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Light spectral composition influences plant growth and metabolism, and has
important consequences for interactions with plant-feeding arthropods and
their natural enemies. In greenhouse horticulture, light spectral composition
can be precisely manipulated by light-emitting diodes (LEDs), and LEDs are
already used to optimize crop production and quality. However, because light
quality also modulates plant secondary metabolism and defense, it is important
to understand the underlying mechanisms in the context of the growth-defense
trade-off. We review the effects of the spectral composition of supplemental light
currently used, or potentially used, in greenhouse horticulture on the mecha-
nisms underlying plant growth and defense. This information is important for
exploring opportunities to optimize crop performance and pest management,
and thus for developing resilient crop-production systems.

Light Spectrum and Growth-Defense Trade-off

Light is an important resource for plants that profoundly influences plant morphology, physiology
and development. Changes in the spectral composition of light impact on processes ranging
from photosynthesis to secondary metabolism [1,2]. In greenhouses, LEDs are increasingly used
to exploit this knowledge and improve crop production and quality. LEDs provide possibilities to
accurately control the spectral composition of supplemental light [3]. How different wavelengths
of light influence plant growth, the photoreceptors and downstream responses that are involved,
and what this implies for productivity and sustainability of greenhouse crop production have
been extensively reviewed before [1-8]. However, although these reviews focus on commercial
endpoints such as yield and quality, they often do not consider the effects on plant defenses. As
predicted by the paradigm of the growth—defense trade-off, the use of LEDs to supplement solar
light for the stimulation of growth also influences plant resistance to biotic stress [9,10]. For
instance, in arabidopsis (Arabidopsis thaliana), low red:far-red (R:FR) ratios stimulate plant growth
but reduce resistance to the plant pathogenic fungus Botrytis cinerea [11]. Key steps in growth
and defense signaling pathways are responsive to light spectral composition [12—-14]. Because
of the growth—defense trade-off, a proper understanding of how LEDs influence plant physiology,
including resistance to biotic stress, will be necessary to permit optimal application of LED lights in
resilient greenhouse crop production.

Although light is an inevitable requirement for plant growth, excess light can cause photodamage
and reduce crop productivity. The degree of excess illumination during photosynthesis depends on
the wavelength [15]. Light spectral composition influences the concentration of foliar pigments and
photoprotective compounds [16] that are involved in protection against both light stress and biotic
stress. Balancing the effects of light spectrum on crop growth and crop protection is therefore
required for optimal crop production in greenhouses. We address fundamental aspects of plant
responses to supplemental light of specific wavelengths from the perspective of developing
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resilient greenhouse crop production. We focus on herbivorous arthropods as biotic stress
because their behavior, as well as the behavior of their natural enemies, may also be affected by
supplemental light. We discuss the effects of adding far-red (FR, see Glossary), red (R), blue
(B) or UV components of the light spectrum to ambient greenhouse conditions in three sections:
(i) photosynthesis and plant growth, (i) plant defense against arthropod herbivores, and (i) plant—
arthropod interactions and arthropod behavior. Although we focus on the effects of supplemental
LED lights of specific wavelengths, we note that similar results may be obtained with other artificial
light sources that also provide specific wavelengths.

Photosynthesis and Plant Growth

Photosynthesis is the basis for plant growth. The spectral composition of light is an important
determinant of light absorption and CO, fixation efficiency [15], and induces a variety of morpho-
logical responses that optimize light-capturing ability [17]. The extent to which light quality can
influence growth by changes in photosynthesis and light capture ability depends on crop
developmental stage. Morphological adaptations induced by light spectrum are particularly
important for light interception in young plants with a low leaf area index (<3). Such effects in
young plants may overrule the effects of light quality on photosynthesis at the leaf level [18]. In
taller crops, the lower leaves may be exposed to fluctuating light in the form of sunflecks
(<8 min and peak irradiance lower than above-canopy irradiance), sun patches (>8 min) and
sun gaps (>60 min), each of which may impose light stress on photosynthesis [19].

Light spectral composition can affect the ability of a plant to cope with light stress by influencing
the biosynthesis of secondary metabolites that function as antioxidants [16]. Increasing the frac-
tion of B light promotes photosynthesis and leaf thickness in cucumber and tomato [20,21] and
stimulates stomatal opening in multiple plant species [22]. B light also increases the concentra-
tions of leaf pigments such as chlorophylls and carotenoids in mustard, parsley, and beet [23],
and enhances anthocyanin accumulation in lettuce [24]. By contrast, white light (W) increases
carotenoid levels more than either B or R light in red pak choi [25]. Under high levels of photosyn-
thetically active radiation, UV-B light also increases net plant photosynthesis in several plant spe-
cies, but excess UV-B can cause photodamage and the production of photoprotective
pigments, and thereby reduces photosynthetic efficiency.

Low R:FR conditions may reduce the UV-B-mediated induction of plant flavonoids [26]. Acclimation
to low R:FR results in reduced chlorophyll and carotenoid content in lettuce and tomato [27,28] and
in reduced levels of ascorbate and glutathione in common bean [29]. The reduced partitioning of dry
matter to leaves coincides with a decrease in defense against abiotic and biotic stresses. How
changes in light spectral composition influence photosynthesis and photoprotection in green-
houses, and how the light-mediated production of flavonoids influences defense against biotic
stress, need further investigation.

‘Photoprotected' Phenotype

Excess light may damage plant photosystems, and plants have several layers of protection to avoid
such damage (Box 1). Not all energy that is absorbed by the antenna complex of photosystem Il
(PSIl) is used to drive photochemistry, and the remaining energy must be dissipated as heat.
Photoprotective mechanisms dissipate excess light through non-photochemical quenching
(NPQ) which affects the production of pigments [30,31] that scavenge reactive oxygen species
(ROS), thus hampering growth [31-33]. Such ROS scavenging has consequences for plant
defense because ROS accumulation can enhance defense against arthropod herbivores [34,35].
For example, npg4-1 mutant arabidopsis plants are more resistant to herbivorous spider mites
than are wild-type plants [34].

2  Trends in Plant Science, Month 2020, Vol. xx, No. xx

Trends in Plant Science

Glossary

Blue (B) light: photons of wavelengths
in the range 400-500 nm.

Cyclic electron flow around PSI
(CEF-PSI): a series of alternative
pathways in which electrons are excited
by light at the primary chlorophyll electron
donor within photosystem | (PSI, P700)
and are then transferred through a series
of redox carriers back to P700.
Damage-associated molecular
patterns (DAMPs): plant-derived
compounds that originate from
mechanical damage that activates plant
responses.

Diapause: a form of developmental
arrest in arthropods that is expressed in
response to specific environmental
conditions; diapause is a species-
specific developmental stage that is not
necessarily the stage exposed to the
inducing conditions.

Far-red (FR) light: photons of
wavelengths in the range 700-800 nm.
Green (G) light: photons of
wavelengths in the range 500-565 nm.
Herbivory-associated molecular
patterns (HAMPs): herbivore-derived
compounds that activate plant
responses.

Herbivory-induced plant volatiles
(HIPVs): feeding by herbivorous
arthropods results in the activation of
the biosynthesis of plant volatiles,
resulting in blends of herbivory-
induced volatiles.
Non-photochemical quenching
(NPQ): a measure of the light (excitation)
energy absorbed by the plant that is
dissipated as heat. The dissipation
decreases the amount of excitation
energy reaching the photochemical
reaction centers, particularly PSII, thus
preventing photodamage.
Photosystem I (PSI): the thylakoid-
membrane protein complex that
converts light energy to produce
NADPH via electron transfer from
plastocyanin to ferredoxin.
Photosystem Il (PSII): the first protein
complex in the light-dependent
reactions of oxygenic photosynthesis;
PSllis also located in the thylakoid
membrane.

Phototaxis: movement towards or
away from a light stimulus.

PsbS: a protein belonging to the
chlorophyll a/b/xanthophyll-binding
proteins (light-harvesting complex, LHC)
superfamily that is involved in the
regulation of NPQ and acts in the
chloroplast as a lumen pH sensor.
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Box 1. Photosynthesis and Photoprotection

Upon exposure to light, photosynthesis converts light energy into chemical energy by synthesizing carbohydrates from CO,
and water. The absorption of light by light-harvesting complexes (LHCs) beyond what can be used by photochemistry can
lead to harmful side reactions, collectively termed photoinhibition [115]. Plants have developed a range of photoprotection
mechanisms to avoid and repair damage caused by excess light [116]. Non-photosynthetic pigments screen the sensitive
photosystems from excess light at wavelengths <520 nm [15]. Once light is absorbed by photosynthetic pigments,
dissipation of excess excitation energy as heat by non-photochemical quenching (NPQ) is an important protection mecha-
nism [115]. When overexcitation of PSIl is not accompanied by sufficient NPQ, excess energy causes the production of
superoxide, singlet oxygen, and peroxide (ROS) that are particularly harmful to the oxygen-evolving complex of PSII. A variety
of antioxidants eliminate these reactive photoproducts. Carotenoids exert their photoprotective action by rapidly quenching
the excited states of the chlorophylls. Ascorbate protects against photoinhibition via the water—water cycle [31]. If all lines of
protection fail, ROS can damage the D1 protein of PSII, which, if not sufficiently balanced by repair processes [116],
eventually results in cell death [117]. In parallel, oxidative stress influences the cellular antioxidant network, in turn affecting
plant growth [31] and defense against biotic stress [34,35].

Activation of NPQ requires the generation of a pH gradient across the thylakoid membrane (between stroma and lumen).
The proton gradient induces the fast NPQ response (qE) through the conversion of the xanthophyll pigment violaxanthin
(V) into zeaxanthin (Z) and the protonation of a peripheral antenna complex of PSII, PsbS. The slow relaxation kinetics of gE
after a period of excess light delay reopening of PSII reaction centers, and restore the associated CO fixation rate and po-
tentially growth [118]. In addition, NPQ modulation is achieved by altering the kinetic properties of the ATP synthase, which
then controls the conductivity of the thylakoid membrane to protons, and therefore the pH gradient [115]. PSI has an ad-
ditional photoprotective mechanism that involves cyclic electron flow around PSI (CEF-PSI) [37].

Other types of photoprotective mechanisms are associated with more long-lasting forms of 'unbalance' or 'stress'. They involve
state transitions, the translocation of mobile LHCII between PSI and PSIl (minutes) [38], and changes in the stoichiometry of the
PSI/PSlI ratio (days) [39].

Photoprotection may be manipulated by specific wavelengths to induce a '‘photo-protected'
phenotype (Figure 1). FR light enhances NPQ relaxation kinetics by preferentially exciting
photosystem | (PSI) [36], thereby enhancing cyclic electron flow around PSI (CEF-PSI) in
the high-light phase of fluctuating light [37] and during state transitions [38] (Box 1). In the short
term, supplemental FR light may thus alleviate fluctuating-light stress by increasing photosyn-
thetic efficiency and reducing the need to dissipate excess absorbed energy at PSII. In the long
term, FR light induces adjustments in the stoichiometry of PSI:PSII to better balance photosystem
excitation (low PSI:PSII ratio) [39]. Supplemental FR light also stimulates stomatal closure by
influencing the plastoquinone redox state in guard cells [40], and thus influences the efficiency
of CO, fixation.

‘Shade-Avoidance' Phenotype

A low R:FR ratio induces a range of 'shade-avoidance' responses (Figure 1C) which include leaf
expansion, stem length, and upward leaf movement (hyponasty) [17,41]. The advantage of a
‘'shade-avoidance' phenotype is the enhanced ability to capture light, which is particularly impor-
tant in a young crop.

In young plants, FR light enhances light interception through increased leaf area and petiole
elongation [28]. In the fruiting stage, supplemental FR light may increase dry matter partitioning
into the fruits and stem [42]. In addition, B light depletion and a relative increase in green (G) light
are other characteristics of canopy shade that also trigger shade-avoidance responses in many
plant species (Figure 1) [17,43]. Similarly to the production of photoprotective pigments, low R:
FR and UV-B have contrasting effects, and UV-B can block the growth-inducing effects of low
R:FR ratio [26,44,45].

In conclusion, modulation of light spectrum by LEDs may influence changes in local resource
partitioning, which causes configurational conflicts between the 'shade-avoidance' and
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qE: the energy-dependent component
of non-photochemical quenching (NPQ).
Reactive oxygen species (ROS):
unstable and reactive molecules with an
oxygen group; ROS can damage DNA,
RNA, and proteins.

Red (R) light: photons of wavelengths
in the range 600-700 nm.

UV light: wavelengths in the range
10-400 nm, commonly referred to UV-A
(315-400 nm), UV-B (280-315 nm), and
UV-C (100-280 nm).

Water—water cycle: in chloroplasts,
this is the photoreduction of dioxygen to
water in PSI by electrons generated in
PSII from water.

White light (W): a combination of
wavelengths, usually in the range
380-760 nm; may also refer to sunlight
that has a wider range of wavelengths.
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Figure 1. Effects of Light Color on Plant Phenotypic Traits. (A) Solar light drives photosynthesis and promotes light
interception through changes in morphology. A vertical light intensity and spectrum gradient exists within the crop: red (R)
and blue (B) light are mainly absorbed in the upper layers of the crop, whereas the absorption of far-red (FR) and green (G)
as a fraction of total light increases from the top to the bottom layers of the canopy. The change in light spectrum from top
to bottom of the canopy is indicated in the lower part of this panel. Panel (B) LEDs increase crop photosynthesis and
growth. Supplemental B light as well as R plus B light increase leaf photosynthetic capacity by increased chlorophyll
content (indicated by dark-green foliage) and leaf thickness [20], but can reduce apical dominance (i.e., increased
formation of axillary buds) and induce self-shading [108,109]. In addition, it may induce 'photoprotected' phenotypes by
increasing leaf concentrations of anthocyanins and carotenoids [23-25,27,30]. (C) Supplemental FR light induces the
'shade-avoidance' phenotype: slender shoots, rapid rates of stem or leaf elongation, and high apical dominance, allowing
leaves to increase their exposure to sunlight [46]. This is typically coupled to low leaf mass per area and reduced allocation
to roots [28]. (D) Supplemental R light and B light in combination with FR light can increase leaf photosynthesis and
light interception ability through leaf area expansion, whereas a more upright leaf angle promotes deeper light penetration
in the crop.

§

Plant phenotype and
light distribution in a crop

'photo-protected' phenotypes [46], and, depending on the crop developmental stage, can
enhance either plant growth or resilience.

Plant Defense Against Arthropod Herbivores

When plants exhibit enhanced growth, defensive capabilities decrease, and vice versa [9]. Plant
defenses are regulated by light modulation of endogenous phytohormonal signal-transduction
pathways [47]. An important component of plant defense consists of inducible defenses that
are activated by arthropod feeding and are orchestrated by the salicylic acid (SA) and jasmonic
acid (JA) signaling pathways (Box 2) [48]. Infection by biotrophic pathogens (e.g., powdery
mildew) or phloem-feeding arthropods (e.g., aphids and whiteflies) locally induces ROS produc-
tion, resulting in SA biosynthesis and leading to a local hypersensitive response and systemic
acquired resistance. Activation of the JA signaling pathway by leaf-chewing herbivores such as
caterpillars and beetles leads to the formation of defense-related secondary metabolites. The
SA and JA pathways interact antagonistically (Figure 2) [48]. Some phloem-feeding arthropods
exploit this antagonism to trick plants into an SA response to suppress the JA response [49].

4 Trends in Plant Science, Month 2020, Vol. xx, No. xx
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Box 2. Phytohormones in Plant Defense

Plants perceive biotic attack via various cues, and respond by activating specific defenses. Different herbivore feeding guilds
are recognized through damage-associated molecular patterns (DAMPs) and herbivory-associated molecular
patterns (HAMPs) that activate different phytohormonal signaling pathways [119]. Wounding induced by chewing arthro-
pods such as caterpillars predominantly results in the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA) [49,82].
By contrast, phloem feeders such as aphids predominantly induce the synthesis of salicylic acid (SA) [55,82]. Both herbivore
feeding guilds may also induce ethylene (ET) [49].

JA-lle

JAis converted into the bioactive compound JA-isoleucine (JA-lle). In the absence of JA-lle, a repressor complex consisting
of JASMONATE ZIM-DOMAIN (JAZ), NINJA, and TOPLESS blocks the transcriptional activity of JASMONATE INSENSITIVE
2/3/4 (MYC2/3/4) transcription factors (TFs) [12,82]. Upon herbivory, JA-lle binds to CORONATINE INSENSITIVE 1 (COI1) of
the E3 ubiquitin ligase complex SCFeO, resulting in degradation of JAZ proteins and transcription activation by MYC TFs of
target genes such as VEGETATIVE STORAGE PROTEIN 1 (VSP1), which has antiherbivore activity, and by other MYB TFs
that are involved in the biosynthesis of defense-related secondary metabolites, that act as deterrents or toxins to arthropod
herbivores, and of volatiles that are involved in attracting enemies of the arthropods [82].

JA-lle/ABA

ABA is usually induced through abiotic stresses, such as drought or salinity, but can also be upregulated during herbivory
[49]. The main effect of ABA in defense is in downregulating the transcription factors ETHYLENE RESPONSE FACTOR 1
(ERF1)/OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59), and consequently downregulating the defense gene
PLANT DEFENSIN 1.2 (PDF1.2).

JA-lle/ET

In the absence of ET, the TF ETHYLENE INSENSITIVE 3 (EIN3)/ETHYLENE-INSENSITIVES-LIKE 1 (EIL1) is targeted for
degradation by the E3 ubiquitin ligase complex containing EIN3-BINDING F BOX PROTEIN 1/2 (EBF1/2) [49]. ET results
in cleavage of ETHYLENE INSENSITIVE 2 (EIN2) at the endoplasmic reticulum membrane, and the released C-terminal
part of EIN2 moves to the nucleus to prevent interaction of EINS/EIL1 with EBF1/2. Stabilized EIN2/EIL1 subsequently ac-
tivates the ethylene-responsive TF ERF1. ERF1 activates TF ORA59 which subsequently activates transcription of PDF 1.2
as part of the hypersensitive response.

SA

SA production is triggered by ROS [55,60,82], and SA in turn enhances ROS production. In the cytosol, ROS/SA reduces a
complex consisting of NONEXPRESSOR OF PR1 (NPR1) oligomers to monomer NPR1. Monomeric NPR1 can enter the
nucleus and activate the TGA TF bound to different target promoters. This leads to the activation of pathogenesis-
related (PR) genes and WRKY TF-responsive downstream genes that are involved in hypersensitive responses or systemic
acquired resistance.

Many fundamental studies show the involvement of specific narrow-bandwidth light signaling in
defense responses (Figure 2).

Effects of FR Light on Phytohormone-Mediated Defense

JA is converted into the biologically active JA-isoleucine (JA-lle) by JASMONATE RESISTANT 1
(JAR1/FIN219) [50]. FR light influences JA-lle signaling in plants: intrinsic JA levels are reduced
by the activity of a FR-induced sulfotransferase [54], and JAR1 protein levels are reduced
under FR light [51]. However, at the same time, FR light enhances the intrinsic activity of JAR1
proteins through the FR light-inducible FIN219-INTERACTING PROTEIN 1 (FIP1) (Figure 2)
[50]. Under supplemental FR light JA-lle signaling contributes to the suppression of the shade-
avoidance elongation response [51]. To understand how the effects of FR light on JA-lle signaling
influence plant defense against arthropod herbivory, the effects of FR light should be studied for
plants under herbivore attack.

Downstream of JA-lle signaling are the JASMONATE-INSENSITIVE (MYC) transcription factors,
which are suppressed by the JASMONATE ZIM-DOMAIN (JAZ) protein complexes in the
absence of JA-lle (Figure 2 and Box 2). JA-lle triggers degradation of the JAZ proteins, thus
releasing MYC transcriptional activity [13]. The protein stability of MYCs and JAZs is regulated
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Figure 2. Effects of Light Color on Signaling Pathways Underlying Plant Growth and Defense. Green arrows indicate positive regulation, and red blunt-end
lines indicate negative regulation. Dotted lines: interaction requires that MYC transcription factor is released from its repressor complex by isoleucine-coupled jasmonic
acid (JA-lle) signaling. Unicolored triangles indicate the regulation of gene or protein activity by monochromatic light; triangles with a colored border show regulation by
a supplemental light spectrum. Blue triangles indicate blue (B) light-mediated regulation via cryptochromes and phototropins; bright-red triangles indicate regulation by
red (R) light; dark red triangles indicate regulation by far-red (FR) light (or both R and FR) light that is mediated via phytochromes. Symbols: + and — in triangles indicate
positive and negative regulation, respectively; *, induction of the SA pathway by phloem-feeding arthropods is considered to be a way to interfere with the more
effective JA pathway. Compounds (indicated in hexagons): ROS, reactive oxygen species. Hormones (indicated in squares): ABA, abscisic acid; BR, brassinosteroids;
ET, ethylene; GA, gibberellic acid (GA); JA, jasmonic acid; JA-lle, JA-isoleucine; SA, salicylic acid. Genes and transcription factors (indicated in ovals): BZR1,
BRASSINOSTEROIDS RESISTANT 1 (BZR1); DELLA, DELLA proteins; ERF1, ETHYLENE RESPONSE FACTOR 1; HY5, ELONGATED HYPOCOTYL 5; JAZ,
JASMONATE ZIM-DOMAIN; MYCs, JASMONATE INSENSITIVE; NPR1, NONEXPRESSOR OF PR1; PDF1.2, PLANT DEFENSIN 1.2; PIF3-7, PHYTOCHROME
INTERACTING FACTORS 3-7; PRs, PATHOGEN RESISTANCE genes; VSP1, VEGETATIVE STORAGE PROTEIN 1; WRKY, WRKY DNA-BINDING protein. Numbers

in brackets refer to corresponding references. Additional growth-related references are given in [110-114].

by R:FR, and FR light has a destabilizing effect on MYCs and a stabilizing effect on JAZ proteins
[13]. The stabilizing effect of FR on JAZ proteins results from two mechanisms: (i) shade condi-
tions lead to an increase in gibberellin signaling, which targets DELLA proteins for degradation
[62]. Because DELLAs antagonize the action of JAZ proteins, shade could thus result in higher
JAZ protein repressor activity [52,53]. (i) FR light stabilizes PIF transcription factors that induce
the expression of a gene encoding JA sulfotransferase, resulting in lower levels of JA-lle under
shade conditions [54] (Figure 2).

Changes in R:FR ratio are sensed by the photoreceptor PHYTOCHROME B (PHYB), and FR light
reduces PHYB signaling. Although SA levels are reduced in the arabidopsis phyB mutant, a re-
duction in PHYB signaling by shade or FR light does not change basal (non-induced) SA levels
in wild-type plants [55,56]. However, shade-grown plants are more vulnerable to SA-inducing
organisms, and this may be explained by repression of downstream SA signaling through
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inhibition of nuclear transport of NONEXPRESSOR OF PR1 (NPR1), the main regulator of SA
signaling (Figure 2) [44,55]. Translocation of NPR1 into the nucleus requires phosphorylation,
and FR light inhibits the required kinase activity [55]. Indeed, the NPR1 target gene PATHOGEN
RESISTANCE 1 (PR1), a marker gene of SA-regulated defense, is downregulated in shade-grown
plants [57].

Effects of B Light on Phytohormone-Mediated Defense

Basal JA levels are affected by light spectral composition, and the combination of R and B light
results in higher JA levels compared to W light [58]. However, herbivory under W light caused a
sharp increase in JA levels, but had little effect on the JA levels under R and B light [58,59].
MYC proteins are stabilized under R and B light [13]. However, it remains to be investigated
how this influences defense capacity.

B light can lead to ROS production in plants, leading to enhanced basal SA levels [60-62] and
enhanced defense against biotrophic pathogens, while activating transcriptional suppressors
(WRKYs) of downstream JA-dependent defense genes [63] (Figure 2). By contrast, B light
leads to reduced levels of abscisic acid (ABA) and gibberellic acid (GA) (Box 2) [64,65]. B light
reduces GA levels, resulting in stabilization of DELLA proteins and subsequently destabilization
of JAZ [65]. Thus, B light may lead to derepression of JA-regulated defense (Figure 2). More
research will be necessary to determine how the intensity, timing, and duration of supplemental
B light influences these dual effects of B light on defense signaling so as to determine the most
effective stimulation of either SA- or JA-mediated defense.

Effects of UV-B on Phytohormone-Mediated Defense

Most natural UV light does not penetrate the glass of greenhouses, but may be supplied by UV
LEDs. Even though UV-B can be harmful to plants as a result to DNA damage and ROS production,
small doses of UV-B can improve plant defense [66-69]. Multiple studies show that low doses
of UV-B light increase both basal JA and SA levels as well as the basal expression level of several
defense-related genes [70]. Indeed, there is a large overlap between transcriptional responses to
UV-B-, SA-, JA-, and herbivory-treated plants [70]. Similarly, short exposure to UV increases the
resistance of tomato to western flower thrips (Frankliniella occidentalis) via increased JA and SA
levels and elevated expression of defense-related genes such as THREONINE DEAMINASE (TD),
JASMONIC-INDUCED PROTEIN 21 (JIP-21), and PATHOGENESIS-RELATED GENE 6 (PR6) in
tomato leaves [68]. Similar results were found in a field trial with soybean plants [66], indicating the
possible application of UV LEDs for pest management.

Light Spectrum and Defense Metabolites

Defense compounds may be produced constitutively or after induction by herbivore feeding.
Many defense-related metabolites provide added nutritional value to crops, and a wealth of infor-
mation on the effects of light spectral composition on crop quality is available [41,71-79]. Only a
few studies have linked these effects to actual defense against arthropods [75,80]. For example,
flavonoids protect plants against insects by influencing the behavior, growth, and development of
arthropods [80]. As discussed earlier, flavonoids are also important for photoprotection, and their
biosynthesis can be enhanced through the addition of R and B light but reduced by FR light.

In addition to direct defenses against herbivorous arthropods, plants have indirect defenses
involving the release of herbivore-induced plant volatiles (HIPVs). HIPVs include volatile fatty
acid-derived compounds, terpenoids, and phenylpropanoids/benzenoids that attract the
enemies of herbivorous arthropods [81]. Light spectral composition may affect volatile quantities,
and R and B light result in increased emissions [79], whereas FR light decreases total emissions
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[71-73]. However, light spectral composition may also affect the quantitative composition of the
volatile blend. For instance, FR light reduces the emission of the homoterpene (£, E)-4,8,12-
trimethyl-1,3,7,11-tridecatetraene that is involved in attracting natural enemies of herbivores
[82], whereas the emission of other volatiles was unaffected. Over longer time-periods, FR light
may also reduce the number of glandular trichomes, which are essential for releasing volatiles
in plant species such as tomato [71]. The underlying mechanisms of how light spectrum modu-
lates the biosynthesis and emission of volatiles needs further elucidation to be able to assess
the consequences of light modulation on indirect plant defense.

Plant-Arthropod Interactions and Arthropod Behavior

Similarly to plants, most arthropods are phototactic organisms that possess a range of photo-
receptors sensitive to a selection of wavelengths, and which influence different aspects of arthro-
pod behavior such as host finding and navigation [83]. Changing light spectral composition to
manipulate plant development may therefore influence the behavior, distribution, and population
development of arthropods in greenhouses. Furthermore, the changes in plant morphology and
physiology induced by supplemental light, as described above, may influence plant-arthropod
interactions via changes in direct and indirect plant defense traits [71]. Distinguishing between
direct and plant-mediated effects of supplemental light on arthropod behavior is crucial for
effective pest management in greenhouses.

Effects of Light Spectrum on Herbivore Behavior

Most herbivorous arthropods possess a trichromatic visual system that has peak sensitivities
in the UV, B, and G parts of the spectrum [84]. Using LEDs, the spectral sensitivity of major
agricultural pests is being elucidated in more detail [83,85]. Understanding arthropod phototaxis
to particular wavelengths can be important for implementing LED-based improvement of pest
management [84], especially for the development of light traps [86]. However, the most efficient
colors for attracting arthropods (green/yellow) often have little benefits for crop production.

Wavelength-dependent behavior of arthropods can also be dependent on color contrasts rather
than on single wavelengths. Instead of attracting pests towards a light source for trapping, some
wavelengths may also be applied to repel herbivorous arthropods. Several hemipteran species
exhibit a mechanism of B-G opponency in which higher proportions of B light cause repellence,
and these insects use this contrast as the main determinant for host acceptance or settling
behavior [83,87]. The addition of R light reduces plant attractiveness to melon thrips [88], possibly
through reduced perception of ‘greenness' of plants under supplemental R light. These studies
indicate that the supplementation of R and B light in greenhouses might be effective in reducing
plant attractiveness to herbivorous pests, while at the same time contributing to crop production.

Light spectral composition can also directly influence the life-history traits of arthropods. For
example, B light inhibits diapause induction in herbivorous mites [89]. However, evidence for
direct effects of light spectral composition on arthropod physiology is still scarce and requires
further study.

Plant-Mediated Effects of Light Spectrum on Herbivorous Arthropods

Morphological changes in plants resulting from supplemental light may influence plant-arthropod
interactions. For example, the density of glandular trichomes that provide resistance to arthropod
herbivores [90] can be influenced by light spectral composition [71]. Changes in leaf thickness
and 'greenness' in response to varying R:FR ratios altered the attractiveness of plants for white-
flies [91], indicating that leaf morphology and color can be important aspects of light-mediated
plant-arthropod interactions [46].
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Changes in plant defensive physiology resulting from supplemental LED light also have marked
consequences for the performance and population dynamics of herbivorous arthropods.
Importantly, downregulation of defenses in response to a low R:FR ratio may considerably
increase herbivore performance and their feeding damage [71,92]. Such effects are dependent
on the degree of host-plant specialization of the herbivorous arthropods. Although different
supplemental wavelengths can change the metabolite profile of brassicaceous plants by increasing
glucosinolate content, none of these changes affected the performance of the specialist cabbage
aphid (Brevicoryne brassicae) [77,93]. UV-B increased the resistance of arabidopsis to generalist
Spodoptera litura caterpillars because of increased levels of JA-regulated glucosinolates and
other, unidentified, secondary metabolites [94]. Supplemental R light did not influence the perfor-
mance of several generalist herbivores on tomato plants, but decreased the performance of a
specialist caterpillar (D.M. et al., unpublished).

Supplemental light can also influence emissions of plant volatiles. Low R:FR light illumination
reduces the production of constitutive plant volatiles, resulting in reduced attraction of specialist
herbivores that use these volatiles for host finding [72]. Exposure to low R:FR ratios also
influences the emission of some HIPVs in tomato plants, making them more attractive to the
hemipteran biological control agent Macrolophus pygmaeus. These results indicate a shift from
direct towards indirect defense when tomato plants are exposed to supplemental FR light [71].

Direct and Indirect Effects of Light Spectrum on Beneficial Arthropods

The use of arthropods for biological control and pollination has become increasingly popular since
the late 1900s [95,96], and has tremendously enhanced the sustainability of greenhouse crop
production [95,96]. It is therefore also important to determine whether changes in light spectral
composition influence the behavior and effectiveness of these beneficial arthropods.

Most parasitoids used for biological control belong to the Hymenoptera, which possess the same
trichromatic visual system as many herbivorous arthropods [84,97]. Although research on the
effects of light spectral composition on these natural enemies is still scarce, there are promising
reports that biological control can be improved through changes in light spectral composition.
For example, an increased proportion of B light affects the sex ratio of the aphid parasitoid
Aphidius ervi, resulting in more females [98]. Moreover, extending the photoperiod with a mixture
of R and B light increased parasitism rates on the pea aphid (Acyrthosiphon pisum) [98].

Most pollinators, including bumble bees that are extensively used to pollinate greenhouse crops
such as tomato, also belong to the Hymenoptera and share the same trichromatic (UV, B,
G) visual system [97], although some families have an additional R light receptor [99]. However, little
is known about how supplemental light influences their behavior under greenhouse conditions. A
recent study showed that combinations of R and B light did not affect the landing behavior of
bumble bees compared to W light [100]. In this study, landing behavior was recorded on an artificial
landing platform in the absence of flowers. Supplemental light, especially FR, is known to influence
flowering traits [1]. How LED-induced changes in flower traits influence plant—pollinator interactions
remains to be studied.

Whether or how light quality can be used to promote pest management may depend on the pest
species occurring in the greenhouse because specialist and generalist herbivores respond differently
to plant defensive chemistry. Moreover, changes in light spectral composition have different effects
on herbivores that use either visual or volatile cues for host-plant selection. Differences in peak
spectral sensitivity between herbivores and their natural enemies, that share the same trichromatic
visual system, may be exploited in the development of effective light traps [101].
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In conclusion, supplemental LED lights can influence beneficial and pest arthropods directly or via
changes in plant traits. Unraveling which wavelengths hamper pest arthropods and enhance the
effects of beneficial arthropods will provide opportunities to enhance pest management and con-
tribute to resilient crop production. More studies will be necessary to unravel whether supplemen-
tal LED lights can be found that directly hamper pest arthropods and enhance the effects of
beneficial arthropods, while at the same time having beneficial effects on growth and/or (in)direct
plant defenses.

Concluding Remarks and Future Perspectives

Extensive studies on the effects of narrow-bandwidth light have resulted in detailed knowledge of
the effects of R, FR, B, and UV-B light on plant growth and development. In addition, recent
studies have also revealed that light spectrum may affect plant defense against herbivorous
arthropods. Nevertheless, implementation of LEDs in greenhouse horticulture has mostly
focused on energy-efficient ways to promote crop yield and product quality, whereas the conse-
quences for pest management are less well explored [102]. LEDs may be used to precisely
modulate spectral composition in time and space.

Timing of Supplemental LED Light

Although the use of supplemental LED light to support crop growth mostly involves continuous
light treatments from a fixed position, initial studies on varying the timing and location of supple-
mental lights suggest that more refined light treatments may be able to circumvent the trade-off
between growth and development. More research to assess the effects of timing and provision of
short pulses of supplemental light is needed [103]. Although some knowledge of the effects of
light pulses on plant growth is already available (e.g., effects of end-of-day FR treatments on
flowering and quality of ornamental crops) [104], the consequences for host-plant resistance
and pest management need further investigation (see Outstanding Questions).

Location of Supplemental LED Light

Effective steering of growth and defense may be especially possible at positions or times where
natural radiation is limiting. For instance, even when high light intensity is available at the top of
the canopy at noon, light levels at the bottom of the canopy may be low, and local manipulation
of the light spectrum may be achieved there. The lack of FR in supplemental light sources nega-
tively influences canopy photosynthesis [105]. Supplemental FR light could be used to increase
photosynthesis in the lower canopy, provided that the effect on growth is not offset by a reduction
in defense. Establishing such applications requires investigation of the underlying mechanisms
and their effects under greenhouse conditions.

Effect of Supplemental LED Light on Arthropods

First studies show that supplemental LED light influences the performance of arthropods, including
pollinators, pests, and their natural enemies. These insights warrant further studies on such effects
of LED lights to avoid negative consequences. The focus should be on developing applications of
LED lights that promote the effectiveness of beneficial arthropods while reducing the performance
of pest arthropods. Greenhouse horticulture extensively uses integrated pest management (IPM) of
which the main components are host-plant resistance and biological control to manage arthropod
pests [96,106]. IPM in greenhouses has been carefully developed based on understanding the
underlying mechanisms and ecology. Moreover, an important component is the use of bumble-
bees for pollination of crops such as tomato [107]. To integrate the use of LED lights to enhance
yield and support IPM, a thorough understanding is needed of how supplemental LED lights
simultaneously influence both plant (growth and defense) and arthropod pests, their natural
enemies, as well as pollinators.
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Outstanding Questions

Can the timing and duration of
supplemental LED light of specific
wavelengths contribute to simulta-
neous optimization of crop defense
and growth? This requires better
understanding of how supplemental
light influences the different steps in
the signaling pathways underlying
plant defense and their effects on
resistance to herbivorous arthropods.

What are the major positions of spectral
perception and/or action in the plant?
Can we use this knowledge to steer
plant defense and growth by localized
lighting in the canopy?

Does long-term acclimation to light
spectrum influence instantaneous plant
responses to light spectrum? Is there
amemory effect after application of spe-
cific light spectra, and, if so, how long
does it last?

Can supplemental UV and G light be
used to direct growth and defense in
greenhouse crops? How will this affect
arthropod phototaxis and behavior?

Can supplemental LEDs be used to
interfere with the suppression of JA
responses by phloem-feeding arthro-
pods in the greenhouse?

Because B light may influence both JA
and SA signaling pathways, can the
intensity and duration of supplemental
B light be used to selectively stimulate
either SA- or JA-mediated defense?

How does supplemental light affect
the biosynthesis of herbivore-induced
plant volatiles and the relative strengths
of direct and indirect plant defense
against herbivorous arthropods?

What are the plant-mediated effects
of supplemental light on the physiology
and development of herbivorous
arthropods?



Trends in Plant Science ¢ CellP’ress

In conclusion, LEDs in greenhouses may provide specific additions to light spectral composition,
timing, and location. To optimize the effects of LED lights, we need an integrated understanding
of the fundamental mechanisms that underlie how light spectral composition influences crop
growth and defense as well as the behavior of pest and beneficial arthropods. This involves the
inclusion of temporal and spatial effects. If the addition of specific wavelengths to enhance
crop growth or crop defense can be done at appropriate times and locations without interfering
with the effectiveness of biological control agents or pollinators, then new approaches to imple-
mentation can be developed. A true understanding of how supplemental lighting by LEDs can
be used to steer the dynamics between crop growth and defense will improve the resilience of
greenhouse crop production.
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