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a b s t r a c t

Opinion spam detection is concerned with identifying fake reviews that are deliberately placed to
either promote or discredit a product. Opinionated social media like product reviews are increasingly
important resources for people as well as businesses in the decision-making process and can be easily
manipulated by opportunistic individuals. To reduce this increasing impact of opinion spams, opinion
spam detection approaches have been proposed, which adopt mostly supervised classification methods.
However, in practice, the provided data is largely not labeled and therefore semi-supervised learning
approaches are required instead. To this end, this study aims to analyze the effectiveness of several
semi-supervised learning approaches for opinion spam classification. Four different semi-supervised
methods are evaluated on a dataset of both genuine and deceptive hotel reviews. The results are
compared with several traditional classification methods using the same amount of labeled data.
According to this study, the self-training algorithm with Naive Bayes as the base classifier yields 93%
accuracy. Results show that self-training is the only approach, out of the four tested semi-supervised
models, that outperforms traditional supervised classification models when limited data is available.
This study further shows that self-training can mitigate labeling efforts while retaining high model
performance, which is useful for scenarios where limited data is available or retrieving labeled data is
more costly.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Opinionated social media such as product reviews have be-
ome an important resource for individuals and organizations in
he decision-making process. Product reviews can be placed by
nyone and contain the word of mouth information that is in
ost cases not present in the product description itself regarding

he quality, durability, product usage, etc. The rise of e-commerce
latforms caused an enormous growth in the number of opinions
pread online. Due to this trend, opinion spam detection has
ecome a prominent issue.
Opinion spam, also known as fake reviews or review spam,

efers to reviews that intentionally promote or discredit products.
n recent years, opinion spam detection has attracted growing
ttention in research and business communities. The amount of
ublications on opinion spam is growing exponentially [1] in
hese days where the internet has become an integral part of life
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and false information spreads just as fast as accurate information
on the web [2].

Supervised opinion spam classification methods are widely
studied for the opinion spam classification problem. With the
help of labeled data instances, algorithms can detect patterns
in spammer reviews. A relatively undiscovered field in machine
learning is semi-supervised learning (SSL). Semi-supervised
learning refers to the automatic labeling of data instances with
the goal of using non-labeled examples to improve performance
[3]. Directing research efforts towards the implementation of
semi-supervised learning is likely to be rewarding because it
can potentially mitigate the labor-intensive problem of finding
and labeling data. Especially for opinion spam detection, mas-
sive amounts of unlabeled data instances (i.e., product reviews)
are available [4]. There is limited literature available on semi-
supervised methods for opinion spam classification. Hence, it
is not clear whether semi-supervised methods are substantially
improving opinion spam detection performance compared to
traditional supervised methods or not. Also, features that have
been applied so far in this context are rather limited.

This study aims to measure the effectiveness of semi-
supervised learning algorithms for opinion spam classification. To
this end, the following research question is formulated:
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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How effective is semi-supervised learning for opinion spam clas-
ification?

To answer this research question, several experiments with
emi-supervised classification methods are conducted in this
tudy. Results of semi-supervised classification algorithms are
ompared with traditional classification methods. The main con-
ribution of this in-depth study is to explore the potential semi-
upervised classification algorithms in conjunction with different
eature sets.

The remaining part of this paper is organized as follows:
ection 2 presents the background and related work. Section 3
xplains the methodology in general, dataset, semi-supervised
earning techniques, and evaluation metrics. Section 4 presents
he results. Section 5 provides the discussion, and finally, Sec-
ion 6 provides the conclusions.

. Background and related work

Clues to identifying spammers are usually hidden in multiple
spects such as content, behavior, relationships, and interaction
ith the review [5]. Opinion spam detection aims to identify
ultiple features that relate to a fake review. The most widely
vailable feature is the review content, which refers to the actual
extual information in the review. Besides the review content,
he meta-data of the review can reveal valuable information.
ome examples of meta-data are star rating, time of placement,
eviewer IP address, statistics of interaction with the comment,
nd so on. Furthermore, real-life knowledge about the product
ould also reveal spammer clues.
Semi-supervised learning is a branch of machine learning that

akes use of a small set of labeled data and a large set of
nlabeled data to improve learning accuracy. Several assumptions
re made when building semi-supervised learning models. Firstly,
he continuity assumption states that tightly connected instances
re likely to belong to the same class [6]. Secondly, the cluster
ssumption states that data tends to form clusters, and points in
he same cluster are more likely to share class labels [3]. Lastly,
he manifold assumption states that data points lie on a much
ower dimension than the actual input space. Semi-supervised
earning generally comprises six types of methods as depicted in
ig. 1. These methods are graph-based learning, self-training, co-
raining, multi-view learning, low-density separation (LDS), and
enerative models [6–8]. These six main methods are described
n the following subsections.

.1. Types of semi-supervised learning

raph-based learning: Graph-based methods for semi-
upervised learning aim at propagating label information of data
amples to neighboring data samples until a global stable state
s reached. A graph representation of the data is presented with
odes for each labeled or unlabeled example and connections
epresent similarities among labeled as well as unlabeled sam-
les [8]. The graph is constructed using similarity of examples;
wo common methods are to connect each data point to its
\displaystyle k}nearest neighbors (kNN) or examples within a
ertain distance.{\displaystyle \epsilon} Graph-based learning has
hown better classification accuracy compared to self-training
t the cost of more computational complexity. It has become a
radually high performing technique [8].
Two popular algorithms for graph-based learning are Label

ropagation and Label Spreading, which are used for classification
nd regression tasks. Label Propagation uses the raw similarity
atrix constructed from the data without any modifications.
abel Spreading aims at minimizing a loss function that has
egularization properties and is created to be more robust to noise
2

in data. Both of these algorithms aim to propagate labels through
the dataset along high-density areas defined by unlabeled data
instances. Label Spreading can be considered as a variant of Label
Propagation that is often more robust to the noise in data. Both
are default semi-supervised methods in the scikit-learn machine
learning software library. While one study showed that basic
SVM outperformed label propagation and label spreading for the
text classification [9], two recent studies applied these algorithms
successfully for sentiment classification [10,11]. Giasemidis et al.
(2018) applied these algorithms on a dataset that consists of
hundreds of thousands of Twitter messages and showed that
they are fast and accurate for message stance classification [10].
Yang and Shafiq (2018) demonstrated that the label propagation
algorithm is robust for large scale and parallel sentiment analysis
of tweets [11].

Self-training: Self-training, also known as self-learning, is con-
sidered the most popular method for semi-supervised learning
and has been used abundantly [6]. It is a fast and straightforward
method proposed by Yarowsky [12] that trains a classifier on
the partition of labeled data. Subsequently, predictions based on
this classifier are evaluated. The most confidently labeled predic-
tions with a confidence level of at least 80% are added to the
labeled dataset. This process is repeated until the convergence.
Self-training is hard to implement with discriminative classifiers
like SVM. Self-training requires only little labeled examples but
can suffer from poor prediction. Pavlinek & Podgorelec [13] used
self-training and a topic modeling method based on Latent Dirich-
let Allocation (LDA). In this study, the self-training approach
was used to enlarge the labeled set from the unlabeled data
points. The advantage of the self-training approach is its easy
combination with any classification algorithm.

Co-training: Co-training is an extension of self-training that uses
both labeled as well as unlabeled examples [14]. This algorithm
requires an extra view of the data with different and complemen-
tary information about the instance. Two classifiers are trained
separately, and the information obtained from training is shared
with each other. For each class, each classifier predicts one un-
labeled example to add to the set of labeled documents for
each iteration, where predictions are most confident (i.e., at least
greater than alpha). Co-training assumes that each training ex-
ample in the dataset consists of two views (i.e., feature sets)
of data [15]. Each view (i.e., X1 and X2) is a distribution of
features that make up the example. Two feature sets should
provide different and complementary information about the in-
stance (e.g., review content information and meta-data in spam
classification). The algorithm aims at training two classifiers on
the labeled data for both views to iteratively construct additional
labeled examples where the predictions are most confident. The
condition is that two data views X1 and X2 are not directly co-
relatable with each other. Nigam & Ghani (2000) show that when
there are no natural multiple views available, co-training on
multiple views manually generated by random splits of features
can still improve performance. Li et al. [16] showed that the
co-training algorithm outperforms self-training algorithm-based
models for review spam detection.

Multi-view Learning: Multi-view learning is considered a variant
of co-training, that aims at producing multiple models based on
different views (i.e., feature sets) of the data points. Multi-view
learning is also known as data fusion or data integration from
multiple feature sets. Multi-view learning labels data instances
based on a majority vote. When there are no multiple views
available, multiple views manually generated by random splits of
feature sets can still improve the performance [17]. Bhattacharjee
et al. [18] used a multi-view, semi-supervised, active learning
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Fig. 1. Semi-supervised learning types.
ethod to identify malicious social media content. The multi-
iew approach helped to use complementary cues from several
esources.

ow-Density Separation: Low-density separation attempts to
lace boundaries in the regions of the dataset where there are few
ata points, either labeled or unlabeled. The cluster assumption is
n important and prominent issue in LDS [3]. A popular algorithm
hat applies low-density separation is Transductive SVM (TSVM),
lso known as S3VM or SSSVM. The method aims to maximize
he margin between unlabeled data instances, assuming large
argins between label classes. TSVM model is less susceptible to
verfitting compared to the self-training and co-training model.
owever, it is classifier dependent. TSVM has clear optimization
riteria but is hard to optimize and prone to local minima.
esearch efforts mainly go out to find solutions for the non-
onvex nature of TSVM, which makes it hard to find global
inima of the cost function, an important task in many machine

earning algorithms. Li et al. [19] proposed a novel two-view
SVM algorithm and showed that the new approach performs
% better performance than a single view learning algorithm for
eview spam classification. Another advantage of the proposed
pproach is that it is more stable for noisy data.

enerative models: Generative models provide a way of treating
issing information by providing a maximum likelihood estima-

ion [6]. This probabilistic method turned out to be especially
seful for semi-supervised learning, where the label is estimated.
popular generative algorithm in text classification is Multino-
ial Naive Bayes combined with the Expectation–Maximization

EM) algorithm. This method first trains a Naive Bayes classifier
n the labeled data. Subsequently, the probabilities of unlabeled
ata associated with each class are calculated. A new Naive Bayes
lassifier is built with labeled data and estimated labels, which are
sed as true class labels. This process of classifying the unlabeled
ata is iterated until it converges to a stable classifier and set
f labels [20]. Mukherjee and Venkataraman [21] proposed a
ovel unsupervised generative model for detecting opinion spam
nd evaluated the approach on three datasets. Linguistic and
ehavioral clues were used in an unsupervised Bayesian infer-
nce framework. They demonstrated that the proposed model
utperforms the other algorithms across all the datasets.

.2. Related work

Several researchers have studied the text classification prob-
emwith semi-supervised approaches. The work of Rout et al. [15]
ims at testing multiple semi-supervised methods on the ‘gold
tandard’ dataset [22]. A variety of experiments are conducted
ith different input features. Co-training, EM, Label Propaga-
ion, and Label Spreading are included as semi-supervised meth-
ds with multiple base classifiers like kNN, RF, and LogR. They
oncluded that new dimensions like POS tags and LIWC fea-
ures improve performance. Pavlinek & Podgorelec [13] used
elf-training as well as a newly designed topic modeling method
ased on Latent Dirichlet Allocation (LDA) for text classifica-

ion on different news datasets. A newly proposed LDA method

3

is compared with methods like Multinomial Naive Bayes, Self-
Training, SVM, and EM-Multinomial NB. Different algorithms
and ratios of initially labeled sets are tested. They showed that
the newly proposed method could increase performance when
limited data is available. Li et al. [16] studied the review spam
identification problem. They collected their data and conducted
co-training with two views of the data: the content and the user’s
behavior. Their model outperforms self-training models with
only review content involved. Karimpour et al. [23] analyzed the
Expectation–Maximization algorithm for improving web spam
detection. Web content link-based features and linguistic features
were extracted. Naive Bayes with EM algorithm yielded high per-
formance. Hassan and Islam [24] compared semi-supervised with
supervised techniques for detecting fake reviews. Different input
features were used and compared. Naive Bayes outperformed all
other methods used in their study.

Narayan et al. [25] applied PU-learning semi-supervised learn-
ing algorithm [26] with six classification algorithms, namely
Decision Tree, Naive Bayes, SVM, K-NN, Random Forest, Logis-
tic Regression to detect spam reviews and reported that this
algorithm provides maximum accuracy of 78.12%. PU-learning
is the acronym of Positive and Unlabelled learning. Stanton
and Irissappane [27] proposed a new algorithm called spamGAN
based on the Generative Adversarial Networks (GANs) algorithms.
GAN is a popular deep learning algorithm that provided state-of-
the-results on images, but they applied this new algorithm on
textual data. Researchers reported that spamGAN provides better
performance than the other spam detection techniques on the
TripAdvisor dataset. Manaskasemsak et al. [28] proposed a new
semi-supervised graph-based partitioning technique called BeGP
for opinion spam detection. This algorithm creates a user behav-
ioral graph on a dataset collected from the Yelp.com website. The
results are similar to the state-of-the-art solutions. Wu et al. [29]
developed a semi-supervised collaborative learning technique
and identified both spam messages and social spammers. They
used a dataset created based on the data of the Weibo.com
website. They reported that their approach provides better per-
formance than several semi-supervised learning methods such
as S3VM, self-training, and co-training. Li et al. [30] developed
a semi-supervised deep social spammer detection model called
SSDMV and investigated its performance on datasets created
from Twitter and Sina Weibo. They concluded that SSDMV pro-
vided better performance than the existing algorithms in terms
of effectiveness and robustness. Yelundur et al. [31] proposed
a semi-supervised binary multi-target extension to the unsu-
pervised model (SENTINEL) for the detection of review abuse.
They performed experiments on the Amazon Customer Reviews
dataset and demonstrated that their inference achieves faster
convergence than online EM and stochastic gradient. Also, they
showed that their model achieves higher precision/recall than
unsupervised techniques. Alvari et al. [32] developed a semi-
supervised causal inference for detecting Pathogenic Social Media
(PSM) accounts that spread misinformation. They used a semi-
supervised Laplacian SVM to detect these users. Features were
extracted from the user activity log. They showed the effective-

ness of the model in a dataset created from tweets. Yilmaz and
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urahim [33] used the dense document and node embeddings for
pam review detection and developed a semi-supervised spam
eview detection framework. In this framework, they eliminated
he manual feature engineering step and showed that the com-
ined feature vectors provide better performance than the exist-
ng algorithms. Wang et al. [34] developed a new model based
n semi-supervised recursive autoencoders for spam review de-
ection. Experiments were performed on a dataset collected from
ina Weibo that is a popular social networking platform in China.
hey concluded that the proposed model is effective in detecting
pam reviews. Deng et al. [35] proposed a new semi-supervised
earning algorithm based on PU-Learning that uses multi-aspect
eatures. Autoencoder algorithm was applied for dimensionality
eduction and K-means was used to classify the data. Metadata
eatures and content-related features were used for building the
odel. Zhang et al. [36] developed a semi-supervised learning
ased spammer group detection method. This model uses the
aive Bayes algorithm on a small labeled dataset and then, uses
nlabeled data with the Expectation–Maximization algorithm to
mprove the classifier iteratively. They showed that the proposed
odel is efficient on Amazon.cn datasets. Imam et al. [37] pro-
osed a semi-supervised learning approach for managing the
witter spam drift. Since spam review characteristics can change
ver time, it is crucial to develop models that can handle this
rift. They applied YATSI (Yet Another Two-Stage Idea) semi-
upervised learning algorithm and Random Forest was selected
s the base classifier in their model. Chengzhang et al. [38] used a
hree-view semi-supervised learning algorithm called tri-training
or spam review detection. They showed that it provides bet-
er performance than the two-view co-training and single-view
lgorithm on the AliExpress dataset. Ahsan et al. [39] used the
ctive Learning algorithm that is a semi-supervised algorithm for
ake review detection and reported that this algorithm provides
romising opportunities. Aghakhani et al. [40] used Generative
dversarial Networks (GANs) for detecting deceptive reviews.
nlike the traditional GAN algorithm, they applied two discrim-
nator models and one generative model. They reported that
heir model provided the same accuracy as the performance of
upervised learning algorithms on TripAdvisor hotel reviews. Xu
t al. [41] proposed the Semi-supervised Sequential Variational
utoencoder (SSVAE) algorithm and demonstrated that SSVAE
mproves the accuracy compared to the supervised classifiers
n Large Movie Review Dataset (IMDB) and AG‘s News Corpus.
his study focused on text classification and did not analyze its
erformance on fake review detection datasets.

. Methodology

This research aims at analyzing the effectiveness of a variety
f semi-supervised learning methods and different experimen-
al setups for opinion spam classification. Four semi-supervised
ethods with different base estimators are compared with sev-
ral traditional classification methods, namely SVM, NB, and RF.
or each semi-supervised learning algorithm, different input fea-
ures and ratios of initially labeled data instances are explored.
dditionally, the best performing experimental setup for each
emi-supervised model is tested against the same model with
nly positive polarity or only negative polarity data instances
ncluded.

.1. Dataset

For this study, the ‘gold standard’ dataset is adopted [22]. The
alanced dataset contains 1600 reviews of hotels in the area of
hicago, USA. There are 800 deceptive reviews and 800 genuine

eviews. Both genuine and deceptive review items consist of 400

4

positive and 400 negative polarity instances. The genuine reviews
are derived from the web, deceptive reviews are created with
Amazon Mechanical Turk.

To test the generalization of the results, experiments with two
additional datasets are conducted. The first additional dataset [42]
is a balanced dataset of Yelp hotel reviews with 780 deceptive
and 780 genuine reviews. The deceptive reviews consist of 496
positive and 284 negative polarity instances, the truthful reviews
consist of 631 positive and 149 negative polarity instances. The
second additional dataset [43] is a balanced dataset of Yelp
restaurant reviews, with 800 deceptive and 800 genuine reviews.
The deceptive reviews consist of 489 positive and 311 negative
polarity instances, the truthful reviews consist of 529 positive and
271 negative polarity instances. This study focuses on classifying
reviews judging from the content of the review since the dataset
does not supply information on meta-data of the review or the
opinion holder of the review.

3.2. Data preparation

Fig. 2 shows the flowchart of the data preparation phase.
The dataset is downloaded from the website [22] and imported
into the Python 3 Jupyter Notebook. Tokenization took place for
further processing, after which stop words are removed from
the data. Lemmatization is applied, removing inflectional endings
from words to create a more basic representation of the text.
In some experiments, POS tags are assigned to the tokens. After
the pre-processing phase, vectorization is applied, where sparse
vectors are created for each data instance with 0s representing
absent words and 1s representing present words. Some experi-
ments include vectors with TF-IDF values instead of 1s. Labels are
assigned to each data instance as follows: a 0 or 1 for respectively
genuine or deceptive reviews.

To reduce dimensionality, the top 1000 features that are con-
sidered the strongest predictors for the class label are selected
and used for the experiments in this study. Feature selection is
performed with the Chi-Square test. This method aims to identify
features that class labels are highly dependent on and weeds out
features that seem likely to be independent of class. This study
tests both unigrams and bigrams. In both cases, the top 1000
features (i.e., highest F-value in chi-square) are included.

For example, for truthful reviews, some of the selected words
are enormous, beer, especially, asked, and helpful. For deceptive
reviews, some words are awful, fully, impossible, greeting, and
historic.

A test is conducted to estimate the optimal number of features.
The co-training algorithm with three different base classifiers is
tested with instances of 500, 1000, and 5000 features. Details of
the use of co-training algorithm (i.e., data views) are presented
in Section 3.3. The accuracy values of co-training with SVM are
respectively 0.85, 0.87, 0.86. For co-training with Naïve Bayes, the
accuracy values are respectively 0.89, 0.91, 0.88. For co-training
with Random Forests, the accuracy values are respectively 0.87,
0.88, 0.86. In each of the three experiments, the 1000-feature in-
stance performs the best. After the feature selection, the dataset is
split into the training set and testing set with training to the test-
ing ratio of 80:20. For the semi-supervised learning experiments,
a percentage of labels of the training set are removed.

3.3. Semi-supervised methods

Different experiments are conducted with the prepared data.
Semi-supervised learning algorithms discussed below are in-
cluded in our experiments. All experiments are conducted by
using Python programming language and the scikit-learn library.

Some external libraries are imported that are made compatible
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Fig. 2. Data Preparation Process.
ith the scikit-learn. Grid Search is applied to select the opti-
al hyperparameters for base classifiers of classification models.
ection 4 presents the results of the models.

elf-training: Several experiments are conducted with the self-
raining algorithm. The classification model is built with different
ase estimators (SVM, NB, RF), different input features (Uni-
rams, Bigrams, TF-IDF values, POS-tags), and different ratios of
abeled data (5%, 10%, 20%). Results are compared with traditional
upervised methods.

o-training: The condition for the co-training is that two data
iews X1 and X2 are not directly co-relatable with each other. The
irst view X1 used is similar to features used in the self-training
etup. The following linguistic features are extracted from each
eview to create the second view, X2: Polarity value (1 or 0),
umber of words, number of unique words, number of sentences,
verage number of words per sentence, and number of digits
er word. Different experiments are conducted, with both X1,
2, and random splits of X1 features. Only bigrams are used
or X1 because the self-training results show an overall increase
n performance for bigrams compared to unigrams. Just like in
elf-training, different base estimators (SVM, NB, RF), different
nput features (Unigrams, Bigrams, TF-IDF values, POS-tags), and
ifferent ratios of labeled data (5%, 10%, 20%) are used.

SVM (QNS3VM): The QNS3VM algorithm is a type of Trans-
uctive SVM with the quasi-newton optimization method in-
luded [44]. The quasi-newton method is an alternative way of
inding the local minima of the loss function. This method first
btains an initial candidate class in a supervised manner and
ubsequently, makes use of increasing proportions of unlabeled
ata instances to find new insights. Different input features (Uni-
ram, Bigram, TF-IDF, and POS) and ratios of labeled data (5%, 10%,
0%) are explored. No different base estimators are required since
he method runs on Support Vector Machines only. The results
f the TVM are compared with traditional classifiers and other
emi-supervised methods.

abel propagation and label spreading: These algorithms only
ork if a proper similarity measure exists. However, in senti-
ent analysis, label propagation and spreading often favor topic
imilarity over sentiment polarity or other indicators [45], in this
ase, opinion spam indicators. Different input features (Unigram,
igram, TF-IDF, and POS) and ratios of labeled data (5%, 10%, 20%)
re explored.

.4. Evaluation metrics

Four performance metrics are used for the evaluation of the
xperiments as shown in Table 1. Reported results of four met-
ics are obtained from the average results of five-fold cross-
alidation on the original dataset. Different evaluation metrics
an be of interest to different types of analysis. Accuracy is
reliable performance metric for balanced datasets, but more
5

specific evaluations can be applied with the precision, recall, and
F1 score. For instance, when costs for falsely classified positive
instances are high, like in spam detection, precision can be an
essential indicator of the model. In other instances, (e.g., health-
care, banking), actual positives predicted as negative can have
bad consequences. When a balance between precision and recall
needs to be established or if the dataset is imbalanced, F1-score
might be the best metric to use.

The Paired Student’t-test, as proposed by Nadeau and Ben-
gio [46], is used to compare the means of different models. This
statistical test determines whether there is a significant differ-
ence between the average results of five-fold cross-validation
with a confidence level of 95%.

4. Results

This section explains the performance results of different ex-
periments. Table 2 shows the average results of 5-fold cross-
validation experiments for traditional supervised learning mod-
els, which were used as a benchmark for judging the results of
semi-supervised methods explored in this research.

For each table in this section, percentage values in rows
indicate the ratio of labeled data used to train the models. Main
columns (i.e., unigram, bigram, TF-IDF Bigram, POS unigram)
show the input features that are used in the experimental se-
tups and sub-columns (i.e., accuracy (Acc.), precision (Prec.),
recall, F1-measure (F1)) under the main columns represent the
performance results.

Additional experiments: The supervised learning experiments
are tested on two additional datasets. For the Yelp hotel re-
view dataset [42], the best performance (i.e., 73% accuracy) using
limited labeled data (i.e., 20% labeled instances) was achieved
when the Naïve Bayes algorithm was applied together with TF-
IDF values. The same experimental setup with 100% of labeled
data instances scores 81% accuracy.

The experiments on the Yelp restaurant review dataset [43]
yielded a maximum accuracy of 71% with 20% of labeled data
instances and Naïve Bayes classifier with TF-IDF values. The same
setup on 100% labeled data reached 84% accuracy.

4.1. Self-training

Table 3 presents the average results of 5-fold cross-validation
for the self-training model. For each experimental setup having
different conditions, self-training outperforms traditional super-
vised machine learning methods. The performance results of the
self-training model having different ratios of the labeled data
instances perform almost as well as traditional supervised models
trained on all 1600 labeled data instances.

The self-training model with Multinomial Naive Bayes as a
base classifier and bigrams as input feature yield the best per-
formance of 93% accuracy. The performance of the Naive Bayes
classifier is relatively stable during the experiments with different
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Table 1
Adopted evaluation metrics.
Metric Description

Accuracy The number of instances classified correctly
Precision Fraction of relevant instances among retrieved instances
Recall Fraction of the total amount of relevant instances actually retrieved
F1 score Harmonic mean of precision and recall
Table 2
Results of traditional classifiers.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

SVM 5% 0,78 0,85 0,60 0,69 0,71 0,74 0,58 0,63 0,70 0,79 0,55 0,60 0,64 0.68 0.60 0.57
10% 0,80 0,82 0,82 0,81 0,82 0,81 0,84 0,82 0,91 0,91 0,92 0,91 0.71 0.70 0.67 0.68
20% 0,84 0,85 0,82 0,83 0,86 0,87 0,84 0,85 0,88 0,90 0,87 0,88 0.76 0.79 0.71 0.74
100% 0,87 0,88 0,87 0,87 0,90 0,90 0,90 0,90 0,93 0,94 0,92 0,93 0.87 0.87 0.87 0.87

NB 5% 0,78 0,70 0,86 0,76 0,81 0,74 0,89 0,80 0,70 0,72 0,40 0,50 0.74 0.75 0.71 0.67
10% 0,87 0,83 0,94 0,88 0,90 0,88 0,92 0,90 0,85 0,87 0,89 0,86 0.82 0.79 0.84 0.81
20% 0,90 0,90 0,91 0,90 0,92 0,91 0,93 0,92 0,91 0,90 0,93 0,92 0.90 0.90 0.89 0.89
100% 0,92 0,91 0,93 0,92 0,93 0,93 0,94 0,93 0,94 0,93 0,95 0,94 0.92 0.92 0.93 0.92

RF 5% 0,68 0,83 0,40 0,50 0,64 0,54 0,41 0,44 0,60 0,56 0,41 0,42 0.53 0.61 0.53 0.45
10% 0,79 0,83 0,78 0,79 0,84 0,83 0,89 0,84 0,84 0,83 0,86 0,84 0.65 0.67 0.76 0.66
20% 0,83 0,82 0,87 0,84 0,85 0,86 0,86 0,85 0,84 0,84 0,85 0,84 0.80 0.80 0.81 0.80
100% 0,85 0,84 0,86 0,85 0,86 0,85 0,86 0,86 0,86 0,86 0,86 0,86 0.84 0.82 0.87 0.84
ratios of labeled data. The bigram models with 20% of labeled data
result in a higher accuracy compared to the experiments with 10%
or 5% of labeled data.

Other base classifiers’ performance (i.e., SVM and RF) steadily
ncrease when more labeled data is used. Only in the experimen-
al setup with TF-IDF values as input features, the base classifier
VM significantly outperforms (p < 0.05) base classifier Naive
ayes.

dditional experiments: The self-training experiments are
ested on the Yelp hotel review dataset [42] as well. The best
erforming experiment with limited labeled data instances scores
3% accuracy, in the experimental setup Naïve Bayes and TF-IDF
alues on 20% labeled data. The self-training experiments on the
elp restaurant review dataset [43] yielded a maximum accuracy
f 66% with 20% of labeled data instances and the SVM classifier
ith bigrams as input features.
The results of the additional experiments are significantly

ower compared to the experiments on the ‘gold standard’
ataset. This is in line with the results of the traditional su-
ervised classifiers. However, in the case of self-training on the
dditional datasets [42,43], the semi-supervised setup does not
ncrease performance over the traditional classifiers when the
ame amount of labeled data is used.

.2. Co-training

The average results of 5-fold cross-validation experiments
or the co-training model are shown in Table 4. In general, co-
raining does not outperform the self-training. However, there are
ignificant differences in performance under different conditions.
nly for experiments where lower amounts of labeled data are
sed, co-training outperforms some traditional classifiers.
When the linguistic feature set X2 is used, co-training with

VM significantly outperforms (p < 0.05) co-training with Naive
ayes (NB) as the base classifier. However, when co-training is ap-
lied on X1 randomly split into two feature sets, Naive Bayes still
as the best performance overall. Random Forests with random
plit X1 as input features perform significantly better (p < 0.05)
during the co-training experiments compared to self-training ex-
periments. SVM or NB in co-training experiments performs better
than Random Forests. TF-IDF values only improve results for SVM
6

and the POS tags-based model yields improved results compared
to regular unigrams.

Additional experiments: The co-training experiments are tested
on the Yelp hotel review dataset [42]. The best performing exper-
iment, SVM with TF-IDF values on 20% of labeled data instances,
scores 69% accuracy. The co-training experiments on the Yelp
restaurant review dataset [43] yielded a maximum accuracy of
69% on 20% of labeled data instances and the SVM classifier with
TF-IDF bigrams as input features.

The results of the additional experiments are significantly
lower compared to the experiments on the ‘gold standard’
dataset. The semi-supervised co-training setup does not increase
performance over the traditional classifiers when the same
amount of labeled data is used.

4.3. TSVM

Table 5 presents the average results of 5-fold cross-validation
experiments for the TSVM model. TSVM models on unigrams,
bigrams, and POS tagged unigrams perform significantly better
than the traditional SVM model (p < 0.05). Especially, TSVM
performs well on low ratios of labeled data. However, the model
does not outperform the traditional Naive Bayes classifier at any
ratio level.

TF-IDF bigram input features-based models with default hy-
perparameters yield the best performance, as shown in Table 9.
POS tags as input features reduce the performance compared to
regular unigrams, which is remarkable because all other semi-
supervised models yield increased performance with POS tags
compared to regular unigrams. The TSVM method is considered
an improvement to the self-training approach with SVM as a base
estimator. This is confirmed with our results. TSVM outperforms
the self-training with SVM in the setting with unigrams, bigrams,
and POS tags on every ratio of labeled data.

Additional experiments: TSVM experiments on the Yelp ho-
tel review dataset [42] reached a maximum of 65% accuracy
in the setup with bigrams as input features and 20% of the
labeled data used. The same experimental setup on the Yelp
restaurant dataset [43] reached 64% accuracy. The results are
significantly lower compared to the experiments on the ‘gold
standard’ dataset. The TSVM setup does not increase performance
over the traditional classifiers when the same amount of labeled
data is used.
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able 3
esults of self-training models.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Self-Training
+ SVM

5% 0,69 0,71 0,63 0,67 0,71 0,73 0,66 0,69 0,76 0,79 0,7 0,75 0.68 0.71 0.61 0.65
10% 0,74 0,78 0,67 0,72 0,78 0,82 0,72 0,76 0,84 0,9 0,76 0,82 0.76 0.75 0.78 0.77
20% 0,77 0,79 0,73 0,76 0,82 0,85 0,77 0,81 0,9 0,92 0,89 0,9 0.77 0.79 0.75 0.77

Self-Training
+ NB

5% 0,85 0,84 0,87 0,85 0,9 0,9 0,91 0,9 0,67 0,6 0,63 0,59 0.91 0.90 0.93 0.91
10% 0,9 0,9 0,9 0,9 0,92 0,92 0,91 0,92 0,66 0,97 0,35 0,45 0.91 0.89 0.93 0.91
20% 0,91 0,91 0,91 0,91 0,93 0,93 0,92 0,93 0,71 0,58 0,43 0,49 0.91 0.90 0.93 0.92

Self-Training
+ RF

5% 0,5 0,1 0,2 0,13 0,5 0,9 0,21 0,14 0,51 0,52 0,03 0,06 0.54 0.23 0.37 0.28
10% 0,53 0,73 0,06 0,11 0,56 0,78 0,18 0,25 0,6 0,76 0,33 0,41 0.53 0.61 0.81 0.57
20% 0,62 0,85 0,29 0,42 0,66 0,84 0,4 0,53 0,71 0,78 0,58 0,66 0.64 0.76 0.54 0.54
Table 4
Results of co-training models.

X1 = Bigram
X2 = Ling. Feat.

X1 = TF-IDF
X2 = Ling. Feat.

Random Split X1
Bigrams

Random Split POS
Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Co-Training
+ SVM

5% 0,64 0,67 0,68 0,65 0,58 0,72 0,48 0,46 0,68 0,72 0,65 0,66 0.70 0.70 0.70 0.70
10% 0,74 0,78 0,67 0,72 0,73 0,86 0,56 0,67 0,78 0,80 0,74 0,77 0.73 0.70 0.81 0.75
20% 0,81 0,82 0,80 0,71 0,88 0,90 0,85 0,87 0,83 0,86 0,79 0,82 0.81 0.79 0.85 0.82

Co-Training
+ NB

5% 0,65 0,70 0,71 0,63 0,56 0,60 0,39 0,46 0,77 0,88 0,64 0,73 0.71 0.69 0.80 0.73
10% 0,66 0,69 0,67 0,65 0,56 0,55 0,48 0,50 0,79 0,76 0,87 0,81 0.73 0.70 0.81 0.75
20% 0,78 0,73 0,91 0,81 0,59 0,60 0,55 0,57 0,87 0,87 0,89 0,87 0.82 0.81 0.85 0.82

Co-Training
+ RF

5% 0,56 0,59 0,62 0,51 0,57 0,72 0,44 0,41 0,66 0,78 0,61 0,60 0.70 0.71 0.77 0.71
10% 0,63 0,79 0,45 0,51 0,65 0,84 0,40 0,49 0,75 0,86 0,64 0,72 0.70 0.64 0.94 0.76
20% 0,76 0,75 0,78 0,76 0,77 0,78 0,75 0,76 0,82 0,83 0,82 0,82 0.80 0.73 0.94 0.82
Table 5
Results of the TSVM models.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

TSVM with QNS3VM
5% 0.75 0.73 0.80 0.76 0.76 0.74 0.81 0.77 0.53 0.31 0.60 0.41 0.74 0.78 0.69 0.73
10% 0.78 0.75 0.83 0.79 0.81 0.78 0.87 0.82 0.53 0.51 0.60 0.42 0.76 0.76 0.77 0.76
20% 0.83 0.80 0.86 0.83 0.83 0.81 0.87 0.84 0.54 0.52 0.22 0.20 0.81 0.81 0.81 0.81
t
5
t
2

4.4. Label propagation and spreading

The average results of 5-fold cross-validation experiments for
oth label propagation and label spreading are shown in Table 6.
very single experimental setup performs poorly. One reason for
his result might be the fact that the algorithm classifies data in-
tances based on complex internal similarity measures and in this
xperiment, the topic similarity is measured over opinion spam
ndicators similarity. All experimental setups yield significantly
orse performance (p > 0.05) than traditional methods. Bigrams
nd TF-IDF bigrams got slightly better results than unigrams or
OS unigrams.

dditional dataset experiments: The label propagation and la-
el spreading experiments are tested on the Yelp hotel review
ataset [42]. The highest accuracy score is 56% on 20% labeled
ata. The experiments on the Yelp restaurant review dataset [43]
n 20% labeled data yielded a maximum accuracy of 53%. Label
ropagation and spreading do not increase performance over the
raditional classifiers when the same amount of labeled data is
sed.

.5. Grid search

All previously described results are retrieved with the Grid
earch optimization technique applied to find optimal hyper-
arameters. Grid Search is applied for each experimental setup
i.e., each ratio of labeled data instances). Resulting hyperpa-
ameters are used to obtain results for all experimental setups.

able 7 shows the optimal hyperparameters that result from Grid b

7

Search and that are used throughout the results. The hyperparam-
eters were obtained iteratively, by testing different parameters
to eventually obtain the optimal outcome. The hyperparameter
spaces that are explored for each algorithm are shown in Table 8.
In the case of self-training and co-training, only the hyperparame-
ters of the base estimators SVM, NB, and RF are optimized. Table 9
shows the results of the models with default hyperparameters.

The input features of co-training in Table 9 are randomly split
X1 values, the created linguistic features X2 are left out here. In
general, differing hyperparameters dramatically influence results.
For unigrams, POS tagged unigrams, and bigrams, experimental
setups conducted with default hyperparameters yield worse per-
formance compared to grid search optimized hyperparameters.
However, the default setup of TSVM with TF-IDF input features
increases performance dramatically. TSVM seems to heavily rely
on hyperparameters tuning, which is not tuned specifically for
TF-IDF values.

4.6. Aggregate results

Fig. 3 shows the mean accuracy of the traditional supervised
and semi-supervised methods with their best-performing condi-
tions. The results show that self-training is the only method that
significantly outperforms traditional supervised classifiers. The 5%
(M = 0.90, SD = 0.0013) experiment of the best performing self-
raining model performs significantly better (p < 0.05) than the
% (M = 0.81, SD = 0.0625) experiment of the best performing
raditional supervised model. The 10% (M = 0.92, SD = 0.014) and
0% (M = 0.93, SD = 0.011) self-training experiments perform
etter than the 10% (M = 0.90, SD = 0.0600) and 20% (M = 0.92,
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Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Label Propagation
5% 0,50 0,00 0,00 0,00 0,05 0,00 0,00 0,00 0,50 0,00 0,00 0,00 0.49 0.40 0.80 0.52
10% 0,50 0,00 0,00 0,00 0,51 0,17 0,01 0,03 0,53 0,12 0,17 0,14 0.49 0.40 0.80 0.53
20% 0,61 0,59 0,85 0,68 0,57 0,49 0,54 0,48 0,55 0,41 0,27 0,30 0.51 0.51 1.00 0.67

Label Spreading
5% 0,52 0,37 0,07 0,12 0,51 0,26 0,10 0,12 0,52 0,65 0,39 0,32 0.53 0.44 0.68 0.51
10% 0,50 0,20 0,00 0,00 0,52 0,18 0,04 0,07 0,55 0,56 0,13 0,15 0.53 0.62 0.74 0.53
20% 0,65 0,72 0,68 0,62 0,61 0,57 0,54 0,50 0,60 0,42 0,49 0,42 0.51 0.51 1.00 0.67
Table 7
Custom hyperparameters.
% labels Method Custom sklearn parameters

5%

SVM SVC(probability = True, kernel = ‘rbf’, gamma = ‘scale’, C = 3)
NB MultinomialNB(alpha = 0.2)
RF RandomForestClassifier(n_estimators = 150, max_depth = 60, min_samples_split = 20)
TSVM TSVM(kernel = ‘rbf’,C = 0.0002, gamma = 20)
Label Propagation LabelPropagation(kernel = ‘knn’, n_neighbors = 10)
Label Spreading LabelSpreading(kernel = ‘knn’, n_neighbors = 30)

10%

SVM SVC(probability = True, kernel = ‘rbf’, gamma = ‘scale’, C = 9)
NB MultinomialNB(alpha = 0.7)
RF RandomForestClassifier(n_estimators = 150, max_depth = 30, min_samples_split = 20)
TSVM TSVM(kernel = ‘rbf’,C = 0.0002, gamma = 20)
Label Propagation LabelPropagation(kernel = ‘knn’, n_neighbors = 200)
Label Spreading LabelSpreading(kernel = ‘knn’, n_neighbors = 200)

20%

SVM SVC(probability = True, kernel = ‘rbf’, gamma = ‘scale’, C = 3)
NB MultinomialNB(alpha = 0.4)
RF RandomForestClassifier(n_estimators = 150, max_depth = 30, min_samples_split = 20)
TSVM TSVM(kernel = ‘rbf’,C = 0.0002, gamma = 20)
Label Propagation LabelPropagation(kernel = ‘knn’, n_neighbors = 50)
Label Spreading LabelSpreading(kernel = ‘knn’, n_neighbors = 150)
Table 8
Hyperparameter spaces.
Algorithm Hyperparameters Values explored

SVM C 0.00001 to 10
Gamma scale, auto

NB alpha 0.001 to 1

RF n_estimators 10 to 250
max_depth 10 to 200
min_samples_split 2 tot 100

TSVM C 0.00001 to 10
Gamma scale, auto

Label Propagation Kernel knn, rbf
n_neighbors 1 to 250

Label Spreading Kernel knn, rbf
n_neighbors 1 to 250
Table 9
Results based on default hyperparameters.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

SVM 10% 0.57 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.55 0.55 0.99 0.69
NB 10% 0.80 0.77 0.78 0.77 0.87 0.89 0.81 0.85 0.59 0.60 0.06 0.11 0.87 0.85 0.91 0.87
RF 10% 0.64 0.64 0.42 0.48 0.61 0.59 0.30 0.39 0.65 0.66 0.48 0.52 0.74 0.75 0.77 0.75

Self-Training + SVM 10% 0.49 0.40 0.80 0.53 0.49 0.40 0.80 0.53 0.49 0.40 0.80 0.53 0.50 0.00 0.00 0.00
Self-Training + NB 10% 0.87 0.85 0.89 0.87 0.91 0.90 0.92 0.91 0.69 0.73 0.82 0.69 0.91 0.89 0.93 0.91
Self-Training + RF 10% 0.50 0.40 0.80 0.53 0.52 0.61 0.78 0.54 0.54 0.61 0.80 0.59 0.50 0.00 0.00 0.00

Co-Training + SVM 10% 0.58 0.58 0.40 0.41 0.57 0.79 0.40 0.37 0.50 0.30 0.60 0.40 0.53 0.56 0.07 0.10
Co-Training + NB 10% 0.75 0.76 0.77 0.75 0.78 0.77 0.83 0.79 0.75 0.87 0.63 0.71 0.71 0.77 0.70 0.70
Co-Training + RF 10% 0.65 0.68 0.63 0.64 0.70 0.72 0.66 0.69 0.66 0.71 0.56 0.62 0.67 0.70 0.57 0.63

TSVM 10% 0.49 0.20 0.40 0.26 0.49 0.20 0.40 0.26 0.88 0.90 0.85 0.87 0.48 0.29 0.60 0.39

Label Propagation 10% 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.56 0.77 0.15 0.17 0.50 0.00 0.00 0.00
Label Spreading 10% 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.51 0.10 0.01 0.02 0.50 0.00 0.00 0.00
SD = 0.0305) traditional supervised experiments, but the results
re not significant. The best performing experimental setups are
8

shown in Table 10 and corresponding results are visualized in
Fig. 3.
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Table 10
Best performing models.
Method Features Base Classifier Accuracy

5% 10% 20% 100%

Traditional Supervised Bigrams Naive Bayes 0,81 0,90 0,92 0,93
Self-training Bigrams Naive Bayes 0,90 0,92 0,93 –
Co-training TF-IDF + Ling. Feat. SVM 0,58 0,73 0,88 –
TSVM TF-IDF Bigrams – 0.76 0.81 0.83 –
Label Spreading TF-IDF Bigrams – 0,52 0,50 0,65 –
Fig. 3. Best performing models.

4.7. Positive polarity vs. negative polarity training

While half of the data instances in the ‘gold standard’ dataset
is positive in polarity and the other half is negative in polarity.
Table 11 shows the results of the models with the best per-
forming experimental setups when only the positive reviews are
included. Table 12 shows the results when only negative reviews
are included. Traditional NB, self-training, and TSVM perform
significantly better (p < 0.05) when either only positive polarity
r only negative polarity data instances are used. Co-training in
oth the positive-only and negative-only experiments does not
mprove the performance.

. Discussion

This study aims to measure the effectiveness of semi-
upervised methods for opinion spam classification. To provide an
xtensive and complete overview, four semi-supervised methods
ere tested and compared with traditional supervised classifica-
ion methods. Experimental setups with a variety of input fea-
ures, ratios of labeled data instances, and performance metrics
ere explored in detail. The results indicate that the self-training
lgorithm is the only semi-supervised method that generally out-
erforms the traditional supervised classification methods when
he same amount of labeled data instances is used. Co-training,
ransductive SVM, and label propagation models do not perform
etter than traditional supervised classifiers.
Machine learning models generally perform better when more

abeled data is fed into the model. The results of most experi-
ental setups confirmed this statement. However, the traditional
upervised SVM model performs slightly better in the scenario
ith 10% labeled data compared to 20% labeled data, which is a
emarkable finding. This study presents the average results of 5-
old cross-validation experiments. In the case of the 5-fold cross-
alidation evaluation approach, experimental results support the
se of 20% labeled data.
9

Co-training models are known to outperform self-training
models, even when there is no natural independent split in the
feature sets available [17]. In this study, the co-training models
with randomly split unigram or bigram features do not increase
performance over self-training or even the traditional supervised
models. The co-training experiments would likely perform better
if a natural split in the feature set existed. Also, an increase in
performance is expected when both feature sets would contain
1000 items instead of dividing the existing feature set into two
sets of 500 items. The models with an artificially created feature
set X2 with linguistic features as input perform better with base
estimators SVM and random forests, but still do not outperform
self-training with Naive Bayes. SVM and Random Forests gener-
ally perform better when data is dense, like when the linguistic
feature set X2 is introduced.

Transductive SVM is considered an improvement to the self-
training with SVM as the base classifier, that lets newly labeled
data instances float and allows labels to switch during the la-
beling process before determining the best performing model.
The results of the experiments partly confirm the improvement
of TSVM over self-training with SVM. On every ratio of labeled
data and every input feature, except for TF-IDF values, TSVM has
improved results over self-training with SVM.

Label propagation and spreading perform poorly compared to
other classifiers, which is expected. The algorithm propagates
labels through densely populated areas of unlabeled data. Due
to the sparse nature or one-hot-encoded text, these areas can be
hard to define. The poor results are likely due to the algorithm
targeting the wrong type of similarity in unlabeled data instances.
For instance, topic similarity can be favored over opinion spam
indicators when propagating labels [47].

In this study, Grid Search is applied to find the optimal hyper-
parameters for each base classifier or semi-supervised method.
When the results of the experiments with Grid Search derived
hyperparameters are compared to the experiments with default
scikit-learn hyperparameters, significant differences in perfor-
mance are revealed. Most methods show dramatic increases in
performance due to optimized hyperparameters. However, the
TSVM with TF-IDF input features performs better when default
hyperparameters are used, compared to the same model using
optimized hyperparameters for unigrams. This might be because
the optimized hyperparameters for regular unigrams are used for
TF-IDF unigrams experiments as well. For optimal results, Grid
Search should be applied for the TF-IDF input features as well.

To test the generalization of the results, experiments on addi-
tional datasets are conducted. The different models performmuch
better on the ‘gold standard’ dataset [22] compared to the two
Yelp review datasets [42,43]. A reason for this might be that the
‘gold standard’ deceptive reviews are crowdsourced, where the
deceptive Yelp reviews are commercial fake reviews, placed by
manipulative individuals. Also, the distribution of positive and
negative polarity data instances is not balanced for the Yelp
datasets, which might cause a decrease in the model’s perfor-
mance. The differences in performance of the models indicate
that the research findings cannot be generalized well to real-life
scenarios such as online review websites.
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able 11
esults based on only positive polarity data instances.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

NB
5% 0.65 0.67 0.89 0.73 0.70 0.72 0.87 0.76 0.62 0.62 0.10 0.74 0.82 0.80 0.55 0.61
10% 0.81 0.76 0.94 0.83 0.84 0.80 0.92 0.84 0.63 0.64 0.97 0.73 0.86 0.87 0.81 0.83
20% 0.89 0.88 0.92 0.90 0.92 0.93 0.93 0.93 0.90 0.85 0.99 0.91 0.87 0.83 0.94 0.88

Self-Training + NB
5% 0.93 0.90 0.96 0.93 0.94 0.93 0.95 0.94 0.58 0.58 0.98 0.71 0.93 0.91 0.95 0.93
10% 0.92 0.91 0.94 0.92 0.94 0.94 0.94 0.94 0.59 0.63 0.87 0.66 0.93 0.92 0.95 0.93
20% 0.92 0.91 0.94 0.92 0.94 0.94 0.94 0.94 0.86 0.95 0.78 0.85 0.94 0.93 0.95 0.94

TSVM
5% 0.74 0.72 0.79 0.75 0.78 0.77 0.80 0.78 0.55 0.36 0.57 0.43 0.75 0.72 0.84 0.77
10% 0.81 0.79 0.84 0.82 0.81 0.81 0.82 0.81 0.49 0.10 0.20 0.13 0.78 0.76 0.81 0.78
20% 0.84 0.84 0.84 0.84 0.86 0.88 0.84 0.86 0.55 0.14 0.20 0.16 0.82 0.78 0.88 0.83

Label Propagation
5% 0.53 0.21 0.40 0.28 0.51 0.20 0.01 0.02 0.48 0.49 0.61 0.41 0.51 0.11 0.16 0.13
10% 0.50 0.50 0.10 0.67 0.51 0.40 0.40 0.27 0.53 0.38 0.48 0.37 0.51 0.10 0.20 0.14
20% 0.56 0.58 0.87 0.65 0.54 0.50 0.63 0.47 0.53 0.50 0.66 0.49 0.58 0.51 0.68 0.53

X1 = Bigram
X2 = Ling. Feat.

X1 = TF-IDF
X2 = Ling. Feat.

Random Split X1
Bigrams

Random Split POS
Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Co-Training + NB
5% 0.63 0.65 0.70 0.64 0.57 0.57 0.60 0.57 0.70 0.80 0.68 0.69 0.65 0.63 0.90 0.72
10% 0.73 0.67 0.94 0.78 0.60 0.61 0.62 0.59 0.78 0.83 0.77 0.77 0.79 0.81 0.80 0.79
20% 0.78 0.71 0.95 0.81 0.61 0.63 0.56 0.59 0.82 0.83 0.85 0.82 0.84 0.89 0.80 0.83
Table 12
Results based on only negative polarity data instances.

Unigram Bigram TF-IDF Bigram POS Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

NB
5% 0.68 0.68 0.66 0.63 0.75 0.73 0.75 0.72 0.45 0.34 0.38 0.27 0.88 0.82 0.96 0.88
10% 0.67 0.69 0.80 0.69 0.73 0.74 0.85 0.76 0.54 0.63 0.85 0.63 0.78 0.76 0.93 0.83
20% 0.82 0.79 0.91 0.84 0.89 0.88 0.92 0.90 0.66 0.64 0.99 0.76 0.84 0.79 0.94 0.85

Self-Training + NB
5% 0.87 0.82 0.97 0.88 0.94 0.91 0.98 0.94 0.51 0.41 0.80 0.54 0.89 0.83 0.97 0.89
10% 0.91 0.87 0.95 0.91 0.95 0.93 0.97 0.95 0.67 0.84 0.50 0.53 0.89 0.84 0.96 0.90
20% 0.91 0.89 0.95 0.92 0.95 0.94 0.97 0.96 0.82 0.93 0.71 0.77 0.92 0.88 0.97 0.92

TSVM
5% 0.65 0.65 0.69 0.65 0.66 0.68 0.66 0.65 0.49 0.30 0.60 0.40 0.70 0.72 0.68 0.69
10% 0.76 0.74 0.81 0.77 0.79 0.78 0.81 0.80 0.51 0.31 0.60 0.41 0.76 0.76 0.77 0.76
20% 0.81 0.81 0.80 0.81 0.84 0.85 0.83 0.84 0.53 0.60 0.47 0.37 0.80 0.81 0.80 0.80

Label Propagation
5% 0.48 0.29 0.20 0.13 0.48 0.09 0.20 0.13 0.52 0.20 0.01 0.01 0.50 0.20 0.40 0.27
10% 0.51 0.20 0.40 0.27 0.53 0.22 0.39 0.28 0.50 0.20 0.01 0.01 0.53 0.53 0.88 0.64
20% 0.51 0.40 0.40 0.28 0.51 0.20 0.40 0.27 0.57 0.35 0.59 0.44 0.52 0.50 0.61 0.44

X1 = Bigram
X2 = Ling. Feat.

X1 = TF-IDF
X2 = Ling. Feat.

Random Split X1
Bigrams

Random Split POS
Unigram

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Co-Training + NB
5% 0.59 0.59 0.67 0.57 0.54 0.54 0.59 0.56 0.67 0.77 0.62 0.62 0.65 0.58 0.66 0.58
10% 0.70 0.72 0.78 0.70 0.55 0.54 0.55 0.54 0.75 0.73 0.88 0.78 0.71 0.75 0.72 0.70
15% 0.68 0.62 0.94 0.75 0.51 0.50 0.62 0.53 0.82 0.79 0.91 0.84 0.76 0.71 0.92 0.79
The results of the best performing models are compared to
he same experimental setups trained on only positive polarity or
nly negative polarity data instances. The models perform better
hen trained on only one type of polarity. A possible explanation

or this phenomenon is that the data instances that are fed to
he model are now likely to be more similar to each other. Lesser
ariations to the training data could mean that the features that
re strong predictors of class labels are now theoretically more
ften seen and therefore, the classifier can be more confident
bout the output label (i.e., high F-scores in the chi-square test).
or real-world applications, if the polarity of the new data and
raining data is known with high confidence, performance will
ncrease when two different models are trained on both positive
olarity and negative polarity data instances. However, differ-
nces in performance are minor, and training a single model is
ore efficient.
There is an almost infinite number of possible experimental

esigns with differing conditions (i.e., approaches, algorithms,
atasets, input features, features selection methods, evaluation
etrics, partitions of the training and testing sets, etc.). A limited
mount of experimental designs must be picked to retain the
10
scope of the research. Including more designs could improve the
validity of this research. However, current results offer very useful
conclusions for practitioners and researchers in this field. The ef-
fectiveness of a variety of methods is explored in a way that it can
be reproduced by other researchers. It can be concluded that for
opinion spam classification problems, the deployed self-training
models increase performance and mitigate the labor-intensive
problem of labeling additional data instances.

6. Conclusion

In this study, the effectiveness of semi-supervised learning
methods for opinion spam classification is explored with the
help of the gold-standard dataset of hotel reviews developed
by Ott et al. (2011) and two additional Yelp review datasets.
Results show that the self-training algorithm can outperform
traditional supervised classification methods when limited la-
beled data is available. Self-training on the ‘gold standard’ dataset
with Naive Bayes as the base classifier yields the best overall
performance of 93% accuracy. Both self-training with Naive Bayes
as the base classifier and traditional supervised Naive Bayes score
a maximum of 73% accuracy on the Yelp datasets.
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Both semi-supervised and traditional supervised models per-
orm well beyond the capabilities of human judges in opinion
pam classification. The proposed semi-supervised approaches
an mitigate labeling efforts while retaining high performance,
hich is useful for scenarios where retrieving labeled data is
ostly. However, the results cannot be generalized well to real-
ife scenarios. Possible directions for future research include ex-
loring unsupervised approaches for opinion spam detection.
onsidering meta-data and real-life knowledge about reviews and
eviewers can be rewarding for both unsupervised and super-
ised opinion spam detection. In some scenarios where binary
lassification is inadequate, multi-class classification is required.
his is considered a challenging topic and requires more research
fforts, especially when including semi-supervised learning. Fur-
hermore, different application domains for semi-supervised
pinion spam classification can be explored. It would be inter-
sting to compare results on real-world datasets to the results of
uman judges.
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