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Assessing the impact of bridge construction on the land use/cover and socio- 
economic indicator time series: A case study of Hangzhou Bay Bridge
Lixia Chu a, Yuting Zou b, Dainius Masiliūnas b, Thomas Blaschke a and Jan Verbesselt b

aDepartment of Geoinformatics – Z_GIS, University of Salzburg, Salzburg, Austria; bLaboratory of Geo-information Science and Remote 
Sensing, Department of Environmental Sciences, Wageningen University & Research, Wageningen, The Netherlands

ABSTRACT
Construction of transportation infrastructure is a vital step in boosting economic and societal 
opportunities and often results in land use changes. In this study, we focus on the land use 
dynamics of the urban agglomeration around Hangzhou Bay, where the Qiantang River flows 
into the East China Sea. The Hangzhou Bay Bridge crosses the bay since 2008. We used Interrupted 
Time Series Analysis (ITSA) to analyze the influence of the bridge on the land use and land cover 
(LULC) time series of the surrounding areas and on socio-economic indicators. We applied the 
Random Forest method to classify Landsat imagery from 2000 to 2017, thus enabling us to quantify 
LULC changes before and after the construction of the Hangzhou Bay Bridge. Google Earth Engine 
(GEE) was used for data acquisition, pre-processing, and classification. The results showed that 
during the period from 2000 to 2017, impervious surface areas expanded rapidly at the expense of 
agricultural land, and this transformation continued even more rapidly after 2008. ITSA showed 
that the driver behind the impervious surface area expansion switched from residential and 
industrial area growth in 2000–2008, to exclusively infrastructure area growth in 2008–2017. The 
construction of the bridge accelerated the expansion of impervious surface in the joint area of the 
bridge-connected cities of Ningbo and Jiaxing. With the Hangzhou Bay Bridge connection, various 
socio-economic factors, including tourism, GDP, tertiary industry, real estate investment, and 
highway freight, increased rapidly. The outcomes of this research could contribute to policymaking 
and impact assessments for sustainable urban development and land management. The methods 
used in this study are universal and therefore can also be used to assess the effect of any notable 
event that may impact LULC change.
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1. Introduction

Human activities consistently shape landscapes, trans-
form land use, and influence socio-economic devel-
opment through urban expansion, agriculture 
intensification, infrastructural developments, and nat-
ural resource exploration. In most countries around 
the world, cities with well-developed transportation 
infrastructure spur regional development and attract 
local capital and global investment (Shahtahmassebi 
et al. 2018; Lein and Day 2008; Zheng et al. 2016; 
Yavuz, Attanayake, and Aktan 2017; Thomas and 
Daniel 2013). Well-developed transport infrastructure 
can boost economic and societal opportunities 
through the process of industrialization and urbaniza-
tion (Cai, Zhifeng, and Cheng 2013; Aa and Rich 2013; 
Lin 1999). The coastal plains and active estuaries, 
especially bays and lagoons, usually serve as 
a significant economic resource, supporting 

agriculture, fishing, transportation, mining, and tour-
ism sub-sectors. However, as land resources are lim-
ited, these areas are put under pressure to sustain 
vulnerable ecosystem protection and still fuel eco-
nomic development (McLean et al. 2001; Cui et al. 
2015; Chen et al. 2005; Tian et al. 2016; Hagenaars 
et al. 2017; Halpern et al. 2008). In these areas, land 
use and land cover (LULC) changes rapidly, particu-
larly after the completion of large infrastructure pro-
jects such as the building of a sea-cross bridge. 
Bridges play a role in connecting urban agglomera-
tions, hastening urban and rural sprawl, promoting 
industry, tourism and other socio-economic develop-
ment, but they also affect the local ecosystems 
(Disperati and Salvatore Gonario 2015). The analysis 
of such bridge construction events is important as it 
provides insight into the physical, social and eco-
nomic changes that follow them.
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We selected the Hangzhou Bay agglomeration, 
consisting of four prefecture-level city municipalities 
(Ningbo, Jiaxing, Shaoxing and Hangzhou) of the 
Zhejiang province, as the research area for this 
study. This study focuses on the analysis of the influ-
ence of the opening of the Hangzhou Bay Bridge on 
the LULC of the area and the socio-economic indica-
tors of the cities. Section 2 of this study describes the 
study area and the data used in more detail. Section 3 
describes the workflow of this study: the pre- 
processing of features for use in the LULC classifica-
tion models, the collection of training data for the 
models and the models themselves. The section also 
explains how the models were validated, and 
describes the statistical analysis of the model output 
and corresponding socio-economic data. In section 4, 
the results are presented: the output classified LULC 
maps, the accuracy of these maps, LULC change over 
time in our study area, and the links between socio- 
economic factors and the opening of the Hangzhou 
Bay Bridge. Section 5 provides a discussion of the 
results by comparing this study and previous studies, 
discussing the LULC change trends identified based 
on the classified LULC maps and linking the opening 
of the bridge with LULC and socio-economic indicator 
change. It also includes an overview of the limitations 
of the study and potential for future research. Lastly, 
section 6 summarizes the findings.

Among the studies investigating the influence of 
bridge construction, some focused on assessing the 
influence of bridge construction on changes in built- 
up areas and socio-economic indicators (Xie et al. 
2018; Long et al. 2007). A study on the influence of 
Hangzhou Bay bridge construction used three years 
of Landsat imagery to map the expansion of imper-
vious surface in Cixi county of Ningbo city 
(Shahtahmassebi et al. 2018) and another assessed 
the influence of the bridge construction on the 
urban and social development in Cixi county (Zheng 
et al. 2016).

Most of the previous studies were limited in 
scope to only a comparison of a few years of 
LULC change thus limiting their ability to assess 
how both LULC and socio-economic factors 
evolved over time. Understanding the influence 
of transportation infrastructure construction on 
land use and socio-economic variables is impor-
tant and deserves further research. Modern cloud 
computing platforms such as Google Earth Engine 

(GEE) enable researchers to access multi-source 
data catalogs for geospatial analysis and provides 
the extensive computational capabilities needed 
to deal with a variety of societal and environmen-
tal issues at large scales (Gorelick et al. 2017). We 
used GEE to access and analyze Landsat image 
archives by running a random forest (RF) classifi-
cation to obtain the time series of detailed LULC 
classes from 2000 to 2017. This enabled us to 
quantify the LULC dynamics and analyze the 
changes by comparing the LULC trends before 
and after the opening of the bridge. While the 
most common method of assessing LULC change 
is to perform single-date classification and then to 
do a post-classification analysis, we employed 
a more advanced approach in this study by per-
forming annual LULC classifications and then ana-
lyzing the change trends, thus obtaining robust 
statistics that are not affected by interannual 
variability.

In addition, we adopted a statistical analysis 
method called Interrupted Time Series Analysis 
(ITSA) to track the effect of the bridge construc-
tion. ITSA is a quasi-experimental research design 
to track a time series before and after an interven-
tion and assess the intervention effect. It has been 
widely used in the fields of economics and medi-
cine (Linden 2015; Penfold and Zhang 2013; Lopez 
Bernal et al. 2013). For instance, ITSA has been 
used for evaluating the effectiveness of a new 
medicine or vaccines on population-level health. 
It has the advantage of minimizing the effect of 
confounding factors, in other words the influence 
of unmeasured factors or ones that cannot be 
included in the model explicitly, such as the influ-
ence of seasonality when evaluating new vaccines 
or medicine (Bernal, Cummins, and Gasparrini 
2017). ITSA had not been applied to the LULC 
domain until now. The effect of bridge construc-
tion on LULC can be considered similar to that of 
a vaccine on public health. In addition, ITSA design 
requirements (the intervention, data and outcome 
requirements) make it appropriate for evaluating 
the influence of bridge construction on LULC 
changes (Bernal, Cummins, and Gasparrini 2017). 
Specifically, the method facilitates a LULC compar-
ison with areas that are not affected by the bridge 
construction event, thus dealing with confounding 
effects of other factors that have not been 
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included in the model explicitly. Therefore, we 
used the ITSA method in this study to evaluate 
the influence of the bridge construction on annual 
changes in LULC and socio-economic indicators in 
the urban agglomeration in Hangzhou Bay.

2. Study area and data sources

2.1. Study area

Hangzhou Bay urban agglomeration (Zhejiang, 
China) surrounding Hangzhou Bay Bridge was 
selected as the study area (Figure 1). The area 
covers a spatial extent of approximately 
38,453 km2 and includes 36 counties within four 
prefectural-level city municipalities, that is, 
Hangzhou (16,800 km2), Jiaxing (4,009 km2), 
Shaoxing (8,279 km2) and Ningbo (9,365 km2). 
The combined total population of the area in 
2017 was about 2,347 million people (Feng et al. 
2017). The Hangzhou Bay Bridge, which crosses the 
Hangzhou Bay where the Qiantang River flows into 
the East China Sea, was constructed between 
June 2003 and June 2007. It is the third-longest 
ocean-crossing bridge in the world with an overall 
length of 36 km. The construction of the bridge 
has brought about a series of LULC changes and 
promoted the socio-economic development in the 
area (Zheng et al. 2016; Shahtahmassebi et al. 
2018). The area is mainly covered by forest, 

agriculture, and impervious land. The urban 
agglomeration in Hangzhou Bay has contributed 
significantly to the socio-economic wellbeing of 
the Zhejiang Province and China as a whole, with 
an increase in the gross domestic product (GDP) 
from 3,769 million CNY in 2000 to 31,904 million 
CNY in 2017 (Feng et al. 2017).

2.2. Data sources

Four types of data were used in this study: Landsat 
imagery, ancillary datasets, LULC reference maps, 
and statistical yearbook data (see Table 1). Landsat 
datasets were used to generate the annual time 
series from 2000 to 2017, which served as the basis 
for the LULC classification. Ancillary datasets, 
including Global Surface Water occurrence (Pekel 
et al. 2016) and Shuttle Radar Topography Mission 
(SRTM) digital elevation model (DEM) (Yang, Meng, 
and Zhang 2011), from the GEE platform, were 
used to improve the classification accuracy of 
LULC maps. Four land cover maps from two data-
sets (Chen et al. 2015; Gong et al. 2019) were used 
for the initial stratified random sampling of train-
ing points and for comparison with RF classifica-
tion results as an additional point of reference for 
assessing the classification accuracy.

We acquired a time series of Landsat imagery from 
the Landsat image archives provided by the GEE 

Figure 1. The location of the four prefecture-level city municipalities that comprise the study area, relative to the location of Hangzhou 
bay and the Hangzhou Bay Bridge. The base map is the World Ocean Basemap.
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platform: Landsat 7 ETM+ (2000–2002, 2012), Landsat 
5 TM (2003–2011), and Landsat 8 OLI (2013–2017) 
surface reflectance Tier 1 datasets at 30 m resolution. 
These datasets had already been intercalibrated 
across the different Landsat instruments (Pinto et al. 
2019) and corrected atmospherically using the 
LEDAPS (Masek et al. 2006) and LaSRC algorithms 
(Vermote et al. 2016). For this study, we used the 
cloud, shadow, water and snow mask generated by 
the CFMASK algorithm (Guo et al. 2020), that is 
already provided together with the products, to 
keep only clear pixels for further processing. We 
used Landsat 5 (TM) data to substitute Landsat 7 
(ETM+) data from 2003 to 2011 to avoid data gaps 
owing to the Scanline Corrector (SLC) failure of 
Landsat 7 (ETM+) from 2003 onwards. There was no 
Landsat 5 (TM) imagery in 2012, so we used the 
Landsat 7 (ETM+) data for this year. The imagery for 
2012 was used as-is without attempting to fill the SLC- 
off gaps.

In addition to using the Landsat imagery directly, 
we also used its time series to calculate vegetation 

indices, texture, and harmonic features, to improve 
the classifier performance (Halmy et al. 2015). The 
features derived from the Landsat datasets (Table 1) 
included Normalized Difference Vegetation Index 
(NDVI) (Tucker 1979), Enhanced Vegetation Index 
(EVI) (Liu and Huete 1995), Normalized Difference 
Built-up Index (NDBI) (Zha, Gao, and Shaoxiang 
2003), Soil-adjusted Vegetation Index (SAVI) (Huete 
1988), Modified Normalized Difference Water Index 
(MNDWI) (Xu 2006), and Land Surface Water Index 
(LSWI) (Chandrasekar et al. 2010).

In addition to Landsat derivatives, ancillary data-
sets were used to train the classifier on additional 
features. In particular, SRTM data (30 m spatial resolu-
tion) were used to obtain the elevation and slope 
(Colvocoresses 1981; Yang, Meng, and Zhang 2011), 
and water occurrence from the Joint Research Center 
(JRC) Global Surface Water Mapping Layers (GSWM) 
was used to improve the accuracy of water classifica-
tion (Pekel et al. 2016).

Furthermore, we used reference LULC maps of four 
specific years for two purposes. First, we used the 

Table 1. Overview of input datasets used in this research.

Dataset name Year Source / provider
Detailed 

information

Landsat 5, 7 (ETM+) 30 m (U. 
S. Geological Survey 
2020a, 2020b)

2000-2012 GEE Time series for LULC classification

Landsat 8 (OLI) 30 m (U.S. 
Geological Survey 2020c)

2013-2017

Features for classification 2000-2017 None; derived from the above Landsat data 
using GEE

Spectral features: 
Band 1 to band 7 for Landsat 5 & 7; band 2 
to band 7 for Landsat 8 
Vegetation indices: 
NDVI, EVI, NDBI, SAVI, MNDWI, LSWI 
Texture features: 
Angular Second Moment, contrast, 
variance, correlation, inverse difference 
moment, sum average, entropy, and 
dissimilarity 
Harmonic features: 
Second-order harmonics: amplitude and 
phase

JRC Global Surface Water 
Mapping Layers, v1.1 
(GSWM) (Pekel et al. 
2016)

2000-2017 GEE Occurrence layer, used in classification

Shuttle Radar Topography 
(SRTM) digital elevation 
data 30 m (NASA JPL 
2013)

2000 Elevation and slope data for classification

LULC reference maps, 30m 
resolution 
(Chen et al. 2015; Gong et 
al. 2019)

2000, 2010 GLC30 Reference maps for LULC map comparison 
and training sample stratification2015, 2017 FROM-GLC

Socio-economic data (Feng 
et al. 2017)

2000-2017 Annual statistics yearbook from Municipal 
Statistics Bureau of Jiaxing, Shaoxing, 

Ningbo and Hangzhou prefecture-level 
cities

Economics, food production, population, 
tourism indicators
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reference maps to stratify the study area and obtain 
the locations at which to collect training data for the 
RF model. Second, we used them to compare with the 
RF model output to assess the agreement between 
the two LULC maps as an indicator of accuracy for the 
maps classified by RF. The reference GLC30 maps for 
2000 and 2010 are products derived from Landsat 5 
Thematic Mapper (TM), Landsat 7 (ETM+), and the 
China Environmental Disaster Alleviation Satellite 
(HJ-1) imagery, with substantive auxiliary data (Chen 
et al. 2015). The reference FROM-GLC maps for the 
years 2015 and 2017 are products derived from 
Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper Plus (ETM+) data (Gong et al. 2019).

Lastly, to investigate the influence of the bridge on 
human activities, based on previous studies, we 
selected 10 socio-economic indicators to represent 
three aspects: economics, tourism, and freight (Wu 
et al. 2013; Shahtahmassebi et al. 2018). We obtained 
these socio-economic indicators for 2000 to 2017 
from the city yearbooks of the Municipal Statistics 
Bureaus of Jiaxing, Shaoxing, Ningbo, and Hangzhou 
city (Table 2).

3. Methods

The main methodological steps in this study com-
prised data acquisition, data pre-processing for classi-
fication, and data analysis. Figure 2 shows the 
overview of the workflow, with software and plat-
forms used in this research.

3.1. Data acquisition and pre-processing

As GEE Landsat surface reflectance images were 
already atmospherically corrected (see section 2.2), 
the pre-processing involved masking clouds for all 
the imagery and stacking all imagery into one collec-
tion. Specifically, annual composites of the imagery 
were derived using the median operator and were 
then stacked into one collection in GEE to classify 
LULC. This workflow was carried out for each sensor.

The visible and near-infrared bands served directly 
as spectral features. We calculated the vegetation 
indices (NDVI, NDBI, MNDWI, SAVI, LSWI, EVI), and 
used NDVI to calculate second-order harmonic fea-
tures to capture seasonal characteristics. We also used 
NDVI to calculate texture features. Lastly, JRC GSWM 
data, together with elevation and slope derived from 
SRTM data, served directly as features in the RF model. 
In total, 27 features were collected and calculated for 
the RF LULC classification model.

3.2. Training data collection and classification

We selected training samples using a stratified ran-
dom sampling method based on classes in the refer-
ence map of 2017 obtained from FROM-GLC (Gong 
et al. 2019). The sample points collected for each class 
are listed in Table 3. We selected 200 sampling points 
for agricultural land, as it is a diverse class compared 
to the other vegetated LULC classes. More sampling 
points were selected for the impervious surface class 
(250), to allow for discrimination of three sub-classes 
(residential, industrial, and infrastructure) to more 
precisely identify the change processes within the 
class. Other LULC types were allocated based on the 
proportion of their areas in the reference map of 2017. 
In total, we collected 1100 samples for each year. At 
level 1, we defined a total of 8 LULC classes for this 
study, as shown in Table 3. The legend for the classes 
corresponds to the legend of FROM-GLC. We defined 
level 2 classification as an addition to the level 1 
classification to provide more detailed sub-classes of 
the impervious surface class (see Table 3).

We collected the training data for the land cover 
classification by visually interpreting high-resolution 
imagery at the locations of the training sample points 
(see Zou (2020) for data access). Data collection was 
conducted using the “Collect,” “Collect Earth” and 
“Google Earth Pro” software (see Figure 2), following 

Table 2. Socio-economic indicators used in this research. The 
time span of the data corresponds to the study period 
(2000–2017).

Socio-economic indicator Short Name Unit

Output Value of Primary Industry Primary industry 100 million 
CNY

Output Value of Secondary Industry Secondary 
industry

100 million 
CNY

Output Value of Tertiary Industry Tertiary industry 100 million 
CNY

Per Capita GDP GDP CNY
Household Registration Population Population 10,000 persons
Investment in Fixed Assets Fixed assets 100 million 

CNY
Investment in Real Estate 

Development
Real estate 100 million 

CNY
Total Tourism Revenue Tourism 100 million 

CNY
Total Freight Traffic of Highways Freight 10,000 tons
Total Output of Grain Crops Grain 10,000 tons
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the level 2 classification scheme as defined in Table 3. 
For each point, the LULC class was identified for 
each year in our study period, if high-resolution ima-
gery was available.

Random forest (RF) nonparametric supervised 
classification algorithm (Breiman 2001) has been 
well established for land cover classification (Halmy 
et al. 2015; Colvocoresses 1981; Wu et al. 2013; 
Breiman 2001; Nguyen et al. 2020; Belgiu and 
Drăguţ 2016; Tokar et al. 2018). We applied the RF 
algorithm using the function “ee.Classifier. 
RandomForest()” in GEE to classify LULC from 
Landsat time series imagery for each year from 
2000 to 2017. Two models were trained, one for 
Landsat 5 and 7 (ETM+) data, and another for 
Landsat 8 (OLI) data, and each configured to grow 
50 and 40 trees per class, respectively. This number 
was chosen after testing the model performance 
with different numbers of trees (from 10 to 50) per 
class. Lastly, we used the models to classify LULC for 
each year by using the features of the particular year 
(as listed in Table 1) as input.

In addition, we calculated the variable importance 
from RF in GEE to assess the contribution of each 
feature for improving the classifier performance. The 
detailed description for each variable can be found in 
Supplementary Table S1.

3.3. Accuracy assessment and change statistics

The accuracy of the resulting LULC maps was 
assessed in two ways: fivefold cross-validation 
using the collected training data, and an agree-
ment comparison with the reference LULC maps. 
For each type of accuracy assessment, we created 
a confusion matrix, from which we calculated the 
overall accuracy, as well as users’ and producers’ 
accuracies for each class. After that, we used the 
LULC change (from-to) matrices between the 
first year of our analysis (2000), the year the bridge 
opened (2008), and the last year of our analysis 
(2017), to assess the land conversion processes.

We also used a confusion matrix to compare our 
classified maps with the reference maps. Unlike cross- 
validation, in this case, the derived statistical metrics 
denote agreement, rather than accuracy, as the refer-
ence maps are also based on machine learning models, 
which makes it impossible to determine which of the 
models is closer to reality. The differences in the model 
outputs could also stem from the differences in the 
spatial extents of the models, the training data collec-
tion protocols, and the imagery used for both visual 
interpretation and classification. In addition, the classi-
fication legend (Table 3) was based on the legend of 
FROM-GLC, but it does not match the legend of GLC30. 
For instance, GLC30 defines mining and construction 

Figure 2. The overall workflow for this research.
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areas to be part of the “artificial surface” class, whereas 
in FROM-GLC, these fall under “bare land.” For this 
reason, when comparing our RF model output with 
GLC30 maps, the impervious surface and bare land 
classes were combined to facilitate a comparison 
against the artificial surface class of GLC30. Due to 
these mismatches between the models and the 
legends, we consider the cross-validation statistics to 
be a more reliable measure of our model accuracy than 
the reference map agreement statistics. Nevertheless, 
the reference map comparison is useful as a second, 
independent, source of information about the reliabil-
ity of the RF model output.

Lastly, we assessed the change in area of each LULC 
class by performing a trend analysis using a simple 
linear regression between each LULC class and time. 
The linear regression was fitted for each LULC class for 
two time periods: before the opening of the bridge 
(2000–2008) and thereafter (2008–2017). The regres-
sion estimates a LULC change trend from the annual 
time series of LULC area. This trend is robust against 
individual outliers, therefore this method minimizes 
the effect of inter-annual variability. The sources of 
inter-annual variability could be physical differences, 
such as unusually dry or cold years, or differences 
between the classification model outputs caused by 
the RF method generating decision trees based on 
a random data subset. We chose this method because 
it is more robust compared to the common practice of 
taking a difference between two single-date maps, as 
any chosen single-date maps could be affected by 

inter-annual variability and lead to underestimation 
or overestimation of change.

3.4. Application of ITSA on the time series of LULC 
and socio-economic indicators
ITSA is the most commonly adopted method for quasi- 
experimental design to assess the impact of an interven-
tion and it is applied in many disciplines, such as the 
economic, medical, and societal domains (Harris et al. 
2006; Nistal-Nuño 2017; Penfold and Zhang 2013; 
Gillings, Makuc, and Siegel 1981; Jandoc et al. 2015). 
ITSA is a method used to measure intervention effects 
by comparing longitudinal trends before and after an 
intervention (Linden 2015; Penfold and Zhang 2013; 
Lopez Bernal et al. 2013). It performs a statistical evalua-
tion of the impact of an intervention on the develop-
ment of a variable over time. ITSA also provides the 
option to include a control group to compare the long-
itudinal trends before and after the interruption event 
between the intervention and the control group, which 
can help avoid false inference (Lopez Bernal et al. 2013; 
Linden 2015; Penfold and Zhang 2013). Although ITSA 
has been widely used in a variety of disciplines and was 
first introduced in the field of health services in 1981 
(Gillings, Makuc, and Siegel 1981), it has never been used 
for LULC time series analysis before. If we consider the 
bridge construction as an intervention event in a long- 
term LULC time series, the change in LULC time series 
before and after the bridge construction is similar to, and 
can be analyzed as, an experiment for testing the 

Table 3. Classification scheme and the numbers of sample points for each LULC class that was classified using the RF model.
Level 1 Level 2 Number of sample points Description

10 Agricultural land 200 Cultivated land, horticulture, and gardens, including paddy fields, irrigated 
and dry farmland, vegetation, and fruit gardens, etc.

20 Forest 170 Trees higher than 5 m, including deciduous and coniferous forests, sparse 
woodland, etc.

30 Grassland 130 Grass cover, including grasslands, meadows, fallow fields, and undeveloped 
natural grasslands, etc.

40 Shrubland 100 Plant community characterized by shrubs, including small trees in the early 
stage of growth.

50 Wetland 100 Land and water bodies covered with wetland plants, including inland 
marsh, lake marsh, river floodplain wetland, forest/shrub wetland, peat 
bogs, mangrove, and salt marsh, etc.

60 Water 100 Open water: rivers, lakes, reservoirs, fishponds, and sea, etc.
70 Impervious surface 71 Residential 250 Built-up area in which housing predominates, as opposed to industrial and 

commercial areas.
72 Industrial Independently set up factories, workshops, handicraft workshops, etc.
73 Infrastructure All other impervious surface area excluding 71 and 72: transportation 

infrastructure, including roads and airports; construction infrastructure, 
including building foundations; and facilities, such as engineering and 
education facilities.

80 Bare land 50 Lands with vegetation cover lower than 10%, including desert, sandy fields, 
bare rocks, saline and alkaline lands, etc.
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influence of an intervention on a time series of 
a measured variable in the medical domain. Three pre-
requisites should be considered when implementing 
ITSA: a clear intervention event, a measurable variable 
and sequential data for the measured variable (Bernal, 
Cummins, and Gasparrini 2017). Our study meets all 
three prerequisites of ITSA, therefore, we used ITSA to 
investigate the LULC change in the context of the bridge 
construction. In this approach, the intervention effects 
were assessed by changes in the level and trend of the 
time series as well as the statistical significance of the 
intervention parameters. The control group is assumed 
to capture the change that would have happened even 
without the interruption. Thus, an effect is considered to 
be significant when the estimated post-interruption 
coefficients are significantly different from the ones pre-
dicted by taking into account their change in the control 
group. ITSA is implemented as a linear model with the 
following formula (for intervention status j, for group k, 
at time t): 

outcomejkt ¼ β0 þ β1 � timet þ β2 � groupk þ β3�

groupk � timet þ β4 � leveljt þ β5 � trendjt þ β6�

leveljt � groupk þ β7 � trendjt � groupk þ εjkt:

A detailed explanation of each coefficient is given in 
Table 4. ITSA was manually implemented in R and 
coupled with Autoregressive Moving Average 
(ARMA) models to adjust for autocorrelation effects.

We used ITSA to analyze the effects of the opening 
of the bridge on the change in impervious surface 
areas, including the level 2 subcategories, as well as 
on the change in the socio-economic indicators. The 
combined area of the two prefecture-level cities that 
are directly connected by the bridge (Jiaxing and 
Ningbo) was chosen as the intervention group, and 
Hangzhou was chosen as the control group, due to its 
greater distance from the bridge. In addition, to give 
more insight into the individual prefecture-level cities, 
we investigated their areas separately, although, con-
sidered separately, their areas are much smaller than 
that of Hangzhou. The interruption point was set to 
2009, as the bridge was opened to the public in late 
2008.

4. Results

4.1. LULC classification

The annual LULC maps produced by the RF classifier 
are the basis for all of the following analysis. The three 

LULC maps, one for each of the key years of the 
analysis, namely 2000 (beginning of the study period), 
2008 (opening of the Hangzhou Bay Bridge), and 2017 
(end of the study period), are presented in Figure 3. 
The maps show that the dominant LULC type in the 
study area was forest, and that agricultural land was 
primarily located close to the sea, during the entire 
research period.

In the year 2000, residential areas occupied 
a relatively major fraction of the impervious surface 
areas, mainly within the city of Hangzhou. Leading up 
to the year 2008, there was a major expansion in 
industrial area and in wetlands. Industrial area 
replaced agricultural land, mainly in areas surround-
ing the residential areas of Hangzhou and Ningbo. 
This is consistent with a previous study in Hangzhou, 
which described the process of farmland conversion 
into peri-urban areas, which includes industrial devel-
opment (Spiekermann et al. 2013). Additionally, wet-
land expanded along the shoreline of Ningbo and 
Jiaxing. Impervious surface areas continued to 
expand from 2008 to 2017, which indicates urbaniza-
tion, particularly along the two banks of Hangzhou 
Bay. Infrastructure was the subclass of impervious 
surface areas that increased the most during this 
time. The LULC development of Ningbo from 2008 
to 2017 differed from the other three prefecture-level 

Table 4. Detailed explanation of each ITSA coefficient.
Coefficient Brief Name Coefficient Explanation

β1 Pre-trend 
(Control)

Trend before the interruption.

β2 Pre-level 
difference 
(intervention/ 
control)

Level difference between the 
intervention and the control group at 
the start of the study period.

β3 Pre-trend change 
(intervention/ 
control)

Trend difference between the 
intervention and control group during 
the pre-interruption period.

β4 Post-level 
difference 
(control)

Level change in the control group after 
the interruption.

β5 Post-trend 
difference 
(control)

Trend change in the control group after 
the interruption.

β6 Post-level 
difference 
(intervention)

Level difference after the interruption 
between the intervention group and 
the expected level when taking the 
equivalent change in the control 
group into account.

β7 Pre-post change in 
trend difference 
(intervention)

Trend difference after the interruption 
between the intervention group and 
the expected trend when taking the 
equivalent change in the control 
group into account.

ε Error term It is the error terms in the ITSA model.
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cities, as it showed less urbanization, but more agri-
cultural land and wetland expansion, facilitated by 
the reclamation of land from the water.

4.2. LULC accuracy assessment

According to variable importance analysis, all features 
selected in this study contribute to the improvement 
of the RF model accuracy (Supplementary Figure S1). 
We calculated a confusion matrix from fivefold cross- 
validation using the samples collected for this study. 
The overall accuracy of the RF model trained on 
Landsat 5 & 7 (ETM+) data from 2000 to 2012 (85%) 
was slightly better than the one trained on Landsat 8 
(OLI) data from 2013 to 2017 (78%) (Table 5). The 
User’s Accuracy (UA1) and Producer’s Accuracy (PA1) 
of agriculture, forest, water, and industrial land were 
above 70%, which indicates that these classes are 
easier for the classifier to distinguish from the others. 
On the other hand, grassland, shrubland, infrastruc-
ture, and bare land had relatively lower UA1 and PA1 

(less than 60%) compared with the other classes. The 
models mostly confused vegetation classes with one 
another: grassland, shrubland, and forest 
(Supplementary Table S2). Infrastructure areas and 

bare land were also sometimes misclassified as agri-
cultural, industrial, and residential land. For the years 
where Landsat 8 data were available and used for 
classification, the PA1 and UA1 of infrastructure areas 
and bare land improved by around 20%, but the over-
all accuracy decreased (Table 5).

In addition to the cross-validation, we carried out 
an agreement comparison between the RF classified 
maps and the equivalent reference maps. The results 
are presented in Table 5 and Supplementary Tables S3 
and S4. The overall agreement between RF outputs 
and both of the reference map sets (GLC30 and 
FROM-GLC) was 79%. The producer’s agreement and 
user’s agreement of some of the classes, namely 
grassland, shrubland, wetland, and bare land, were 
less than 50%, which is relatively lower compared 
with the other LULC classes. This is expected, as 
these classes are rare and more difficult to discern 
from one another. Moreover, the reference maps 
were also based on models, and thus errors from 
both models add up. For GLC30 agreement, another 
issue was the mismatch between the legends. Thus, it 
is expected that the agreement is much lower than 
the accuracy determined by cross-validation. In the 
following analysis, we focused only on the classes that 

Figure 3. Maps of RF LULC classification for three years in the urban agglomeration of Hangzhou bay: the start of the study period 
(2000), the year when the bridge was opened for public use (2008), and the end of the study period (2017).
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can be discerned with higher accuracy, namely forest, 
agriculture, water, and impervious surface areas.

4.3. LULC change statistics

The LULC classes that had the most pronounced 
change in the study period were impervious land, 
forest, and agriculture (Figure 4). The area of forest 
(the most abundant class) fluctuated around 
18,000 km2 throughout the study period. It decreased 
from 2000 until 2008, and then stayed around 
a constant level. Agricultural areas declined increas-
ingly rapidly, from around 16,500 km2 in 2000 to less 
than 12,000 km2 in 2017. The area of impervious sur-
face increased from approximately 1,300 km2 in 2000 
to 3,000 km2 in 2008, and then further increased to 
more than 5,500 km2 in 2017. The pace of change in 
impervious surface after bridge construction was 
therefore faster when compared to the period before. 
The majority of LULC changes occurred between 
these three classes. The potential reasons behind 
these LULC changes and a comparison with related 
previous studies can be found in the discussion 
section.

We observed several change processes when com-
paring the size of the area of each LULC class that 
changed into another class for the pre-bridge (2000–-
2008) and post-bridge (2008–2017) periods (see 
Figure 5 and Supplementary Table S5). The most 
striking change is urban expansion: impervious 

surface was the fastest-growing class throughout the 
study period, with a growth rate of over 250 km2/year. 
Urban areas primarily displaced agriculture, with over 
2000 km2 replaced before the bridge opening, and 
over 2800 km2 replaced thereafter. Urban expansion 
also had a pronounced effect on the area occupied by 
smaller classes such as wetlands and water. 
Eight percent (59 km2) of the wetlands in the study 
area were turned into impervious surface areas in the 
pre-bridge period, and a further 16% (153 km2) in the 
post-bridge period. Similarly, 56 km2 of water were 
turned into impervious land in the pre-bridge and 
98 km2 in the post-bridge period. This shows that 
land reclamation from water took place, in part to 

Table 5. Model performance assessment result from fivefold cross-validation, as well as comparison with the reference maps in 2000, 
2010, 2015, and 2017. For the comparison with GLC30, bare land and impervious surface areas were combined into the artificial 
surface category, and the result is presented in the column “Impervious surface” for those two years.

5-fold cross-validation

Accuracy Agriculture Forest Grass land Shrub land Wetland Water Residential Industrial Infrastructure Bare land

Landsat 5 & 7 
(2000–2012) 
OA1 = 85%

PA1[%] 87 98 30 16 65 96 68 75 18 40
UA1[%] 79 94 37 34 80 94 60 77 41 54

Landsat 8 
(2013–2017) 
OA1 = 78%

PA1 [%] 86 94 43 58 76 92 71 74 36 68
UA1 [%] 78 91 56 62 82 92 64 74 51 69

Map Comparison
Accuracy Agriculture Forest Grass 

land
Shrub 

land
Wetland Water Impervious surface Bare 

land
GLC30 

(2000, 2010) 
OA2 = 79%

PA2[%] 70 95 6 1 30 88 62 -
UA2[%] 84 81 18 1 13 93 53 -

FROM-GLC 
(2015, 2017) 
OA2 = 79%

PA2[%] 78 89 6 22 30 84 74 14
UA2[%] 67 95 34 6 3 96 69 5

OA1: Overall accuracy; PA1: Producer’s accuracy; UA1: User’s accuracy 
OA2: Overall agreement; PA2: Producer’s agreement; UA2: User’s agreement

Figure 4. Area change for the main LULC classes from 2000 to 
2017. The error bars represent the uncertainty of the area 
estimation for each year, based on the accuracy statistics from 
the 5-fold cross-validation. The stars indicate that the trend of 
area change is significantly different from zero: * p < 0.05; ** 
p < 0.01; *** p < 0.001.
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support urban expansion. The effect of the opening of 
the bridge can be seen in the change in the type of 
impervious surface that drives urban expansion: the 
pre-bridge period is dominated by industrial area 
expansion (91 km2/year), whereas the post-bridge 
period is dominated by infrastructure area expansion 
(220 km2/year).

Water was reclaimed not only for impervious 
land but also for agricultural areas (94 km2 during 
the pre-bridge period, 110 km2 in the post-bridge 
period). This land reclamation was most prominent 
around the shoreline of Ningbo, and it has been 
noted in a previous study on Hangzhou Bay (Chu 
et al. 2020). In addition, a large area of water 
changed into wetland (380 km2 pre-bridge, 
439 km2 post-bridge), of which some also changed 
back into water (203 km2 pre-bridge, 207 km2 

post-bridge).
Forest area declined rapidly (over 200 km2/year) in 

the pre-bridge period, whereas in the post-bridge 
period it remained around an overall constant level 
(see Figure 5). The conversion from forest to agricul-
tural areas in the post-bridge period (555 km2) was 
less than one-third of that in the pre-bridge period 
(1875 km2), and, simultaneously, the conversion from 
agricultural areas to forest increased from 435 km2 

during the pre-bridge period to 2318 km2 in the post- 
bridge period. As a result, agricultural areas declined 
both due to conversion to forest and to impervious 
land in the post-bridge period, but to partially com-
pensate for the loss in area, it expanded into the land 
reclaimed from water.

4.4. The influence of the bridge construction on 
LULC and socio-economic indicators

4.4.1. Bridge construction effects on impervious 
surface area change
To determine the effect of the opening of the 
Hangzhou Bay Bridge on the change in LULC class 
areas, we applied the ITSA method on the impervious 
land class and its sub-classes in the joint Ningbo- 
Jiaxing area and used the Hangzhou area as the con-
trol group (Figure 6 and Supplementary Table S6). We 
also included the separate Ningbo and Jiaxing areas 
for comparison purposes. The results for impervious 
surface areas as a whole showed a significant trend of 
increasing urban expansion after the opening of the 
bridge in the joint Jiaxing-Ningbo area (+41 km2/year 
compared to the estimated value based on the 
Hangzhou trend change). Looking at the areas sepa-
rately, Jiaxing alone also showed a higher trend for 
impervious land expansion (+17 km2/year). The 
increased expansion is due to the bridge, which sti-
mulated city development and thus promoted local 
construction of infrastructure and industry.

Regarding changes in the residential area, there was 
little change (less than +45 km2/year) between the pre- 
bridge period and the post-bridge period for all areas 
except the control group of Hangzhou, which had 
rapid urbanization in the pre-bridge period that stalled 
in the post-bridge period. The change in the industrial 
areas showed a very different picture, with rapid indus-
trialization taking place in the pre-bridge period in all 
areas and stalling in the post-bridge period. This effect 
was especially pronounced in the Jiaxing-Ningbo and 
Ningbo areas, which had a rapid increase in industrial 
areas until the bridge opening, and almost no further 
increase since then. This effect was less pronounced in 
Jiaxing, which did not have such rapid industrialization 
before the opening of the bridge.

The most prominent change after the opening of 
the bridge was in the infrastructure areas, which 
include roads and building foundations. While the 
growth in infrastructure was limited in the pre-bridge 
period, it experienced a boom throughout all the areas 
during the post-bridge period. The area of the bridge- 
connected cities showed a significantly faster increase 
in infrastructure area compared to Hangzhou. 
A detailed explanation for each coefficient can be 
found in Table 4, and the detailed information 

Figure 5. Area change rate plot for the main LULC types: 
Agriculture, forest, impervious land, residential, industrial, and 
infrastructure. The stars indicate that the trend is significantly 
different from zero (p-value ≤ 0.05). See Supplementary Table S5 
for the full table of LULC class transitions.
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regarding ITSA statistic results can be found in 
Supplementary Table S6.

4.4.2. Bridge construction effect on socio-economic 
indicator change
Some significant results of ITSA when applied on 
socio-economic indicators in the combined Jiaxing- 
Ningbo area are presented in Figure 7, and the 
remaining factors are presented in Supplementary 
Figure S2. There was a remarkable increase in the 
trend of GDP, freight, fixed assets, tertiary industry, 
and tourism after the bridge opening in 2009. This 
shows that the bridge connection facilitated the 
accessibility of transportation, thus promoting various 
aspects of economic development. Aside from being 
convenient for tourists, the sea-cross bridge itself has 
become a tourist attraction, stimulating local tourism. 
However, tourism revenue increased exponentially 
over the course of the study period, showing that 
the tourism market adapts to the new developments 
gradually over time. Moreover, the bridge saves time 
and cost of transportation, thus directly increasing 
freight traffic and indirectly stimulating investments 

in fixed assets (e.g. cars and trucks); all these effects 
boost local GDP.

5. Discussion
5.1. Comparison with previous studies

The aim of this study was to assess the spatial and 
temporal impact of the Hangzhou Bay Bridge on the 
time series of LULC and socio-economic indicators in 
four prefecture-level cities in eastern China. Our find-
ings on the rate of impervious surface expansion and 
socio-economic factors agree with a previous study at 
the local level of Cixi county of Ningbo, which showed 
a substantial increase in urban area and GDP during 
the study period (Shahtahmassebi et al. 2018). 
Another study concerning Cixi county also indicated 
a rising urbanization trend, as well as an increase in 
GDP and freight traffic in the period leading up to the 
opening of the bridge (Zheng et al. 2016), which is 
consistent with our findings at the regional level as 
well. However, our study has a broader context in 
both space and time and thus expands on these 
studies to show that the impervious land 

Figure 6. ITSA plots for the change in impervious land and its sub-classes in the bridge-connected prefecture-level cities, with the 
more distant Hangzhou serving as a control group. The stars in the legend indicate the statistical significance of post-interruption 
trend (solid lines) difference from the predictions (dashed lines) based on change observed in the control group: * p < 0.05; ** 
p < 0.01; *** p < 0.001.
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expansion accelerated faster after the bridge was 
open for public use. In addition, while the pre-
vious studies attributed the changes to the con-
struction of the bridge, they did not take into 
account the possibility that the changes would 
also have occurred without the construction of 
the bridge. The combination of a larger temporal 

and spatial extent and the use of a control group 
in ITSA enabled us to avoid such false inference in 
our study. Based on the comparison with 
Hangzhou, our results suggest that the urban 
expansion would have taken place even without 
the construction of the bridge, especially in the 
time before the bridge was operational.

Figure 7. ITSA applied on social-economic indicators of the joint areas of Jiaxing and Ningbo. All the indicators shown here have 
a statistically significant increase in trend after the bridge opening. The detailed statistical results can be found in Supplementary 
Table S7.
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5.2. Findings from the classification results and 
methods
Most of the previous studies in and around our 
research area focused on the impervious land and 
urban intensification when investigating LULC change, 
while the results of our study showed more detailed 
LULC class conversion processes for the pre- and the 
post-bridge construction periods. The collection of 
more detailed LULC training data made it possible to 
discern sub-classes of the impervious surface class, 
giving further insight into the urban expansion process. 
It showed that the bridge spurred the development of 
infrastructure, such as roads, rather than industry or 
residential buildings. In addition, our results showed 
that following a decrease during the pre-bridge period, 
the forest area became stable, which may be due to 
a new sustainable development policy that was intro-
duced in the area (Zheng et al. 2016). This improve-
ment in the forest change trend provides new evidence 
of the effectiveness of the new policy on sustainable 
development of ground transportation infrastructure, 
such as bridge constructions.

5.3. Findings from applying ITSA on the LULC and 
socio-economic indicator time series
To our knowledge, no prior studies have applied ITSA 
on LULC time series to assess the LULC changes influ-
enced by an intervention event. We applied this 
method to compare the longitudinal trends before 
and after the bridge construction between the inter-
vention group and the control group, and the results 
highlight the influence of the bridge construction on 
the LULC and socio-economic indicator time series. 
Through the comparison of the predicted changes 
and the post-intervention changes for the detailed 
LULC classes, including impervious surface sub- 
classes, the positive and negative influences of the 
bridge construction on LULC dynamics can be 
assessed. This information can be used by policy-
makers to make decisions that help local urban devel-
opment become more sustainable.

Applying ITSA on the LULC time series showed that 
impervious land expanded increasingly rapidly after 
the opening of the bridge in the cities it connects, 
compared to cities further away from the bridge. This 
shows that the bridge further accelerated the process 
of urban expansion. Within the impervious land class, 
the infrastructure area expanded significantly in the 

post-bridge-opening period, compared with the pre- 
bridge period. Furthermore, ITSA results on socio- 
economic indicators showed that except for the con-
sistently increasing registered population indicator and 
the declining grain production indicator, almost all 
socio-economic indicators, especially for the GDP, 
highway traffic freight, tertiary industry, tourism rev-
enue, and investments in fixed assets, increased more 
rapidly after the construction of the bridge (Figure 7 
and Supplementary Table S7). These findings indicate 
that the Hangzhou Bay Bridge further accelerated 
urban sprawl and almost every considered aspect of 
socio-economic development. Our study complements 
the conclusions of previous studies, in which the sub-
stantial increases in urbanization, GDP, and freight traf-
fic after the opening of the bridge were reported 
(Shahtahmassebi et al. 2018; Zheng et al. 2016). This 
shows that a combination of ITSA and LULC classifica-
tion using machine learning is a comprehensive and 
transferrable method to assess the influence of notable 
events on LULC change. Methods from this study could 
contribute to the monitoring of LULC dynamics, socio- 
economic indicator changes, and even the ecological 
and anthropogenic environments to support regional 
sustainable development policymaking.

5.4. Limitations and recommendations for future 
research

To obtain reliable LULC change, ideally, the data used as 
input to the classifier should be as reliable as possible. 
One limitation of the input data is the lack of SLC-on 
data for 2012. We mitigated this limitation by using 
annual median composites of all available images for 
any given year. Nevertheless, the values for 2012 may be 
less reliable, but we expect that this did not significantly 
affect the trend analysis results, as they are based on 
multi-year trends and not on any year in particular.

Another source of error are the models themselves. 
As the output from machine learning algorithms, such 
as random forest, is not perfect and has associated 
errors, deriving change based on subsequent annual 
maps is prone to overestimating changes merely due 
to small fluctuations in the input data. We mitigated 
this problem in this study by analyzing long-term 
trends of LULC change in the time series, rather than 
looking only at individual time points. This could be 
further improved by adopting other models for break 
detection or post-processing, like the Hidden Markov 

14 L. CHU ET AL.



Model (Siachalou, Mallinis, and Tsakiri-Strati. 2015; 
Kligys and Rozovskii 1998), which would help to further 
reduce spurious change from the output maps. 
Another limitation of machine learning models is that 
a small sample size for some rare and difficult to dis-
tinguish LULC types, like shrubland, grassland, infra-
structure area, and bare land, can lead to lower 
accuracies for those classes, as the models are data- 
intensive (Millard and Richardson 2015). Using addi-
tional sources of high-resolution imagery and field 
data and increasing the training sample size for some 
LULC types could improve the classification accuracy.

The bridge construction, LULC change, and socio- 
economic indicator change are all interlinked and 
interacting with one another, making it difficult to 
separate cause from effect (e.g. bridge promotes tour-
ism, but tourism promotes bridges). Such a complex 
system has confounding drivers, indirect effects, and 
feedbacks, which limit the ability of researchers to 
explain the drivers of the influence of such an inter-
ruption event. ITSA enables us to narrow down the 
potential effects and gain more insight into the 
mechanism that drives them, albeit it does not cover 
all the possibilities.

One limitation of using ITSA with a control group 
is that the control group is assumed to be comple-
tely representative of the change without the inter-
ruption effect. However, in LULC research, such 
a perfect control group is unlikely to be available. 
The differences between the control and interven-
tion groups may, therefore, result in unusual pat-
terns of modeled expected change of the 
intervention group after the interruption. Another 
limitation related to ITSA is the potential confound-
ing effect of a competing intervention. In this study 
period, a new, smaller bridge (Jiaxing-Shaoxing 
bridge) in Hangzhou Bay was opened in 2013. 
Unfortunately, we could not assess the impact of 
the Jiaxing-Shaoxing bridge, as only 4 years of data 
were available since then, which is not enough for 
a robust comparison and estimation of trends before 
and after the opening of the new bridge. Thus, some 
of the changes that our study attributes to the 
Hangzhou Bay Bridge may instead be attributed to 
this new bridge. In follow-up studies where such 
data would be available, we recommend using 
a longer time series, multiple intervention points, 
and an additive modeling approach to disentangle 
the effects of such interventions.

Also, a potential direction for further research 
into this topic would be to compare our empirical 
results in that of a simulation model, such as the 
Land Change Modeler (LCM) (Jain, Jain, and Rehan 
Ali 2017) and CLUE-S model (Verburg et al. 2002). 
This could provide further insights into the inter-
vention effect on LULC change by simulating the 
evolution based on different scenarios (with/with-
out interventions) and considering comprehensive 
driving factors for LULC change.

6. Conclusion

In this study, we identified and quantified 18 years of 
LULC change in the Hangzhou Bay agglomeration 
using a machine learning classifier. We quantified 
the LULC conversion trends throughout the study 
period and focused on the construction of the 
Hangzhou Bay Bridge. In addition, we demonstrated 
a novel application of the ITSA method on the LULC 
time series, and the results provided a comprehensive 
statistical assessment of the influence of the bridge 
opening on the change in both LULC and socio- 
economic indicators. The output of this work furthers 
our understanding of the role of major infrastructure 
development, in this case bridge construction, on the 
development of the urban agglomeration by asses-
sing the influence of ground transportation infrastruc-
ture on the urban environment and socio-economic 
factors. The methods in this study contribute to evi-
dence-based urban management plans and realistic 
policies for sustainable management of urban ecosys-
tems. The methods adopted in this study can be 
transferred to assess the effect of any notable event 
that may affect LULC change and socio-economic 
indicators in any area.
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