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ABSTRACT: There is mounting evidence that subclinical non-
pathological high blood pressure and heart rate during youth and
adulthood steadily increase the risk of developing a cardiovascular
disease at a later stage. For this reason, it is important to
understand the mechanisms underlying the subclinical elevation of
blood pressure and heart rate in healthy, relatively young
individuals. In the present study, we present a network-based
metabolomic study of blood plasma metabolites and lipids
measured using nuclear magnetic resonance spectroscopy on 841
adult healthy blood donor volunteers, which were stratified for
subclinical low and high blood pressure (systolic and diastolic) and
heart rate. Our results indicate a rewiring of metabolic pathways
active in high and low groups, indicating that the subjects with
subclinical high blood pressure and heart rate could present latent cardiometabolic dysregulations.
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■ INTRODUCTION

Elevated blood pressure represents one of the most important
risk factors for cardiovascular diseases, often preceding heart
failure, albeit the underlying mechanisms are still far from
being clarified.1 Increased cardiovascular risk associated with
high blood pressure is not just limited to patients with overt
hypertension but also affects healthy individuals with normal
pressure in the higher range:2 as a matter of fact, in a meta-
analysis involving about 1 million adults (40−89 years old),
the statistical evidence of an association between blood
pressure and cardiovascular risk vanishes only below the
threshold 115/75 mmHg.
Based on this evidence, the 2017 joint guidelines of the

American Heart Association and American College of
Cardiology3 reclassified hypertension as systolic blood pressure
higher than 130 mmHg and diastolic pressure ≥80 mmHg. As
a consequence, hypertension prevalence increased in the
general population, and it has been estimated that the number
of patients suffering from hypertension is approaching the
number of normotensive persons.4 Furthermore, the 2017
guidelines also introduced the intermediate category of
elevated blood pressure, defined as systolic pressure between
120 and 129 mmHg with diastolic pressure ≤80 mmHg.
The definition of this new intermediate category acknowl-

edges what is emerging from the medical literature: exposure
to mild, nonpathological, blood pressure elevation during
youth and adulthood steadily increases the risk of developing a

cardiovascular disease at a later stage.5 Although many studies
have analyzed the effects and consequences of high levels of
blood pressure in aged individuals, it is now believed that the
seeds of future cardiovascular risk are planted in early years1

because it seems that there is cumulative damage due to
elevated blood pressure over time that treatments at a later age
are unable to repair or only able to repair partially. For this
reason, it is important to understand the mechanisms
underlying blood pressure elevation in healthy, relatively
young individuals.
Similarly, heart rate is an established prognostic factor for

cardiovascular, cerebrovascular, and all-cause mortality in both
the general population and in patients with cerebrovascular
and cardiovascular diseases.6 Many studies discuss the
relationships between high heart rate and morbidity and
mortality, and the results are concordant regarding the
existence of this association. Interestingly, this connection is
usually less evident in women than in men. The increase in
heart rate is commonly concurrent with the increase in blood
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pressure; however, these two prognostic factors have been
found to be independent.6

In contrast with blood pressure, there is no official threshold
for heart rate associated with increased cardiovascular risk and
currently, a heart rate cutoff >100 beats/min is used for the
diagnosis of tachycardia;7 however, this limit was set arbitrarily
when heart rate was not yet regarded as a risk factor for
cardiovascular disease and was defined only with the diagnostic
purpose of characterizing an overt disease state from a normal
condition.8 A medical literature survey indicates heart rate
normality between 60 and 80 beats/min, with a value of
around 64 beats/min the lower limit from which the
cardiovascular risk starts to increase.9

Metabolomics has already proved to be an excellent
instrument for biomedical research covering broad application
areas:10 disease diagnosis11,12 and prognosis,13−15 monitoring
personal response to drug administrations16,17 and lifestyle
interventions,18−20 and studying of the biochemical mecha-
nisms underlying different pathological conditions.21−28 Bio-
logical networks and network analysis of metabolites represent
a further step in the comprehension of biological systems, since
not only the singular components are considered but also their
interconnections and their function as a whole.29 Metabolite
association patterns can change with the onset of pathophysio-
logical conditions, and networks can be compared across
conditions under the assumption that differences and
commonalities in the biological processes are reflected in the
characteristics of the reconstructed networks.30,31

The aim of this study was to analyze the metabolic profiles
obtained by nuclear magnetic resonance (NMR) spectroscopy
of blood plasma samples32 of a large cohort of healthy adults,
with limited evidence of cardiovascular risk factors. We used a
metabolite−metabolite association network approach to
investigate and explore the existence of possible molecular
mechanisms underlying the different clinical profiles repre-
sented by high/low values of systolic and diastolic blood
pressure and heart rate. We built a metabolite and lipid
association network for each one of the three abovementioned
clinical parameters. Data for males and females were analyzed
separately, to take sex-related differences into account, and

corrected for confounding factors;33 we implemented a
recently proposed statistical approach that extracts specific
parts of the metabolite concentrations that are related
specifically with blood pressure and heart rate, thus removing
the effect of other clinical confounding factors. For each sex-
specific group, we obtained six metabolite and lipid association
networks corresponding to high (elevated) (>120 mmHg) and
low systolic blood pressure, high (elevated) (>80 mmHg) and
low diastolic blood pressure, and high (>70 bpm) and low
heart rate. An overview of the study design is given in Figure 1.
Our results indicate that subclinical manifestations of high

blood pressure and heart rate in healthy subjects is reflected in
subtle metabolic changes that do not result in obvious blood
metabolite and lipid concentrations but result in alteration
rewiring of the metabolic connectivity of circulating blood
metabolites pointing to cardiac energy metabolism and that
such alterations are different for men and women.

■ MATERIALS AND METHODS

Study Population and Sample Collection

The study population comprises 841 adult healthy blood
donor volunteers (659 males, 182 females) recruited in 2009
by the Tuscany section of the Italian Association of Blood
Donors (AVIS) in the Transfusion Service of the Pistoia
Hospital (Ospedale del Ceppo, AUSL 3, Pistoia, Italy). Blood
donors had to adhere to the Italian regulation and guidelines
for blood donation, which restricts donors of age 18−60 years,
body weight >50 kg, systolic blood pressure 110−148 mmHg,
diastolic blood pressure 60−100 mmHg, absence of (man-
ifested) infectious diseases, absence of chronic diseases, no
current menstruation, no consumption of medicines within 1
week before donation (bd), no common diseases (such as flu,
cold, bronchitis) within 2 weeks bd, no surgery within 3
months bd, no endoscopic exams within 4 months bd, no
pregnancy within 12 months bd, no abortion within 4 months
bd, no travel to tropical countries within 6 months bd, and, in
particular, no sport activity within 24 h bd. All samples were
collected under a fasting condition. Ethylenediaminetetraacetic
acid (EDTA) plasma samples were collected and handled as

Figure 1. Overview of the study design to investigate differences between metabolite and lipid association networks of healthy subjects with high
and low blood pressure (systolic and diastolic) and heart rate. Metabolite−metabolite association networks were inferred from the two groups
using the PCLRC algorithm and compared to detect metabolites with differential connectivity with respect to physiological conditions (high/low
pressure or heart rate).
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previously described33−35 and stored at −80 °C pending
nuclear magnetic resonance (NMR) analysis.
Study subjects were retrospectively divided into six groups:

high (elevated) and low systolic blood pressure (setting a
discriminant threshold at >120 mmHg for elevated pressure),
high (elevated) and low diastolic blood pressure (discriminant
threshold at >80 mmHg for elevated pressure), and high and
low heart rate (discriminant threshold at >70 bpm for heart
rate).
Baseline characteristics of the full cohort are given in Table

1. Characteristics of the six patient groups previously defined
are summarized in Table 2.

NMR Experiments

One-dimensional 1H NMR spectra were acquired on a Bruker
600 MHz spectrometer (Bruker BioSpin) operating at 600.13
MHz and equipped with a 5 mm cryoprobe, an automatic
tuning-matching (ATM), and an automatic sample changer. A
water-suppressed Carr−Purcell−Meiboom−Gill36 (CPMG)
spin−echo pulse sequence was used to obtain spectra in
which broad signals of lipids and proteins were attenuated. An
extended description of instrument configuration and setting of
the NMR parameters can be found in previous publica-
tions.33−35

NMR spectra and associated clinical data were retrieved
from the MetaboLights37 database (http://www.ebi.ac.uk/
metabolights) with accession number MTBLS147; 23 samples
from the original data set were excluded from this analysis
because demographic or clinical information relevant to this
study was missing.
Quantification of Metabolites

In all NMR spectra, 23 metabolites were unambiguously
assigned using matching routines of AssureNMR (Bruker
BioSpin) and the Human Metabolome Database.38 The
relative quantification of these metabolites (concentrations in

arbitrary units) was performed with an in-house-developed
algorithm based on standard line-shape analysis methods. No
data normalization was applied. Total cholesterol and
triglycerides were measured using direct enzymatic assays.39,40

However, in our previous article,34 we already demonstrated
that there is a good correlation between lipoproteins measured
via NMR and via biochemical assays. For more detailed
information, we refer the reader to previous publications.33−35

Statistical Methods

Handling of Missing Data. Missing data were present in
some of the clinical parameters and covariates: total cholesterol
17.1% missing data, triglycerides 17.9%, systolic blood pressure
3.4%, diastolic blood pressure 3.9%, heart rate 4.3%, albumin
20.5%, and total protidemy 20.6%. Missing data were imputed
using the random forest approach implemented in R package
“missForest”.41 Default parameters were used. No missing data
were present among metabolites because only metabolites
detectable in all NMR plasma spectra were quantified.

Data Preprocessing. All of the subsequent analyses were
performed using log-transformed metabolite and lipid
concentrations. Data were adjusted for “Age” before univariate
analysis and random forest modeling.

Univariate Metabolite Analysis. To infer differences
between the metabolite levels in the comparison between the
groups of interest, a Wilcoxon rank-sum test was used.42 P-
values were adjusted (FDR) for multiple testing using the
Benjamini−Hochberg correction.43

Random Forest Modeling. The random forest algorithm
was employed for sample classification to discriminate between
different high/low groups in males and females, and three
classification models were built to discriminate between high
and low systolic and diastolic pressure and high and low heart
rate. For all calculations, the R package “Random Forest”44 was
used to grow a forest of 1000 trees and the option “strata” was
used to take into account the unbalanced number of subjects in
each group to be compared. For each comparison, the
procedure was repeated 100 times to take into account the
variability due to the resampling step used by the RF algorithm
to randomly select the same number of subjects from each
group and so to build the model on balanced data. The size of
the resampled groups was set to 90% of the smallest group. All
results are given as the mean over the 100 iterations. The
resampling was nested within the cross-validation step used to
assess the quality of the prediction models in an unbiased way.
The cross-validated model quality statistics (accuracy,

sensitivity, and specificity and the area under the ROC,
AUROC) were calculated according to standard definitions.
The statistical significance of the results was assessed by

means of a permutation test. Basically, the full analysis was
repeated after class labels were randomly permuted to destroy
the relationship between predictors and response. Repeating
this K times, a null distribution Dperm of model quality
measures is created from which the P-value for each measure
can be calculated by comparing the value m0 obtained from the
original, nonpermuted data with the values m1, m2, ..., mK

obtained from the permuted data. For instance, the P-value for
the AUROC is calculated as

P
D

K
value

1 ( AUC )
AUC

AUC
perm

0− | =
+ # ≥

(1)

Table 1. Demographic and Clinical Characteristics of the
Study Cohort

females
(182)

males
(659) P-value

demographic and clinical
characteristics

mean
(SD)

mean
(SD)

age (years) 42 (12.0) 41 (10.7) 1.87 × 10−01

heart rate (bpm) 72 (5.3) 70 (6.0) 1.31 × 10−03

diastolic blood pressure
(mmHg)

78 (6.9) 81 (6.9) 6.01 × 10−06

systolic blood pressure
(mmHg)

119
(10.3)

124
(10.5)

5.31 × 10−08

albumin (g/L) 59.3 (3.1) 61.5
(12.0)

2.11 × 10−05

glycemia (mg/dL) 87.9
(14.0)

90.0
(12.6)

9.09 × 10−02

total protidemy (g/dL) 7.8 (0.4) 7.8 (0.4) 4.92 × 10−01

total cholesterol (mg/dL) 212.7
(35.6)

201.7
(35.0)

6.37 × 10−03

triglycerides (mg/dL) 89.7
(51.9)

105.4
(57.8)

6.53 × 10−05

distributions of groups of interest n (%) n (%)
heart rate (bpm) >70 136

(74.7%)
401

(60.8%)
diastolic blood pressure
(mmHg) >80

33
(18.1%)

224
(40.0%)

systolic blood pressure
(mmHg) >120

40
(22.0%)

287
(43.6%)
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where #(*) indicates the number of the elements of Dperm

satisfying the inequality. Similar formulas are used to calculate
the P-values associated with the other measures.
Identification of Metabolic Information Related to Clinical
Variables

For each blood metabolite and lipid fraction, we modeled the
variation of metabolite concentrations attributable to the
clinical covariates, (i.e., systolic blood pressure, diastolic blood
pressure, and heart rate) using the method proposed by Bartzis
et al.45 The rationale underlying this approach is that
metabolites/lipids with similar relationships with a given
covariable tend to be close to each other in the network,
thus giving a better representation of the underlying biological
phenomena.
Briefly, let Y(p) be the (n × 1) vector of the concentrations of

the pth metabolite or lipid component (with p = 1, 2, ..., P)
measured on n = 659 male and n = 182 female subjects and X
be the (n × M) matrix containing M = 3 covariates recorded
on n subjects. Let Xm be the n × 1 vector containing the values
for mth clinical variables and X(−m) = {X1, X2, ..., X(m−1)} be the
remaining m − 1 clinical variables. The information Ŷ(p) of a
metabolite or lipid component p associated with a specific
clinical variable, m, was estimated by regressing Y(p) on X and
retaining only the main effects and interactions with covariate
Xm

Y X X Xp p
m

p
m

m

j

j
( ) ( ) ( )

1

1
j∑ ∏β η̂ = ̂ + ̂ ◦

δ
δ

δ

∈Δ −

=

(2)

where the term ∑δ∈Δη̂δ
(p) Xm◦∏j=1

m−1Xj
δj models all main effects

and second- and higher-order interactions in terms of clinical
variables.
For each clinical parameter m, the procedure is repeated for

all P metabolites and lipid components to obtain M = 3n × P
data sets, Ym = {Y(1), Y(2), ..., Y(p)} containing a part of the
measured metabolite and lipid concentrations associated with
each one of the three clinical parameters. The reader is referred

to the original study45 for more details on the methodology
and its implementation.

Network Analysis

Reconstruction of Metabolite and Lipid Association
Networks. The Probabilistic Context Likelihood of Related-
ness on Correlation (PCLRC) algorithm35 was used to build
metabolite and lipid association networks. The algorithm
allows for the robust estimation of correlation employing a
resampling strategy in combination with a modified version of
the Context Likelihood of Relatedness (CLR)46 to remove
nonsignificant background correlations. The algorithm returns
a probability matrix P with values between 0 and 1 that was
used to filter significant correlation rij between pairs of
metabolites/lipids. In particular

r
r p

p

if 0.90

0 if 0.90ij

ij ij

ij

l
m
oooo
n
oooo

=
≥

<
(3)

We built a metabolite and lipid association network for each of
the 3 × P (for women) and 3 × P (for men) data sets Ym =
{Y(1), Y(2), ..., Y(p)} containing the part of the measured
metabolite and lipid concentrations associated with each of the
three clinical parameters. We analyzed data for males and
females separately, obtaining six metabolite and lipid
association networks for both men and women. The six
networks correspond to high (>120 mmHg) and low systolic
blood pressure, high (>80 mmHg) and low systolic blood
pressure, and high (>70 bpm) and low heart rate (Figure 1).

Network Differential Connectivity Analysis. Given a
network a belonging to category S, the connectivity χi

a∈S for
metabolite/lipid i is defined as

r 1i
a S

j

J

ij
1

i

k

jjjjjjj
y

{

zzzzzzz∑χ = | | −∈

= (4)

Table 2. Description of Cohort Characteristics Based on the Three Outcomes of Interesta

female male

mean LG mean HG P-value mean LG mean HG P-value

systolic blood pressure age (years) 40.1 48.1 0.04 38.6 43.2 1.35 × 10−7

glycemia (mg/dL) 87.2 90.1 1.00 88.8 91.5 0.33
total cholesterol (mg/dL) 206.6 227.1 0.47 197.0 207.1 9.58 × 10−4

triglycerides (mg/dL) 82.9 93.6 0.08 98.4 116.3 5.33 × 10−4

total protidemy (g/dL) 7.8 7.8 1.00 7.8 7.8 0.46
albumin (g/L) 58.8 58.9 1.00 62.2 60.7 0.14

diastolic blood pressure age (years) 40.2 49.2 0.02 38.8 44.0 6.57 × 10−7

glycemia (mg/dL) 87.3 90.3 0.19 89.1 91.9 0.50
total cholesterol (mg/dL) 206.3 231.7 0.11 198.0 208.0 0.04
triglycerides (mg/dL) 81.8 100.4 0.02 101.2 116.0 0.01
total protidemy (g/dL) 7.8 7.7 0.27 7.9 7.8 0.05
albumin (g/L) 58.7 59.2 0.71 61.9 60.9 0.50

heart rate age (years) 42.0 41.8 0.83 40.0 40.9 0.45
glycemia (mg/dL) 87.7 87.9 0.83 89.9 90.1 0.14
total cholesterol (mg/dL) 214.6 210.0 0.86 199.0 203.1 0.05
triglycerides (mg/dL) 83.7 85.9 0.83 101.6 109.4 0.45
total protidemy (g/dL) 7.8 7.8 0.83 7.8 7.9 0.14
albumin (g/L) 59.0 58.8 0.83 61.1 61.8 0.96

aStudy subjects were retrospectively divided into six groups: high (HG) and low (LG) systolic blood pressure (setting a discriminant threshold at
>120 mmHg for elevated pressure), high (HG) and low (LG) diastolic blood pressure (setting a discriminant threshold at >80 mmHg for elevated
pressure), and high (HG) and low (LG) heart rate (setting a discriminant threshold at >70 bpm for heart rate).
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Adopting a similar definition in the case of a network b, the
differential connectivity (Δi

a∈S,b∈S) of a metabolite/lipid i
between two networks a and b belonging to the same category
S is defined as

i
a S b S

i
a S

i
b S, χ χΔ = −∈ ∈ ∈ ∈

(5)

Analyzing differential connectivity is interesting to understand
the origin of the metabolite−metabolite connectivity. We
distinguish two main cases of interest:

(1) Conserved differential connectivity: when the majority
of edges is conserved between different conditions but
with different weights, that is, edges that are present in
both networks but with reduced or increased weight
(i.e., correlation, in absolute value).

(2) Differentially conserved connectivity: when the majority
of edges is not conserved between different conditions.
In this case, the differential connectivity is due to
different edges, which are not present in both networks.

Estimation of the Differential Network Connectivity.
The statistical significance of the differential connectivity
(Δik

a∈S,b∈S) was assessed by means of a permutation test. Briefly,
the columns of every Ym matrix were independently permuted
to obtain a permutated matrix X(k) whose column mean and
variance were unchanged, but the association between the
elements of different columns was destroyed.

For each metabolite/lipid, the differential connectivity was
calculated for networks a and b built from the permuted data
X(k)

i k
a S b S

i k
a S

i k
b S

,
,

, ,χ χΔ = −∈ ∈ ∈ ∈
(6)

and the overall procedure was repeated k = 100 times to create
a null distribution Di of permutated differential connectivity
values. The significance of a given differential connectivity
value Δi

a∈S,b∈S (calculated on the original data) was calculated
as a P-value using the formula47

P
D

k
value

1 ( )i i
a S b S,

− =
+ | | > |Δ |∈ ∈

(7)

■ RESULTS AND DISCUSSION

Metabolite Univariate Analysis Comparing High and Low
Groups For Systolic, Diastolic Blood Pressure, and Heart
Rate

The presence of sex-specific differences in human metabolism
is well known and NMR metabolomics is sensitive to these
differences.33,48 For this reason, to obtain results unbiased by
sex, the following analyses were performed separately for males
and females.

Table 3. Univariate Metabolite Analysis (Adjusted for Age)a

heart rate systolic blood pressure diastolic blood pressure

males females males females males females

leucine 0.7668 0.9441 0.0244 (↓) 0.9202 0.0317 (↓) 0.9971
isoleucine 0.7255 0.9441 0.9995 0.9659 0.8186 0.9074
valine 0.7668 0.6682 0.0443 (↓) 0.7910 0.236 0.9074
unknown1 0.6960 0.9923 0.2683 0.9202 0.3891 0.9789
propylene glycol 0.8564 0.9571 0.4475 0.9202 0.145 0.9789
3-hydroxybutyrate 0.8564 0.9571 0.2683 0.9079 0.4479 0.9074
alanine 0.9095 0.9441 0.9995 0.9479 0.1749 0.9074
acetate 0.6960 0.9441 0.0028 (↓)* 0.8952 0.2256 0.9074
glutamate 0.6960 0.9441 0.2883 0.8646 0.2535 0.9074
pyruvate 0.6960 0.9571 0.9023 0.8952 0.7982 0.9074
glutamine 0.7255 0.9571 0.8948 0.7969 0.9673 0.9074
methionine 0.7668 0.9441 0.251 0.9079 0.0139 (↓) 0.9919
citrate 0.7255 0.9571 0.316 0.8646 0.6769 0.9074
unknown 2 0.8564 0.9923 0.1123 0.8952 0.2258 0.9971
glycine 0.9539 0.9571 0.0001 (↓)* 0.9079 0.0006 (↓)* 0.9789
creatine 0.8564 0.9571 0.9023 0.3573 0.5004 0.9074
creatinine 0.7668 0.9571 0.0081 (↓) 0.9079 0.2697 0.9074
lactate 0.7255 0.9571 0.4164 0.9079 0.4028 0.9074
mannose 0.6960 0.9571 0.6823 0.9079 0.236 0.9074
glucose 0.7668 0.9923 0.0565 0.7969 0.3971 0.9074
fumarate 0.7091 0.9441 0.2683 0.1240 0.1386 0.4897
tyrosine 0.7255 0.6682 0.1429 0.3573 0.1258 0.9074
histidine 0.8564 0.9441 0.0081 (↓) 0.9659 0.1749 0.9074
phenylalanine 0.8564 0.9441 0.157 0.9715 0.1749 0.9074
formate 0.8564 0.9441 0.1261 0.9202 0.1749 0.9074
AXP/IMP 0.7668 0.9571 0.4164 0.5898 0.3891 0.9074
total cholesterol 0.6960 0.9571 0.0073 (↑) 0.2672 0.0317 (↑) 0.4943
triglycerides 0.6960 0.9571 0.0001 (↑)* 0.2512 0.0139 (↑) 0.4897
total protidemy 0.6960 0.9571 0.316 (↑)* 0.8952 0.1258 0.9074
albumin 0.7255 0.9923 0.0427 (↓) 0.9202 0.3891 0.9074

aP-values reported are adjusted with Benjamini−Hochberg correction (FDR); for significant ones, the trend is also reported: ↑/↓ implies higher/
lower levels in the high group. “*” refers to significant metabolites after adjustment for age.
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Univariate analysis was performed on the 30 quantified
metabolites to compare high and low groups for systolic and
diastolic blood pressure and heart rate (Table 3).
No statistically significant differences in metabolite and lipid

concentrations, both for males and females, were found in the
comparison between high (bpm > 70) and low heart rate
groups of subjects. Male subjects with systolic blood pressure
higher than 120 mmHg showed significantly higher levels of
total cholesterol and triglycerides and lower levels of leucine,
valine, acetate, glycine, creatinine, histidine, and albumin. Of
note, only acetate, glycine, triglycerides, and total protidemy
were statistically significant after adjustment for age. Moreover,
males with high diastolic blood pressure (P mmHg >80)
presented higher concentrations of total cholesterol and
triglycerides and lower concentrations of leucine, methionine,
and glycine (only glycine remains significant after correction
for age). Conversely, no significant difference emerged in the
female group. These results can be attributed to the limited
numerosity of the female group or to the fact that in women,
oral contraceptive use and menopausal state could alter
significantly the metabolome, providing an additional source
of variability.49,50 However, given the relatively young age of
the blood donors, we speculated menopause could affect only a
limited number of subjects.33

Although the study population can be regarded as healthy,
otherwise the subjects would have not been admitted to blood
donation given the strict regulations applied,33 the glycine
reduction in the high blood pressure group could be thought of
as a prodromal sign of hypertension development. Glycine is
involved in multiple metabolic pathways: it contributes to the
reduction of oxidative stress, it promotes the availability of
nitric oxide, and it plays a pivotal role in structural protein
synthesis, such as collagen and elastin, the alterations of which
have been associated to impaired elastic properties of vessels, a
key aspect in hypertension pathogenesis.51,52 Furthermore,
circulating levels of glycine have been associated with the
incidence of coronary heart diseases, especially in patients with
high levels of lipoproteins.53

The role of lipoprotein metabolism has already been
discussed:54 we observed higher levels of cholesterol and
triglycerides in the high systolic and diastolic blood pressure
groups. We observed an association of total cholesterol with
age (see Table 3), as previously reported.55 The correlation
between blood pressure and lipoproteins in our data set not
only confirms the former hypothesis but also implicitly explains
why treating both hypertension and dyslipidemia led to a
stronger reduction of risk of ischemic heart disease with
respect to the treatment of hypertension solely.56,57

Acetate, as well as other short-chain fatty acids (SCFAs)
(propionate and butyrate), is produced by the gut microbiota
mainly in the colon, especially after consumption of a diet rich
in fibers. In our data set, acetate shows to be in lower

concentrations in the high blood pressure groups (both systolic
and diastolic), and this is in line with several pieces of evidence
that point to a link between SCFAs and lower blood pressure
levels in experimental models of hypertension, suggesting that
a diet enriched in fibers and acetate could reduce blood
pressure and thus could represent an effective counter move
against hypertension.58,59

Branched-chain amino acids (BCAAs) leucine, valine, and
albumin present reduced levels in the high systolic blood
pressure group. This data is in contrast with the literature
currently available.60−62 However, the significance is lost after
correction for age. Moreover, we did not take into account
dietary habits and physical activity, both of which can influence
the concentrations of leucine, valine, and albumin,19,63 since
we do not have information about these two confounding
factors. However, we can exclude subjects who were engaged
in physical activities 24 h before sample collection as per
guidelines on blood donation (see the Materials and Methods
section).

Comparison of High and Low Groups for Systolic and
Diastolic Blood Pressure and Heart Rate Using Random
Forest Modeling. Random forest classification was used to
discriminate high and low groups for systolic and diastolic
blood pressure and heart rate. Classification results are shown
in Table 4. It was not possible to build classification models
able to discriminate between high and low groups starting from
metabolite and lipid concentrations specific to each group.
This result indicates that metabolic differences underlying
these subclinical phenotypes in healthy subjects are weakly
reflected in metabolite/lipid concentrations, as also indicated
by the results of the univariate analysis. However, as shown in
the Differential Network Analysis of Metabolites Association
Network Related to Blood Pressure and Heart Rate section,
differential network analysis is able to discriminate between the
two groups, indicating that these subclinical traits are reflected
by changes in the relationships among molecular features like
lipids and metabolites.

Differential Network Analysis of Metabolite Associ-
ation Network Related to Blood Pressure and Heart
Rate. We compared the metabolite and lipid association
networks across different subject groups, i.e., high and low
blood pressure (systolic and diastolic) and heart rate to explore
the magnitude of metabolite/lipid connections and their
variability. The rationale of this approach is that metabolites
and lipids behave in an orchestrated manner and perturbations
of the systems, such as those associated or induced by high/
low pressure and heart rate, induce modifications in the
relationships among metabolites, which is reflected in their
connectivity patterns. Differential connectivity plots both for
males and females are shown in Figure 2.
We observed differential connectivity of total cholesterol,

lactate, mannose, phenylalanine, and AXP/IMP when compar-

Table 4. Sex-Specific Random Forest Models (Adjusted for Age) for the Discrimination of High and Low Groups for Systolic
Blood Pressure, Diastolic Blood Pressure, and Heart Rate

accuracy, % (P-value) sensitivity, % (P-value) specificity, % (P-value) AUROC (P-value)

males systolic blood pressure 55.8 (0.01) 57.6 (0.01) 53.5 (0.07) 0.58 (0.02)
diastolic blood pressure 56.2 (0.01) 55.1 (0.02) 56.2 (0.01) 0.59 (0.01)
heart rate 49.8 (0.52) 50.4 (0.49) 49.4 (0.54) 0.51 (0.93)

females systolic blood pressure 53.3 (0.30) 52.5 (0.34) 56.5 (0.12) 0.54 (0.62)
diastolic blood pressure 46.5 (0.85) 46.4 (0.84) 46.7 (0.72) 0.55 (0.52)
heart rate 48.1 (0.72) 44.8 (0.87) 49.2 (0.60) 0.55 (0.35)
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Figure 2. Differential network analysis. (A) Differentially connected metabolites between the networks specific for high and low heart rate specific
for male subjects. (B) Differentially connected metabolites between the networks specific for high and low heart rate specific for female subjects.
(C) Differentially connected metabolites for high and low systolic blood pressure for male subjects. (D) Differentially connected metabolites for
high and low systolic blood pressure for female subjects. (E) Differentially connected metabolites for high and low diastolic blood pressure for male
subjects. (F) Differentially connected metabolites for high and low diastolic blood pressure for female subjects. Only the names of differentially
connected metabolites are shown. The difference in metabolite connectivity (see eq 5) is given against the corresponding P-value. The threshold
for significance at 0.05 after Bonferroni correction is given by the horizontal line. Red to blue colors encode for the increasing difference. Triangles
(▲) indicate metabolites whose concentration is different between high and low groups (see Table 3) and circles (●) indicate nondifferentially
abundant metabolites.
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ing male subjects with high−low heart rates (Figure 2A), while
no differences are observed for females (Figure 2B).
Differences in albumine, AXP/IMP, BCAA (valine, leucine,

and isoleucine), citrate, formate, glutamine, histidine, lactate,
phenylalanine, propylene glycol, pyruvate, and triglycerides
were also observed in the case of high and low systolic pressure
in males (Figure 2C), while for females only differences in the
connectivity of histidine and triglycerides were observed
(Figure 2D). For diastolic pressure, changes in the connectivity
of isoleucine, lactate, methionine, total cholesterol, and valine
can be observed for males (Figure 2E); for females, we
observed changes in histidine, cholesterol, and triglycerides
(Figure 2F).
Overall, we observed a stronger relationship between

circulation metabolites and lipid fractions and blood pressure;
heart rate seems to be only marginally related to overall
metabolism, since both metabolite levels and metabolite
connectivity present a small variation in the groups of interest.
In normal conditions, the energy requirement of the heart is

elevated, and maintaining the efficiency of cardiac energy
metabolism is pivotal for its biology and physiology.
Furthermore, the dynamicity of its metabolism allows the
heart to quickly alter its activity to maintain cardiac contraction
in response to stressful stimulations, thus ensuring cardiomyo-
cytes’ survival.64 However, when an initial adaptation in an
energetically unfavorable state, in particular, related to glucose
and fatty acid metabolism, turns into a prolonged metabolic
shift, the maladaptation leads to progression to pathological
conditions.65−68

Amino acid metabolism mostly occurs in the liver, but
several amino acids, including BCAA and histidine, are
catabolized in nonhepatic tissues, mostly neuron, kidney, and
cardiac muscle.69 BCAA, histidine, and cholesterol may be
linked in a superpathway linking BCAA catabolism and
glutamine metabolism, a set of pathways that are receiving
renewed attention in the context of cardiovascular disease and
health.
It has been shown that in normal hearts, branched amino

acids inhibit the activity of pyruvate dehydrogenase complex

(PDH); this results in decreased glucose oxidation and
promotes fatty acid oxidation.70

The hexosamine pathway is one of the proposed metabolic
mechanisms through which glutamine and glutamate may exert
their effects on the heart. Glutamine is the co-substrate,
together with fructose-6-phosphate, for glutamine fructose-6-
phosphate aminotransferase (GFAT), which is the first and
rate-limiting enzyme of the hexosamine pathway, and therefore
is essential for its activity. It has been shown that glutamine
significantly enhances the contribution of exogenous long-
chain fatty acids (LCFAs) to β-oxidation and triglyceride (TG)
formation and that the predominant metabolic effect of
glutamine in the normoxic heart is to increase exogenous
LCFA oxidation and storage.71

Another possible way of utilization of glutamine is through
the so-called anaplerotic pathway (anaplerosis) through which
glutamine is converted to glutamate, which is further converted
to α-ketoglutarate in the citric acid cycle (CAC). Through this
mechanism, the CAC intermediate pool can be partially
replenished, when and if partially depleted in response to stress
or acute increases in energy demand and thereby ensuring
optimal CAC flux.72 Although there is ample evidence of the
activity of this pathway in proliferating cells, intestine, and
kidney, there is no clear and supporting evidence that the heart
is able to use glutamine as an anaplerotic substrate.71,73,74

It should be noted that our study population, being
composed of blood donor volunteers, is highly homogenous
for what concerns demographical and biochemical character-
istics (see the Material and Methods section). The
remodulation of the correlation patterns of BCAA, histidine,
glutamine, and triglycerides observed when comparing subjects
with high and low heart rate and blood pressure should be
interpreted as a subclinical manifestation of latent cardiovas-
cular risk.
Figure 3 shows the number of common edges, i.e., indicates

the number of links that are conserved between two conditions
(high/low). If between two conditions there are differences in
conservation in metabolite connectivity, i.e., changes in
correlation magnitude which sum up to the connectivity (see
eq 2), then this can be seen as a proxy for metabolism rewiring

Figure 3. Conservation of metabolite/lipid connectivity across different subject groups (high/low systolic and diastolic blood pressure and heart
rate). (A) Comparison between high/low systolic blood pressure groups. (B) Comparison between high/low diastolic blood pressure groups. (C)
Comparison between high/low heart rate groups. Common edges indicate the number of links that are conserved between two conditions (high/
low), although the edge weights (absolute value of the correlation between two metabolites/lipids) can be different. Conservation of the majority of
edges between different conditions but with different weights indicates conserved differential connectivity; when the majority of edges is not
conserved between different conditions and the differential connectivity is due to different edges which are not present in both networks, this refers
to differentially conserved connectivity.
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or disruption. Metabolite−metabolite correlations arise from
the combination of metabolic and regulatory reactions75 and
information on the underlying metabolic activity, which is
encoded in both the magnitude and the sign. For instance, a
rapid equilibrium condition or enzyme dominance would
result in a strong positive correlation, while moiety
conservation would result in a strong negative correlation.76

From the conservation/differential connectivity plot shown
in Figure 3 (since only males showed statistically significant
results, only results for male are shown), it can be seen that
differential connectivity of metabolites involved in the
hexosamine pathway originates from changes in the magnitude
of the correlation, as indicated by a large number of common
edges preserved; we thus see the presence of conserved
differential connectivity, which indicates a remodulation of the
hexosamine pathway rather than its disruption, which is
consistent with the observed subclinical manifestations.
It has been observed that increased glucose metabolism via

the hexosamine biosynthesis pathway and an associated
increase in O-linked-β-N-acetylglucosamine (O-GlcNAc) levels
in proteins contribute to the adverse effects on the heart at the
level of the cardiomyocyte, which could contribute to
contractile dysfunction and an increased risk for heart
failure.77,78

We observed that most differentially connected metabolites
are sex-specific and pertain to the male population investigated
in this study (Figure 2). In general, we observed fewer
differences in females than in males. Although this can be the
effect of the different sizes of the two cohorts considered, and
due to the inherent different power of the analysis, these results
can be easily reconciled with the observation that nearly all
aspects of metabolism, including energy balance as well as
glucose and lipid metabolism, are regulated in a sexually
dimorphic manner.48,79

We found that BCAA are differentially connected only in
males, and indeed sex-related differences in regulation of
branched-chain amino acid catabolism have been ob-
served,80,81 while differential connectivity of triglycerides is
mostly associated with females, an observation supported by
the fact that there are sex-related differences in the substrate
used for (prolonged) physical activity: since males rely mostly
on carbohydrate and amino acids, while females predominantly
use fat. In addition, the glutamate metabolic pathway has been
found to be different in men and women.82

Apart from the possibility for cardiac energy metabolism to
be differentially regulated in males and females, the weaker
results pointing to the remodulation of the activity of
hexosamine in females could also be considered as evidence
of the well-known fact that premenopausal females (given the
relatively low age, mean age of 42 years, the females in our
cohort can be considered premenopausal) have reduced
incidence of cardiovascular disease when compared to age-
matched males and thus remodulation effects may go
underdetected in our analysis. This lower incidence (which
increases after menopause) has been attributed to the
protective effect of sex hormone levels, at least in part to
estrogens, which exert their protective effect through many
different mechanisms like reduced fibrosis, stimulation of
angiogenesis, vasodilation, improved mitochondrial function,
and reduced oxidative stress.
Lactate shows an increase of the differential connectivity in

the male groups of high systolic and diastolic blood pressure
and heart rate. Moreover, in subjects with high systolic blood

pressure, we also observed an increase in pyruvate connections
with respect to subjects with low pressure. Conversely, no
significant changes in terms of lactate and pyruvate
concentrations are detected in females. Both these pieces of
evidence could indicate a variation in the activation of the
metabolic pathways linked to the energetic metabolism, since
lactate is mainly produced to sustain the energy needs during
anaerobic conditions, which, however, do not alter the
quantitative production of lactate and pyruvate. We can
hypothesize that the different connectivity arrangement could
be an early sign of a future cardiometabolic dysregulation that
probably disrupts this metabolism and thus also changes
metabolite concentrations.

■ CONCLUSIONS
In this paper, we have presented a differential network
approach to experimentally identified metabolites to analyze
their associations with blood pressure and heart rate in a
population of healthy subjects, and we showed that subclinical
manifestations like high/low blood pressure and heart rate in
healthy subjects are better captured by analyzing changes in
the correlation patterns among metabolites and lipids rather
than concentrations alone.
Our results indicate that subjects with high and low blood

pressure present different levels of several metabolic features
and that there are even more marked differences in the pattern
of connections between the different metabolites. Thus, the
network approach seems to provide more insights than the
standard approach. If we hypothesize that connectivity
differences could represent substantial changes in the
architecture of the metabolic pathways active in the two
groups, we can conclude that the connectivity changes in the
high-risk groups could embody an early sign of cardiometa-
bolic dysregulations.
Although this study provides important information on the

relationship between blood pressure and heart rate and
circulating blood metabolites, some limitations should also
be mentioned. First, our analyses do not consider diet habits
and physical activities. Second, information regarding follow-
up of the blood donors enrolled are missing; thus, although our
results point to some early sign of cardiovascular disease or
metabolic syndrome in the metabolomic profile and/or
network architecture, any definitive conclusion is prevented.
Third, it would be interesting to evaluate also a possible
association with metabolic network architecture and predia-
betes signs, but the available data did not allow us to proceed
in this direction. For all of these reasons, in the future, further
efforts to replicate these analyses in other study cohorts with
available follow-up data are guaranteed.

■ AUTHOR INFORMATION

Corresponding Authors

Claudio Luchinat − Consorzio Interuniversitario Risonanze
Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto
Fiorentino, Italy; Magnetic Resonance Center (CERM) and
Department of Chemistry “Ugo Schiff”, University of Florence,
50019 Sesto Fiorentino, Italy; orcid.org/0000-0003-
2271-8921; Phone: +39 055 457 4296; Email: luchinat@
cerm.unifi.it

Edoardo Saccenti − Laboratory of Systems and Synthetic
Biology, Wageningen University & Research, 6708 WE
Wageningen, The Netherlands; orcid.org/0000-0001-

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00882
J. Proteome Res. 2021, 20, 1040−1051

1048

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Claudio+Luchinat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0003-2271-8921
mailto:luchinat@cerm.unifi.it
mailto:luchinat@cerm.unifi.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edoardo+Saccenti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8284-4829
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00882?ref=pdf


8284-4829; Phone: +31 (0)317 482018;
Email: edoardo.saccenti@wur.nl

Authors

Alessia Vignoli − Consorzio Interuniversitario Risonanze
Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto
Fiorentino, Italy; Magnetic Resonance Center (CERM),
University of Florence, 50019 Sesto Fiorentino, Italy;
orcid.org/0000-0003-4038-6596

Leonardo Tenori − Magnetic Resonance Center (CERM) and
Department of Chemistry “Ugo Schiff”, University of Florence,
50019 Sesto Fiorentino, Italy; orcid.org/0000-0001-
6438-059X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.0c00882

Author Contributions

C.L., E.S., and L.T. designed the study. E.S. and A.V.
performed statistical data analyses. C.L., E.S., L.T., and A.V.
interpreted data and results, prepared the manuscript, and were
responsible for its final content. All authors read and approved
the final version of the manuscript.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge Instruct-ERIC, a Landmark ESFRI
project, and specifically the CERM/CIRMMP Italy Centre.
AVIS Toscana (in the persons of Luciano Franchi and Donata
Marangio), AVIS Pistoia (in the person of Alessandro Pratesi),
and the technical staff of Transfusion Service of the Pistoia
Hospital are thanked for volunteer recruitment and sample
collection. A.V. was supported by an AIRC fellowship for Italy.

■ REFERENCES
(1) Nardin, C.; Maki-Petaja, K. M.; Miles, K. L.; Yasmin;
McDonnell, B. J.; Cockcroft, J. R.; Wilkinson, I. B.; McEniery, C.
M.; Samantha, B.; Zahid, D.; Lisa, D.; Stacey, H.; Jessica, M.; Maggie,
M.; Pawan, P.; Christopher, R.; Ramsey, S.; James, S.; Jane, S.; Jean,
W.-S.; Edna, T.; Sharon, W. Cardiovascular Phenotype of Elevated
Blood Pressure Differs Markedly Between Young Males and Females.
Hypertension 2018, 72, 1277−1284.
(2) Vasan, R. S.; Larson, M. G.; Leip, E. P.; Evans, J. C.; O’Donnell,
C. J.; Kannel, W. B.; Levy, D. Impact of High-Normal Blood Pressure
on the Risk of Cardiovascular Disease. N. Engl. J. Med. 2001, 345,
1291−1297.
(3) Whelton, P. K.; Carey, R. M.; Aronow, W. S.; Casey, D. E.;
Collins, K. J.; Cheryl, D. H.; DePalma, S. M.; Samuel, G.; Jamerson,
K. A.; Jones, D. W.; MacLaughlin, E. J.; Paul, M.; Bruce, O.; Smith, S.
C.; Spencer, C. C.; Stafford, R. S.; Taler, S. J.; Thomas, R. J.; Williams,
K. A.; Williamson, J. D.; Wright, J. T. 2017 ACC/AHA/AAPA/ABC/
ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
Prevention, Detection, Evaluation, and Management of High Blood
Pressure in Adults: Executive Summary: A Report of the American
College of Cardiology/American Heart Association Task Force on
Clinical Practice Guidelines. Hypertension 2018, 71, 1269−1324.
(4) Polak-Iwaniuk, A.; Harasim-Symbor, E.; Gołaszewska, K.;
Chabowski, A. How Hypertension Affects Heart Metabolism. Front.
Physiol. 2019, 10, No. 435.
(5) Pletcher, M. J.; Bibbins-Domingo, K.; Lewis, C. E.; Wei, G. S.;
Sidney, S.; Carr, J. J.; Vittinghoff, E.; McCulloch, C. E.; Hulley, S. B.
Prehypertension During Young Adulthood and Coronary Calcium
Later in Life: The Coronary Artery Risk Development in Young
Adults Study. Ann. Intern. Med. 2008, 149, 91−99.

(6) Tadic, M.; Cuspidi, C.; Grassi, G. Heart Rate as a Predictor of
Cardiovascular Risk. Eur. J. Clin. Invest. 2018, 48, No. e12892.
(7) Zipes, D. Specific Arrhythmias: Diagnosis and Treatment. Heart
Disease: A Textbook of Cardiovascular Medicine, 9th ed.; Elsevier2019.
(8) Palatini, P. Need for a Revision of the Normal Limits of Resting
Heart Rate. Hypertension 1999, 33, 622−625.
(9) Palatini, P.; Benetos, A.; Grassi, G.; Julius, S.; Kjeldsen, S. E.;
Mancia, G.; Narkiewicz, K.; Parati, G.; Pessina, A. C.; Ruilope, L. M.;
Zanchetti, A. European Society of Hypertension. Identification and
Management of the Hypertensive Patient with Elevated Heart Rate:
Statement of a European Society of Hypertension Consensus
Meeting. J. Hypertens. 2006, 24, 603−610.
(10) Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P. G.;
Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics
by 1D NMR. Angew. Chem., Int. Ed. 2019, 58, 968−994.
(11) Vignoli, A.; Orlandini, B.; Tenori, L.; Biagini, M. R.; Milani, S.;
Renzi, D.; Luchinat, C.; Calabro,̀ A. S. Metabolic Signature of Primary
Biliary Cholangitis and Its Comparison with Celiac Disease. J.
Proteome Res. 2019, 18, 1228−1236.
(12) Brindle, J. T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.
K.; Bethell, H. W. L.; Clarke, S.; Schofield, P. M.; McKilligin, E.;
Mosedale, D. E.; Grainger, D. J. Rapid and Noninvasive Diagnosis of
the Presence and Severity of Coronary Heart Disease Using 1H-
NMR-Based Metabonomics. Nat. Med. 2002, 8, 1439−1444.
(13) Vignoli, A.; Tenori, L.; Giusti, B.; Takis, P. G.; Valente, S.;
Carrabba, N.; Balzi, D.; Barchielli, A.; Marchionni, N.; Gensini, G. F.;
Marcucci, R.; Luchinat, C.; Gori, A. M. NMR-Based Metabolomics
Identifies Patients at High Risk of Death within Two Years after Acute
Myocardial Infarction in the AMI-Florence II Cohort. BMC Med.
2019, 17, No. 3.
(14) Hart, C. D.; Vignoli, A.; Tenori, L.; Uy, G. L.; Van, T.;
Adebamowo, C.; Hossain, S. M.; Biganzoli, L.; Risi, E.; Love, R. R.;
Luchinat, C.; Di Leo, A. Serum Metabolomic Profiles Identify ER-
Positive Early Breast Cancer Patients at Increased Risk of Disease
Recurrence in a Multicenter Population. Clin. Cancer Res. 2017, 23,
1422−1431.
(15) McCartney, A.; Vignoli, A.; Tenori, L.; Fornier, M.; Rossi, L.;
Risi, E.; Luchinat, C.; Biganzoli, L.; Di Leo, A. Metabolomic Analysis
of Serum May Refine 21-Gene Expression Assay Risk Recurrence
Stratification. npj Breast Cancer 2019, 5, No. 26.
(16) Wishart, D. S. Emerging Applications of Metabolomics in Drug
Discovery and Precision Medicine. Nat. Rev. Drug Discovery 2016, 15,
473−484.
(17) Vignoli, A.; Santini, G.; Tenori, L.; Macis, G.; Mores, N.;
Macagno, F.; Pagano, F.; Higenbottam, T.; Luchinat, C.; Montuschi,
P. NMR-Based Metabolomics for the Assessment of Inhaled
Pharmacotherapy in Chronic Obstructive Pulmonary Disease
Patients. J. Proteome Res. 2020, 19, 64−74.
(18) Albenberg, L. G.; Wu, G. D. Diet and the Intestinal
Microbiome: Associations, Functions, and Implications for Health
and Disease. Gastroenterology 2014, 146, 1564−1572.
(19) Gu, Q.; Spinelli, J. J.; Dummer, T. B. J.; McDonald, T. E.;
Moore, S. C.; Murphy, R. A. Metabolic Profiling of Adherence to
Diet, Physical Activity and Body Size Recommendations for Cancer
Prevention. Sci. Rep. 2018, 8, No. 16293.
(20) Rittweger, J.; Albracht, K.; Flück, M.; Ruoss, S.; Brocca, L.;
Longa, E.; Moriggi, M.; Seynnes, O.; Di Giulio, I.; Tenori, L.; Vignoli,
A.; Capri, M.; Gelfi, C.; Luchinat, C.; Francheschi, C.; Bottinelli, R.;
Cerretelli, P.; Narici, M. Sarcolab Pilot Study into Skeletal Muscle’s
Adaptation to Long-Term Spaceflight. npj Microgravity 2018, 4,
No. 18.
(21) Shah, S. H.; Kraus, W. E.; Newgard, C. B. Metabolomic
Profiling for Identification of Novel Biomarkers and Mechanisms
Related to Common Cardiovascular Diseases: Form and Function.
Circulation 2012, 126, 1110−1120.
(22) Calvani, R.; Brasili, E.; Pratico,̀ G.; Sciubba, F.; Roselli, M.;
Finamore, A.; Marini, F.; Marzetti, E.; Miccheli, A. Application of
NMR-Based Metabolomics to the Study of Gut Microbiota in
Obesity. J. Clin. Gastroenterol. 2014, 48, S5−S7.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00882
J. Proteome Res. 2021, 20, 1040−1051

1049

http://orcid.org/0000-0001-8284-4829
mailto:edoardo.saccenti@wur.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alessia+Vignoli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4038-6596
http://orcid.org/0000-0003-4038-6596
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Leonardo+Tenori"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6438-059X
http://orcid.org/0000-0001-6438-059X
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00882?ref=pdf
https://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11975
https://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11975
https://dx.doi.org/10.1056/NEJMoa003417
https://dx.doi.org/10.1056/NEJMoa003417
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.1161/HYP.0000000000000066
https://dx.doi.org/10.3389/fphys.2019.00435
https://dx.doi.org/10.7326/0003-4819-149-2-200807150-00005
https://dx.doi.org/10.7326/0003-4819-149-2-200807150-00005
https://dx.doi.org/10.7326/0003-4819-149-2-200807150-00005
https://dx.doi.org/10.1111/eci.12892
https://dx.doi.org/10.1111/eci.12892
https://dx.doi.org/10.1161/01.HYP.33.2.622
https://dx.doi.org/10.1161/01.HYP.33.2.622
https://dx.doi.org/10.1097/01.hjh.0000217838.49842.1e
https://dx.doi.org/10.1097/01.hjh.0000217838.49842.1e
https://dx.doi.org/10.1097/01.hjh.0000217838.49842.1e
https://dx.doi.org/10.1097/01.hjh.0000217838.49842.1e
https://dx.doi.org/10.1002/anie.201804736
https://dx.doi.org/10.1002/anie.201804736
https://dx.doi.org/10.1021/acs.jproteome.8b00849
https://dx.doi.org/10.1021/acs.jproteome.8b00849
https://dx.doi.org/10.1038/nm1202-802
https://dx.doi.org/10.1038/nm1202-802
https://dx.doi.org/10.1038/nm1202-802
https://dx.doi.org/10.1186/s12916-018-1240-2
https://dx.doi.org/10.1186/s12916-018-1240-2
https://dx.doi.org/10.1186/s12916-018-1240-2
https://dx.doi.org/10.1158/1078-0432.CCR-16-1153
https://dx.doi.org/10.1158/1078-0432.CCR-16-1153
https://dx.doi.org/10.1158/1078-0432.CCR-16-1153
https://dx.doi.org/10.1038/s41523-019-0123-9
https://dx.doi.org/10.1038/s41523-019-0123-9
https://dx.doi.org/10.1038/s41523-019-0123-9
https://dx.doi.org/10.1038/nrd.2016.32
https://dx.doi.org/10.1038/nrd.2016.32
https://dx.doi.org/10.1021/acs.jproteome.9b00345
https://dx.doi.org/10.1021/acs.jproteome.9b00345
https://dx.doi.org/10.1021/acs.jproteome.9b00345
https://dx.doi.org/10.1053/j.gastro.2014.01.058
https://dx.doi.org/10.1053/j.gastro.2014.01.058
https://dx.doi.org/10.1053/j.gastro.2014.01.058
https://dx.doi.org/10.1038/s41598-018-34662-7
https://dx.doi.org/10.1038/s41598-018-34662-7
https://dx.doi.org/10.1038/s41598-018-34662-7
https://dx.doi.org/10.1038/s41526-018-0052-1
https://dx.doi.org/10.1038/s41526-018-0052-1
https://dx.doi.org/10.1161/CIRCULATIONAHA.111.060368
https://dx.doi.org/10.1161/CIRCULATIONAHA.111.060368
https://dx.doi.org/10.1161/CIRCULATIONAHA.111.060368
https://dx.doi.org/10.1097/MCG.0000000000000236
https://dx.doi.org/10.1097/MCG.0000000000000236
https://dx.doi.org/10.1097/MCG.0000000000000236
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00882?ref=pdf


(23) Bernacchioni, C.; Ghini, V.; Cencetti, F.; Japtok, L.; Donati, C.;
Bruni, P.; Turano, P. NMR Metabolomics Highlights Sphingosine
Kinase-1 as a New Molecular Switch in the Orchestration of Aberrant
Metabolic Phenotype in Cancer Cells.Mol. Oncol. 2017, 11, 517−533.
(24) Vignoli, A.; Rodio, D. M.; Bellizzi, A.; Sobolev, A. P.; Anzivino,
E.; Mischitelli, M.; Tenori, L.; Marini, F.; Priori, R.; Scrivo, R.;
Valesini, G.; Francia, A.; Morreale, M.; Ciardi, M. R.; Iannetta, M.;
Campanella, C.; Capitani, D.; Luchinat, C.; Pietropaolo, V.; Mannina,
L. NMR-Based Metabolomic Approach to Study Urine Samples of
Chronic Inflammatory Rheumatic Disease Patients. Anal. Bioanal.
Chem. 2017, 409, 1405−1413.
(25) Caracausi, M.; Ghini, V.; Locatelli, C.; Mericio, M.; Piovesan,
A.; Antonaros, F.; Pelleri, M. C.; Vitale, L.; Vacca, R. A.; Bedetti, F.;
Mimmi, M. C.; Luchinat, C.; Turano, P.; Strippoli, P.; Cocchi, G.
Plasma and Urinary Metabolomic Profiles of Down Syndrome
Correlate with Alteration of Mitochondrial Metabolism. Sci. Rep.
2018, 8, No. 2977.
(26) Vignoli, A.; Paciotti, S.; Tenori, L.; Eusebi, P.; Biscetti, L.;
Chiasserini, D.; Scheltens, P.; Turano, P.; Teunissen, C.; Luchinat, C.;
Parnetti, L. Fingerprinting Alzheimer’s Disease by 1H Nuclear
Magnetic Resonance Spectroscopy of Cerebrospinal Fluid. J. Proteome
Res. 2020, 19, 1696−1705.
(27) Vignoli, A.; Muraro, E.; Miolo, G.; Tenori, L.; Turano, P.; Di
Gregorio, E.; Steffan, A.; Luchinat, C.; Corona, G. Effect of Estrogen
Receptor Status on Circulatory Immune and Metabolomics Profiles of
HER2-Positive Breast Cancer Patients Enrolled for Neoadjuvant
Targeted Chemotherapy. Cancers 2020, 12, No. 314.
(28) Takis, P. G.; Ghini, V.; Tenori, L.; Turano, P.; Luchinat, C.
Uniqueness of the NMR Approach to Metabolomics. TrAC, Trends
Anal. Chem. 2019, 120, No. 115300.
(29) Rosato, A.; Tenori, L.; Cascante, M.; De Atauri Carulla, P. R.;
dos Santos, V. A. P. M.; Saccenti, E. From Correlation to Causation:
Analysis of Metabolomics Data Using Systems Biology Approaches.
Metabolomics 2018, 14, No. 37.
(30) Afzal, M.; Saccenti, E.; Madsen, M. B.; Hansen, M. B.;
Hyldegaard, O.; Skrede, S.; dos Santos, V. A. P. M.; Norrby-Teglund,
A.; Svensson, M. Integrated Univariate, Multivariate, and Correlation-
Based Network Analyses Reveal Metabolite-Specific Effects on
Bacterial Growth and Biofilm Formation in Necrotizing Soft Tissue
Infections. J. Proteome Res. 2020, 19, 688−698.
(31) Vignoli, A.; Tenori, L.; Giusti, B.; Valente, S.; Carrabba, N.;
Baizi, D.; Barchielli, A.; Marchionni, N.; Gensini, G. F.; Marcucci, R.;
Gori, A. M.; Luchinat, C.; Saccenti, E. Differential Network Analysis
Reveals Metabolic Determinants Associated with Mortality in Acute
Myocardial Infarction Patients and Suggests Potential Mechanisms
Underlying Different Clinical Scores Used To Predict Death. J.
Proteome Res. 2020, 19, 949−961.
(32) Emwas, A.-H.; Roy, R.; McKay, R. T.; Tenori, L.; Saccenti, E.;
Gowda, G. A. N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.;
Wishart, D. S. NMR Spectroscopy for Metabolomics Research.
Metabolites 2019, 9, 123.
(33) Vignoli, A.; Tenori, L.; Luchinat, C.; Saccenti, E. Age and Sex
Effects on Plasma Metabolite Association Networks in Healthy
Subjects. J. Proteome Res. 2018, 17, 97−107.
(34) Bernini, P.; Bertini, I.; Luchinat, C.; Tenori, L.; Tognaccini, A.
The Cardiovascular Risk of Healthy Individuals Studied by NMR
Metabonomics of Plasma Samples. J. Proteome Res. 2011, 10, 4983−
4992.
(35) Saccenti, E.; Suarez-Diez, M.; Luchinat, C.; Santucci, C.;
Tenori, L. Probabilistic Networks of Blood Metabolites in Healthy
Subjects as Indicators of Latent Cardiovascular Risk. J. Proteome Res.
2015, 14, 1101−1111.
(36) Carr, H. Y.; Purcell, E. M. Effects of Diffusion on Free
Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev.
1954, 94, No. 630.
(37) Kale, N. S.; Haug, K.; Conesa, P.; Jayseelan, K.; Moreno, P.;
Rocca-Serra, P.; Nainala, V. C.; Spicer, R. A.; Williams, M.; Li, X.;
Salek, R. M.; Griffin, J. L.; Steinbeck, C. MetaboLights: An Open-

Access Database Repository for Metabolomics Data. Curr. Protoc.
Bioinf. 2016, 53, 14.13.1−14.13.18.
(38) Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang,
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