$`modis_snowcover_product`,

temporal_extent = timespan)
resample modis snow cover datacube to s1a wet snow datacube
modis_snow = graph$resample_cube_spatial(source = "modis_snow",

target = "datacube_wet_snow",
fun = "near")

modis_snow = graph$resample_cube_temporal(source = "modis_snow",
target = "datacube_wet_snow",
fun = "max")

merge sentinel 1 wet snow and modis snow cover
datacube_snow = graph$merge_cubes(datacube_wet_snow, modis_snow)
classify into no_snow = 0, wet_snow = 1, dry_snow = 2, snow = 3
udf_script = quote({

snow_class = st_apply(data, MARGIN = "band", FUN = function(x){
case_when(x["modis_snow"] == 0 ~ 0,

openEO
Grant agreement No 776242 Page 36 of 37

D24: 1st Iteration of Use Case Chains

x["modis_snow"] == 1 & x["wet_snow"] == 1 ~ 1,
x["modis_snow"] == 1 & x["wet_snow"] == 2 ~ 2,
x["modis_snow"] == 1 & x["wet_snow"] %in% c(3,4) ~ 3)

})
return(snow_class)

})
snow_class = datacube_snow %>% graph$reduce("band") %>%

graph$run_udf(code = script_udf, host = host, port = port)
set final node of the graph
graph$save_result(data = datacube_snow, format = "GeoTiff") %>%

graph$setFinalNode()
export snow class map as geotiff
job_id = conn %>% create_job(graph=graph,

title="wet_snow_map",
description="wet_snow_map",
format="GeoTiff")

conn %>% start_job(job_id)
result_obj = conn %>% list_results(job_id)
conn %>% download_results(job = job_id)

Listing 19: Use case 4: R client code using UDF.

6 References

[1] D. Nguyen, K. Clauss, S. Cao, V. Naeimi, C. Kuenzer, and W. Wagner, “Mapping rice sea-
sonality in the mekong delta with multi-year envisat asar wsm data,” Remote Sensing, vol. 7,
no. 12, pp. 15 868–15 893, 2015.

[2] J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, “Detecting trend and seasonal
changes in satellite image time series,” Remote Sensing of Environment, vol. 114, no. 1,
pp. 106 – 115, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S003442570900265X

openEO
Grant agreement No 776242 Page 37 of 37

http://www.sciencedirect.com/science/article/pii/S003442570900265X
http://www.sciencedirect.com/science/article/pii/S003442570900265X

	Executive summary
	Introduction
	User Defined Functions - API
	UDF - Endpoints
	UDF - Schemes
	UdfDataSchema
	HyperCubeSchema
	FeatureCollectionTileSchema
	StructuredDataSchema
	MachineLearnModelSchema

	UDF - Processes
	run_udf
	run_udf_externally

	UDF Implementations
	Python
	Example

	R
	Example

	Use Case Chains
	UC1: Radar Image Compositing
	UC2: Multi-Source Phenology Toolbox
	UC3: Forest Monitoring
	UC4: Snow Monitoring with radar and optical EO data

	References

