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Abstract
The quality of wheat flour (WF) is among the highest of cereal flours and therefore, it is one of the most expensive flours 
for manufacturing food products. In developing countries, adulteration of WF by mixing up with lower price cereal flours is 
often seen. Hence, the classification and determination of the adulteration quantity in WF is of great interest. The aim of this 
research was to evaluate the feasibility of FT-IR spectroscopy and multivariate data analysis methods for the detection of adul-
teration of WF with the most likely adulterant barley flour (BF). For this purpose, 20 pure cereal flours and 120 flour blends 
were analyzed using FT-IR spectroscopy with chemometrics. The spectra were collected in the region of 4000–450 cm−1 and 
up to 15 wavenumber regions corresponding to peaks of flour constituents were selected. The classification limit value of 
soft independent modeling of class analogies for detection of BF added to WF was better than 1%. Additionally, 98.25% of 
the flours were correctly classified by linear discriminant analysis. Partial least squares regression was adopted to construct a 
model to quantify the adulteration level. The root mean square error of calibration for sample calibration associated forecast 
parameters was 0.34–1.34% and the root mean square error of cross validation was 0.36–1.50%. Thus, the BF adulterant 
could be detected down to approximately 0.30%.
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1  Introduction

The authentication of agro-food products is of great impor-
tance as clearly evidenced by the large number of major 
adulteration events being revealed in the last decade. Fraudu-
lent practices occurred with a wide variety of agricultural 
products including vegetable oils, milk products and fruit 
juices, but also cereal products (Lohumi et al. 2015; Su and 
Sun 2017). In developing countries, most adulteration in 
cereals happens in WF (Cocchi et al. 2006; Amir et al. 2013; 
González-Martín et al. 2014; Ziegler et al. 2016; Hong et al. 
2017). In these countries, WF is one of the most important 
components of the human diet thanks to its unique nutri-
tional and physical properties. In addition to being a rich 
source of carbohydrates, it contains a suite of valuable bio-
active components (Cocchi et al. 2006; Amir et al. 2013; 
González-Martín et al. 2014; Ziegler et al. 2016; Hong et al. 
2017). In comparison to other common cereal flours, WF 
also has superior features for the manufacture of many food 
products. However, because of its high cost, wheat flour is 
a target for adulteration with cost-effective and poor-quality 
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flours (González-Martín et al. 2014; Lohumi et al. 2015; 
Ziegler et al. 2016; Su and Sun 2017). Apart from consumer 
fraud, adulteration of WF could also pose serious health 
threats such as human cancers, celiac disease etc. (Guo et al. 
2015; Czaja et al. 2016). Hence, there is a need for rapid, 
reliable, and environmentally friendly methods for WF 
authentication.

Recently, various spectroscopic methods with chemomet-
rics models have been evaluated as methods to determine the 
quality and authenticity of cereal products. These include 
techniques like Fourier transform infrared (Ellis et al. 2012; 
González-Martín et al. 2014; Cozzolino 2015), Raman (Ellis 
et al. 2012; González-Martín et al. 2014; Cozzolino 2015; 
Lohumi et al. 2015; Su and Sun 2017), hyperspectral imag-
ing (Lohumi et al. 2015; Su and Sun 2017) and nuclear mag-
netic resonance (NMR) spectroscopy (Ellis et al. 2012; Hong 
et al. 2017). These methods have rapid and non-destructive 
detection characteristics for food quality analysis, as well as 
their capability to investigate foodstuffs with minimum sam-
ple preparation. They lack many disadvantages of conven-
tional methods such as long analysis time, sample handling 
errors and use of chemicals. In the range of spectroscopic 
methods applied for quality control of cereal products such 
as bread (Guo et al. 2015; Ziegler et al. 2016), grain (Coc-
chi et al. 2006; Amir et al. 2013; González-Martín et al. 
2014) and flour (Cocchi et al. 2004; Ferrão and Davanzo 
2005; Georget and Belton 2006; Dong and Sun 2013; 
Hernández et al. 2014; Guo et al. 2015; Sujka et al. 2017), 
especially FT-IR has significant potential. FT-IR combined 
with chemometrics has been successfully applied in sev-
eral food studies. For example, Guo et al. (2015) studied the 
applicability of FT-IR in the mid-infrared region to identify 
fluorescent brighteners in wheat flour (Guo et al. 2015). A 
partial least squares regression (PLSR) model combined 
with FT-IR and FT-Raman was found to give satisfactory 
prediction ranges (R2> 0.980) for quantification of fluores-
cence brighteners. Czaja et al. (2016) reported multivariate 
data analysis of FT-IR and FT-Raman data to establish the 
gluten content in WF. The developed PCA and PLSR models 
presented high accuracy values for R2CV (0.818–0.925) and 
the root mean square error of cross validation (RMSECV) 
(3.46–4.83%) (Czaja et al. 2016). Su and Sun (2016) deter-
mined organic spelt flour adulteration with organic WF, 
non-organic rye and spelt flours. PLSR and multiple linear 
regression (MLR) models were developed, simplified and 
successfully applied in several studies after the selection of 
the optimal wavenumbers. Based on the selected wavenum-
bers, the basic PLSR performed better than MLR with a 
mean R2 of 0.96 (Su and Sun 2016). Sujka et al. (2017) 
constructed robust statistical models allowing classifi-
cation of various flours based on the content of proteins, 
lipids, moisture and ash. Moreover, the nutritional profiles 
including calorific values of unknown flours could obtain 

rapidly and reliably (Sujka et al. 2017). So far, however, 
WF adulteration and the possibility of using spectroscopic 
methods for its detection have not yet been studied. As far 
as we know, the previous studies did not involve the selec-
tion of characteristic bands in FT-IR spectra with different 
chemometrics analyses for the analysis of WF adulteration 
with barley flours (BFs).

In the present study, the feasibility of FT-IR spectroscopy 
with chemometrics for the detection of adulteration of WF 
with cheaper BF samples was investigated qualitatively and 
quantitatively. This includes also the selection of the most 
informative spectral bands. The applicability of FT-IR with 
chemometrics for the differentiation between pure wheat 
flours and other flours was also investigated. Principle com-
ponent analysis (PCA), linear discriminant analysis (LDA), 
hierarchical cluster analysis (HCA) and soft independent 
modeling of class analogies (SIMCA) models were devel-
oped for the classification and differentiation of WF and 
other flours as well as of their blends.

2 � Material and methods

2.1 � Experimental design for sample preparation

Cereal seeds of wheat, barley, oat, rye and triticale were 
supplied from various regions in Turkey. All samples 
[wheat seeds (Ahmet Aga, Karahan, Konya-2002, Bozkir 
and Taner), barley seeds (Beysehir-98, Larende, Karatay-94, 
Konevi-98, Kiral-97), oat seeds (Dirilis, Faikbey, Kahraman, 
Seydisehir, Yeniceri), rye seed (Aslim-94) and triticale seeds 
(Alperbey, Melez, Mikham, Tatlicak), harvested in 2018] 
were donated by the Turkish Ministry of Food, Agriculture 
and Livestock, Bahri Dagdas International Agricultural 
Research Institute (Konya, Turkey). To remove surface con-
taminations, each seed sample was washed with ultra-pure 
water and seeds were then dried before being milled.

A laboratory scale Quadrumat Junior mill (Brabender 
GmbH and Co. KG, Duisburg, Germany) equipped with 
an 80 µm sieve was used to produce pure and homogenous 
flour samples. A total of 20 flours were produced as different 
pure samples; 5 flours of wheat cultivars, 5 flours of barley 
cultivars, 5 flours of oat cultivars, 1 rye flour, and 4 flours 
of triticale cultivars. Flour blends were arranged by mixing 
four diverse cultivars of WFs (n = 4; WF-1 to 4) and three 
diverse cultivars of BFs (n = 3; BF-1 to 3). Homogenization 
was performed by mixing in an agate mortar for 10 min. 
The WF samples were adulterated with BF at nine levels: 
1–50% (Table 1). The description of the sample preparation 
procedure and their codes are given in Table 1.
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2.2 � FT‑IR spectroscopy analysis

For FT-IR spectroscopic measurements, a Perkin-Elmer 
Spectrum 100 model infrared spectrometer (Perkin Elmer, 
Waltham, MA, USA) was utilized. Background corrected 
spectra of flour samples were acquired as 64 scans with a 
resolution of 4 cm−1 with a wavenumber range from 450 to 
4000 cm−1. All spectroscopic experiments were performed 
in four replicates. The spectra were collected as percentage 
transmittance from constant amounts of flour embedded in 
potassium bromide (KBr) pellets. It is well known that the 
advantages of pellets are spectral reproducibility and the 
ability to deal with relatively difficult or limited-mass sam-
ples. Besides, solid samples such as flour samples typically 
have to be diluted with the IR-inactive good stored/dried 
KBr chemical and pressed into the KBr-pellet procedure.

In the first stage of FT-IR spectroscopic measurements, 
the results of attenuated total reflectance (ATR) and KBr-
pellet procedures were tested and compared. To reduce the 
influence of undesired factors on the spectral variability 
and to obtain reproducible results, different factors related 
to the sample preparation procedure were also checked. 
Moreover, to test the reproducibility of the pellet prepa-
ration, the pellets for each flour blends and pure flours 
were prepared three times. Under the same conditions, the 
results of KBr pellet technique were more acceptable and 
reproducible. KBr pellets were prepared by mixing 300 mg 
of KBr with 1 mg of flour sample and pressing the powder 
in a pellet forming system at 10 tons pressure. For each 

flour blend and pure flour samples, pellets were prepared 
in triplicate to test the reproducibility of the pellet prepara-
tion with the aim to reduce the effect of undesired factors 
on the spectral changeability. Pressed pellets were placed 
in a measuring holder and then placed in the measuring 
chamber.

2.3 � Chemometrics and software

Chemometrics analysis of the obtained spectral data was per-
formed with PCA, LDA, HCA, SIMCA and PLSR analyses 
by using Unscrambler®X10.4 Software (CAMO software, 
Oslo, Norway) after the evaluation of the raw spectral data 
with Octave Chemometrics Software (Version 4.2.1, GNU 
General Public License). PCA is a dimension reduction 
technique that generates a few new variables, the so-called 
principal components (PCs), from linear combinations of the 
original variables. This unsupervised exploratory technique 
is generally applied prior to any other more complex dis-
crimination or prediction method (Karuk Elmas et al. 2019). 
The qualitative pattern method, HCA, was based on creating 
tree-structured clusters of samples, according to distances 
between their properties. HCA starts by finding the closest 
pair of cases and merges them to form a cluster. Until all the 
cases are in one cluster, the algorithm continues one step at 
a time, joining pairs of cases, pairs of clusters, or a case with 
a cluster. These steps are presented as a dendrogram which 
represents the similarity clustering between samples. The 
method is defined as hierarchical since once two cases are 

Table 1   Preparation of pure and adulterated flour samples

WF wheat flour, BF barley flour, OF oat flour, RF rye flour, TF triticale flour

Sample sets

Adulterated wheat flour samples 
with barley flours

 1st 12 samples WFs (WF-1 to 4) adulterated with 0% of 3 different BFs (BF-1 to 3)
 2nd 12 samples WFs (WF-1 to 4) adulterated with 1% of 3 different BFs (BF-1 to 3)
 3rd 12 samples WFs (WF-1 to 4) adulterated with 2% of 3 different BFs (BF-1 to 3)
 4th 12 samples WFs (WF-1 to 4) adulterated with 5% of 3 different BFs (BF-1 to 3)
 5th 12 samples WFs (WF-1 to 4) adulterated with 10% of 3 different BFs (BF-1 to 3)
 6th 12 samples WFs (WF-1 to 4) adulterated with 15% of 3 different BFs (BF-1 to 3)
 7th 12 samples WFs (WF-1 to 4) adulterated with 20% of 3 different BFs (BF-1 to 3)
 8th 12 samples WFs (WF-1 to 4) adulterated with 30% of 3 different BFs (BF-1 to 3)
 9th 12 samples WFs (WF-1 to 4) adulterated with 40% of 3 different BFs (BF-1 to 3)
 10th 12 samples WFs (WF-1 to 4) adulterated with 50% of 3 different BFs (BF-1 to 3)

Pure wheat flours and other flour samples
 11th 20 samples 5 different flour cultivars of wheat (WF–1 to 5)

5 different flour cultivars of barley (BF–1 to 5)
5 different flour cultivars of oat (OF–1 to 5)
1 flour cultivar of rye (RF-1)
4 different flour cultivars of triticale (TF–1 to 4)

 Total 140 samples (120 flour blends + 20 pure flours)
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joined in a cluster they remain joined (Kenar et al. 2019). 
The supervised class modeling technique, SIMCA, is gener-
ated by computing two independent PC models and plotting 
the residual distances of samples of each two classes one 
versus the other. Coomans plots from SIMCA analyses are 
useful tools for visualizing the results of the classification 
analysis (Gurdeniz et al. 2008; Rohman et al. 2014; Bor-
ràs et al. 2015; Karuk Elmas et al. 2019). LDA is another 
supervised classification technique in which the number of 
categories and the samples belonging to each category are 
previously defined. The criterion of LDA for selection of 
latent variables maximizes the differences between catego-
ries and minimizes the variances within categories. Clas-
sification results of the model were presented in terms of 
recognition and prediction abilities. Recognition ability 
symbolizes a percentage of successfully classified samples 
in the “training set” and prediction ability represents a per-
centage of correctly classified samples in the “test set” by 
using the model developed during the training step (Arslan 
and Çağlar 2019; Kenar et al. 2019).

First derivative Savitzky–Golay smoothing (Deng et al. 
2012) and SNV (Savitzky and Golay 1964) pre-treatments 
were applied to the FT-IR spectral data to correct the noise, 
possible baseline shifts or global intensity changes. In the 
PLSR analysis, spectral data were divided into two groups as 
“calibration data set” (75% of samples) to create the model 
and “validation data set” (25% of samples) to test the valid-
ity of the model. For the established prediction models, 
full cross-validation was performed with as many subsets 
as were included in the calibration matrix (leave-one-out 
method). 1080 spectra (90 flour samples, 3 pellets each, 4 
spectra per pellet) were employed for calibration, and 360 
spectra were employed as the validation set. To assess the 
analytical performance of the developed PLSR models, the 
multiple quality descriptors and statistical values [slope, off-
set, R-Square (R2), RMSECV and root mean square error of 
calibration (RMSEC)] were calculated.

2.4 � Physico‑chemical parameters from reference 
methods

The contents of protein, crude fat, carbohydrates, ash and 
moisture for both the pure and the blend flours were deter-
mined using official methods. Protein content (%) of the 
samples was determined according to the American Associa-
tion of Cereal Chemists (AACC) standard method 46-13.01 
(Micro-Kjeldahl method) (American Association of Cereal 
Chemists 1989). Crude fat contents were measured using the 
AACC method 30-25.01, a method based on Soxhlet extrac-
tion using petroleum ether as the solvent. Moisture (%) and 
ash (%) contents were determined using oven drying and 
ashing according to AACC method 44-15.02 and method 
08-01.01, respectively. The total carbohydrate contents 

were calculated using the difference method, i.e. total car-
bohydrate is 100 − (moisture% + ash% + crude fat% + crude 
protein%) (Akubor and Badifu 2004). The analyses were 
performed in triplicate for each sample and the mean values 
with statistical parameters were calculated.

3 � Results and discussion

3.1 � FT‑IR spectra and reference method data 
of flour samples

FT-IR spectra of the pure WF and the other flour samples 
(barley, rye, triticale and oat) are presented in Fig. 1. The 
spectra of the different pure flours are similar and herein, 
it is complicated to distinguish WF from the other flours 
analyzed. Most of the spectral bands and relevant wavenum-
ber ranges have already been assigned (Table 2). The basic 
bands in the flour spectra shown in Fig. 1 are the stretching 
vibration of the O–H bond in the range of 3600–3200 cm−1, 
the stretching vibrations of aromatic and aliphatic C–H 
bonds in the range of 3100–3000 cm−1 and 3000–2800 cm−1, 
respectively, and the unique pattern in the so-called finger-
print region, the region between 1500 and 450 cm−1. In the 
case of the analyzed flour samples, although no large dif-
ferences were observed, small yet significant differences 
occur in the regions between 4000 and 3025 cm−1, 3025 and 
2800 cm−1 and in the 1500 and 450 cm−1 fingerprint region 
(Cocchi et al. 2004; Guo et al. 2015; Sujka et al. 2017). 
Especially relevant are the narrow bands centered around 
2850 cm−1 and the 2200–1400 cm−1 range which have been 
identified by authors as being characteristic of lipid and pro-
tein constituents of several flour samples, respectively. The 
narrow bands around 2850 cm−1 predominantly reflect sym-
metric stretching vibration modes of the C–H bond in alkylic 
–CH2 and –CH3 groups and are primarily because of (bound) 
lipids, as also is the peak of carboxyl C=O at 1745 cm−1. 
The two strong bands at about 1650 and 1540 cm−1, are 
most likely related to combinations of vibration modes of 
the amino acids in the proteins, the amide-I and II groups, 
respectively (Cocchi et al. 2004; Su and Sun 2017).

The FT-IR spectra obtained for the pure and blended 
flours were quite similar (Supplementary Material 1, Fig. 
S1), and differentiation of the analyzed flours was chal-
lenging. As expected, the main spectral bands only con-
tain general information on the molecular skeleton and 
functional groups of flours, which are largely identical 
for all samples. However, individual bands do not provide 
information useful for classification or for determination 
of the degree of purity or level of adulteration of the flour 
samples. Therefore, chemometrics classification models 
using the full or specific region’s spectra could help to 
circumvent this drawback (see Sect. 3.3). To that end, 15 
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spectral regions (υx–υy) were selected (Table 2) based 
on literature information: the ranges 3025–2800 cm−1, 
1835–1585 cm−1, 1585–1495 cm−1 and 1495–1280 cm−1, 
containing information on the proteins present (Cocchi 
et al. 2004; Ferrão and Davanzo 2005; Georget and Bel-
ton 2006; Guo et al. 2015; Sujka et al. 2017), the ranges 
4000–3025  cm−1, 1835–1585  cm−1, 1280–1220  cm−1 
and 950–885 cm−1 containing information on the fats 
(Su and Sun 2017; Sujka et  al. 2017) and the ranges 
4000–3025 cm−1 and 1280–1220 cm−1 related to moisture 
(Moroi et al. 2011; Su and Sun 2017; Sujka et al. 2017). 
The humidity of each flour sample showed no significant 
differences, and this could be seen at 4000–3025 cm−1 
and 1280–1220 cm−1 (Fig. 1). The selected wavenumber 
regions were also evaluated to assess their ability to detect 
WF adulteration using multivariate data analyses.

The results and ANOVA statistics of the standard flour 
analyses (protein, crude fat, carbohydrates, ash, moisture 

contents) determined using the AACC reference methods 
are presented in Table S1 and S2 (Supplementary Materi-
als 7 and 8).

3.2 � PCA, LDA, HCA and SIMCA based on spectra 
of the full wavenumber region

In order to discriminate the WF from other flours and from 
the adulterated wheat flour, PCA, SIMCA, LDA and HCA 
models were created using the spectral data of full region 
(4000–450 cm−1) as input. Prior to multivariate data analy-
sis, SNV and first derivative Savitzky–Golay smoothing 
pretreatments were performed (Fig. S1b, Supplementary 
Material 1).

Fig. 1   FT-IR spectra for flour samples and main transmittance bands 
(υx–υy) [υ1–υ2; 4000–3025  cm−1, υ2–υ3; 3025–2800  cm−1, υ3–υ4; 
2800–2390 cm−1, υ4–υ5; 2390–2350 cm−1, υ5–υ6; 2350–2315 cm−1, 
υ6–υ7; 2315–2290  cm−1, υ7–υ8; 2290–2000  cm−1, υ8–υ9; 2000–
1835  cm−1, υ9–υ10; 1835–1585  cm−1, υ10–υ11; 1585–1495  cm−1, 

υ11–υ12; 1495–1280 cm−1, υ12–υ13; 1280–1220 cm−1, υ13–υ14; 1220–
950  cm−1, υ14–υ15; 950–885  cm−1, υ15–υ16; 885–450  cm−1]. [WF 
wheat flour, BF barley flour, OF oat flour, RF rye flour, TF triticale 
flour]
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3.2.1 � Classification modeling by PCA

The first applied method was PCA, which uses a combina-
tion of the original variables to project them in a space of 
less dimensions while protecting the general unpredict-
ability (Hernández et al. 2014; Borràs et al. 2015). The 
score plot generated from the full spectral data of the pure 
flours is given in Fig. 2a. This plot shows that all types of 
flours are well discriminated from WF, however one type 
of WF is located very close to barley, rye and triticale 
flours, their eigenvalues were 99% (PC1 = 91%, PC2 = 8%) 
and 92% (PC1 = 91%, PC3 = 1%), respectively. The dis-
crimination seen in this model is most likely clarified by 
the dissimilarities of the composition and contents of the 

main ingredients in flour samples. The contents of protein, 
crude fat, carbohydrates, ash and moisture for both the 
pure and the blend flours were determined using official 
methods, and the differences between different samples 
were statistically evaluated with ANOVA. In general, 
ANOVA test results confirmed that the means are signifi-
cantly different at the 0.05 level (Table S1 and S2, Sup-
plementary Materials 7 and 8).

3.2.2 � Discrimination modeling by LDA

Another important supervised chemometrics analysis is 
LDA. The criterion in LDA for selection of variables is 
to maximize the differences between categories while 

Table 2   FT-IR spectral regions selected as predictor candidates for multivariate data analysis, and assignments to vibrational transitions for flour 
samples

ν stretching vibration, δ bending

Stretch-
ing range, 
υx–υy

Wave number range, cm−1 Functional group Mode of vibration References

υ1–υ2 4000–3025 cm−1 δ(O–H) Stretching vibration Czaja et al. (2016), Sujka et al. 
(2017), Wang et al. (2014)

υ2–υ3 3025–2800 cm−1 δ(C–H), δ(N–H) Stretching vibration Czaja et al. (2016), Sujka et al. 
(2017)

υ3–υ4 2800–2390 cm−1 δ(C–H) Stretching vibration Cocchi et al. (2004), Sujka et al. 
(2017)

υ4–υ5 2390–2350 cm−1 δ(C–H) Stretching vibration Su and Sun (2017), Sujka et al. 
(2017)

υ5–υ6 2350–2315 cm−1 δ(C–H), δ(CCH) Stretching vibration Su and Sun (2017), Sujka et al. 
(2017)

υ6–υ7 2315–2290 cm−1 δ(C–H), δ(CCH) Stretching vibration Su and Sun (2017), Sujka et al. 
(2017)

υ7–υ8 2290–2000 cm−1 δ(C–H), δ(CCH) Stretching vibration Cocchi et al. (2004), Sujka et al. 
(2017)

υ8–υ9 2000–1835 cm−1 δ(C–H) Stretching vibration Su and Sun (2017), Sujka et al. 
(2017)

υ9–υ10 1835–1585 cm−1 β-Sheet of amide I, δ(COH), 
δ(CCH), δ(OCH), ν(C–O)

Stretching and bending vibra-
tion

Cocchi et al. (2004), Czaja et al. 
(2016), Guo et al. (2015), Sujka 
et al. (2017)

υ10–υ11 1585–1495 cm−1 β-Sheet of amide II Cocchi et al. (2004), Guo et al. 
(2015)

υ11–υ12 1495–1280 cm−1 δ(C–H), δ(N–H), ν(C–H) Stretching and bending vibra-
tion

Cocchi et al. (2004), Guo et al. 
(2015)

υ12–υ13 1280–1220 cm−1 β-Sheet of amide III, δ(N–H), 
ν(C–H)

Stretching and bending vibra-
tion

Kaddour et al. (2008), Guo et al. 
(2015)

υ13–υ14 1220–950 cm−1 ν(C–O), ν(C–C) Bending vibration Kaddour et al. (2008), Carbonaro 
et al. (2008), Cozzolino et al. 
(2013), Guo et al. (2015)

υ14–υ15 950–885 cm−1 δ(COH), δ(CCH), δ(OCH), 
ν(C–O)

Stretching and bending vibra-
tion

Cozzolino et al. (2013), Su and 
Sun (2017)

υ15–υ16 885–450 cm−1 δ(COH), δ(CCH), δ(OCH) Stretching vibration Cozzolino et al. (2013), Guo et al. 
(2015), Su and Sun (2017)
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Fig. 2   a PCA and b LDA plots for WF and other cereal flours. 
SIMCA plots for c pure wheat flour relative to the other flours and 
d pure wheat flours and pure barley flours, using the 4000–450 cm−1 
data. [WF wheat flour, BF barley flour, OF oat flour, RF rye flour, 

TF triticale flour, PC principle component, PCA principle component 
analysis, SIMCA soft independent modeling of class analogies, LDA 
linear discriminant analysis]
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Fig. 2   (continued)
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simultaneously minimizing the variances within the catego-
ries (Saucedo-Hernández et al. 2011; Borràs et al. 2015). 
LDA models were built with five types of flours (predictors) 
using only the most informative wavenumbers as described 
above. Figure 2b represents the LDA plot of the pure WFs 
and the other pure flour samples obtained using a quadratic 
model. In this figure, the good results for discrimination of 
WF samples from other pure samples were obtained by LDA 
models. A total of 98.25% of the samples studied were prop-
erly discriminated in a cross-validation. One sample of WF 
was observed to deviate in the PCA. For this reason, the 
sample was used as a test case for the LDA. In this model, 
the WF-Karahan sample was classified as BF. When the 
other flour samples were defined as a “training set” in the 
confusion matrix of LDA, all of them were correctly classi-
fied (Table S3, Supplementary Material 9). The confusion 
matrix collects the outputs of the LDA classification model 
and is the initial step to judge the classification performance. 
It is a square matrix with dimensions G × G, where G is the 
number of classes. A column was added to collect the num-
ber of not assigned samples for each class. Each element ngk 
represents the number of samples belonging to class g and 
assigned to class k. Confusion matrix entries on the main 
diagonal represent the number of correct class assignations, 

while off-diagonal entries represent classification errors 
(Ballabio and Consonni 2013).

3.2.3 � Cluster modeling by HCA

The spectra recorded at wavenumber 4000–450 cm−1 were 
constructed to check the similarity or dissimilarity of the 
various flours via HCA. The HCA method clusters the sam-
ples without any prior information of the class membership 
on the basis of a similarity marker (relative distance) and a 
merger rule that joins similar samples into clusters (Fragaki 
et al. 2005; Borràs et al. 2015). Figure 3 presents the den-
drogram for the classification of the samples as obtained 
from the HCA. The dendrogram shows that clear clusters 
were obtained based on the binding distances of the different 
types of flours allowing the diverse types of samples to be 
successfully differentiated from each other (Table S4, Sup-
plementary Material 10).

3.2.4 � Classification modeling SIMCA

A final classification method considered for the discrimi-
nation of WFs from other flours was the supervised clas-
sification method SIMCA (Fig. 2c, d; Fig. S2, Supplemen-

tary Material 2). SIMCA was performed using full region 

Fig. 3   HCA dendrogram of pure WFs and the other cereal flours. [HCA hierarchical cluster analysis]
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data, and Coomans plots with 5% significance level were 
obtained from these analyses (Gurdeniz et al. 2008; Borràs 
et al. 2015). To construct Coomans plot, PCA analyses are 
performed for each group separately and two set models are 
produced against each other with a specific critical level. If a 
sample has a interval to the corresponding centre of critical 
level exceeding the critical distance, it is considered an out-
lier and is rejected from the definite group (Gurdeniz et al. 
2008; Borràs et al. 2015). The SIMCA models consist of two 
main constituents: pure WFs or other pure flours (Fig. 2c), 
or pure WFs and pure BFs (Fig. 2d). The latter is cheap 
adulterant flour and a likely candidate for adulterant use. It 
is clear from Fig. 2c, d that the WFs and flour samples are 
not well separated. Especially the separation of WFs from 
rye flours is difficult. Fortunately, however, the pure WFs 
are well separated from the most likely adulterant BF. This 
means that no pure wheat sample or a barley flour samples 
were incorrectly located into the mistaken classes. SIMCA 
were also carried out using the full region spectra to distin-
guish pure WFs from WF adulterated with BFs. The result-
ing plots are presented in Fig. S3 (Supplementary Material 
3). The limit for detection of BF content in WF was below 
1%. Therefore, the full FT-IR spectra could be highly valu-
able for the estimation of WF adulteration. To identify the 
performance power of SIMCA, the distances between PCA 
used for constructing SIMCA is also presented in Table S5 
(Supplementary Material 11).

3.3 � SIMCA based on spectra of the specific 
wavenumber regions

The main constituents of flours determining the FT-IR spec-
trum are proteins, fats, free fatty acids, carbohydrates, miner-
als and moisture (Cocchi et al. 2004; Cozzolino 2015; Hong 
et al. 2017; Su and Sun 2017). Because these main ingredi-
ents are present in all flours, the total FT-IR spectra are very 
similar and specific information is easily lost in the overall 
picture. Therefore, only multivariate classification mod-
els using 15 specific spectral regions defined in literature 
were considered (Table 2). Models were built using the ten 
most informative regions. For proteins, the spectral regions 
3025–2800 cm−1, 1834–1583 cm−1, 1583–1494 cm−1, and 
1494–1280 cm−1 were considered, for lipids the ranges 
of 3846–3027 cm−1, 1834–1583 cm−1, 1279–1221 cm−1 
and 952–886 cm−1 and for moisture the spectral ranges of 
3846–3027 cm−1 and 1279–1221 cm−1 (Cozzolino 2015; Su 
and Sun 2017; Sujka et al. 2017). In this study, the combined 
spectral regions were used to discriminate pure WF from the 
other pure flour as well as from adulterated WF.

In the first part of the chemometrics, SIMCA was con-
structed for the discrimination of pure WF from pure BF 
and for discrimination of pure WF from the other pure 
flours using a selection of different spectral regions (Fig. 

S4, Supplementary Material 4). The Coomans plots dem-
onstrate that the best discrimination of pure WF from bar-
ley flours is obtained at 4000–3025 cm−1, 3025–2800 cm−1 
and 1835–1585 cm−1. The strong bands between 4000 and 
3025 cm−1 have been attributed to lipids and moisture; bands 
between 3025 and 2800 cm−1 to proteins and the low inten-
sity bands between 1835 and 1585 cm−1 are resulting from 
proteins and, again, lipids.

In the second part of chemometrics analysis, Coomans 
plots for the classification of pure WF-4 vs. WF/BF blends 
and blends of BF-1 were constructed considering infor-
mation from the selected regions of 4000–3025  cm−1, 
3025–2800 cm−1 and 1835–1585 cm−1 only (Figs. 4, 5). From 
the figures, it is clear that pure WF-4 and BF blends are not 
well separated when only using spectral information from 
the selected three regions. However, excellent classifications 
between pure WF-4 and its blends were obtained. This means 
that no samples for pure and adulterated wheat flours were 
incorrectly located into the wrong group. Addition of just 1% 
of barley flours to wheat flour was already noticeable from the 
classification plots build using spectral information from the 
three most informative regions. From these results, it is clear 
that the FT-IR spectral regions that reflect the flour’s molecu-
lar structures and specific functional groups are valuable for 
the assessment of WF adulterations.

SIMCA analyses were performed individually using the 
spectral information from the three most discriminative 
regions to distinguish pure WFs from blends (Fig. S5, Sup-
plementary Material 5). From the obtained Coomans plots, 
it is clear that any of these three optimal regions can be used 
for the detection of WF adulterations.

3.4 � PLSR based on full and selected wavenumber 
regions spectra

To establish a quantitative prediction model for the level of BF 
in WF, blends were investigated and the full spectral data were 
used for PLSR analysis. Calibration models were separately 
developed with PLSR and results were shown in Table 3. 
PLSR could extract significant information from compli-
cated spectra by describing the major types of spectral varia-
tions and relating these to compositional information, in that 
way generating calibration models (Rohman and Man 2012; 
Borràs et al. 2015). Herein, random splitting of the training 
set was performed 100 × and each time, 75% of the training 
objects were used for developing a PLSR model and 25% for 
prediction according to the cross-validation method. Cross-
validation assesses the data by excluding selected samples 
from the regression model and then creating a model using 
the remaining samples. The model is being assessed using the 
samples excluded from the model and the error values for the 
predicted inspections are calculated. Next, new samples are 
then left out from the model set and a new model is built. This 
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Fig. 4   SIMCA plots in the regions of a 4000–450  cm−1, b band-1 
4000–3025  cm−1, c band-2 3025–2800  cm−1 and d band-9 1835–
1585 cm−1 for pure WF-4 samples and blends of WF-4 with all barley 

flours (BF-1, BF-2, BF-3). WF wheat flour, BF barley flour, OF oat 
flour, RF rye flour, TF triticale flour, SIMCA soft independent mod-
eling of class analogies, PCA principle component analysis
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Fig. 4   (continued)
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Fig. 5   SIMCA plots in the regions of a 4000–450  cm−1, b band-1 
4000–3025  cm−1, c band-2 3025–2800  cm−1 and d band-9 1835–
1585  cm−1 for pure WF-4 samples and blends of WF-4 with BF-1. 

[WF wheat flour, BF barley flour, OF oat flour, RF rye flour, TF triti-
cale flour, SIMCA soft independent modeling of class analogies, PCA 
principle component analysis]
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Fig. 5   (continued)
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procedure is repeated until all samples in the PLSR have been 
left out once (Arslan and Çağlar 2019; Karuk Elmas et al. 
2019; Kenar et al. 2019). After predicting all the observations 
using the cross-validation method, the R-square, RMSEC and 
RMSECV values were computed (Table 3). The quantitative 
analysis, PLSR plots for the blends of BF and WF, based on 
the selected wavenumbers are presented in Fig. S6 (Supple-
mentary Material 6).

Table 3 shows that a good linearity is obtained in the plots 
of monitored BF levels vs. predicted BF levels. The slope val-
ues were highly close to 1 and R2 values were at least 0.9926. 
The robustness of the calibration and validation models is 
described by the R2, RMSEC and RMSECV. RMSEC were 
obtained in the range 0.34–1.34% and RMSECV results in 
the range 0.36–1.50%. The difference between RMSEC and 
RMSECV were insignificant, furthermore these values are 
comparable and around 0.50%, which is lower than the 1% 
margin associated with the official methods (Cocchi et al. 
2006). The current FT-IR method combined with multivari-
ate data analysis techniques like PLSR allows rapid detection 
of BF in WF. According to the statistical results of PLSR, 
accurate quantification of the BF is possible at levels > 0.3%. 
Therefore, the results show that the models built are useful not 
only for grossly fraudulent cases, but also for detecting WF 
adulteration with BF at low adulterant levels.

4 � Conclusion

Rapid, non-destructive and reliable methods for detecting of 
WF adulteration were developed based on the combination 
of FT-IR spectroscopy and chemometrics. The results of this 
study show that WF can be discriminated from other flours 
by comparison of their spectral fingerprints. SIMCA models 
provided an excellent classification of pure WF, and the limit 
for the detection of BF in WF was below 1%. Furthermore, a 
total of 98.25% of the pure flours were correctly classified on 
the basis of their origin in calibration and in cross-validation 
by LDA models. The peaks and peak groups of the selected 
spectral regions combined with supervised SIMCA and LDA 
models proved to be capable to provide excellent classifica-
tions and discriminations. Under the optimal conditions, the 
proposed PLSR models are linear (R2 > 0.99). The best pre-
diction abilities for PLSR were obtained with RMSEC and 
RMSECV between 0.34–1.34% and 0.36–1.50%, respectively. 
Consequently, the developed PLSR is able to quantify the con-
tent of the most likely adulterant barley flour at levels < 0.30% 
in an unknown WF sample.
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Table 3   Results of the PLSR 
models for the mixtures of 
barley flours in wheat flours 
using the region of 4000–
450 cm−1

WF wheat flour, BF barley flour, OF oat flour, RF rye flour, TF triticale flour, RMSEC root mean square 
error of calibration, RMSECV root mean square error of cross validation

Sample sets N Calibration set Validation set

Slope Offset RMSEC R-square Slope Offset RMSECV R-square

BF-1 (0–50%)
 WF-1 10 0.9972 0.0484 0.8787 0.9972 0.9973 0.0393 0.9489 0.9970
 WF-2 10 0.9995 0.0093 0.3848 0.9995 0.9990 0.0107 0.4188 0.9992
 WF-3 10 0.9959 0.0761 1.1783 0.9945 0.9934 0.0761 1.1783 0.9945
 WF-4 10 0.9996 0.0074 0.3448 0.9996 0.9996 0.0111 0.3647 0.9994

BF-2 (0–50%)
 WF-1 10 0.9945 0.0946 1.2293 0.9945 0.9935 0.0907 1.3471 0.9943
 WF-2 10 0.9990 0.0178 0.5335 0.9990 0.9990 0.0248 0.5608 0.9991
 WF-3 10 0.9979 0.0370 0.7682 0.9979 0.9978 0.0412 0.8158 0.9976
 WF-4 10 0.9970 0.0527 0.9174 0.9970 0.99968 0.0325 0.9924 0.9969

BF-3 (0–50%)
 WF-1 10 0.999 0.01126 0.4240 0.9993 0.9991 0.0089 0.4598 0.9992
 WF-2 10 0.9948 0.0906 1.2030 0.9948 0.9938 0.1101 1.2720 0.9937
 WF-3 10 0.9995 0.0079 0.3548 0.9995 0.9992 0.0099 0.3920 0.9994
 WF-4 10 0.9935 0.1121 1.3380 0.9935 0.9971 0.0781 1.5004 0.9926
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