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Abstract
Most industrial optimization problems are sparse and can be formulated as block-
separable mixed-integer nonlinear programming (MINLP) problems, defined by 
linking low-dimensional sub-problems by (linear) coupling constraints. This paper 
investigates the potential of using decomposition and a novel multiobjective-based 
column and cut generation approach for solving nonconvex block-separable MIN-
LPs, based on the so-called resource-constrained reformulation. Based on this 
approach, two decomposition-based inner- and outer-refinement algorithms are 
presented and preliminary numerical results with nonconvex MINLP instances are 
reported.

Keywords  Decomposition method · Parallel computing · Column generation · 
Nonconvex optimization · Global optimization · Mixed-integer nonlinear 
programming

1  Introduction

Most real-world Mixed Integer Nonlinear Programming (MINLP) models are 
sparse, e.g. instances of the MINLPLib (Vigerske 2018). These models can be refor-
mulated as block-separable problems, defined by low-dimensional sub-problems, 
which are coupled by a moderate number of linear global constraints. In this paper 
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we investigate the potential of solving block-separable MINLPs using a decomposi-
tion multi-tree approach.

1.1 � Global optimization and decomposition methods

Most global optimization methods can be divided into three approaches: 

1.	 Sampling (point-based; Shapiro 2003), stochastic like Evolutionary Algo-
rithms (Bäck 1996) or deterministic like DIRECT (Kolda et al. 2003);

2.	 Branch-and-Bound and variants (tree-based; Tawarmalani and Sahinidis 2005);
3.	 Successive Approximation (model-based), e.g. LP/MIP approximation (Kronqvist 

et al. 2016; Muts et al. 2020).

 Our focus is on Decomposition-based Successive Approximation, i.e. an approxi-
mation is improved by solving low-dimensional sub-problems. Decomposition is a 
very general approach that can be applied to convex optimization, as well as non-
convex optimization and discrete optimization. These methods are based on dividing 
a model into smaller sub-problems defined by local constraints, which can be solved 
in parallel. Then the results are used for updating a global master problem defined 
by global constraints, which is typically an LP, a MIP or a QP problem. The sub-
problems and the global master problem are alternatingly solved until some termina-
tion criterion is met. In the following, an overview on (deterministic) decomposition 
methods is given.

1.1.1 � Lagrangian decomposition

Many MINLP decomposition methods are based on solving a Lagrangian relaxation. 
It has been proven that Lagrangian relaxation regarding the global constraints is 
equivalent to a convex relaxation regarding the local constraints of the original prob-
lem when we are dealing with a linear objective function (Nowak 2005). Lagrangian 
Decomposition (LD) (Feltenmark and Kiwiel 2000; Geoffrion 1974; Lemaréchal 
and Renaud 2001) solves the dual problem by exactly solving subproblems. Col-
umn Generation (CG) methods also solve the dual (Lübbecke and Desrosiers 2005). 
However, in contrast to LD, CG does not require solving subproblems exactly. It is 
sufficient to compute feasible points of sub-problems with negative reduced cost. 
Note that it is possible to solve the LP master problem inexactly, e.g. using subgradi-
ent or bundle methods. Other decomposition algorithms for solving a Lagrangian 
relaxation are cutting plane methods or Frank–Wolfe decomposition, see  Nowak 
(2005) for an overview.

1.1.2 � Alternating direction methods

The Alternating Direction Method (ADM) computes local solutions of a MINLP 
by alternately solving a QP master problem and MINLP sub-problems. Originally, 
ADMs were developed for finite element problems (Gabay and Mercier 1976) and 



1 3

Decomposition in MINLP

are based on Uzawas algorithm  (Uzawa 1958). A review of ADMs including a 
convergence proof for convex problems with separable objective function is given 
in  Boyd et  al. (2011). An ADM for solving MIPs is presented in  Geissler et  al. 
(2014) and for MINLPs in Nowak (2015).

1.1.3 � Multi‑tree decomposition methods

This type of decomposition strategy uses a MIP master problem. It is called multi-
tree, because an individual branch-and-bound tree is built for each MIP instance. 
Using one global master problem which is updated during the solution process, i.e. 
new constraints are added during the solution process in order to improve the mas-
ter problem, is called single-tree strategy. Both approaches solve easier sub-prob-
lems, in order to update the global master problem. More discussion on single-tree 
and multi-tree approaches can be found in  Lundell et  al. (2018). Rapid Branch-
ing is a CG-based multi-tree successive fixing heuristic, described in Borndörfer 
et  al. (2013) and Nowak (2014). For MINLP problems with a small duality gap, 
like many transport planning problems, this method can be used to compute near 
globally optimal solutions of problems with millions of variables. The MOP-CG 
approach of Bodur et  al. (2016) is a multi-tree decomposition algorithm for solv-
ing loosely coupled IPs by alternately solving CG lower and upper bounding master 
problems and Multi-Objective Programming (MOP) sub-problems. It is based on a 
resource-constrained reformulation of the MINLP. We investigate the potential of 
this approach combining them with Decomposition-based Inner- and Outer-Refine-
ment (DIOR), see Nowak et al. (2018).

1.2 � Investigating potential of decomposition multi‑tree approaches

To investigate the potential of decomposition in contrast to using one single search 
tree in MINLP, we develop Decomposition-based Inner-and Outer-Refinement 
(DIOR) algorithms. We also investigate the idea of dimension reduction following 
the concept of a resource constraint program as introduced by Bodur et al. (2016). 
To do so, we follow the following steps: 

1.	 Reformulate the MINLP as a resource-constrained program (RCP) in a reduced 
space

2.	 Compute an LP approximation of the RCP regarding nondominated columns 
using a two-phase approach:

	   (a) Subgradient method, (b) Column generation.
3.	 Compute a MIP approximation of the RCP by adding disjunctive cuts, using a 

multi-objective-based line-search

Section  2 first focuses on the problem definition and the resource-constraint 
approach. Section  3 describes a column generation algorithm for computing an 
initial inner and outer LP approximation. Section 4 presents a DIOR algorithm for 
computing an outer MIP approximation. The convergence of this algorithm is shown 
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in Sect. 4.6. A faster DIOR algorithm for computing an inner MIP approximation is 
presented in Sect. 5. The numerical evaluation in Sect. 6 shows the potential of the 
new decomposition-based approximation approach. We conclude in Sect. 7 outlin-
ing steps for future investigation.

2 � Problem formulation and reformulations

We consider block-separable (or quasi-separable) MINLP problems of the form

with

|M1| + |M2| = m , and

The vector of variables x ∈ ℝ
n is partitioned into |K| disjoint blocks such that 

n =
∑
k∈K

nk , where nk = nk1 + nk2 is the dimension of block k and xk ∈ ℝ
nk denotes 

the variables of block k. The vectors x, x ∈ ℝ
n denote lower and upper bounds on the 

variables.
The linear constraints defining feasible set P are called global. The constraints 

defining feasible set Xk are called local. Set Xk is defined by linear and nonlinear 
local constraint functions, gkj ∶ ℝ

nk → ℝ , which are assumed to be bounded and 
continuously differentiable within the set [x

k
, xk] . Linear global constraints P are 

defined by ai ∈ ℝ
n, bi ∈ ℝ, j ∈ [m] . The linear objective function is defined by 

cTx ∶=
∑

k∈K cT
k
xk , ck ∈ ℝ

nk.
The blocks k ∈ K can be computed based on connected components of the so-

called ’sparsity graph’ (Nowak 2005). The nodes and arcs of this graph correspond 
to variables and nonzero entries of the Hessian of constraint functions of the origi-
nal MINLP, respectively. Interestingly, this procedure yields small blocks for most 
instances of the MINLPLib (Vigerske 2018). Note that it is possible to reformulate a 
MINLP with a given arbitrary maximum block-size nk by adding new variables and 
copy-constraints (Nowak 2005; Tawarmalani and Sahinidis 2005; Vigerske 2012).

2.1 � Resource‑constrained reformulation

If the MINLP (1) has a huge number of variables, it can be difficult to solve it in 
reasonable time. In particular, if the MINLP is defined by discretization of some 
infinitely dimensional variables, like in stochastic programming or in differen-
tial equations, and in addition the sub-problems are reformulated in a lifted space 
using auxiliary variables, the number of variables can be significantly higher than 
the number of global constraints connecting sub-problems. For such problems, a 

(1)min cTx s.t. x ∈ P, xk ∈ Xk, k ∈ K

(2)P ∶= {x ∈ ℝ
n ∶ aT

i
x ≤ bi, i ∈ M1, aT

i
x = bi, i ∈ M2},

(3)Xk ∶= {y ∈ [x
k
, xk] ⊂ ℝ

nk1 × ℤ
nk2 ∶ gkj(y) ≤ 0, j ∈ Jk}.
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resource-constrained view can be promising. In this approach, the original prob-
lem (1) in n-dimensional space is viewed from the m global constraints. Define the 
matrix Ak by

and consider the transformed feasible set:

The variables wk ∶= Akxk are called resources. They describe how the objective 
value and the constraint values aT

i
x are distributed among the blocks. Note that for 

sparse MINLPs the number of non-zero resources, for which Aki ≠ 0 , can be much 
smaller than m, see Sect. 2.3. Let

denote the global constraints in the resource space. We then define the resource-
constrained formulation of (1) as

Proposition 1  Problem  (1) and  (7) are equivalent to the following two-level 
program:

where w∗
k0

 is the optimal value of the sub-problem RCPk given by

Proof  Problem (1) can be formulated as

This shows that (1) and (7) are equivalent. For a given solution (w∗, x∗) of (10), it 
follows that x∗ fulfills (9). Hence, (8) is equivalent to (10). 	�  ◻

(4)Aki =

{
cT
k

∶ i = 0,

aT
ki

∶ i ∈ [m].

(5)Wk ∶= {Akxk ∶ xk ∈ Xk} ⊂ ℝ
m+1.

(6)H ∶=

{
w ∈

∏
k∈K

ℝ
m+1 ∶

∑
k∈K

wki ≤ bi, i ∈ M1

∑
k∈K

wki = bi, i ∈ M2

}

(7)min
∑
k∈K

wk0 s.t. w ∈ H,wk ∈ Wk, k ∈ K.

(8)min
∑
k∈K

w∗
k0

s.t. w ∈ H,

(9)
w∗
k0

∶= min cT
k
xk

s.t. Akixk ≤ wki, i ∈ M1,

Akixk = wki, i ∈ M2, xk ∈ Xk.

(10)

min
∑
k∈K

cT
k
xk

s.t. Akixk ≤ wki, i ∈ M1,

Akixk = wki, i ∈ M2, xk ∈ Xk, k ∈ K,

w ∈ H.



	 P. Muts et al.

1 3

2.2 � Multi‑objective reformulation

The multi-objective (MO) view on  (7) changes the focus from the complete 
image set Wk to the relevant set of Pareto optimal points. A similar reformula-
tion is presented in Bodur et  al. (2016). Consider the following MO sub-prob-
lem of block k, called MOPk , where we aim to minimize |M1| + 1 resources 
simultaneously

The nondominated (Pareto-optimal or efficient) front of MO sub-problem  (11) is 
defined to be the set of vectors, wk = Akxk with xk ∈ Xk , with the property that there 
does not exist any other feasible solution, vk = Akyk with yk ∈ Xk , which dominates 
wk , i.e., for which vki ≤ wki for all i ∈ M1 ∪ {0} , and vki < wki for at least one index 
i ∈ M1 ∪ {0} . An element of the nondominated front is known as a nondominated 
point (NDP). In other words, a NDP is a feasible objective vector for which none 
of its components can be improved without making at least one of its other compo-
nents worse. A feasible solution xk ∈ Xk is efficient (or Pareto optimal) if its image 
wk = Akxk is a NDP, i.e. it is nondominated. Define the set of NDPs of (11) by

and correspondingly, set

Proposition 2  The solution of problem (7) is attained at w∗ ∈ W∗.

Proof  Assume there exist parts ŵ∗
k
∉ W∗ of a solution w∗ , i.e the parts are domi-

nated. This means ∃ŵk ∈ W∗
k
 which dominates w∗

k
 , i.e. ŵki ≤ w∗

ki
 for i ∈ {0} ∪M1 . 

Consider ŵ the corresponding solution where in w∗ the parts w∗
k
 are replaced by ŵk . 

Then ŵ is feasible for RCP given

for i ∈ M1 , and its objective function value is at least as good as that of w∗ as

which means that the optimum is attained at a NDP point ŵ ∈ W∗ . 	�  ◻

(11)min (Akixk)i∈M1∪{0}
s.t. xk ∈ Xk.

W∗
k
∶= {w ∈ Wk ∶ (wi)i∈M1∪{0}

is a NDP of (11)}

W∗ ∶=
∏
k∈K

W∗
k

(12)min
∑
k∈K

wk0 s.t. w ∈ H, wk ∈ W∗
k
, k ∈ K.

∑
k∈K

ŵki ≤
∑
k∈K

w∗
ki
≤ bi,

∑
k∈K

ŵk0 ≤
∑
k∈K

w∗
k0
.
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2.3 � Reducing the dimension of the resources

In many practical problems, some of the blocks may not appear in a global constraint. 
To make use of this characteristic in terms of dimension reduction, we should consider 
the exact properties. Consider the index set of relevant resources

Then RCP (7) is equivalent to

where the projection operator �k ∶ ℝ
m+1

→ ℝ
|M1k|+|M2k| is defined by

Similarly, following Proposition 2, (12) is equivalent to

Formulations (14) and (16) are of interest, because the number 
∑

k∈K �M1k� + �M2k� 
of relevant resources is usually significantly smaller than the number n of variables 
in the original problem. This is the case for sparse optimization models, for which 
the model components are coupled by a moderate number of global constraints.

2.4 � Supported nondominated points

A common method to compute a NDP is the weighted sum method (Miettinen 1998), 
which solves an optimization problem with a single objective obtained as a positive 
(convex) combination of the objective functions of the multiobjective problem:

(13)M1k ∶= {i ∈ {0} ∪M1 ∶ Aki ≠ 0}, M2k ∶= {i ∈ M2 ∶ Aki ≠ 0}.

(14)

min
∑

k∈K, 0∈M1k

wk0,

s.t.
∑

k∈K, i∈M1k

wki ≤ bi, i ∈ M1,

∑
k∈K, i∈M2k

wki = bi, i ∈ M2,

wk ∈ �k(Wk), k ∈ K,

(15)�k(w) ∶= (wi)i∈M1k∪M2k
.

(16)

min
∑

k∈K, 0∈M1k

wk0,

s.t.
∑

k∈K, i∈M1k

wki ≤ bi, i ∈ M1,

∑
k∈K, i∈M2k

wki = bi, i ∈ M2,

wk ∈ �k(W
∗
k
), k ∈ K.

(17)min dTAM1k
xk s.t. xk ∈ Xk.
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For a positive weight vector d ∈ ℝ
|M1k|
+  , any optimal solution of (17) is an efficient 

solution of (11), i.e., its image is nondominated. Such a solution and its image are 
called a supported efficient solution and a supported NDP, respectively. Thus, an 
efficient solution xk is supported if there exists a positive vector d for which xk is an 
optimal solution of (17), otherwise xk is called unsupported.

Example 1  We introduce a numerical example which can be calculated by hand to 
illustrate the introduced concepts. Let n = 4 , K = {1, 2} , c = (−1,−2,−1,−1) , 
A = (2, 1, 2, 1) , b = 10 , x = (0, 0, 2, 1) and x = (5, 1.5, 5, 3) . Integer variables are 
I1 = {1}, I2 = {3} and the local constraints g11(x1, x2) = 3x2 − x3

1
+ 6x2

1
− 8x1 − 3 

and g21(x3, x4) = x4 −
5

x3
− 5 . One can verify that the optimal solution is 

x = (1, 1.5, 2, 2.5) with objective value −8.5 . In the resource space, this corresponds 
to the points w1 = (−4, 3.5) in space W1 and w2 = (−4.5, 6.5) in space W2.

Figure  1 sketches the image spaces W1 and W2 with the corresponding Pareto 
front. For block k = 2 , the image nearly coincides with the Pareto front W∗

2
 , although 

the number of supported points is limited. For block k = 1 , one can observe more 
clearly parts of the feasible space that are dominated.

3 � Column generation

In this section we describe a column generation algorithm for computing initial 
inner and outer LP approximations. We use the notation [S] ∶= {1,… , |S|} for 
the index set of a discrete set S, i.e. S = {yj ∶ j ∈ [S]} . For a subset T ⊆ S , [T] is 
defined by [T] ∶= {j ∈ [S] ∶ yj ∈ T}.

Fig. 1   Resource constraint space of blocks k = 1, 2 . Image spaces W1 and W2 in blue with extreme points 
as circles. Pareto front in black, with extreme points as a star. Supported Pareto points are marked with 
a green square. As a red square, the ideal w

k
 (left under) and the Nadir point (right-up). (Color figure 

online)
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3.1 � Inner approximation

Column generation (CG) is a decomposition method for solving the following con-
vex relaxation of (1)

Note that the convex relaxation (18) of problem (1) is equivalent to the Lagrangian 
relaxation of problem (1) regarding the global constraints, see Lemma 3.7 of Nowak 
(2005) for the proof.

The quality of convex relaxation  (18) of MINLP  (1) depends strongly on the 
duality gap, defined by

Given a finite set of feasible points

we have that

is an inner LP approximation of (18). The resource constrained formulation of (19) 
is given by

where Rk ∶= {Aky ∶ y ∈ Sk} is called a set of columns rkj ∈ ℝ
m+1 . An LP formula-

tion of the inner approximation (20), called LP-IA, is given by

where

�|Rk| denotes the standard simplex

CG generates columns rkj ∈ ℝ
m+1 and adds them to the column set Rk, k ∈ K, by 

alternately computing a dual solution � of (21), solving Lagrangian sub-problems

(18)min cTx s.t. x ∈ P, xk ∈ conv (Xk), k ∈ K.

gap ∶= val (1) − val (18).

Sk ∶= {ykj}j∈[Sk] ⊂ Xk,

(19)min cTx s.t. x ∈ P, xk ∈ conv (Sk), k ∈ K

(20)min
∑
k∈K

wk0 s.t. w ∈ H, wk ∈ conv (Rk), k ∈ K,

(21)min
∑
k∈K

wk0(zk) s.t. w(z) ∈ H, zk ∈ �|Rk|, k ∈ K,

(22)w(z) ∶=
∑
k∈K

wk(zk), wk(zk) ∶=
∑
j∈[Rk]

zkjrkj, rkj ∈ Rk, zk ∈ �|Rk|.

�|Rk| = {z ∈ ℝ
|Rk| ∶

∑
j∈[Rk]

zj = 1, zj ≥ 0, j ∈ [Rk]}.

(23)yk(�) ∶= argmin{(1,�T )Akx ∶ x ∈ Xk},
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and adding yk(�) to Rk for k ∈ K . In general, sub-problem  (23) is a noncon-
vex MINLP problem since it is defined over nonlinear feasible set Xk . However, 
it is smaller than the original problem  (1) and its size depends on the block-size 
nk, k ∈ K.

The computation of convex relaxation (18) is based on solving large easy LP 
master problems  (19) and small difficult MINLP sub-problems  (23). In order 
to be efficient, a fast sub-solver for Lagrangian sub-problem  (23) is neces-
sary. Examples of fast sub-solvers are (truncated) branch-and-cut, local search, 
dynamic programming-based constrained shortest path (Engineer et al. 2008) or 
MIP-based OA (Kronqvist et al. 2018; Nagarajan et al. 2019).

3.2 � Initializing LP‑IA

Algorithm  1 computes initial columns Rk, k ∈ K, by performing a subgradient 
method for maximizing the dual function of problem  (1) regarding the global 
constraints:

We compute the step length �p by comparing the values of the function L(�) defined 
in (24) at different iterations p of Algorithm 1, similarly as in Shor (1985):

The method solvesubproblem(d) solves MINLP sub-problem (23) for a given search 
direction d ∈ ℝ

m+1

and computes reduced cost �k of the new point yk . The columns wk = Akyk are added 
to the column set Rk , k ∈ K . The reduced cost �k is computed by taking the differ-
ence between the cost of new column wk regarding direction d and minimum cost of 
existing columns Rk regarding direction d, i.e.

After computing minimizers yk of (26) for d = (1,�T ) , one can easily compute the 
value of dual function  (24). Note that if yk is a global minimizer and dk is a non-
negative search direction, then wk = Akyk is a supported NDP.

(24)L(�) ∶=
∑
k∈K

min
yk∈Xk

(1,�T )Akyk − �Tb.

(25)𝛼p+1 =

⎧⎪⎨⎪⎩

0.5𝛼p ∶ L(𝜇p) < L(𝜇p−1),

2𝛼p ∶ L(𝜇p) > L(𝜇p−1) > L(𝜇p−2),

𝛼p ∶ otherwise.

(26)
yk = argmindTAkx,

s.t. x ∈ Xk,

�k = dTwk − min
rk∈Rk

dTrk.
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Algorithm 1 Initialization of LP-IA
1: function initIA
2: R ← ∅, p ← 0, µp ← 0, αp = 1
3: for k ∈ K do
4: (yk, δk) ← solveSubproblem(1,0T ), Rk ← Rk ∪ {Akyk}
5: repeat
6: p ← p+ 1, µp ← µp−1 + αp(Ay − b)
7: for k ∈ K do (yk, δk) ← solveSubproblem(1, (µp)T ), Rk ← Rk ∪ {Akyk}
8: until p = pmax
9: return R

3.3 � A column generation algorithm

Algorithm 2 describes a Column Generation algorithm for computing LP-IA (21). 
In the beginning of the algorithm, the feasible set of LP-IA  (21) may be empty. 
Therefore, the following master problem with slacks s ∈ ℝ

m
+
 is solved by 

solveslackmasterproblem(R)

where penalty 𝜃 > 0 is sufficiently large. If the slack variables are nonzero, i.e. s ≠ 0 , 
in order to eliminate nonzero slack variables, the method slackdirections computes 
a new search direction d ∈ ℝ

m for the subproblems (23) in the following way

with ei ∈ ℝ
m the vector with a one at coordinate i and zeros elsewhere.

(27)

min
∑
k∈K

wk0(zk) + �
∑
i∈M1

si + �
∑
i∈M2

si1 + si2

s.t.
∑
k∈K

wki(zk) ≤ bi + si , i ∈ M1,

∑
k∈K

wk�(zk) = bi + s
�1 − s

�2 , � ∈ M2,

zk ∈ �|Rk|, k ∈ K, si, s�1, s�2 ≥ 0, i ∈ M1,� ∈ M2,

d ∶=
∑

si > 0.1max(s),

i ∈ M1

ei +
∑

si1 > 0.1max(s),

i ∈ M2

ei −
∑

si2 > 0.1max(s),

i ∈ M2

ei,
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Algorithm 2 Column Generation
1: function colGen(R)
2: R ← initIA
3: M ← ∅
4: repeat
5: (z, µ, s) ← solveSlackMasterProblem(R)
6: M ← M∪ µ
7: if s > 0 then
8: d ← slackDirections(s)
9: for k ∈ K do
10: (yk, δk) ← solveSubProblem(0, dT ), Rk ← Rk ∪ {Akyk}
11: for k ∈ K do
12: (yk, δk) ← solveSubProblem(1, µT ), Rk ← Rk ∪ {Akyk}
13: until ∀δk ≥ 0
14: return (z,R,M)

4 � A DIOR algorithm for computing an outer MIP approximation

In this section, we present a DIOR algorithm for computing an exact outer MIP 
approximation of the resource-constrained problem (7). It consists of an LP phase 
(using an LP master problem) and a MIP phase (using a MIP master problem). The 
LP phase generates supported NDPs and is intended to speed up the convergence 
of the algorithm, like in Muts et al. (2020). The MIP phase generates also non-sup-
ported NDPs. For the sake of simplicity, we consider only global inequality con-
straints, i.e.

4.1 � Outer LP approximation

An outer LP approximation of (7), called LP-OA, is given by

with

where yk(�) is the solution of the Lagrange sub-problem (23) regarding a dual point 
� and M is a set of dual solution points, computed by Algorithm 2. Note that Pk con-
sists of a set of supporting hyperplanes of set Wk . In other words, set Pk is defined by 
valid linear constraints, since they are constructed using optimal solution point yk(�) 
of the Lagrange sub-problem (23) regarding dual direction � ∈ M . Therefore,

(28)M2 = �.

(29)min
∑
k∈K

wk0 s.t. w ∈ H, wk ∈ Pk, k ∈ K,

(30)Pk ∶= {wk ∈ ℝ
m+1 ∶ (1,�T )Akyk(�) ≤ (1,�T )wk, ∀� ∈ M},

(31)Wk ⊂ Pk, k ∈ K.
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4.2 � Outer MIP approximation

We construct an outer approximation of Wk defined by polyhedral subdivision ele-
ments Dku , called cells

where Uk is the index set of cell subdivision elements. We define a cell 
Dku, u ∈ Uk, k ∈ K in the following way

where Jku denotes an index set of constraints defining the u-th cell. A nonconvex 
outer MIP approximation problem of (7) is given by

where binary variables select an index u ∈ Uk , such that wk ∈ Dku . Note that  (34) 
does not consider the integer constraints of the original problem  (1), since it is 
defined in transformed feasible set as in (5). Problem (34) contains only binary con-
straints which indicate whether cell Dku, u ∈ Uk is active or inactive. A MIP formu-
lation of (34) is given by

where dkj and �kj, j ∈ Jku , describe the polyhedral set corresponding to cell Dku 
described by (33) and selected when tu = 1 . The “big” M > 0 should be sufficiently 
large. A restricted LP master problem regarding the selected cells Dkuk

, k ∈ K, is 
defined by

4.3 � Disjunctive cuts

A p-disjunctive cut is defined by removing an open polyhedron Ck from a cell Dku 
defined by p linear inequalities, i.e.

(32)Dk ∶=
⋃
u∈Uk

Dku ⊃ Wk,

(33)Dku = {w ∈ Rm+1 ∶ dT
kj
w ≤ �kj, j ∈ Jku},

(34)
min

∑
k∈K

wk0

s.t. w ∈ H, wk ∈ Dk,wk ∈ Pk, k ∈ K,

(35)

min
∑
k∈K

wk0

s.t. w ∈ H, wk ∈ Pk,

dT
kj
wk ≤ M(1 − tu) + �kj, j ∈ Jku, u ∈ Uk,

t ∈ {0, 1}|Uk| ∩ �|Uk|, k ∈ K,

(36)min
∑
k∈K

wk0 s.t. w ∈ H, wk ∈ Dkuk
, k ∈ K.
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We generate a cone cut with respect to vertex v ∈ ℝ
m+1 , which we call an |M1k|-dis-

junctive cut, by removing the cone of dominated area

In the outer approximation, we use this concept to remove a cone of dominated area 
given an NDP v. This means that MIP approximation  (35) is refined and cuts off 
parts of MIP solution ŵ by removing cones Ck(vk) that contain ŵk ∈ Ck(vk) for those 
subproblems k ∈ K , where ŵk ∉ Wk . In order to remove an cone Ck(vk) , cell Dku is 
divided into |M1| new cells

4.4 � Pareto line search

We describe a line search procedure for constructing a disjunctive cut for cutting off 
a solution (u, ŵ) of MIP-OA (35) by removing cone Ck(vk) , defined in (37). Consider 
the ideal point

We compute a disjunctive cut by removing the largest cone Ck(vk) , such that 
Ck(vk) ∩Wk = �, and vk is on the line connecting ideal point w

k
 and solution point ŵk 

of MIP-OA (34). Given the line

the line search step size �k is computed by solving Pareto line search sub-problem

Then the cone tip of Ck(vk) is vki = vi(�k), i ∈ M1k.

4.5 � DIOR using Pareto line search

Algorithm 4 describes an inner–outer refinement algorithm for solving (1) by itera-
tively adding disjunctive cone cuts based on Pareto line search. It maintains a set 
of sample points Rk and cells Dk on local level an a set M of dual vectors on global 
level. In Sect.  6, we will illustrate the algorithm numerically and also provide a 
sketch of the idea of the cone points, outer solutions and outer approximation in 
Fig. 2. It uses the methods:

Ck = {w ∈ ℝ
m+1 ∶ dT

j
w < 𝛽j, j ∈ [p]}.

(37)Ck(v) ∶= {w ∈ ℝ
m+1 ∶ ∃i ∈ M1k,wi < vi }.

(38){w ∈ Dku ∶ wi ≥ vki}, i ∈ M1k.

(39)w
ki
= min{Akixk ∶ xk ∈ Xk}, i ∈ M1k.

(40)vi(𝜆) ∶= w
ki
+ 𝜆k(ŵki − w

ki
), i ∈ M1k, 𝜆 ∈ ℝ,

(41)

(yk, �k) = argmin �

s.t. Akix ≤ vi(�), i ∈ M1k,

x ∈ Xk, � ∈ ℝ.
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•	 initoa(R,M) for initializing D by Dk1 = Pk, k ∈ K, where Pk is defined by the 
local constraints of the OA-LP (29).

•	 solveouterlp(D) for computing (ŵ,𝜇) of the OA-LP (29).
•	 idealpoint for computing an ideal point w

k
 defined in (39).

•	 paretolinesearch(w
k
, ŵk,𝜇) for computing a possibly nonsupported NDP vk by 

solving (41).
•	 conesubdiv(uk, vk,Dk ) for removing cone Ck(vk) from set Dk by dividing Dkuk

 into 
new overlapping cells 38.

•	 solveoutermip(D) for solving (34).

Algorithm 3 Intialize DIOR
1: function initDior
2: (ẑ, R,M) ← colGen # inner refine
3: (u,D) ← initOA(R,M) # init cells
4: return (ẑ, u,D,R)

Algorithm 4 DIOR for computing an outer MIP approximation
1: function dior1
2: (ẑ, u,D,R) ← initDior, ŵ ← w(ẑ) # LP-IA refine
3: for k ∈ K do
4: wk ←idealPoint, add cuts wk ≥ wk to Dk

5: repeat # MIP-OA refine
6: for k ∈ K do
7: (vk, λk) ← paretoLineSearch(wk, ŵk)
8: if λk > 1 then Dk ←coneSubdiv(uk, vk, Dk) # Dk ← Dk \ Ck

9: (u, ŵ) ← solveOuterMip(D) # MIP-OA solution
10: until stopping criterion
11: return

∑
k∈K wk0

The algorithm starts by generating columns and a first outer approximation via 
Algorithm 3. A reduced version of Algorithm 4 is illustrated with instances having 
one global constraint in Muts et al. (2020).

4.6 � Proof of convergence

In this section, we prove that Algorithm 4 computes an �-global optimum of prob-
lem (1) in finitely many iterations. Note that we assume (28), i.e. m = |M1| . Let
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Denote by ŵp, 𝜆p, vp the solution of MIP-OA  (34), the dual solution of restricted 
LP-OA (36), and the solution of the Pareto line-search sub-problem (41) in iteration 
p, respectively. Furthermore, denote by Dp

k
⊃ Wk, k ∈ K, the outer approximation, 

which is refined by Algorithm 4 in iteration p by adding cone cuts. In particular, we 
have

This process creates a sequence of enclosure sets

with the following property

In fact, it is sufficient to have Ŵp enclose W∗ as Property (2) details. In order to prove 
the main convergence result, we present intermediate results in Lemmas 1–7. It is 
assumed that MIP-OA master problem (34) and line-search sub-problems (41) are 
solved to global optimality.

Lemma 1  Let Ŵ∗p

k
 be the Pareto front of Ŵp

k
 , i.e.

MIP-OA (34) is equivalent to

Proof  This can be proved exactly as in Proposition 2. 	� ◻

For the sequel of the proof, we introduce the extended resource set as a comple-
ment of the dominated area

The extended Pareto frontier is defined as

Notice that W
∗

k
 not only includes the Pareto front W∗

k
 , but also covers the gaps in the 

Pareto front, which are also sketched in Fig. 1.

f (w) ∶=
∑
k∈K

wk0.

(42)D
p+1

k
= D

p

k
⧵Ck(v

p

k
), if 𝜆

p

k
> 1, D

p+1

k
= D

p

k
, if 𝜆

p

k
= 1.

Ŵp ∶=
∏
k∈K

D
p

k
,

(43)�W0 ⊃ ⋯ ⊃ �Wp−1 ⊃ �Wp ⊃ W.

Ŵ∗p

k
∶= {w ∈ Ŵ

p

k
∶ w is a NDP of min v s.t. v ∈ Ŵ

p

k
}.

(44)min f (w) s.t. w ∈ H,wk ∈ Ŵ∗p

k
.

Wk = ℝ
m+1⧵{w ∈ ℝ

m+1,∃v ∈ W∗
k
,∃i ∈ M1k,wi < vi}.

W
∗

k
∶= {w ∈ Wk ∶ w is a NDP of min v s.t. v ∈ Wk}.
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Lemma 2  Problem

is equivalent to

Proof  This can be proven as in Proposition  2. Assume that ŵ∗
k
∉ W

∗
 for some 

k ∈ K of a solution w∗ . This means ∃ŵk ∈ W∗
k
 which dominates w∗

k
 , i.e. ŵki ≤ w∗

ki
 

for i ∈ {0} ∪M1 . Consider ŵ the corresponding solution where in w∗ the parts w∗
k
 

are replaced by ŵk . As in the proof of Proposition 2 it follows that the optimum is 
attained at a NDP point ŵ ∈ W∗ ⊆ W

∗
 . 	�  ◻

Considering Wk is relevant when we have a look at the line search  (41). Now 
focusing on this step, notice that if � takes a value of 1, the outer approximation sub-
solution ŵk is feasible and in that respect optimal for this part of the master problem. 
So, if for all sub-problems we have a value of � = 1 we are done and the algorithm 
converged.

Lemma 3  If after p < ∞ iterations of Algorithm 4, �p
k
= 1 for all k ∈ K , then ŵp is 

an optimal solution of problem (7).

Proof  Since ŵp is an optimal solution of MIP-OA master problem  (34), it is in 
H ∩ Ŵp . From property  (43) it is clear that Ŵp also includes W. Since ŵp

k
∈ �W∗p

k
 

from Lemma 1, it follows int [w
k
, ŵ

p

k
] ∩ �W

p

k
= � , and hence �k ≥ 1 for all k ∈ K . If 

�
p

k
= 1 , vk ∈ [w

k
, ŵ

p

k
] . Therefore, no cone Ck(vk) with vki > ŵ

p

ki
 for i ∈ {0,… ,m} and 

ŵ
p

ki
> w

ki
 has to be removed from Ŵp

k
 . Hence, ŵp

k
∈ W

∗

k
 for all k ∈ K . From Lemma 2 

it follows that ŵp minimizes the objective function within H ∩W . Since ŵp ∈ H , it 
follows that it is also an optimal solution of (7). 	�  ◻

Lemma 4  If �p
k
≠ 1 for some k ∈ K , Algorithm  4 excludes ŵp from set Ŵp+1 , i.e. 

ŵp ∉ �Wp+1.

Proof  If �p
k
≠ 1 , then 𝜆p

k
> 1 from Lemma  1 (as above) and Ck(v

p

k
) is removed 

from Ŵp . If 𝜆p
k
> 1 , then ∃i ∈ {0,… ,m} with vp

ki
> ŵ

p

ki
 . Hence, ŵp

k
∈ Ck(v

p

k
) and 

ŵp ∉ �Wp+1 . 	�  ◻

In Lemma 5 we show that if Algorithm 4 does not stop in a finite number of itera-
tions, the sequence of primal solution points contains at least one convergent subse-
quence {ŵpj}∞

j=1
 , where

Since subsequence {ŵpj}∞
j=1

 is convergent, there exists a limit it has a limit 
limj→∞ ŵpj = w∗ . In Lemmas  6 and  7, we show that w∗ is in the extended Pareto 
frontier W

∗
 and therefore an optimal solution of (7), where W

∗
∶=

∏
k∈K W

∗

k
.

min f (w) s.t. w ∈ H,wk ∈ Wk, k ∈ K,

(45)min f (w) s.t. w ∈ H, wk ∈ W
∗

k
, k ∈ K.

{p1, p2,…} ⊆ {1, 2,…} and {ŵpj}∞
j=1

⊆ {ŵp}∞
p=1

.
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Lemma 5  If Algorithm 4 does not stop in a finite number of iterations, it generates a 
convergent subsequence {ŵpj}∞

j=1
.

Proof  Since the algorithm has not terminated, for all p = 1, 2,… there exists a k ∈ K 
such that 𝜆p

k
> 1 . Therefore, all the points in the sequence {ŵp}∞

p=1
 will be distinct as 

shown in Lemma 4. Since {ŵp}∞
p=1

 contains an infinite number of different points, 
and all are in a compact set, since MIP-OA is bounded, according to the Bolzano-
Weierstrass Theorem, the sequence contains a convergent subsequence. 	� ◻

Lemma 6  The limit w∗
k
 for any convergent subsequence {ŵpj}∞

j=1
 generated in Algo-

rithm 4 belongs to W
∗

k
.

Proof  Let ŵpj

k
 and ŵpj+1

k
 be points from sequence {ŵpj

k
}∞
j=1

 . From Lemma  4 follows 
that in each iteration a cone Ck(v

p

k
) with vp

k
= w

k
+ 𝜆

p

k
(ŵ

p

k
− w

k
) for some k ∈ K is 

removed. This is also the case for iterate pj , such that for future iterates ∃i, ŵp

ki
≥ v

pj

ki
 . 

This means

Assume that �pj
k
 does not converge to 1 and there is a value 𝜏 > 1 , such that in each 

iterate 𝜆pj
k
> 𝜏 > 1 . This leads to a contradiction, because the iterates vp

k
 are in the 

bounded set D0
k
 . From the proof of Lemma 3 we have �pj

k
≥ 1 . Hence, �pj

k
→ 1 and 

|ŵpj

k
− v

pj

k
| → 0 . This implies limj→∞ ŵ

pj

k
∈ W

∗

k
 . 	�  ◻

Lemma 7  The limit point of a convergent subsequence is a global minimum point 
of (7).

Proof  Because each set Ŵp is an outer approximation of the feasible set W, f (ŵpj ) 
gives a lower bound on the optimal value of the objective function. Due to prop-
erty (43), sequence {f (ŵpj )}∞

j=1
 is nondecreasing and since the objective function is 

continuous, we get limj→∞ f (ŵpj ) = f (w∗) . According to Lemma 6, limit point w∗
k
 is 

within the set W
∗
 . From Lemma 2 follows that w∗ minimizes the objective function 

within H ∩W . Because w∗ ∈ H , it is also an optimal solution of (7). 	�  ◻

Since Lemmas 6 and 7 apply to all convergent subsequences generated by solving 
the MIP-OA master problems (34), any limit point of such sequence will be a global 
optimum. We summarize the convergence results in the following theorem.

Theorem 1  Algorithm 4 either finds a global optimum of (7) in a finite number of 
iterations or generates a sequence {ŵpj}∞

j=1
 converging to a global optimum.

Proof  Suppose the algorithm stops in a finite number of iterations. Then the last 
solution of the MIP-OA master problem (34) satisfies all constraints and according 
to Lemma 3 it is a global optimum of (7). In case the algorithm does not stop in a 

∃i ∈ {0,… ,m}, ŵ
pj+1

ki
− w

i
≥ 𝜆

pj

k
(ŵ

pj

ki
− w

i
).
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finite number of iterations, it generates a sequence converging to a global optimum 
of (7) according to Lemmas 5 and 7. 	�  ◻

5 � A DIOR algorithm for computing an inner MIP approximation

Motivated by the Rapid Branching approach  (Borndörfer et  al. 2013), we present in 
this section a heuristic DIOR algorithm for computing an inner MIP approximation of 
the resource-constrained problem (7). The goal of the algorithm is to compute a good 
primal solution point using the resources obtained by the inner MIP approximation. 
The approach is based on iteratively cutting off low-dimensional faces of conv (R ∩ H) 
containing the solution ŵ of a MIP master problem. Note that the objective value of an 
inner MIP approximation does not provide a valid lower bound for problem (1).

5.1 � Inner MIP approximation

Consider a partition of the relevant part of resource space [w,w] using polyhedral parti-
tion elements Dku , called cells, i.e.

Implicitly, this partition also partitions the set of columns Rk into subsets 
Rku ∶= Rk ∩ Dku . An inner MIP approximation with slacks, called MIP-IA, is

A MIP formulation of (46) is given by

[w,w] =
⋃
u∈Uk

Dku, int (Dku) ∩ int (Dk�) = �, ∀u, � ∈ Uk.

(46)

min
∑
k∈K

wk0 + �
∑
i∈M1

si + �
∑
i∈M2

si1 + si2

s.t.
∑
k∈K

wki ≤ bi + si, i ∈ M1,

∑
k∈K

wki = bi + si1 − si2, i ∈ M2,

wk ∈
⋃
u∈Uk

conv (Rku), k ∈ K,

si ≥ 0, i ∈ [m].
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where [Rku] ⊂ [Rk] denotes the indices of the columns Rku . Note that replacing 
conv (Rku) in  (46) by conv (Wk ∩ Dkuk

) defines a lower bounding program of the 
MINLP  (1). By performing column generation regarding cells Dku , the optimum 
value of (46) is converging to the optimum value of this lower bounding program.

5.2 � Computing inner disjunctive cuts

MIP-IA (47) is refined by adding an inner disjunctive cut, defined by subdividing a cell 
Dkuk

 into sub-cells Dkv , v ∈ Vk(uk) such that

and replacing conv (Rkuk
) by 

⋃
v∈Vk(uk)

conv (Rkuk
∩ Dkv). In order to increase the opti-

mum value of (46), it is necessary to cut off wk(ẑk) for some k ∈ K , where ẑ is the 
solution of MIP-IA (47). This is equivalent to

Denote by R̂k ⊆ Rk a set of supporting columns with wk(ẑk) ∈ int ( conv (R̂k)) . We 
define the sub-cell Dkv such that it eliminates one supporting column from the 
set R̂k , i.e. R̂k ⊄ Dkv,∀v ∈ Vk(uk) . For that we set the point ŵk(ẑ) to be a vertex of 
Dkv,∀v ∈ Vk(uk) . Since wk(ẑk) ∈ int ( conv (R̂k)) and wk(ẑk) ∈ vert(Dkv),∀v ∈ Vk(uk) , 
it cannot be expressed as a convex combination of points in R̂k ∩ Dkv , i.e. (48) holds.

(47)

min
∑
k∈K

wk0(zk) + �
∑
i∈M1

si + �
∑
i∈M2

si1 + si2

s.t.
∑
k∈K

wki(zk) ≤ bi + si, i ∈ M1,

∑
k∈K

wki(zk) = bi + si1 − si2, i ∈ M2,

zk ∈ �|Rk|, t ∈ �|Uk| ∩ {0, 1}|Uk|,∑
j∉[Rku]

zkj ≤ 1 − tu, u ∈ Uk, k ∈ K,

si ≥ 0, i ∈ [m],

Dkuk
=

⋃
v∈Vk(uk)

Dkv, int (Dkv) ∩ int (Dkw) = �, ∀v,w ∈ Vk(uk),

(48)wk(ẑk) ∉ conv (Rkuk
∩ Dkv), ∀v ∈ Vk(uk).
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Algorithm 5 Project-and-branch method for inner disjunctive cut generation
and local optimization
1: function innerDisjunctCut(u, ẑ,D,R)
2: V ← ∅, L ← {(ẑ, u, ∅)} # sub-path list
3: repeat
4: (ẑ, u, K̃) ← argmin{ν(ẑ) : (ẑ, u, K̃) ∈ L}, L ← L \ {(ẑ, u, K̃)}
5: for k ∈ K \ K̃ do # 1. find block for subdiv.

6: R̂k ← getSupportColumns(uk, ẑk, Dk, Rk)
7: Ǩ ← {k ∈ K \ K̃ : |R̂k| ≥ 2 ∧ Vk = ∅}
8: if Ǩ �= ∅ then
9: repeat
10: k ← argmin{|maxj∈[R̂�]

ẑ�j − 0.5| : � ∈ Ǩ}
11: (ỹk, s̃k) ← solveResProjectSubproblem(uk, ẑk) # part. sol.
12: Rk ← Rk ∪ {Akỹk}, w̃k ← Akỹk + s̃k
13: if s̃ = 0 then Ǩ ← Ǩ \ {k}
14: until s̃k > 0 or Ǩ = ∅
15: if s̃k > 0 then
16: K̃ ← K̃ ∪ {k} # 2. subdivision

17: ηk ←innerSubdivCuts(ẑk, w̃k, R̂k)
18: (Vk, Dk) ←subdiv(ηk, ẑk, Dk)
19: for v ∈ Vk do # 3. CG for sub-paths
20: uk ← v
21: dk ←getSearchDirection(w̃k, rkjv ) # restricted CG
22: yk ← solveLagSubproblem(dk, Dkuk

), Rk ← Rk ∪ {Akyk}
23: (ẑ, µ) ← solveRestrictIA(u,D,R)
24: for � ∈ K do
25: y� ← solveLagSubproblem((1, µT ), D�u�

)
26: R� ← R� ∪ {A�y�}
27: if |K̃| < |K| then
28: ẑ ← solveRestrictIA(u,D,R)
29: L ← L ∪ {(ẑ, u, K̃)} # add new sub-path

30: until L = ∅ or stopping criterion
31: return (V,D,R)

Algorithm  5 describes a project-and-branch procedure for refining MIP-
IA by adding disjunctive cuts. It iteratively subdivides a cell Dkuk

 into sub-cells 
Dkv, v ∈ Vk(uk) . Denote the set of subdivided blocks by K̃ ⊂ K . For each sub-path 
of sub-cells Dkuk

 , k ∈ K̃ , a lower bound 𝜈(ẑ) ∶=
∑

k∈K ŵk0(ẑk) is computed, where ẑ 
is the solution of the restricted LP-IA (54) regarding sub-cells Dkuk

 . In order to pre-
vent, that a cell Dkuk

 is subdivided several times, the index set Vk = Vk(uk) is stored, 
and Dkuk

 is only subdivided if Vk = � . The path data (ẑ, u, K̃) is stored in a list L. In 
each iteration, the following steps are performed: 

1.	 In the first step, a block k ∈ K⧵K̃ is determined, which will be later subdivided. 
Since the relative distance of wk(ẑk) to a column rkj ∈ R̂k is related to 1 − ẑkj , a 
block is selected, for which |maxj∈[R̂k]

ẑ
�j − 0.5| is small, where R̂k ⊆ Rk is a set 

of supporting columns (with positive ẑkj-value).

•	 The set R̂k is computed by getsupportcolumns(uk, ẑk,Dk,Rk ) by first comput-
ing the p largest positive values ẑk1 ≥ ẑk2 ≥ ⋯ ≥ ẑkp and setting 
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 Then redundant columns rkj ∈ R̂k are removed, which can be rep-
resented as a convex combination of other columns of R̂k , such that 
conv (R̂k) = conv (R̂k⧵{rkj}) and |R̂k| ≤ |M1k| + |M2k|.

•	 In order to check if wk(ẑk) is infeasible, the following resource constrained 
projection sub-problem with slacks, similar as RCPk  (9), is solved using 
solveresprojectsubproblem(uk, ẑk ): 

 If s̃k ≠ 0 , then wk(ẑk) ∉ Wk . The point ỹk ∈ Xk is a partial solution estimate, 
which is used in Algorithm 6 for computing a solution candidate.

2.	 In the second step, Dkuk
 is subdivided into the sub-cells 

 for uj ∈ Vk(uk) . Sub-cells Dkv are defined by |R̂k| − 1 cut directions 𝜂kji ∈ ℝ
|R̂k| 

separating columns rkj ∈ R̂k , and fulfilling  (48). They are computed using the 
methods:

•	 innersubdivcuts(ẑk, w̃k, R̂k ) for computing cut directions �kji of sub-cells Dkvj
 

defined in (51), by solving for all j ∈ [R̂k], i ∈ [R̂k]⧵{j} the following system 
of equations 

 If 𝜂T
kji
(rkj − wk(ẑk)) ≥ 0 , �kji is multiplied by −1 . Despite the removal of redun-

dant columns in method getsupportcolumns, there is no guarantee that sys-
tem (52) is solvable. In order to be able always to compute a cut �kji , we con-
structed it by computing the basis of the null space of (52).

•	 subdiv(𝜂k, ẑk,Dk ) for dividing Dkuk
 into new cells Dkv , v ∈ Vk(uk) , defined 

in (51) and updating Uk ← Uk⧵{uk} ∪ Vk(uk).

3.	 In the third step, lower bounds 𝜈(ẑ) of sub-paths Dkuk
 , k ∈ K̃ , are computed by 

performing a limited CG using

•	 getsearchdirection(w̃k, rkjv ) for setting the search direction 

(49)R̂k = {rkj ∶ j ∈ [p], ẑkj > 0}.

(50)

(ỹk, s̃k) = argmin
∑
i∈M1k

ski +
∑
i∈M2k

ski1 − ski2,

s.t. Akixk ≤ wki(ẑk) + ski, i ∈ M1k,

Akixk = wki(ẑk) + ski1 − ski2, i ∈ M2k,

ski ≥ 0, i ∈ M1k ∪M2k,

xk ∈ Xk, Akxk ∈ Dkuk
.

(51)Dkuj
= {w ∈ Dkuk

∶ 𝜂T
kji
(w − wk(ẑk)) ≥ 0, i ∈ [R̂k]⧵{j}},

(52)
𝜂kji ∈ span {(r − w̃k)}r∈R̂k

,

𝜂T
kji
(r − wk(ẑk)) = 0, r ∈ R̂k ∪ {w̃k}⧵{rkj, rki}.

dk = w̃k − rkjv , where rkjv ∉ Dkv.
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•	 solvelagsubproblem(dk,Dkuk
 ) for solving 

•	 solverestrictia(u, D, R) for computing a primal and dual solution of 

5.3 � DIOR using an inner MIP approximation

Algorithm 6 describes an inner MIP refinement algorithm for computing a solu-
tion candidate of  (1) by iteratively subdividing the feasible set and generat-
ing new columns using innerdisjunctcut(u, ẑ,D,R ) for computing (V, D, R). If 
V = � , the algorithm stops, since no cells were subdivided and no columns were 
generated. The algorithm uses the methods:

•	 solveinnermip(R, D) for solving (47).
•	 localsolve(y) for computing a solution candidate x∗ of  (1) by performing a 

local search starting from the point y.

Algorithm 6 Heuristic DIOR for computing an inner MIP approximation
1: function dior2
2: (ẑ, u,D,R) ← initDior # LP-IA refine
3: repeat
4: (V,D,R) ←innerDisjunctCut(u, ẑ,D,R) # MIP-IA refine
5: if V �= ∅ then
6: (u, ẑ) ← solveInnerMip(R,D) # MIP-IA solution

7: until V = ∅ or stopping criterion
8: ν ←

∑
k∈K ŵk0(ẑk) # estimated lower bound

9: for k ∈ K do yk ← solveResProjectSubproblem(uk, ẑk) # partial sol.

10: x∗ ← LocalSolve(y) # solution candidate
11: return (ν, x∗)

Since it is not guaranteed that method innerdisjunctcut(u, ẑ,D,R ) generates 
all possible columns, Algorithm  6 provides only estimated lower bound � of 
problem (1).

6 � Numerical results

Algorithm 4 and 6 were implemented with Pyomo (Hart et al. 2017), an algebraic 
modelling language in Python, as part of the parallel MINLP-solver Decogo (Nowak 
et  al. 2018). The implementation of Decogo is not finished, in particular parallel 

(53)yk = argmin{dT
k
Akxk ∶ xk ∈ Xk, Akxk ∈ Dkuk

}.

(54)

min
∑
k∈K

wk0(zk),

s.t. w(z) ∈ H, zk ∈ �|Rk|,
zkj = 0, j ∉ [Rk ∩ Dkuk

], k ∈ K.
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solving of sub-problems has not been implemented yet. The solver utilizes SCIP 
5.0.1 (Gleixner et al. 2017) for solving MINLP sub-problems, GUROBI 9.0.3 for for 
solving MIP/LP master-problems and IPOPT 3.12.13  (Wächter and Lorenz 2006) 
for performing a local search starting from the projected solution of the last MIP 
master problem. Note that it is possible to use other suitable solvers which can inter-
face with Pyomo. All computational experiments were performed using a computer 
with Intel Core i7-7820HQ 2.9 GHz CPU and 16 GB RAM.

Since most MINLP models are not given in a block-separable form, block struc-
ture identification of the original problem and its automatic reformulation into a 
block-separable form have been implemented. The block structure identification is 
based on the idea of connected components of a Hessian adjacency graph. Consider 
a MINLP problem defined by n variables and by |M| functions hm,m ∈ M . Consider 
a Hessian adjacency graph G = (V ,E) defined by the following vertex and edge sets

In order to subdivide the set of variables into |K| blocks, we compute the connected 
components Vk, k ∈ K , of G with 

⋃
k∈K

Vk = V  . We obtain the list of variables 

Vk ⊂ V , k ∈ K , such that n =
∑
k∈K

nk, where nk = |Vk|.

6.1 � Experiment with DIOR1

In this section, we illustrate the results of Algorithm  4 with Example 1 outlined 
in Sect. 2.4. The optimal value of the problem is − 8.5 with the optimal resources 
(−4, 3.5) in space W1 and (−4.5, 6.5) in space W2 . Note that we solve Pareto line 
search sub-problem  (41) to global optimality, in order to guarantee that the cone 
point is an NDP. As a stopping criterion for the algorithm, we use a tolerance on 
improvement of MIP-OA objective value and set it to �MIP = 10−5.

For the line search, the algorithm computes the ideal point w
1
= (−8, 0) and 

w
2
= (−6.2, 5) . Algorithm  3 computes an initial OA point ŵ1 = (−3.6, 3) and 

ŵ2 = (−5, 7) . Figure 2 shows that the optimal value of the MIP-OA (34) converges 
to the global optimum of (1) in 20 iterations after 12.5 s. It is interesting to notice 
that in space W2 , for almost all OA solution points, the corresponding cone point v2 
is identical, i.e. the OA solution ŵ2 belongs to the feasible set.

For the instances with more than one constraint, the convergence is much slower. 
In each iteration, the algorithm generates m + 1 disjunctive cuts for the selected cell. 
These cuts are weak, since the algorithm first selects cells which don’t improve the 
OA objective value. The cells, which improve the OA objective value, are selected 
only when other resources cannot be improved anymore. Also, after several itera-
tions, the MIP-OA master problem becomes more difficult to solve due to the huge 
amount of generated disjunctive cone cuts.

(55)

V = {1,… , n},

E = {(i, j) ∈ V × V ∶
�2hm
�xi�xj

≠ 0, m ∈ M}.
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6.2 � Experiments with DIOR2

In this section, we present the results for CG Algorithm 2 and DIOR2 Algorithm 6. 
For testing purpose, we selected several instances from MINLPLib (Vigerske 2018). 

Table 1   Performance of CG Algorithm 2, CG

Instances n |K| m N
LP

N
sub

|R| �∗ − �
LP

,%

1 alkyl 14 4 6 13 68 27 23.2
2 ex2_1_1 5 5 1 3 30 15 11.2
3 example 1 4 2 1 4 12 8 1.2
4 pooling_rt2tp 34 3 18 19 75 41 25.9
5 sep1 29 2 10 15 48 29 41.8
6 st_e05 5 3 2 4 39 9 78.3
7 st_glmp_kky 7 3 4 5 42 12 20.0
8 st_jcbpaf2 10 5 13 2 65 19 17.9
9 tln2 8 3 6 4 36 9 21.5
10 util 145 3 15 39 120 55 3.6

Fig. 2   Steps 5–10 of Algorithm 4 for Example 1. Blue arrows represent a line search towards the feasible 
set defined by OA solution ŵ and ideal point w

1
= (−8, 0) and w

2
= (−6.2, 5) . Grey shaded area repre-

sents eliminated cones. (Color figure online)
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More detailed statistics on the selected instances is given in Table 1.
Focusing on the setting for the Column Generation (Algorithm  2), notice that 

often smaller MINLP sub-problems can still be difficult to solve. Therefore, we set 
termination criteria for earlier stopping of SCIP for solving MINLP sub-problems, 
e.g. the maximum number of processed nodes after the last improvement of the pri-
mal bound or the relative gap tolerance. Those parameters are set to 500 and 0.01, 
respectively. Furthermore, Algorithm 2 solves the problem over its convex relaxa-
tion. In order to check convergence, we repeat one iteration of Algorithm 2 without 
early termination of sub-problem solving, i.e. we don’t apply any stopping criteria 
for the sub-solver. The disadvantage of this strategy is that Column Generation needs 
more iterations to converge. Therefore, it solves more MINLP and LP sub-problems.

Table  1 shows the results of Column Generation for the selected test set. The 
characteristics of each instance are reported, i.e. problem size n, number of blocks 
|K| and number of global constraints m. The performance measures are given 
by the number of solved LP master problems NLP , the number of solved MINLP 

Table 2   Performance of Algorithm 6, DIOR2

Instances N
sub

|R| N
MIP

� � �∗

1 alkyl 150 79 4 − 1.7 − 1.8 − 1.8
2 ex2_1_1 95 20 2 − 17.0 − 17.0 − 17.0
3 example 1 21 11 2 − 8.5 − 8.5 − 8.5
4 pooling_rt2tp 603 530 20 − 4647.6 − 3274.0 − 4391.8
5 sep1 366 334 20 − 499.3 − 510.1 − 510.1
6 st_e05 119 76 7 7049.3 7049.2 7049.2
7 st_glmp_kky 95 23 3 − 2.5 − 2.5 − 2.5
8 st_jcbpaf2 252 93 5 − 794.9 − 794.9 − 794.9
9 tln2 88 17 3 5.3 5.3 5.3
10 util 653 450 20 1115.3 1034.7 999.6

Table 3   Comparing Algorithm 6 with the SCIP solver. All values in seconds

Instances T
dec

T
LP

T
MIP

T
MINLP

T T
SCIP

1 alkyl 1.2 0.1 1.3 22.1 26.7 2.02
2 ex2_1_1 0.5 0.01 0.4 6.8 8.7 0.45
3 example 1 0.1 0.01 0.4 0.9 1.7 0.01
4 pooling_rt2tp 2.1 0.1 12.5 163.1 203.0 1.84
5 sep1 0.9 0.1 11.9 80.0 104.4 1.81
6 st_e05 0.2 0.1 2.6 13.3 17.8 1.59
7 st_glmp_kky 0.7 0.1 0.9 8.5 11.4 1.8
8 st_jcbpaf2 0.7 0.1 1.7 22.2 28.3 0.89
9 tln2 0.5 0.01 0.8 4.7 7.1 0.02
10 util 18.7 0.1 12.0 88.3 143.0 2.28
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sub-problems Nsub and number of generated columns |R|. Note that NLP also denotes 
the number of iterations of Algorithm 2. We also compute the relative duality gap 
�∗ − �

LP
 , where �

LP
 denotes the objective of the LP master problem  (20) and �∗ 

denotes the best known objective function value.
Table  1 illustrates that the number of generated columns |R| in Algorithm  2 is 

smaller than the number of solved MINLP sub-problems Nsub . This indicates that 
the MINLP sub-problem may generate the same column several times. For some 
instances, it is necessary to solve relatively more LP master problems, but these sub-
problems are relatively easy, as can be observed in Table 3.

For the experiments with DIOR2, the maximum number of supporting columns 
in  (49) is set to p = 3 , and the maximum number of MIP iterations (number of 
times MIP-IA master problem (47) is solved) to 20, i.e. NMIP ≤ 20 . Some MINLP 
sub-problems in steps 3–10 of Algorithm 6 are solved to optimality. For example, 
sub-problem (50), in order to check whether the resources of MIP-IA are feasible. 
Other MINLP sub-problems are not solved to optimality, i.e. they were solved as in 
Algorithm 2.

In Table 2 about DIOR2, Nsub and |R| include the number of solved MINLP sub-
problems and number of generated columns from Algorithm  2, respectively. The 
indicators are the number of MIP iterations NMIP (number of times MIP-IA (47) is 
solved), optimal value � of MIP-IA (47) and objective value � at the primal solution 
point computed by the local solver.

Table  2 illustrates that the new decomposition-based successive approximation 
approach is able to solve nonconvex MINLP models to global optimality. Notice 
that like for CG, the number of solved MINLP sub-problems Nsub is higher than the 
number of generated columns |R|. For Example 1, DIOR2 reduces the number of 
iterations from 20 to 2 compared to DIOR1.

Table  3 compares Algorithm  6 to branch-and-bound-based solver SCIP 
5.0.1 (Gleixner et al. 2017) in terms of computing time. Notice that computing time 
not only depends on performance, but also on the handiness of the programmer 
and the used platform; python is not directly fast. All settings of SCIP were set to 
default. For each instance, we compare total solution time T of DIOR2 with time 
spent by SCIP TSCIP . Note that T also includes time spent for decomposition Tdec . 
TLP , TMIP and TMINLP denote the time spent on solving LP master problems, MIP 
master problems and MINLP sub-problems, respectively.

Table  3 shows that SCIP requires less total time than Algorithm  6. However, 
Algorithm 6 spends most of the running time T on solving MINLP sub-problems. 
This shows some potential for solving these sub-problems in parallel. TMIP depends 
on NMIP , i.e. more iterations requires more time spent on solving MIP master prob-
lems. The MIP master problem becomes more difficult to solve when a lot of cuts are 
generated. Interesting enough, TLP is relatively small and it does not depend on the 
number of solved LP master problems. Note that for Example 1, DIOR2 improves 
the solution compared to DIOR1 from 12.5 to 1.7 s.
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7 � Conclusions

MINLP is a strong paradigm for modelling practical optimization problems. We 
introduced multi-tree decomposition-based methods for solving MINLP models (1), 
which avoid building one big search tree to solve the problem. Instead, it solves 
smaller MINLP sub-problems, of which the solutions are combined in a master LP 
and MIP problem up to convergence. Moreover, we investigate the potential of the 
so-called resource constrained formulation of the MINLP problem.

Both algorithms DIOR1 and DIOR2 use low-dimensional MINLP-sub-problem 
solutions for refining resource-constrained LP and MIP master problems. DIOR1 
is slow, but proven to converge. We have shown that DIOR2 is a faster heuristic 
procedure. On the other hand, an established well implemented branch-and-bound 
algorithm is faster than DIOR2. In the future, we will work on improving the DIOR 
algorithm, e.g. by implementing parallel solving of sub-problems and reducing the 
number sub-problems to be solved.

An advantage of multi-tree decomposition algorithms is the possibility to modify 
the optimization model during the solution process. An example for this is an airline 
transportation network which is extended during the solution process by adding new 
transport options, like train or bus connections. Another example is a response sur-
face or an artificial neural network of a black-box function of a sub-problem, which 
is iteratively improved regarding new sample/training points. The generated cuts and 
points can also be used for performing a warm-start if the model has been changed 
slightly, e.g. in a dynamic optimization model with a moving horizon.

Similarly, like in CG, it is possible to start a multi-tree algorithm with a restricted 
or simplified search space, which is improved iteratively. Examples for simplifying 
the search space are: reducing scenario trees, restricting transport networks, or dis-
cretizing differential equations.

Such decomposition-based successive approximation methods may be used to 
solve large-scale optimization problems, like complex multidisciplinary models. 
Moreover, the presented multi-tree algorithms can be extended to multi-objective 
optimization by modifying the master problems according to multiple objectives.
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