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Abstract

Plants alter their morphology and cellular homeostasis to promote resilience under a

variety of heat regimes. Molecular processes that underlie these responses have been

intensively studied and found to encompass diverse mechanisms operating across a

broad range of cellular components, timescales and temperatures. This review explores

recent progress throughout this landscape with a particular focus on thermosensing in

the model plant Arabidopsis. Direct temperature sensors include the photosensors phy-

tochrome B and phototropin, the clock component ELF3 and an RNA switch. In addition,

there are heat-regulated processes mediated by ion channels, lipids and lipid-modifying

enzymes, taking place at the plasma membrane and the chloroplast. In some cases, the

mechanism of temperature perception is well understood but in others, this remains an

open question. Potential novel thermosensing mechanisms are based on lipid and liquid–

liquid phase separation. Finally, future research directions of high temperature percep-

tion and signalling pathways are discussed.
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1 | INTRODUCTION

Heat stress is an increasingly prevalent environmental constraint for

plants. A meta-analysis of 1.700 simulations suggested that, from the

2030s onward, the negative impact of a warming climate on crop yields

will be increasingly severe (Challinor et al., 2014). In future scenario's,

more frequent temperature extremes are expected to be particularly det-

rimental (Battisti & Naylor, 2009). Warm temperatures can lead to heat

stress, that is, they may impair plant growth, fertility, development,

metabolism, photosynthesis and immunity (Hatfield & Prueger, 2015;

Howarth & Ougham, 1993; Janda et al., 2019; Wolf, Marani, &

Rudich, 1991; Xu, Paulsen, Guikema, & Paulsen, 1995). In natural envi-

ronments, plants experience daily and seasonal temperature fluctuations

that vary in range, rate and duration. Natural populations of Arabidopsis

thaliana exhibit differences in sensitivity and responses to temperature

extremes that vary in a manner consistent with adaptation to local tem-

perature patterns (Zhang, Belsterling, Raszewski, & Tonsor, 2015).

Whether a temperature becomes stressful depends on these variables,

as well as coincident stress factors such as drought and salinity. At the

cellular level, heat stress perturbs protein folding, membrane fluidity,

cytoskeletal organization, transport and enzymatic reactions, which leads

to metabolic imbalances and pernicious accumulation of by-products

such as reactive oxygen species (ROS) (Wahid, Gelani, Ashraf, &

Foolad, 2007). It is therefore of primary interest for plants to sense tem-

perature alterations and initiate timely adaptive strategies to preserve

cell function and viability. Plants respond to different temperature ranges

with widely divergent physiological and developmental responses. How-

ever much less is known about the sensing mechanisms involved.
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At ambient warm temperatures, that is, above the optimum

growth temperature, but still within the physiological range

(i.e. between around 24 and 30�C, for Arabidopsis), many plants

undergo a process known as thermomorphogenesis, in which they

alter morphology and development (e.g. through expanded leaf

structure, deeper roots and early flowering) to reduce exposure to

potentially damaging temperatures (Figure 1; Casal &

Balasubramanian, 2019; Crawford, McLachlan, Hetherington, &

Franklin, 2012; Park & Park, 2019). At higher temperatures, that is,

30–37�C for Arabidopsis, there is still some growth, but several

adverse effects of heat stress become visible. Reproductive develop-

ment and photosynthesis are affected, and root and shoot growth

rates are compromised. At these temperatures, plants employ a vari-

ety of acclimation strategies to enhance temperature tolerance,

including the activation of molecular chaperones within minutes, and

modulating the composition of cell membranes over a period of days

(Falcone, Ogas, & Somerville, 2004; Osteryoung & Vierling, 1994). As

temperatures rise above 40�C, severe heat stress is experienced,

which can result in global injury, malfunction and ultimately, cell death

(Figure 1; Vacca et al., 2004).

Molecular plant scientists have long questioned how heat is actually

perceived and converted into a cellular signal. Since macromolecules are

generally affected by heat, many have the potential to serve as thermo-

sensors. The concept of thermosensor not only needs to incorporate pro-

cesses akin to ligand-receptor binding coupled to downstream signalling,

but also includes less well-demarcated processes such as heat-induced

increases in membrane fluidity followed by changes in membrane struc-

ture and function. This makes it difficult to identify macromolecules that

actually perceive temperature and elicit specific signalling events. In

recent years, several potential thermosensors and sensing mechanisms

have emerged, both of ambient warm and stressful hot temperatures.

Here, we summarize that knowledge, focussing on their mode of action,

and provide a perspective for future research in this exciting field.

2 | SENSING MECHANISMS OF WARM
AMBIENT TEMPERATURES

2.1 | Phytochrome B as temperature sensor

In recent years, there has been a growing realization that the action of

some photosensors is temperature-sensitive. This property allows the

fine tuning of growth and differentiation in response to moderate

temperature changes. Here, the photo-/thermosensor acts as a

F IGURE 1 Schematic overview of responses in different warm temperature ranges. Plants display a wide array of responses when they
experience above optimal temperatures. At warm ambient temperatures, up to 30�C, Arabidopsis responds by changes in morphology and
development, called thermomorphogenesis, which could aid in avoidance of future heat stress. Thermomorphogenesis features the temperature-
sensitive function of phyB. Furthermore in this temperature range, there is thermosensitive regulation of PIF7 mRNA translation. Warm
temperatures alter the structure of a hairpin structure in the mRNA of PIF7, which promotes its translation. ELF3 undergoes temperature-
dependent phase separation. High temperatures promote condensation of ELF3, and the inhibition of ELF3-DNA binding. Under mild heat stress,
that is, at temperatures of 30–38�C, Arabidopsis initiates acclimation responses that counteract damage to proteins and membranes, and

maintain cellular homeostasis. The suite of physiological changes associated with acclimation enhances plant thermotolerance. This involves the
activity of HSFA1 master transcriptional factors (Liu & Charng, 2013). HSPs/sHSP accumulate to limit misfolding of proteins, and stress granules,
biomolecular condensates in the cytosol and chloroplast, form to sequester mRNAs and proteins. The membranes' lipid compositions are adjusted
so as to prevent disruption of the bilayer structure due to uncontrolled increases in membrane fluidity. The heat sensors that activate acclimation
are unknown. The accumulation, within the first ±15 min of heat stress, of putative signalling components, such as Ca2+, H2O2, PIP2, PA and
cAMP suggests their function in heat perception, closely tied to the sensor. Temperatures above 40�C are damaging to Arabidopsis, and all
responses in this range are devoted to immediate protection or controlled breakdown of cellular structures. Mechanisms of clearance and rescue
of unfolded proteins, including the UPR, are important for survival of severe heat stress. These heat stress responses partly rely on the
recognition of unfolded proteins in the ER, the cytosol and diverse organelles [Colour figure can be viewed at wileyonlinelibrary.com]
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receptor for a change in temperature, and in doing so initiates down-

stream signalling processes.

There is extensive cross-talk between light and temperature sig-

nalling in plants (Hayes, 2020). Plants perceive light conditions with at

least five types of photoreceptors, that is, (a) phytochromes,

(b) cryptochromes, (c) phototropins, (d) zeitlupes and (e) UV Resis-

tance Locus 8 (UVR8) (Voitsekhovskaja, 2019). Of these photorecep-

tors, the temperature-sensitive activity of phytochromes is the most

well characterized, in particular phytochrome B (phyB; Figure 2). Phy-

tochromes control many aspects of thermomorphogenesis, especially

architectural changes, accelerated flowering and senescence (Jung

et al., 2016; Kim, 2020; Quint et al., 2016).

Phytochromes are red/far red (R/FR) sensitive photoreceptors

that absorb light through a phytochromobilin chromophore. The

absorption of light by phytochromobilin induces its isomerisation, and

this translates to conformational changes in phytochrome structure. R

light promotes a shift to the active form of phytochrome (Pfr),

whereas FR light promotes reversion to the inactive form

(Pr) (Hayes, 2020). Importantly, Pfr can also spontaneously revert to

Pr, and this process is temperature-dependent. The rate of thermal

reversion from Pfr to Pr is accelerated at warm temperatures (Legris

et al., 2016), resulting in a reduced pool of active phytochrome

(Figure 2).

When activated by R light and cool temperatures, phytochromes

promote the degradation of a family of bHLH transcription factors

known as PHYTOCHROME INTERACTING FACTORS (PIFs).When

phytochrome function is reduced by FR light or warm temperatures,

PIFs accumulate and promote hypocotyl elongation through the

enhanced expression of auxin biosynthesis genes (Jung et al., 2016;

Koini et al., 2009; Legris et al., 2016). Hypocotyl elongation at warm

temperatures is largely driven by PIF4, PIF7 and to some extent PIF5

(Chung et al., 2020; Fiorucci et al., 2020; Koini et al., 2009). PIF-

mediated elongation and hyponasty at warm temperatures results in

an open architecture and enhances leaf cooling (Crawford et al., 2012;

Park & Park, 2019).

2.2 | Other photosensors: Phototropin,
cryptochrome and UVR8

Phytochrome B is not the only plant photosensor that is temperature-

sensitive. The phototropin of liverwort (Marchantia polymorpha)

(MpPHOT) also displays temperature-dependent changes in activity

(Fujii et al., 2017). Phototropins are membrane bound blue light recep-

tors that respond to positional light cues. In Arabidopsis, they regulate

phototropism, leaf flattening and chloroplast positioning. In March-

antia, an important phototropin regulated process is the cold avoid-

ance response. At 22�C, blue light induces the movement of

chloroplasts to the cell surface, which functions to maximize photo-

synthesis. In contrast, at 5�C blue light induces the movement of

F IGURE 2 Schematic overview of thermomorphogenic pathways in Arabidopsis. 1, Under red light, phyB is converted to a Pfr homodimer
that is translocated to the nucleus where it blocks PIF4 and PIF7 activity. High temperatures promote the reversion of phyB back to its inactive
state, leaving PIF4 and PIF7 free to transcribe thermomorphogenesis promoting genes. 2, PIF7 mRNA contains a hairpin near its 50-UTR
sequence. Upon an increase in temperature, this hairpin structure changes. In warm temperature state, PIF7 mRNA is more easily translated and
PIF7 protein levels are increased. 3, At cooler temperatures, ELF3 (as part of the evening complex) represses the expression of PIF4. As
temperatures rise, a PrLD in ELF3 promotes its phase separation and the formation of liquid droplets, thus relieving the transcriptional repression
of PIF4 [Colour figure can be viewed at wileyonlinelibrary.com]
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chloroplasts to the periclinal cell walls. This process is known as cold

avoidance and is thought to protect the photosynthetic machinery in

suboptimal temperature conditions (Fujii et al., 2017).

MpPHOT contains two LOV (light, oxygen or voltage) domains

that are responsible for light sensing. In darkness, each LOV domain

contains a non-covalently bound flavin mononucleotide (FMN) chro-

mophore. Blue light absorption by FMN triggers its covalent attach-

ment to the LOV domain. This in turn causes structural re-

arrangement of the phototropin molecule into its active form. Impor-

tantly, the covalent bond that links FMN and the LOV domain sponta-

neously degrades over time, resulting in inactivation of MpPHOT. This

degradation rate increases with temperature, meaning that MpPHOT

remains more active at cooler temperatures. As a result, MpPHOT

promotes the relocation of chloroplasts to the cell periphery, along

the anticlinal cell wall, when temperatures are too low for efficient

photosynthesis (Fujii et al., 2017). The phototropins of Arabidopsis

were also recently implicated in temperature signalling (Kostaki

et al., 2020). Warm temperatures promote guard cell movement in a

cell autonomous manner. Curiously, warm temperature-induced sto-

matal opening is dependent on blue light and phototropins (Kostaki

et al., 2020). This seems to hint that in Arabidopsis guard cells, warm

temperatures promote phototropin action. Arabidopsis chloroplasts

do however still exhibit cold avoidance, in a phot-dependent manner

(Fujii et al., 2017). It is therefore presently unclear whether Ara-

bidopsis phototropin action is enhanced by cool or warm tempera-

tures, or if this is dependent on cellular context. More research into

the temperature dependency of phototropin mediated responses in

Arabidopsis should help to resolve this point.

Zeitlupes are another class of blue light photoreceptor, which act

to accelerate the pace of the circadian clock. Zeitlupes contain a LOV

domain with a similar activation mechanism to phototropins

(Pudasaini et al., 2017). If the rate of zeitlupe inactivation is increased

at warm temperatures, this could potentially reduce the pace of the

clock at warm temperatures (a process known as temperature com-

pensation) (Hayes, 2020). Several years ago, zeitlupe was identified as

a quantitative trait locus for natural variation in temperature compen-

sation in Arabidopsis (Edwards, Lynn, Gyula, Nagy, & Millar, 2005) and

so it would be interesting to experimentally test this hypothesis.

Other plant photosensors, such as the blue light sensing

cryptochrome and UV-B sensing UVR8, also be temperature-sensitive

(Figure 2). Cryptochromes undergo thermal reversion in a similar man-

ner to phytochromes and phototropins. If cryptochrome thermal

reversion is enhanced at warm temperatures, it is feasible that

cryptochrome would also exhibit higher activity at cool temperatures

(Hayes, 2020). UVR8 exists as a homodimer in the dark, but

undergoes monomerization after absorbing UV-B. The active UVR8

monomer then reverts back to the inactive dimer, in a process that is

mediated by Repressor of UV-B Photomorphogenesis 1 (RUP1) and

RUP2. The RUP-mediated reversion of the UVR8 monomer to the

UVR8 dimer seems to be influenced by temperature (Findlay &

Jenkins, 2016), but the details of this process are currently unclear.

Whether zeitlupe, cryptochrome and UVR8 functions are truly

temperature-sensitive remains to be investigated.

2.3 | Temperature-dependent action of the
evening complex

A large proportion of the genome is regulated by the circadian clock.

To ensure robust rhythmicity, the clock is entrained to daily cycles of

light and temperature. The evening complex (EC) is a group of core

clock components that show peak expression in the early evening. In

recent years, it has become apparent that the EC is one of the key

points at which light and temperature signals enter the clock (Ezer

et al., 2017). The EC consists of three components, the scaffold pro-

tein EARLY FLOWERING 3 (ELF3), the transcription factor LUX

ARRYTHMO (LUX) and a protein of unknown function, ELF4.

Together they act as a transcriptional repressor that directly binds

DNA (Ezer et al., 2017; Huang et al., 2016; Nusinow et al., 2011).

Besides its regulation of the clock, the EC also represses the expres-

sion of thermomorphogenesis promoting genes such as PIF4, limiting

the period of temperature-induced growth (Box et al., 2015).

Consistent with its importance in conveying temperature infor-

mation to the clock, binding of the EC to DNA is temperature-depen-

dent. At cool temperatures, the EC binds to DNA much more strongly

than at warm temperatures (Ezer et al., 2017). Phytochromes play an

important role in regulating the EC (Ezer et al., 2017; Huang

et al., 2016) and so temperature sensitivity of DNA binding could

potentially be ascribed to increased thermal reversion of phyB (Legris

et al., 2016). Intriguingly however, EC DNA binding is also

temperature-dependent in vitro, implying that EC activity is directly

modulated by temperature (Silva et al., 2020).

ELF3 contains a prion-like domain (PrLD) with a high proportion

of glutamine residues (polyQ region) (Jung et al., 2020). The PrLD

shows variable length between species, with A. thaliana ELF3

(AtELF3) containing a PrLD of 180 amino acids, and Brachypodium dis-

tachyon ELF3 (BdELF3) lacking similar sequences. Replacing the PrLD

of AtELF3 with the corresponding region from BdELF3 abolished the

temperature-dependent DNA binding of AtELF3 (Jung et al., 2020). At

high temperatures, AtELF3 forms speckles within the nucleus and this

is also dependent on the PrLD (Figure 2). Speckles are biomolecular

condensates, or liquid droplets, that assemble through the process of

liquid–liquid phase separation (Cuevas-Velazquez & Dinneny, 2018).

Importantly, PrLD-dependent speckles also form at high temperatures

when AtELF3 is expressed in yeast cells, in the absence of other eve-

ning complex components. Furthermore, the purified PrLD from

AtELF3 spontaneously and reversibly self-associates and forms con-

densates when in solution, in a temperature-dependent manner (Jung

et al., 2020). It appears that this region contributes to phase separa-

tion of ELF3, and likely plays a role in temperature sensing.

Direct temperature sensing by ELF3 may help to explain a curious

observation about phyB at warm temperatures. Under R light, active

phyB accumulates in several large subnuclear foci known as photo-

bodies (Hahm, Kim, Qiu, & Chen, 2020). In R + FR light, phyB is

inactivated and disperses to numerous smaller foci. Warm tempera-

ture also inactivates phyB and so we might expect it to lead to a simi-

lar change in phyB photobodies. However, in direct contrast to FR

light, warm temperature appears to promote the aggregation of phyB
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into fewer, larger photobodies (Hahm et al., 2020). Whether there is a

link between phyB aggregation and ELF3 PrLD-mediated condensa-

tion at warm temperatures remains to be investigated. However if this

is the case, it presents an attractive mechanism whereby plant cells

could distinguish between FR and warm temperature signals, based

on the inactivation of phyB alone or the inactivation of phyB and

ELF3 in conjunction.

2.4 | RNA thermosensors

Temperature sensing based on the temperature responsiveness of

RNA secondary structures has previously been shown in bacteria and

animals (Vu, Gevaert, & De Smet, 2019). Recently, a distinct RNA-

based temperature ‘switch’ was also identified in plants. Chung

et al. (2020) used ribosome profiling to identify genes that show an

increase in translational efficiency at warm temperatures (27�C). Inter-

estingly, one of the genes that showed enhanced translation was

PIF7. PIF7 is one of the key transcription factors regulating hypocotyl

and petiole elongation at warm temperature (Chung et al., 2020;

Fiorucci et al., 2020). A proportion of the mRNAs identified by Chung

et al. (2020) contain a hairpin structure in their 50UTR, shortly

upstream of their AUG. Importantly, the structure of the PIF7 50UTR

hairpin changes between 22 and 27�C. It has been proposed that this

change in hairpin structure at warm temperature enhances PIF7 trans-

lation (Chung et al., 2020; Figure 2). It is however important to note

that regulation of PIF7 translation is not simply due to the presence or

absence of a hairpin. Mutations that strengthen the hairpin do indeed

block translation, but surprisingly, mutations that disrupt the hairpin

also reduce translation. The authors propose that structural informa-

tion in the hairpin is required for dynamic regulation of translation in

response to temperature (Chung et al., 2020).

2.5 | Epigenetic regulation of
thermomorphogenesis

In a screen for mutants with enhanced temperature response, Kumar

and Wigge (2010) discovered ARP6, a component of a chromatin

remodelling complex. Mutants lacking ARP6 show constitutive warm

temperature phenotypes. ARP6 is required for the deposition of a

specific histone variant H2A.Z. It was shown that at warm tempera-

tures, there is a reduction in H2A.Z occupancy at the promoters of

warm temperature-induced genes and it was initially proposed that

H2A.Z could play a role in temperature sensing (Kumar &

Wigge, 2010). More recent evidence has however cast doubt on this

hypothesis. It was shown that at warm temperatures, the binding of

HSFA1a to heat-responsive genes precedes the H2A.Z eviction and

the activation of transcription (Cortijo et al., 2017). The eviction of

H2A.Z is facilitated by HISTONE DEACETYLASE 9 (HDAC9), and is

required for the full transcriptional response to elevated temperatures

(van der Woude et al., 2019), but it appears that this occurs mostly

downstream of temperature perception.

Epigenetic mechanisms have also been implicated in the estab-

lishment of transcriptional memory following an inducing sublethal

period of heat stress (Bäurle & Trindade, 2020). Although

hypermethylation of histone H3 lysine 4 has been found to prime heat

stress-induced genes for rapid and enhanced expression in the face of

a second heat stress episode (Liu et al., 2018), the upstream signalling

and heat sensing steps that initiate priming and the onset of transcrip-

tion in primed plants remain unknown.

3 | SENSING MECHANISMS OF
MODERATE TO SEVERE HEAT STRESS

3.1 | The heat stress response is partly based on
unfolded protein sensing

Heat stress triggers adaptive responses which protect macromolecular

structures, restore cellular homeostasis and prevent damage. The

composite response likely involves the action of multiple parallel sen-

sors that activate signalling pathways in different cellular compart-

ments with different dynamics. Cellular defense mechanisms are

activated by monitoring protein, DNA and membrane damage (Balogh

et al., 2013; Ding, Shi, & Yang, 2020; Niu & Xiang, 2018). In eukary-

otes and also prokaryotes, elevated temperatures induce the expres-

sion of heat shock proteins (HSPs). HSPs act as molecular chaperones

to promote the correct folding and counteract aggregation of pro-

teins, and thus are crucial for tolerance to high temperatures in plants

(Vierling, 1991). In plants, HSPs can also contribute to the

thermomorphogenic response. For example, HSP90 promotes the sta-

bility of the auxin receptor TIR1 and in doing so, promotes root and

shoot elongation at warm temperatures (Wang et al., 2016). HSP90

was also recently shown to be required for the warm temperature

mediated induction of HIGH EXPRESSION OF OSMOTICALLY

RESPONSIVE GENES1 (HOS1) (Han, Park, & Park, 2019). HOS1 is a

protein with E3 ubiquitin ligase activity that also acts as a transcrip-

tional regulator. Stabilization of HOS1 allowed for HOS1-mediated

upregulation of DNA repair and improved thermotolerance (Han

et al., 2019). As HOS1 has also been shown to negatively regulate the

transcriptional activity of PIF4 (Kim, Lee, Jung, Lee, & Park, 2017), it

could also act to repress thermomorphogenic growth under heat

stress.

Heat stress triggers the rapid assembly of different kinds of stress

granules and other cytosolic foci, that contain misfolded proteins and

chaperones, and/or untranslated mRNAs, elongation initiation factors,

transcription factors, mRNA-binding and decay proteins

(Chantarachot & Bailey-Serres, 2018; Kosmacz et al., 2019). Some of

these structures contain small HSPs (sHSPs), which promote solubili-

zation of aggregated proteins, and, at the stress granule surface,

HSP101, which harbours disaggregase activity and can mediate pro-

tein breakdown through its association with the 26S proteasome

(McLoughlin et al., 2016; McLoughlin, Kim, Marshall, Vierstra, &

Vierling, 2019). Through their dynamic interactions with stress gran-

ules, sHSPs/HSPs function not only in preventing permanent cytosolic
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protein aggregates, but also in the repression and restoration of

mRNA translation during and after heat stress, respectively (Merret

et al., 2017).

At present there is only limited information on how the expres-

sion of HSPs is gated by temperature in plants. Heat shock factors

(HSFs) are a class of well conserved transcription factors. HSFs bind

to heat shock elements in the promoters of HSP genes and promote

HSP expression. It was recently shown that the mRNA of HSFA2

undergoes increased translation at warm temperatures, in a similar

manner to PIF7. Like PIF7, the temperature regulation of HSFA2 trans-

lation was dependent on the structure of a hairpin in the 30UTR

(Chung et al., 2020). It is possible that warm temperature-induced

translation of HSFA2 contributes to HSP expression in response

to heat.

Another possible mechanism for temperature induction of HSP

expression is through autoregulatory feedback. In yeast, HSP70 binds

to HSF1 and inhibits its transcriptional activity (Zheng et al., 2016). At

warm temperatures, misfolded proteins accumulate and out-titrate

HSF1 for binding to HSP70. This triggers the release of HSF1, which

then promotes the expression of HSP70. The newly synthesized

HSP70 sequesters HSF1 and a new equilibrium is established.

Currently it is unclear whether the HSP:HSF module functions in

the same manner in plants, but similar mechanisms are known to acti-

vate the unfolded protein response (UPR). When a plant experiences

heat stress, unfolded and misfolded proteins can accumulate to such

levels that they overload the protein quality control system, leading to

ER stress. When unfolded proteins accumulate in the ER, they are

bound by binding protein (BiP), an HSP70 chaperone. In the absence

of unfolded proteins, BiP binds to the ER membrane-tethered tran-

scription factors bZIP17 and bZIP28. When unfolded proteins seques-

ter BiP, bZIP17 and bZIP28 are activated by translocation to the Golgi

and proteolytic cleavage of their membrane anchors. These transcrip-

tion factors then travel to the nucleus to promote the expression of

chaperones and foldases to assist in protein folding. Together this

process is known as the unfolded protein response (UPR). Unfolded

proteins also interact with the lumenal domain of the transmembrane

sensor IRE1b (inositol-requiring enzyme1), inducing unconventional

splicing of bZIP60, which then activates the ER stress response genes.

IRE1b splicing activity is induced by heat (Deng et al., 2011). IRE1 was

also found to be induced by lipid bilayer stress in yeast (Ernst, Bal-

lweg, & Levental, 2018; Halbleib et al., 2017), and to regulate the deg-

radation of specific mRNA's, shaping the stress transcriptome.

Interestingly, the transcription factor ELONGATED HYPOCOTYL

5 (HY5) was recently found to compete with bZIP17 and bZIP28 to

repress the UPR (Nawkar et al., 2017). Warm temperatures lead to

the activation of the E3 ligase CONSTITUTIVELY PHOTOMORPHO-

GENIC 1, which promotes HY5 degradation (Park, Lee, Ha, Kim, &

Park, 2017). Reduced HY5 abundance in warm temperatures may help

to promote the UPR under heat stress.

High temperature and light conditions can also activate UPR

responses through a signal from the chloroplast, methyl-D-erythritol

2,4-cyclodiphosphate (MEcPP, Figure 3). MEcPP is a retrograde sig-

nalling metabolite (Rivasseau et al., 2009; Walley et al., 2015) and

accumulates as a direct consequence of a stress-induced metabolic

bottleneck in the chloroplasts. Accumulation of MEcPP induces the

nuclear transcription of IRE1a and bZIP60 and other genes with a rapid

stress response element (Benn et al., 2016).

Under heat stress, unfolded proteins also accumulate in chloro-

plasts. The sHSP of Chlamydomonas, HSP22E/F, forms high-

molecular weight complexes with unfolded chloroplastic proteins to

prevent proteotoxicity (Rütgers et al., 2017). In Arabidopsis, short

term heat stress (10 min, 42�C) induces the rapid and reversible

assembly of stress granules in the chloroplasts. The composition of

these granules is similar to their cytosolic counterparts, reflecting

translational repression: mRNAs, RNA-binding proteins with self-

associating PrLDs, RNA editing proteins, HSPs and translation elonga-

tion factors (Chodasiewicz et al., 2020). Sequestration of proteins and

RNA into stress granules appears to have a double role: It protects

these molecules against degradation and also flexibly regulates trans-

lation, metabolism and signalling processes in response to heat. It

remains to be shown whether the assembly of cytosolic and chloro-

plast stress granules is primarily driven by heat-induced phase separa-

tion of constituent PrLD-containing proteins. The particular sensitivity

of chloroplasts to heat stress means that retrograde signals are impor-

tant regulators of the response to high temperature. For an in-depth

review on retrograde signals in heat stress, we direct the reader to

(Sun & Guo, 2016).

3.2 | Regulation based on physical changes in the
membrane

The membrane is the most thermally sensitive macromolecular struc-

ture in the cell (Balogh et al., 2013; Niu & Xiang, 2018). With increas-

ing temperature, the rotational motion, lateral diffusion and fatty acid

disorder of the lipid bilayer increase, while the headgroup packing

density decreases. These four parameters are different aspects of the

commonly used term ‘membrane fluidity’. Changes in membrane flu-

idity affect the folding, mobility and activity of membrane proteins.

These changes can have deleterious effects on cell functions, but at

moderate levels can also serve as a basis for thermosensing. Plants,

like other non-homeothermic organisms, actively maintain an almost

constant membrane fluidity upon shifts in temperature (Higashi, Oka-

zaki, Myouga, Shinozaki, & Saito, 2015; Los & Murata, 2004). The

increased fluidity under heat stress is counteracted by the incorpora-

tion of fluidity-decreasing saturated fatty acids, a process known as

homeoviscous adaptation. In bacteria, membrane thickness is mea-

sured through the membrane protein DesK and in yeast, lipid packing

density is measured by Mga2. These sensors support membrane

homeostasis by the transcriptional activation of lipid desaturases

when temperature drops (Ballweg et al., 2020; Covino et al., 2016;

Cybulski, Martín, Mansilla, Fernández, & de Mendoza, 2010).

In plants, such integral membrane property sensors have not been

identified. Instead, heat was found to directly inhibit the activity of

critical desaturases, simply by virtue of their heat-instability. The plas-

tidial FAD8 enzyme is responsible for the synthesis of α-linolenic acid

6 HAYES ET AL.



(18:3), a component of the main thylakoid lipid, mono-

galacosyldiacylglycerol (MGDG). FAD8 contains a labile

autoregulatory domain, that destabilizes the protein upon a tempera-

ture shift from 22 to 27�C (Matsuda, Sakamoto, Hashimoto, &

Iba, 2005; Figure 3). Reduced FAD8 stability resulted in decreased

accumulation of 18:3 and reduced membrane fluidity. The importance

of this is clear from the finding that mutants with low 18:3 content in

their MGDG showed improved heat tolerance (Murakami, 2000). This

may be because 18:3-MGDG is prone to oxidative damage and can

destabilize membranes. The ER desaturases FAD2 and FAD3 also dis-

play thermolability. Upon transfer to warm temperatures, FAD2 and

FAD3 are targeted for ubiquitin-mediated or ER-associated degrada-

tion, respectively (O'Quin et al., 2010; Tang, Novitzky, Carol Griffin,

Huber, & Dewey, 2005). Currently, the mechanism by which these

desaturases are inactivated upon heat stress is unknown; they may

either be directly temperature-sensitive or act downstream of temper-

ature perception.

Adjustment of membrane fluidity through changes in membrane

desaturation is a slow process and can take several days (Falcone

et al., 2004). In the case of acute heat stress, alternative mechanisms

are employed to secure bilayer integrity. These sense-and-respond

mechanisms are based on heat-induced, biophysical changes in

membrane properties. In thylakoid membranes, heat induces packing

defects in the lipid headgroups. These defects provide a spatial cue

for docking of proteins with membrane-protecting functions, such as

sHSP (Heckathorn, Downs, Sharkey, & Coleman, 1998) and vesicle-

inducing protein in plastids 1 (VIPP1, Figure 3; Theis et al., 2019;

Zhang, Kondo, Kamikubo, Kataoka, & Sakamoto, 2016). The inducible

association of these proteins with membranes likely follows the sens-

ing of the membrane status through their amphipathic α-helices.

Acute heat also induces the aggregation of light-harvesting com-

plex II (LHCII) proteins in the thylakoid membranes. MGDG is normally

associated with LHCII, and upon aggregation of LHCII, excess MGDG

gets extruded to the lumen (Jahns, Latowski, & Strzalka, 2009;

Schaller et al., 2010; Figure 3). Due to MGDG's non-bilayer propen-

sity, extruded MGDG forms a so-called inverted hexagonal phase (HII)

(Garab et al., 2017; Krumova et al., 2008). Thylakoid membranes are

always close to HII phase transition and, as HII phases emerge, they

must be controlled to avoid damage, which involves the function of

sHSPs (Tsvetkova et al., 2002). HII phases are however key to chloro-

plast heat acclimation because when they emerge under stress, they

recruit and activate the xanthophyll cycle enzyme, violaxanthin de-

epoxidase (VDE) (Dlouhý et al., 2020). VDE synthesizes zeaxanthin

which quenches excess excitation energy and enhances membrane

F IGURE 3 Sensing and signalling of heat stress at the chloroplast. Exposure to moderate heat has various direct consequences for chloroplast
proteins and membranes, which trigger rescue pathways. In the thylakoidal membrane, LHCII proteins aggregate, which leads to an excess of its
major lipid constituent, the non-bilayer prone glycerolipid MGDG. As a consequence, a non-bilayer structure (the HII phase) emerges, which
consists of MGDG organized in hexagonally stacked tubules. The xanthophyll cycle enzyme, violaxanthin de-epoxidase (VDE), recruits specifically
to the HII phase in the thylakoid lumen, catalysing the synthesis of zeaxanthin (ZEA) from its precursors, violaxanthin (VIO) and antheraxanthin
(ANT). The HII phase remains attached, which allows for free diffusion of the photoprotective xanthophylls to the thylakoid. VIPP1 and sHSP
recruit to the thylakoid membrane under heat stress, as they recognize membrane packing defects. They protect thylakoid membrane and PSII
integrity. Heat stress is signalled in the chloroplast by a rapid Ca2+ increase in the stroma which depends on the activity of the calcium sensor

CAS. Furthermore, heat induces breakdown of the envelope desaturase FAD8, responsible for synthesis of polyunsaturated fatty acids. This
causes an adaptive decrease in membrane desaturation. The isoprenoid biosynthesis intermediate MEcPP accumulates due to a high light/
temperature-induced bottleneck in the pathway. MEcPP, together with H2O2 resulting from excess excitation energy, and other stress-induced
molecules, serve as retrograde signals to regulate heat stress response genes in the nucleus [Colour figure can be viewed at
wileyonlinelibrary.com]
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stability. The HII phases serve to sequester excess MGDG and pro-

mote the diffusion of xanthophylls (Latowski et al., 2002; Figure 3).

Another membrane feature that can undergo rapid stress-induced

modification are microdomains. Most lipids within a membrane exist

in liquid-disordered phase, often envisioned as a two-dimensional

fluid. Lipids can however also exist in the liquid-ordered phase known

as nano- and microdomains (Jaillais & Ott, 2020; Saenz, Sezgin,

Schwille, & Simons, 2012). Microdomains form coherent, dynamic

platforms for proteins with functions in sensing, signalling, membrane

integrity maintenance and transport. Even mild changes in tempera-

ture can result in altered microdomain fluidity and consequently,

redistribution and modified activity of these proteins (Török

et al., 2014). Based on studies of membranes and Molecular Dynamics

simulation, microdomains are speculated to act as dynamic reservoirs

of fluidity-decreasing lipids. Heat may trigger increased partitioning of

these lipids from microdomains to the bulk fluid phase (Nickels

et al., 2019). This simple buffering effect that can occur in complex

membranes is based on thermodynamics of phase separation and

could be far more responsive than the metabolic responses of

homeoviscous adaptation (Ernst et al., 2018).

Some plasma membrane microdomains are tethered to the under-

lying cortical ER at so-called ER-plasma membrane contact sites

(EPCSs) through synaptotagmins (SYT1 and SYT3) (Ruiz-Lopez

et al., 2020). SYT1/3 are ER proteins that bind (via C2-domains) to

phosphatidylinositolphosphate (PIP)-containing microdomains of the

plasma membrane (Figure 4). The close proximity of the two mem-

branes allows for exchange/removal of detrimental lipids, for example,

diacylglycerol that is formed at the plasma membrane during phos-

pholipase C (PLC) signalling (see below). In yeast, EPCSs are important

for plasma membrane integrity maintenance under heat stress

(Collado et al., 2019), and they appear to function similarly under

stresses in plants (Ruiz-Lopez et al., 2020; Yan et al., 2017).

The biophysical changes in membranes under heat stress can be

sensed by altered protein activity and/or location. Moreover, the

alternative lipid phases allow for a prompt response to temperature,

thereby providing structural and functional flexibility that is of vital

importance under heat stress. Notably, this suggests that

homeoviscous adaptation does not necessarily involve a sensor of

membrane fluidity. Whether fluidity sensing underlies other heat

stress responses remains unknown. Many studies have attempted to

probe the effect of membrane fluidization using pharmacological and

genetic interventions, but it is becoming clear that these techniques

have inadvertent effects on proteins and gene expression (Rütgers

et al., 2017; Vu et al., 2019).

3.3 | Ca2+ and H2O2 as heat stress signals

Heat shock elicits a rapid increase in cytosolic Ca2+, most likely from

both extracellular and intracellular sources (Gao et al., 2012; Gong,

van der Luit, Knight, & Trewavas, 1998). Ca2+ influx from the apoplast

was shown to be required for the induction of HSPs through Ca2+/cal-

modulin-dependent kinases and for the acquisition of heat tolerance

(Liu et al., 2003, 2007). It has thus been reasoned that Ca
2+

channels

could function as thermosensors and attempts have been made to

identify such channels. Cyclic nucleotide-gated channels (CNGCs)

appeared to be involved in heat-induced cytosolic Ca2+ increases in

Physcomitrium patens and Arabidopsis (Finka, Cuendet, Maathuis,

Saidi, & Goloubinoff, 2012; Saidi et al., 2009). In Arabidopsis, heat

stress induced an increase in cAMP, leading to a CNGC6-mediated

Ca2+ influx at the plasma membrane (Gao et al., 2012; Figure 4). This

rise in cytosolic Ca2+ was required for the induction of HSP expres-

sion and thermotolerance. The suggested role of heat-induced cAMP

in triggering the Ca2+ mediated heat response led to the hypothesis

that, rather than a Ca2+ channel, an adenylyl cyclase activity could act

as membrane-associated temperature sensor (Thomas, Marondedze,

Ederli, Pasqualini, & Gehring, 2013). Interestingly, two proteins with

this enzymatic activity were recently identified in maize. These adenyl

cyclases were required for heat-induced cAMP synthesis and full

induction of HSP expression (Yang et al., 2020). However, their mode

of action has remained unclear. In addition, the potential involvement

of ANNEXIN1 (ANN1) in heat-induced Ca2+ signalling awaits further

study (Wang et al., 2015).

Identifying the primary heat-activated Ca2+ channel remains a

challenge. The animal heat-activated Transient Receptor Potential

channel, TRPV1, is a mechanosensitive and voltage-gated cation chan-

nel, that is similar to plant CNGC (Benítez-Angeles, Morales-Lázaro,

Juárez-González, & Rosenbaum, 2020). It likely responds to forces

transmitted via microtubules (Bavi et al., 2017; Prager-Khoutorsky,

Khoutorsky, & Bourque, 2014). Plants lack TRP channel homologs, but

possess other mechanosensitive channel types that may function in

heat signalling, including OSCA1 (reduced hyperosmolality-induced

[Ca2+] increase1), MCA (Mid1-complementing activity), which was

implicated in cold sensing (Mori et al., 2018), and Small Conductance

Mechanosensitive Ion Channel (MscS)-Like (MSL) proteins

(Ackermann & Stanislas, 2020).

Using Arabidopsis seedlings expressing the Ca2+ reporter

aequorin, Lenzoni and Knight (2019) were unable to detect a heat-

induced cytosolic Ca2+ response. Instead, they found a Ca2+ increase

in the chloroplast stroma (Lenzoni & Knight, 2019). Temperatures of

>35�C induced rapid Ca2+ responses, with higher temperatures pro-

voking higher and faster peaks. The response was not influenced by

the rate of warming, but was determined by the absolute tempera-

ture. The thylakoid membrane Ca2+ sensor CAS was required for full

induction of stromal Ca2+ in response to heat (Figure 3). CAS amplified

the Ca2+ signal, but what governs the initial signal is still unknown.

Stress-specific stromal Ca2+ transients could involve the activities of

multiple channels and transporters, and are emerging as signals that

regulate chloroplast functions and cellular signal transduction

(Navazio, Formentin, Cendron, & Szabò, 2020; Nomura et al., 2012;

Teardo et al., 2019).

In addition to Ca2+, H2O2 levels at the plasma membrane also rise

quickly in response to severe heat stress, a process catalysed by the

NADPH oxidase, RbohD (Vacca et al., 2004). The plasma membrane

H2O2 signal is required for heat stress gene expression and increase in

heat tolerance (Suzuki, Koussevitzky, Mittler, & Miller, 2012; Volkov,
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Panchuk, Mullineaux, & Schöffl, 2006). There is also accumulation of

H2O2 in chloroplasts and mitochondria and this may provide addi-

tional priming signals (Sun & Guo, 2016).

3.4 | Heat sensing is mediated by lipid signals

In addition to roles as structural components of membranes, lipids also

have signalling and regulatory functions, coupling perception of envi-

ronmental cues to cellular responses (Hou, Ufer, & Bartels, 2015).

Lipids such as PA and phosphatidylinositol 4,5-bisphosphate (PIP2),

and their metabolic enzymes, for example, phospholipase C and D

(PLC/PLD), diacylglycerol (DAG) kinase (DGK) and

phosphatidylinositol-4-phosphate 5-kinase (PIP5K), have a wide range

of cellular regulatory functions in environmental stress responses. In

Arabidopsis seedlings, heat stress (40�C) triggers increases in PA and

PIP2 abundance within 2 min (Mishkind, Vermeer, Darwish, &

Munnik, 2009; Figure 4).

This extremely rapid response suggests that the synthesis of

these signalling lipids is closely tied to thermosensing, but as of yet it

is unknown how increases in temperature activate these lipid-

modifying enzymes. High temperature induction of PA is largely

dependent on membrane lipid hydrolysis by PLD (Mishkind

et al., 2009; Shiva et al., 2020). The PLD enzyme is localized at the

plasma membrane and associated with microtubules, where it regu-

lates their membrane-anchorage (Andreeva et al., 2009). In heat-

stressed stomatal cells, apoplastic H2O2 enters the cytosol through

aquaporins. H2O2 oxidizes cysteine residues in the C2 domain of

PLDδ. The modified cysteine residues promoted Ca2+ binding to

PLDδ, which resulted in depolymerization of microtubules (Song

et al., 2020; Zhang et al., 2017). Blocking microtubule depolymeriza-

tion by chemical stabilizers inhibited the upregulation of HSP70 and

F IGURE 4 Sensing and primary signalling events of heat stress at the plasma membrane. In response to heat stress (37–45�C, 3–20 min),
several plasma membrane-linked protein activities are triggered which lead to intracellular signals that collectively regulate the heat stress
response in plants. 1, Heat perception gives rise to increases in Ca2+, which can enter the cytosol from the apoplast through channels such as
CNGC6. This channel might be activated by cAMP, which likely accumulates under heat stress through a membrane-associated adenylyl cyclase
(AC). The latter could be activated as membrane fluidity increases. Through association with calmodulin (CaM), Ca2+ can negatively regulate
CNGC6, and promote the function of HSFs. HSFs are the primary regulators of the heat response leading to transcriptional induction of HSPs and
other genes. Apart from CNGC6, Annexin 1 (ANN1) may function to increase cytosolic Ca2+. 2, The second major factor in the heat stress

response is H2O2, which is generated by the plasma membrane microdomain NADPH oxidase, RBOHD, whose activity is modulated by several
factors, including Ca2+ and PA. After H2O2 enters the cell, it modifies the PLDδ protein such that it becomes sensitive to activation by Ca2+.
3, PLDδ generates PA, which has a myriad of signalling functions that are mediated by its interaction with cytosolic target proteins. PLDδ is
attached to microtubules and its activity leads to microtubule depolymerization. Moreover, H2O2 can activate HSFs through MAPK signalling.
4, PLC3 and PLC9 are required for sHSP induction and thermotolerance. Most likely, they hydrolyze PIP to generate DAG, releasing the inositol-
bisphosphate (IP2) headgroup. DAG can be phosphorylated to PA by diacylglycerol kinase (DGK). In plants, rather than IP2 or IP3, inositol's more
highly phosphorylated derivatives are the likely inducers of cytosolic release of Ca2+. DAG could associate with synaptotagmin (SYT) in the ER at
ER-PM contact sites, which may function to stabilize the plasma membrane under stress, and facilitate the exchange of lipids between the plasma
membrane and the cortical ER. 5, Besides PA, also PIP2 accumulates under heat stress, through PIP kinase (PIPK) activity, first only in the plasma
membrane, later also in internal structures, including the nucleolus and cytosolic foci. PIP2 regulates effector proteins through specific lipid-
binding domains [Colour figure can be viewed at wileyonlinelibrary.com]
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the induction of MAPK activity under heat stress (Sangwan, Orvar,

Beyerly, Hirt, & Dhindsa, 2002; Suri & Dhindsa, 2007), which suggests

that this pathway acts to promote thermal acclimation. Curiously

though, mutants lacking PLDδ were more tolerant to heat stress,

which suggests the opposite. The fact that PLDδ requires Ca2+ and

H2O2 for its activation hints that, despite its rapid activation, PLDδ

signalling occurs downstream of primary thermosensing.

Glyceraldehyde-3-phosphate dehydrogenase (GAPC) may also

play a role in heat stress signalling. GAPC was shown to translocate to

the nucleus under heat stress, where it activates the transcription fac-

tor NF-YC10. Activated NF-YC10 then promotes the expression of

genes that confer thermotolerance (Kim, Guo, & Wang, 2020). The

mechanism that promotes GAPC nuclear translocation is as yet unre-

solved. When in the cytosol, GAPC can directly bind PLDδ and posi-

tively regulate its activity (Guo et al., 2012). GAPC has also been

shown to bind PA (McLoughlin et al., 2013) but it is unclear how or if

these attributes contribute to temperature regulation of GAPC. The

involvement of GAPC in PLD/PA signalling raises the possibility that

the heat stress response is coordinated with basal cell metabolism.

PLC also appears to have a function in the heat stress response,

because PLC9 and PLC3 knock-out seedlings show severely impaired

basal and/or acquired heat tolerance, while overexpression of PLC9

or PLC3 improved heat tolerance (Gao et al., 2014; Zheng et al., 2012;

Figure 4). PLCs hydrolyze PIP and PIP2 to generate DAG and

inositolphosphates. Inositolphosphates could eventually promote acti-

vation of a Ca2+channel (Munnik, 2014). PLC9 and PLC3, both at the

plasma membrane, were required for the induction of cytosolic Ca2+

and enhanced expression of sHSPs under heat stress. Acting very

early in the response pathway, the PLCs may be physically close to

the thermosensor. Regulation of PLCs is complex, involving calcium,

G-proteins and post-translational modifications (Munnik, 2014).

Potential protein interactors of PLC3 and PLC9, including two

receptor-like protein kinases and a cell wall-associated kinase, could

provide interesting clues as to their heat-responsive mode of activa-

tion (Pokotylo et al., 2013).

The heat stress-induced accumulation of PIP2, revealed by a fluo-

rescent PIP2 biosensor, displayed interesting patterns (Mishkind

et al., 2009). During heat exposure, PIP2 accumulated first at the

plasma membrane, after which it appeared in cytoplasmic foci,

followed by accumulation at the nuclear envelope and nucleolus

(Mishkind et al., 2009). PIP2 can function in endocytosis and associ-

ates with membrane microdomains (Furt et al., 2010). Microdomains

are considered critical in the regulation of early stress signalling, as

they contain signalling proteins such as RbohD, HSPs and CNGCs

(Dietrich, Moeder, & Yoshioka, 2020; Horvath et al., 1998; Niu &

Xiang, 2018). The cytoplasmic PIP2 foci are reminiscent of heat-

induced stress granules, showing similar sizes and conditions of for-

mation. While the possibility that this lipid would associate with

membraneless structures like stress granules may seem remote, the

apparent occurrence of PIP2 at the nucleolus, another membraneless

compartment (Mishkind et al., 2009), and localization to similar struc-

tures in mammalian nuclei (Boronenkov, Loijens, Umeda, &

Anderson, 1998; Fiume et al., 2019; Sztacho, Sobol, Balaban,

Escudeiro Lopes, & Hozák, 2019), could argue for this possibility. The

suggested propensity of PIP2 to associate with membraneless com-

partments under heat stress might shed new light on the potential

regulatory functions of this key lipid.

4 | CONCLUSIONS AND FUTURE
CHALLENGES

Clearly, our knowledge of thermosensory systems of plants has

greatly expanded in the past decade. Important discoveries in ambient

temperature signalling include the discovery of photo-/thermo-

sensors, an RNA switch and phase separation of ELF3 into liquid drop-

lets through its PrLD (Figure 2). These three systems unambiguously

translate high ambient temperatures into altered gene expression. The

reprogramming of development by these factors assists plants to

avoid damaging high temperatures. In Arabidopsis, the inhibition of

phyB activity by warm temperatures has been shown in detail. It is

however still unknown if other photoreceptors function in a similar

way. Phototropin plays a role in low temperature signalling in

P. patens but it is not known whether this temperature-dependent

activity also stretches to warm temperatures. Other photoreceptors

undergo thermal reversion and so could conceptually also function in

warm temperature sensing, but this remains to be demonstrated. The

finding that PIF7 RNA translation is enhanced at warm temperatures

opens the possibility that other RNAs act in a similar way. Indeed, the

authors of the PIF7 study show that HSFA2 and WRKY22 RNA may

also be regulated through a comparable mechanism (Chung

et al., 2020). The finding that ELF3 contains a PrLD that undergoes

temperature-dependent condensation likely has effects beyond just

evening complex transcriptional repression. ELF3 acts as a scaffold

protein for large protein complexes (Huang et al., 2016) and directly

binds to PIF4 to inhibit its transcriptional activity (Nieto, López-Sal-

merón, Davière, & Prat, 2015). Both of these functions are likely

inhibited at warm temperatures.

Upon moderate temperature increases, plants trigger a heat

stress response for acclimation, but the sensing mechanism is still

largely unknown. Rather than unfolded proteins, the increased

membrane fluidity at high temperatures was speculated to be a

molecular basis of sensing. While no fluidity sensor has been found

in plants, evidence is accumulating for thermosensory mechanisms

based on heat-induced phase changes in lipids and RNA/protein

assemblies.

Under heat stress, thylakoid membranes locally undergo transi-

tion to non-bilayer, HII phases, which are essential for heat acclima-

tion, since they compartmentalize and activate the enzymes of the

xanthophyll cycle. At the plasma membrane, dynamic microdomains

contain lipids in a liquid-ordered phase. These domains harbour

potential signalling lipids and proteins, including RbohD, which is acti-

vated in response to heat stress. Changes in microdomains and HII

phases could constitute a basis for thermosensitive regulation of

enzymes. Simultaneously, they provide potential avenues for the rapid

trafficking of lipids between phases, in order to preserve membrane
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integrity under heat stress. For the latter function, a membrane fluid-

ity sensor would thus not be required.

It is important to note that although we have divided the

response to temperatures into three stages (thermomorphogenesis,

acclimation and heat stress; Figure 1), there is a degree of overlap

between the temperatures that elicit these responses. There are also

several examples of overlap in signalling pathways between these

stages. Phytochromes are primarily involved with thermomorphogenic

responses, but it has been shown that phytochrome signalling can also

affect heat shock tolerance (Arico et al., 2019). Chloroplast retrograde

signals are important for heat acclimation and tolerance, but recently

it was found that chloroplast-derived MEcPP regulates PIF4/PIF5

expression and phyB abundance (Jiang et al., 2019). More examples of

cross-talk between these stages of heat signalling will likely emerge in

the future.

One of the most exciting recent developments in the field of

temperature sensing in plants was the identification of ELF3 as a

temperature sensor. ELF3 exemplifies a novel type of ambient tem-

perature sensing mechanism, based on the conditional formation of

condensed liquid phases within a bulk dilute phase, triggered by

the coalescence of proteins through their PrLDs. The resulting bio-

molecular condensates constitute membraneless compartments that

can contain proteins with associated regulatory functions. Heat-

induced stress granules may also be examples of phase-separated

biomolecular condensates, but it is unclear whether their formation

is directly triggered by heat, similar to ELF condensates, and

whether certain lipids could play a role in their assembly and

function.

Could liquid–liquid phase separation also function, at higher tem-

peratures, in the activation of the heat stress response? Such a func-

tion was recently proposed for the yeast RNA-binding protein, Pab1

(poly(A)-binding protein), which displayed phase separation upon a

shift to a temperature that induces the heat shock response (Riback

et al., 2017). The extreme thermosensitivity of this process was quan-

tified using the temperature coefficient Q10, the ratio of biological

properties measured 10�C apart. With a Q10 of 350, it exceeds by far

any other known biological thermosensory process. This indicates the

potential of liquid–liquid phase separation of proteins as a

thermosensing mechanism. The sharp threshold temperature above

which phase separation is triggered, which is determined by the amino

acid side chains in the PrLD, allows for precise temperature-

dependent regulation of responses. Pab1 was speculated to activate

the heat stress response by sequestering a negative regulator of HSF

in liquid droplets, calling into question the requirement of unfolded

proteins for activation (Riback et al., 2017). It seems plausible that

similar mechanisms could govern heat stress responses in plants.

The stress-induced clustering of proteins to membrane micro-

domains could trigger liquid–liquid phase separation in the adjacent

cytosol. This could result in coupled lipid and liquid compartments,

that assemble selected response components, allowing for specific

channelling of sensory signals to downstream responses (Jaillais &

Ott, 2020). Similarly, plasma membrane organization could respond to

changes in the cell wall, which may also adopt different biophysical

states dependent on temperature (Wu, Bulgakov, & Jinn, 2018). As

yet, such potential interactions are unexplored territory.

Identifying plant proteins that could act as thermosensors

through liquid–liquid phase separation will be challenging. Previously,

heat stress was found to induce relocalization of splicing factors with

disordered domains, for example, serine/arginine-rich protein SR45,

into enlarged nuclear speckles (Ali, Golovkin, & Reddy, 2003; Reddy,

Day, Göhring, & Barta, 2012), which could underlie alternative splicing

of pre-mRNAs. The PrLDs of mRNA-binding proteins might be critical

to trigger thermosensitive condensation into stress granules

(Chodasiewicz et al., 2020; Emenecker, Holehouse, & Strader, 2020;

Kosmacz et al., 2019). Many of the, approximately, 500 proteins in

plants with predicted PrLDs are transcription factors with potential

roles in temperature signalling. There are also PrLDs in HSFA1b, sev-

eral PIFs, auxin response factors and ABRE-binding factors

(Chakrabortee et al., 2016). Investigating the effect of temperature on

the coalescence of these factors in vitro could yield interesting

results.

In conclusion, thermosensing appears to be a highly distributed

capacity, based on a range of mechanisms which are only just beginning

to come to light. Most strikingly, the temperature-dependent behaviour

of phyB, the PIF7 RNA hairpin, and both lipid and liquid–liquid phase

separations, provide an impressive spectrum of potential heat sensing

and responding modes, essential for plants to acclimate and survive.
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