Organizing Responsibility and Profitability in the (Sea)Food Chain

Geert Hoekstra

Studium Generale, 17-11-2020

(Sea)food for thought, thoughts about sea(food)

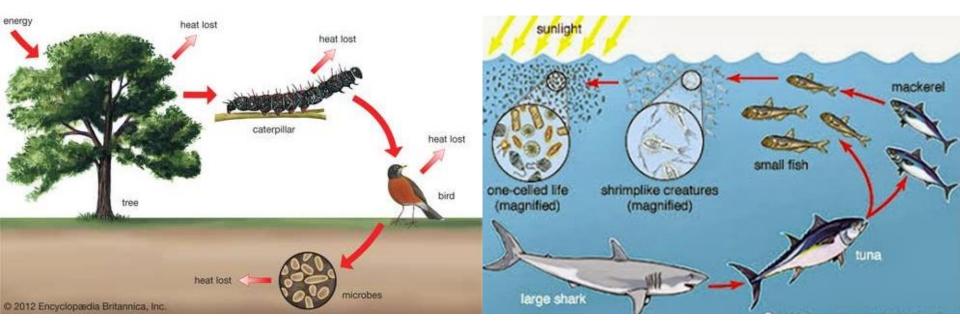
Three main points next 20-25 minutes:

- A. Out of the blue: 'fish as the surprising gamechanger'
- B. It's a small world after all: 'think global, act local'
- C. Zero waste, 100% taste: 'circular potential in seafood chains'

Anyone who believes in indefinite growth on a physically finite planet is either mad or an economist

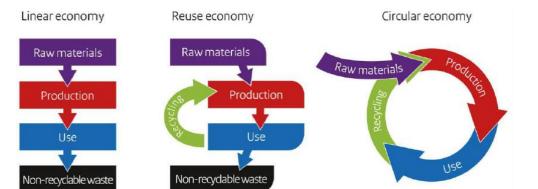
— David Attenborough —

AZ QUOTES


Back to the roots

Circular 'new' or 'renewed'?

Land and marine Food chain © Encyclopedia Britannica, Inc.


From linear to circular food production chains

Source: Channel fish

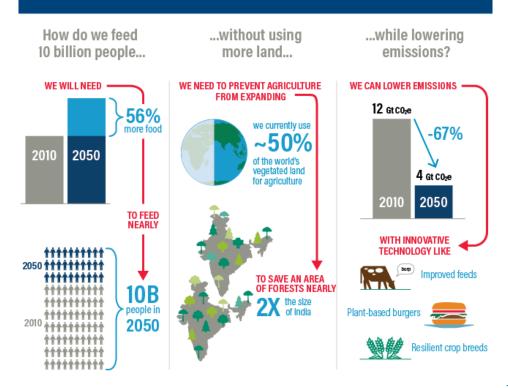
Source: Icefishnews

R5. Refurbish R6. Remanufacture R7. Repurpose R8. Recycle Rg. Recove energy Source: Potting (2018)

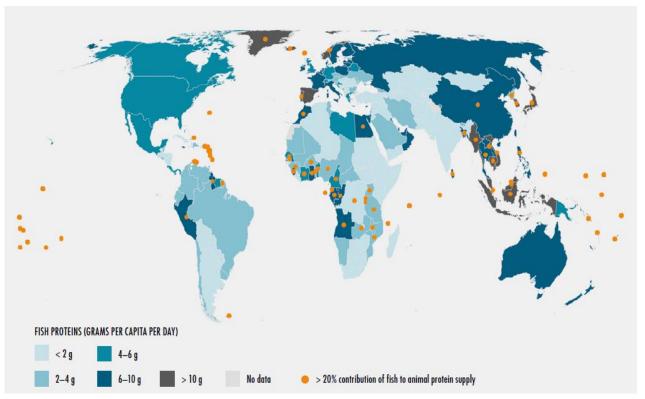
Source: Governments of the Netherlands (2019)

Earth surface (current state origin of protein)

30% land, 98% of proteins for human consumption 70% water, 2% of proteins for human consumption



Source: Google Earth

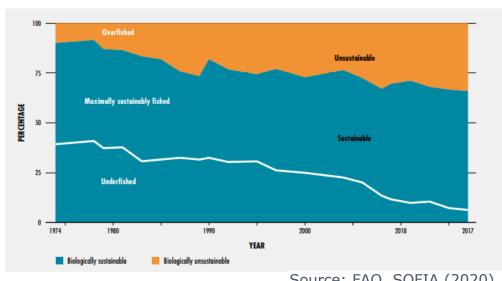


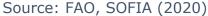
CREATING A SUSTAINABLE FOOD FUTURE BY 2050

Source: World Resources Institute (2019)

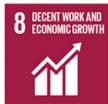
Fish proteins (grams per capita per day) Source: FAO (SOFIA), 2020

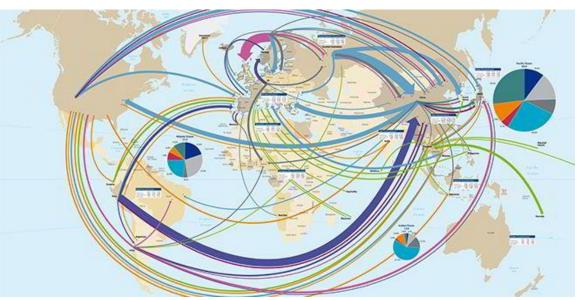
- Affordable for developing countries
- 3.3 billion people, fish >20% daily animal protein (orange dots)
- Omega 3 and micronutrients
- Alternative if agriculture hardly or no option


	Ranking	Energy	GHG	Acidification	Eutrophicati	Land use	Fresh Water	Pesticides	Antibiotics	Erosion
Shellfish	1.7	6	2	1	1	1	1	1	1	1
Sm Pelagic	2.9	3	1	2	3	13	1	1	1	1
Lg Pelagic	4.2	8	5	5	2	14	1	1	1	1
Whitefish	4.8	11	6	4	4	14	1	1	1	1
Salmonid	6.3	9	3	3	8	2	8	8	8	8
Invert	6.3	12	11	11	5	14				
Finfish	7.6	2	12	7	7	8	8	8	8	8
Milk	7.8	1	4	8	6	3	12	12	12	12
Carp	9.7	14	10	6	15	10	8	8	8	8
Tilapia	9.8	15	13	9	13	6	8	8	8	8
Shrimp	10.1	13	14	12	11	9	8	8	8	8
Eggs	10.3	4	7	10	16	4	13	13	13	13
Pork	11.0	5	8	15	10	5	14	14	14	14
Catfish	11.2	16	16	13	12	12	8	8	8	8
Chicken	11.3	7	9	14	9	7	14	14	14	14
Beef	13.6	10	15	16	14	11	14	14	14	14


The environmental cost of animal source foods. Source: Hilborn, R. et al. (2018)

- Environmental cost of our dinner
- Decide by (y)our fork
- 148 LCAs compared for animal protein food products
- Shellfish and small pelagics winners



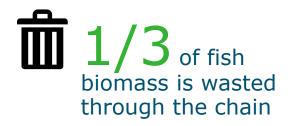


- 1974: 90% of fish stocks at biological sustainable levels, 2017: 66%.
- Fortunately, in North Sea better picture. Most fish stocks be fished at MSY (ICES, 2020).
- High potential aquaculture, but more and more land based.
- Social issues: slavery, poverty, gender inequality
- Climate change: rising water temperature, plastics

B. It's a small world after all: 'think global, act local'

- 56% of fish (US dollars) exported vs. 18% beef, 14% pork, 12% poultry
- Long and complex value chain
- Globalized → countless transport movements
- Large impact COVID

Source: Wageningen Economic Research (2020)



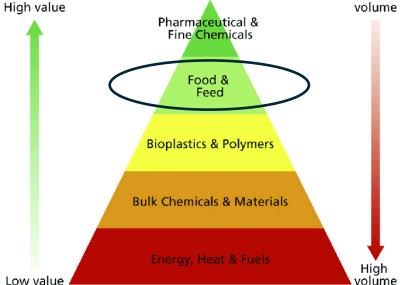
B. It's a small world after all: 'think global, act local'

Any of the challenges in the EU **linear** seafood chains

- Raw materials supply (EU import rates 60-65% of total supply)
- Price inputs/raw materials
- Trade wars/tariffs/duties
- Qualified employees
- International price competition/labor costs
- Another pandemic (lockdowns=no trade)

C. Zero waste, 100% taste: 'circular potential in seafood chains'

- More harvesting, but different (aquaculture + lower trophic)
- 2. Food before feed
- 3. Other consumption patterns (more local species)
- 4. Valorization 100% side streams and by products (zero waste) → 3Rs: Reduce, reuse, recycle



Example of resource efficiency

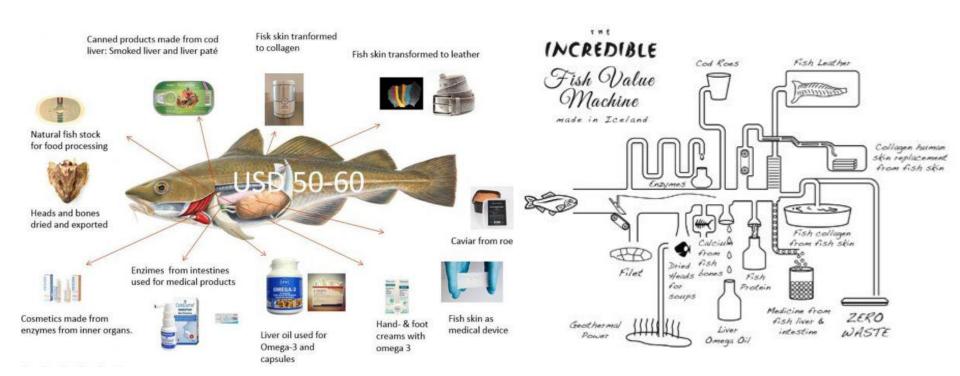
Results of explored *scenarii* through Sardine bioresource Material Flow Analysis in the system

Legend: DEU: Domestic Extraction Used, TMR: Total Material Requirement, DMC: Domestic Material Consumption according Barles (2014); FTE: Full Time Employment; VAT: Total added value

10.00					
	Current	Business as	Circularity with		
	situation	usual	biotechnology		
Local production in t	15038	15038	15038		
Importations in t	12910	16009	8005		
FTE _{Sardine}	1140	1155	1126		
		+1%	-1%		
VAT sardine (10 ⁶ €)	68.3	69.3	67.5		
		+1%	-1%		
Material Intensity	25.30	27.85	20.97		
Requirement/FTE (t/FTE)		+10%	-17%		
FTE : Full Time Employment					
VAT : Total Added Value		Ressource sparing			

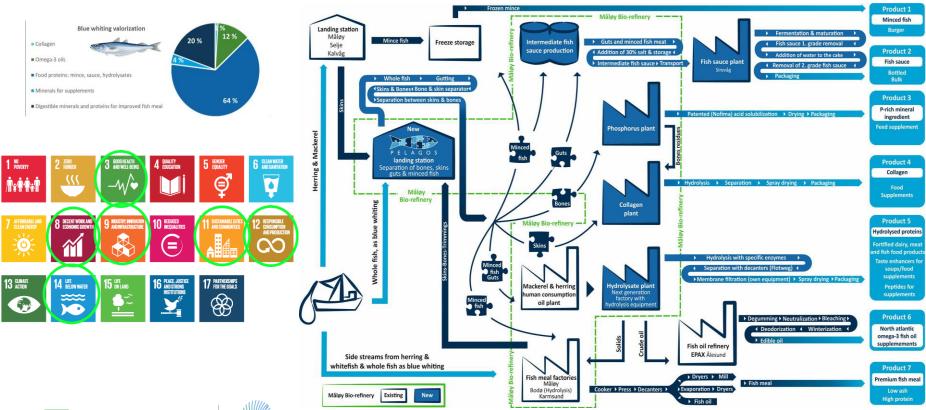
Bio-based value pyramid

Source: Davis et al., 2017



Low

100% taste, zero waste (Cod from Iceland)



Source: Icelandic Ocean Cluster

100% taste, zero waste

16

Thank you for this dive in circular seafood chain!

(sea)food for thought and thoughts about (sea)food.

Questions/discussion later on: geert.hoekstra@wur.nl

Questions? Otherwise we challenge you;)

Bold statements:

- Not the producer but end consumer is responsible for a responsible supply of products (no say, no pay)
- True pricing is the way to separate the 'desirable' from the 'undesirable' products
- If you reward circular and sustainable responsible food producer and B2C players with a robust business model, circular food chains is just a matter of time
- We as a society should tax via our governments products with a highly negative climate and social impact
- Circularity is not the ideal way to produce food within planetary boundaries and in a responsible social and economic way on the long term. It's a matter of supply and demand as circular food chains could not solve this but rather complicate this generique function of markets.

