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Abstract
In animal breeding, parents of the next generation are usually selected in multiple 
stages, and the initial stages of this selection are called preselection. Preselection 
reduces the information available for subsequent evaluation of preselected animals 
and this sometimes leads to bias. The objective of this study was to establish the 
minimum information required to subsequently evaluate genomically preselected 
animals without bias arising from preselection, with single-step genomic best linear 
unbiased prediction (ssGBLUP). We simulated a nucleus of a breeding program in 
which a recent population of 15 generations was produced. In each generation, par-
ents of the next generation were selected in a single-stage selection based on pedi-
gree BLUP. However, in generation 15, 10% of male and 15% of female offspring 
were preselected on their genomic estimated breeding values (GEBV). These GEBV 
were estimated using ssGBLUP, including the pedigree of all animals in generations 
0–15, genotypes of all animals in generations 13–15 and phenotypes of all animals in 
generations 11–14. In subsequent ssGBLUP evaluation of these preselected animals, 
genotypes and phenotypes from various groups of animals were excluded one after 
another. We found that GEBV of the preselected animals were only estimated with-
out preselection bias when genotypes and phenotypes of all animals in generations 
13 and 14 and of the preselected animals were included in the subsequent evaluation. 
We also found that genotypes of the animals discarded at preselection only helped in 
reducing preselection bias in GEBV of their preselected sibs when genotypes of their 
parents were absent or excluded from the subsequent evaluation. We concluded that 
to prevent preselection bias in subsequent ssGBLUP evaluation of genomically pre-
selected animals, information representative of the reference data used in the evalu-
ation at preselection and genotypes and phenotypes of the preselected animals are 
needed in the subsequent evaluation.
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1 |  BACKGROUND

In animal breeding programs, parents of the next genera-
tion are usually selected in multiple stages (e.g., Árnason 
et  al.,  2012; Meyer & Thompson,  1984; Xu et  al.,  1995), 
and the initial stages of this selection are referred to as pre-
selection (e.g., Janhunen et  al.,  2014; Masuda et  al.,  2018; 
Patry & Ducrocq,  2011). Impact of preselection on sub-
sequent genetic evaluations has been a subject of research 
for a long time in the field of animal breeding (e.g., Appel 
et al., 1998; Henderson, 1975; Masuda et al., 2018; Patry & 
Ducrocq, 2011a). Traditionally, preselection for target traits 
has mostly been based on correlated indicator traits that are 
easily and cheaply measurable early in lives of selection can-
didates. For example, piglets could be preselected based on 
weaning weight as an indicator trait for average daily gain 
during performance testing. In such situations, multi-trait 
evaluations are performed including both the target traits 
and the indicator traits based on which animals are prese-
lected (e.g., Henderson, 1975; Janhunen et al., 2014; Pollak 
et  al.,  1984), to prevent preselection bias in the subsequent 
evaluations. In this case, animals retained at preselection (pre-
selected animals) will have better phenotypes for the indica-
tor traits compared to their discarded (preculled) siblings, and 
this informs the subsequent evaluations using pedigree-based 
best linear unbiased prediction (PBLUP) model that for the 
target traits, preselected animals are better-than-average 
sets of offspring of their parents. In other words, including 
the indicator traits in subsequent evaluations provides the 
PBLUP model in the subsequent evaluations with data to bet-
ter estimate the (on-average-positive) Mendelian sampling 
terms of preselected animals. In the genomic era, preselec-
tion is mostly based on genomic estimated breeding values 
(GEBV) of young selection candidates, and this form of pre-
selection is called genomic preselection (GPS, e.g., Masuda 
et al., 2018; Patry & Ducrocq, 2011a; Sullivan et al., 2019). 
Although GPS is practiced in several livestock species, in-
cluding pigs and poultry, reports on GPS in the literature 
so far are all focussing on dairy cattle. Subsequent PBLUP 
evaluations after GPS, such as the Interbull and national 
dairy cattle evaluations, have been reported to be biased (e.g., 
Masuda et  al.,  2018; Patry et  al.,  2013; Sullivan,  2018). It 
has been shown that this preselection bias can be prevented 
by including genomic information in form of genomic pseu-
doperformances (e.g., deregressed proofs) of both preselected 
and preculled animals in the subsequent PBLUP evalua-
tions (Patry & Ducrocq,  2011b). The genomic pseudoper-
formances of preculled animals help to inform the PBLUP 
model in subsequent evaluations that preselected animals are 
better-than-average subsets of offspring of their parents (Patry 
& Ducrocq,  2011b). Jibrila et  al.  (2020) showed that using 
ssGBLUP in subsequent evaluations prevents GEBV of pre-
selected animals from becoming biased due to preselection, 

even if genotypes of preculled animals are excluded. This sug-
gests that, in contrast with subsequent PBLUP evaluations, 
information from preculled animals is not strictly needed to 
prevent preselection bias in subsequent ssGBLUP evaluation 
of their preselected sibs. Based on the literature and our previ-
ous work (Jibrila et al., 2020; Koivula et al., 2018; Shabalina 
et al., 2017), we hypothesize that the impact of genotypes of 
preculled animals in subsequent ssGBLUP evaluations de-
pends on whether genotypes of their parents are included in 
the subsequent evaluations. The objective of this study was 
to establish, through simulation, the minimum information 
required in subsequent ssGBLUP evaluations to estimate 
GEBV of genomically preselected animals without bias as-
sociated with preselection. We also investigated under which 
circumstances the use of genotypes of preculled animals is 
beneficial in subsequent evaluations of their preselected sibs. 
And finally, we evaluated the accuracy realized with each of 
the implemented scenarios of subsequent evaluation.

2 |  MATERIALS AND METHODS

2.1 | Data simulation

Before designing this study, we had discussions with the in-
dustrial partners of the Breed4Food consortium (https://breed 
4food.com/), which are breeding companies in dairy cattle 
(CRV), pigs (Topigs Norsvin and Hendrix Genetics), poul-
try (Hendrix Genetics and Cobb Europe) and Aquaculture 
(Hendrix Genetics). During these discussions, it became 
clear that breeding practices for the different species are rela-
tively similar and can be represented by a general breeding 
program as simulated in our study. Therefore, we used inputs 
from these breeding companies and simulated a nucleus of a 
general breeding program. We used QMSim (Sargolzaei & 
Schenkel, 2009) to simulate the datasets, and the details of 
the simulation can be found in Jibrila et al. (2020).

Briefly, at the end of a historical population of 3,000 gen-
erations of random mating, we randomly selected 100 males 
and 1,000 females and used them as founders. From these 
founders, we produced a recent population of 15 generations. 
In each of these recent generations, 100 males and 1,000 fe-
males were selected in a single-stage PBLUP-based selection 
to produce the next generation of 16,000 animals. Within sex, 
all selected parents had equal contribution to the next gener-
ation. Across a simulated genome consisting of 30 chromo-
somes, 60,000 single nucleotide polymorphisms (SNP) and 
3,000 quantitative trait loci (QTL) were evenly distributed. 
The breeding goal was made up of a single quantitative trait 
that was measured in both sexes, with heritability of 0.1. For 
every individual, the phenotype of the trait was simulated as 
the summation of random additive genetic and residual effects 
(so no fixed effects). The additive genetic variance was made 

https://breed4food.com/
https://breed4food.com/
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up of QTL variance (90%) and polygenic variance (10%). In 
this study, we used the entire pedigree (i.e., consisting of all 
animals in generations 0–15), genotypes of the three most re-
cent generations (i.e., consisting of all animals in generations 
13–15) and phenotypes of the five most recent generations 
(i.e., consisting of all animals in generations 11–15).

2.2 | Preselection and subsequent genetic 
evaluations

We implemented preselection only in the most recent gen-
eration (i.e., generation 15). From the selection candidates 
(i.e., all animals in generation 15), 10% of males and 15% of 
females were preselected based on their individual GEBV. 
These GEBV were obtained using ssGBLUP, including the 
pedigree of animals in generations 0–15, genotypes of ani-
mals in generations 13–15, and phenotypes of all the animals 
in the generations 11–14.

In subsequent (second stage) evaluation, we implemented 
13 scenarios, with varying amounts and sources of genomic 
and phenotypic information. Scenarios 1–9 included either the 
entire genomic information available, or a subset of it, in ad-
dition to the phenotypic information available. Details of the 
information included in each of these scenarios are in Table 1. 
Similarly, each of the last four scenarios included either the 
entire phenotypic information available or a subset of it, in 
addition to all the genomic information available (except for 
the genotypes of preculled animals). Details of the information 
included in each of these scenarios are in Table 2. Available 
sources of genomic and phenotypic information for subsequent 
evaluation of the preselected animals, based on their closeness 
to the preselected animals, can be grouped as follows:

• Sources of genomic information: (a) the preselected ani-
mals themselves, (b) the preculled animals, (c) parents of 
the selection candidates (i.e., selected animals in genera-
tion 14) and (d) other animals with genotypes, which were, 
respectively, the unselected sibs of parents of the selection 
candidates (i.e., the rest of generation 14 animals) and the 
selection candidates’ grandparental generation (i.e., gener-
ation 13 animals).

• Sources of phenotypic information: (a) the preselected 
animals themselves, (b) animals with both genotypes and 
phenotypes at the time of preselection (i.e., selection can-
didates’ parental and grand parental generations/animals in 
generations 13 and 14) and (c) animals with phenotypes 
but no genotypes at the time of preselection (i.e., selec-
tion candidates’ (great) great grandparental generations/
animals in generations 11 and 12).

All the genetic evaluations (including at the preselec-
tion stage) were performed using the ssGBLUP procedure 

implemented in MiXBLUP (ten Napel et  al.,  2017). Every 
step of this study (data simulation, preselection and subse-
quent evaluations) was replicated 10 times.

2.3 | Implementation of single-step GBLUP

For each replicate, we used a pedigree-based animal model in 
ASReml (Gilmour et al., 2009) to estimate the additive genetic 
and residual variances that we later supplied to MiXBLUP. 
Pedigree information from all animals in generations 0–14 
and phenotypic information from all animals in generations 
11–14 were used to estimate these variances. The model used 
in both ASReml (for estimation of variance components) and 
MiXBLUP (for breeding value estimation) was as follows:

where y was the vector of phenotypes; x and Z were incidence 
vector and matrix linking phenotypes to overall mean and ran-
dom animal effects, respectively; b was the overall mean; u was 
the vector of breeding values; and e was the vector of random 
residuals.

For estimation of breeding values, genetic relationships 
among animals were accounted for by the inverse of the com-
bined pedigree-genomic relationship (H−1), obtained as fol-
lows (Aguilar et al., 2010; Christensen & Lund, 2010):

where A−1 was the inverse of the pedigree relationship matrix, 
and A22 was the pedigree relationship matrix among genotyped 
animals. We considered inbreeding in setting up both A−1 and 
A22 to avoid the bias caused by ignoring inbreeding (Tsuruta 
et al., 2019). The matrix Gt was the genomic relationship ma-
trix calculated as follows:

where fp was the average pedigree inbreeding coefficient across 
genotyped animals, Gr was the raw genomic relationship ma-
trix computed following the first method of VanRaden 
(VanRaden, 2008), and 11′ is a matrix of 1 s. The transforma-
tion of Gr to Gt was done to make the average genomic inbreed-
ing equal to the average pedigree inbreeding, that is to have G 
and A22 on the same scale so that they are compatible. This 
formula is similar to the formula Gt = Gr + α11′ of Vitezica 
et al. (2011), and it is equivalent to the Fst-based formula pro-
posed by Powell et  al.  (2010), which can be rewritten to 
Gt =

(

1 −
1

2
�

)

Gr + �11 � (Vitezica et al., 2011). The connec-

y = xb + Zu + e,

H
−1

= A
−1

+

[

0 0

0
(

0.9G
t
+0.1A22

)−1
−A

−1

22

]

,

Gt =

(

1 − fp

)

Gr + 2fp11 � ,
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tion between these three formulas can be seen as follows. In 
these notations, α is the difference in average pedigree and ge-
nomic relationships (Vitezica et al., 2011). Using current allele 
frequencies to compute Gr, the mean genomic relationship is 
expected to be zero, such that α reduces to the mean pedigree 
relationship, and in this case, assuming random mating, 
E
(

fp

)

=
1

2
� (Falconer & Mackay, 1996). As there were sce-

narios in this study in which selective genotyping was intro-
duced (scenarios 6 and 7), this transformation made sure that its 
impact was taken care of (Hsu et al., 2017; Vitezica et al., 2011). 
In computing Gr, we calculated (current) allele frequencies 
using all available genomic data (i.e., using all the available ge-
nomic data, per scenario), and only used SNP with minor allele 
frequency of at least 0.005. We gave the weights of 0.9 to Gt 
and 0.1 to A22 to account for polygenic variance (which was 
simulated to be 10% of the genetic variance) and to ensure that 
G was invertible (Aguilar et  al.,  2010; Christensen & 
Lund, 2010). The MiXBLUP instruction file for the ssGBLUP 
analysis can be found in Jibrila et al. (2020).

2.4 | Measures of bias and accuracy in the 
subsequent evaluations

Bias was calculated in two ways. Firstly, absolute bias was 
calculated as the difference between mean True Breeding 
Value (TBV) and mean GEBV of all preselected animals and 
expressed in genetic standard deviation (SD) units. Absolute 
bias is a measure of whether estimated genetic gain is equal to 
true genetic gain. Therefore, if there is no absolute bias (i.e., 
when mean difference is 0), estimated genetic gain is equal 
to true genetic gain. A negative difference means that on av-
erage GEBV overestimate TBV, and therefore genetic gain 
is overestimated and vice versa. To have TBV on the same 
scale as GEBV, we subtracted mean TBV and mean GEBV 
of the animals in generations 11–14 from TBV and GEBV of 
each preselected animal, respectively. Secondly, dispersion 
bias was calculated as the regression coefficient of TBV on 
GEBV (bTBV,GEBV) of all preselected animals. Dispersion bias 
is a measure of how well differences in (G)EBV of animals 
represent the differences in their TBV. If bTBV,(G)EBV is 1, then 
there is no dispersion bias. A value of bTBV,(G)EBV <1 means 
that variance of (G)EBV of animals is inflated compared with 
variance of their TBV, and so differences in (G)EBV of the 
animals overestimate differences in their TBV, and vice versa. 
Accuracy was calculated as the Pearson's correlation coeffi-
cient between TBV and GEBV of all preselected animals.

3 |  RESULTS

Results of the subsequent evaluations conducted in this study 
are presented in Tables 1 and 2. Results in Table 1 are for 

the scenarios with varying amounts and sources of genomic 
information, and those in Table 2 are for the scenarios with 
varying amounts and sources of phenotypic information.

3.1 | Impact of genomic information from 
various groups of animals on bias and accuracy

With all available phenotypes included in the subsequent 
evaluation, negligible absolute and dispersion biases were 
observed when all available genotypes were included (sce-
nario 1) and even when genotypes of preculled animals 
were excluded (scenario 2). For these two scenarios, abso-
lute bias was only 0.03 genetic SDs and bTBV,GEBV was 1.01. 
The highest accuracy of GEBV of the preselected animals 
was achieved when all genotypes and phenotypes available 
after preselection were included (0.48, scenario 1), and when 
genotypes of the preculled animals were excluded (scenario 
2). This means that just like with bias, accuracy too was not 
affected moving from scenario 1–2.

When genotypes of the preselected animals, of the selection 
candidates’ parents, of the selection candidates’ parents’ culled 
sibs, or of the selection candidates’ grandparental generation 
were excluded from the subsequent evaluation, both absolute 
and dispersion biases and accuracy loss were observed (sce-
narios 3–9). In scenarios 1–9, both absolute and dispersion 
biases increased and accuracy decreased with decreasing num-
ber of animals with both genotypes and phenotypes. The only 
exception is scenario 3, because this was the only scenario 
where genotypes of the preselected animals were excluded 
from the subsequent evaluation (see Tables 1 and 2). We also 
observed that across all scenarios where preculled animals 
were included, their genotypes only helped in minimizing bias 
and accuracy loss when genotypes of the selection candidates’ 
parents were excluded. This can be seen by comparing sce-
nario 1 against 2, 4 against 5, and 6 against 7 on the one hand, 
and scenario 8 against 9 on the other hand, as described next.

In scenario 1, there was no bias, and the highest accuracy 
was achieved. Excluding genotypes of preculled animals, 
that is moving from scenario 1–2, did not cause any change. 
There was bias and accuracy loss in scenario 4, in which gen-
otypes of the selection candidates’ grandparental generation 
were excluded. Further exclusion of genotypes of the prec-
ulled animals, that is moving from scenario 4–5, again did 
not make any difference. The bias increased and accuracy 
dropped further, in scenario 6, as a result of exclusion of gen-
otypes of culled sibs of the selection candidates’ parents, in 
addition to excluding genotypes of the selection candidates’ 
grandparental generation. Here, further exclusion of geno-
types of the preculled animals, that is moving from scenario 
6–7, did not make any difference either, because genotypes 
of the preselected animals and of all the selection candidates’ 
parents were still in the model.
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In scenario 8, in which only genotypes of all selection 
candidates were included in the subsequent evaluation, ab-
solute bias was 0.32, bTBV,GEBV was 0.53 and accuracy was 
0.32. These values are similar to those observed in scenar-
ios 6 and 7, where the only genotypes included were those 
of the selection candidates and their parents. However, 
when the only genotypes included were those of the prese-
lected animals (scenario 9), absolute bias increased to 0.45, 
bTBV,GEBV decreased to 0.45 and accuracy decreased to 
0.28. In summary, with all available phenotypes included, 
including genotypes of the preselected animals and of the 
preselected animals’ parental and grandparental genera-
tions in the subsequent evaluation appeared to be sufficient 
to prevent preselection bias and minimize accuracy loss 
due to preselection.

3.2 | Impact of phenotypic information from 
various groups of animals on bias and accuracy

Because in the previous section we observed that genotypes 
of the preculled animals were not needed in our subsequent 
evaluation, we ignored them in this section. Compared to sce-
nario 2, which is the control scenario in Table 2, both abso-
lute and dispersion biases increased and accuracy decreased 
according to the number of animals with both genotypes 
and phenotypes. With genotypes of the preselected animals 
and of the preselected animals’ parental and grandparental 
generations included in the subsequent evaluation, exclud-
ing phenotypes of the preselected animals (moving from sce-
nario 2–10) resulted in some absolute bias (0.10 genetic SD) 
and some accuracy loss (from 0.48 to 0.41). A tendency to-
wards deflation was also observed in scenario 10 (bTBV,GEBV 
of 1.04). Both absolute and dispersion biases and accuracy 
loss were also observed when phenotypes of the selection 
candidates’ parental generation were excluded (scenario 11) 
and even more when additionally phenotypes of the selec-
tion candidates’ grandparental generation were excluded 
(scenario 12). Although phenotypes of animals three or four 
generations before the generation of the selection candidates 
(i.e., generations 11 and 12) were included in the evaluation 
at preselection stage, excluding these phenotypes from the 
subsequent evaluation (scenario 13) did not cause any bias or 
accuracy loss in GEBV of the preselected animals.

4 |  DISCUSSION

In this study, our objective was to investigate the roles of 
genotypes and phenotypes from various groups of animals 
in preventing bias due to preselection, when estimating 
GEBV of genomically preselected animals in subsequent ss-
GBLUP evaluation. To achieve this objective, we performed 

simulations involving several simplifying assumptions, as 
discussed hereafter, that helped to assess the impact of these 
different sources of information, which may not be possible 
in data resembling the full complexity of breeding programs 
in practice. One of the assumptions was to have discrete 
generations, to enable assessing the impact of using data 
of different groups of ancestors of the preselected animals. 
We also modelled only one step of (genomic) preselection, 
although in reality preselection usually takes place in more 
than one step. For example, it is common to genotype only 
members of families preselected based on parent average, 
and then genomic preselection takes place within these fami-
lies. Nevertheless, the impact of multiple steps of (different 
types of) low-intensity preselection is expected to be simi-
lar to that of one step of high-intensity preselection. In both 
cases for the subsequent ssGBLUP evaluation, phenotypes 
are only available for the animals that survived the last step 
of preselection. Although we simulated a trait whose phe-
notypes can be measured on both sexes, the results of our 
study are (in most instances) applicable to sex-limited traits 
as well. The main difference between the trait we simulated 
and sex-limited traits is availability of records on males. In 
practice, for sex-limited traits, progeny information serves 
as phenotype for males. So in our study, the fact that we 
performed the subsequent evaluation after preselected ani-
mals had their own records is comparable to the subsequent 
evaluation that takes place, in dairy cattle for example, when 
preselected young bulls have daughter information (though 
performance of many daughters is more valuable, at least for 
accuracy of breeding values, than a single own performance; 
e.g., Mrode, 2014). Overall, although the characteristics of 
the simulated trait more closely resemble some traits in pigs 
and poultry, where phenotyping is across both sexes, our re-
sults are (in most instances) applicable to pig, poultry and 
dairy cattle breeding schemes.

4.1 | Implementation of single-step GBLUP

The variance components used in ssGBLUP were estimated 
from our current data, rather than using the simulated values. 
We did this to reflect what happens in practice, where base gen-
eration variance components are not known, but estimated from 
current data. The trait studied in this study was simulated with 
heritability of 0.1 and phenotypic variance of 100. Therefore, 
at the base generation (generation 0) additive genetic variance 
was 10 and residual variance was 90. When we estimated the 
variance components as described in the methodology section, 
additive genetic and residual variances across the 10 replicates 
were on average 7.41 and 90.24, respectively. Note that infor-
mation from the selection candidates (generation 15 animals) 
was not used in estimating these variance components, so all 
the subsequent evaluation scenarios used the same values per 
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replicate. Using the same data as used in this study, we stud-
ied the impact of decreasing or increasing the base generation 
additive genetic variance by 25% while keeping the residual 
variance the same. We found that that does not have any sta-
tistically significant impact on accuracy and bias of ssGBLUP 
evaluations (results not shown).

Our scenarios 6 and 7 introduced the problem of selective 
genotyping, which has been reported to cause bias and reduce 
accuracy of ssGBLUP evaluations (e.g., Christensen,  2012; 
Hsu et al., 2017; Vitezica et al., 2011). The implementation of 
our ssGBLUP model by default takes care of this problem by 
making the average genomic inbreeding equal to the average 
pedigree inbreeding, as indicated in the Methodology section. 
To verify whether this correction worked, we repeated scenario 
6, this time without preselection (so with phenotypes of the 
preculled animals included). The results we found were statisti-
cally similar as the results obtained with all available informa-
tion included (i.e., pedigree of all animals in generations 0–15, 
genotypes of all animals in generations 13–15 and phenotypes 
of all animals in generations 11–15). This confirms that the bi-
ases and accuracy loss we observed in this study were the result 
of excluding, from the subsequent ssGBLUP evaluation, either 
some of the information used as preselection reference data 
(scenarios 4–9, 11 and 12) or information from preselected 
candidates themselves (scenarios 3 and 10).

4.2 | The minimum information required 
in subsequent ssGBLUP evaluation to prevent 
preselection bias

Although phenotypes of animals three or four generations 
before the generation of the selection candidates (i.e., gener-
ations 11 and 12) were included in the evaluation at preselec-
tion stage, excluding these phenotypes from the subsequent 
evaluation did not cause any bias or accuracy loss in estimat-
ing GEBV of the preselected animals. The facts that these 
animals (the (great) great grandparents) were far from the 
preselected animals, and that the selection candidates’ pa-
rental and grandparental generations had both genotypes and 
phenotypes may explain this. Lourenco et al.  (2014) found 
that truncating phenotypic information to only two to three 
ancestral generations does not affect accuracy of predicting 
(G)EBV of young animals in dairy cattle and pig breeding 
programs. The findings of Lourenco et al. (2014) also mean 
that in our study, phenotypes of the selection candidates’ 
(great) great grandparental generations did not contribute 
much in estimating GEBV of the selection candidates dur-
ing the evaluation at preselection stage. Therefore, including 
genotypes and phenotypes of the selection candidates’ paren-
tal and grandparental generations in our subsequent evalua-
tion implies that the most relevant ancestral information used 
in our evaluation at preselection stage was considered.

Similarly, excluding genotypes of the preculled animals 
from the subsequent evaluation of their preselected sibs did 
not cause bias or accuracy loss in GEBV of the preselected 
animals. Because genotypes and phenotypes of the selection 
candidates’ parents were already included in the subsequent 
evaluation, including genotypes and phenotypes of the pre-
selected animals alone (without necessarily including geno-
types of their preculled sibs) provided the ssGBLUP model in 
the subsequent evaluation with the remaining data it needed to 
estimate the positive average Mendelian sampling term of the 
preselected animals. In preventing bias and accuracy loss in 
subsequent ssGBLUP evaluation of the preselected animals, 
genotypes of preselected animals appear to be more import-
ant than phenotypes of the preselected animals. This can be 
seen by comparing scenarios 3 and 10. Although scenarios 3 
and 10 have the same number of animals with both genotypes 
and phenotypes, results of scenario 3 (in which genotypes 
of preselected animals were excluded from the subsequent 
evaluation) were worse than those of scenario 10 (in which 
phenotypes of the preselected animals were excluded from 
the subsequent evaluation). The fact that genotypes of the 
preselected animals were included in the evaluation at prese-
lection stage (and phenotypes of the preselected animals were 
not) may explain this. For preselected dairy sires, however, 
which usually have performance of many daughters instead 
of a single own performance, the relative importance of own 
genomic and phenotypic information in preventing bias and 
accuracy loss due to preselection may be different from what 
we saw in this study. This is because performance of many 
daughters is more valuable, at least for accuracy of breeding 
values, than own performance (e.g., Mrode, 2014). In sum-
mary, to prevent preselection bias in subsequent ssGBLUP 
evaluation of genomically preselected animals, it is sufficient 
to supply the model with (a) information representative of 
the reference data used in the evaluation at preselection stage 
and (b) genotypes and phenotypes of the preselected ani-
mals, which are the main source of information that informs 
ssGBLUP that the preselected animals are a better-than-aver-
age subset of offspring of their parents.

4.3 | Comparison to observations in 
dairy cattle

In scenario 10, GEBV of the preselected animals are ef-
fectively the same as their GEBV at preselection stage, and 
the measures of bias and accuracy in these two evaluations 
were statistically similar (results not shown for the evalu-
ation at preselection stage). In dairy cattle breeding pro-
grams, it is nowadays common to select all young sires in 
one stage as soon as they are genotyped (e.g., Mäntysaari 
et  al.,  2020), though some form of preselection based on 
parent average is often applied. If such GEBV are later 
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compared with deregressed proofs or daughter yield devia-
tions of such sires, we expect that some positive absolute 
bias, some accuracy loss, and a tendency towards deflation 
would be observed just as in our scenario 10. However, 
in practice, dairy cattle breeding companies observe nega-
tive absolute bias (overestimated genetic trend) and infla-
tion when they make such comparisons (e.g., Mäntysaari 
et al., 2020). The reason for this is unclear and should be 
investigated in future studies.

4.4 | Role of genotypes of preculled animals 
in subsequent ssGBLUP evaluations

In ssGBLUP evaluations, pedigree relationships among gen-
otyped and non-genotyped animals guide the implicit impu-
tation of genotypes of non-genotyped animals (Christensen 
& Lund,  2010; Legarra et  al.,  2009; Misztal et  al.,  2009). 
Similarly, in subsequent ssGBLUP evaluations, when some 
or all parents of selection candidates are not genotyped, more 
accurate imputation of genotypes of the non-genotyped par-
ents and other non-genotyped animals in the pedigree is 
achieved by including genotypes of all (both preselected 
and preculled) offspring of the non-genotyped parents than 
by including genotypes of their preselected offspring alone 
(Shabalina et al., 2017). Because in our study all parents of 
the selection candidates had genotypes and these genotypes 
were included in the subsequent evaluation, genotypes of the 
preculled animals were no longer needed in the subsequent 
evaluation. However, just like the findings of Shabalina 
et  al.  (2017), our scenarios 8 and 9 show that including 
genotypes of preculled animals in subsequent ssGBLUP 
evaluations reduces bias and increases accuracy in estimat-
ing GEBV of their preselected sibs when their parents are 
not genotyped. In another ssGBLUP evaluation, Koivula 
et al. (2018) observed unexpected tendencies towards more 
dispersion bias and less accuracy in the GEBV of young se-
lected bulls when genotypes of culled bulls were included 
compared to when they were excluded. Their results, how-
ever, were not statistically significant, and thus inconclusive. 
Our results show that when parents of selection candidates 
are genotyped, including genotypes of their preculled off-
spring in subsequent ssGBLUP evaluations neither improves 
nor deteriorates the quality of the evaluations. In current 
breeding programs for all livestock species, often not all 
dams are genotyped. If evaluations at preselection stage are 
done with ssGBLUP, dams that are not genotyped benefit 
from genotypes of all their offspring. Including genotypes 
of their preculled offspring in subsequent ssGBLUP evalu-
ations ensures that the same levels of accuracy of imputing 
genotypes of such dams are achieved as in the evaluations 
at preselection stage. Therefore, in such situations, geno-
types of preculled animals would be needed in subsequent 

ssGBLUP evaluations to estimate GEBV of preselected ani-
mals without preselection bias and accuracy loss.

5 |  CONCLUSION

To prevent preselection bias in subsequent ssGBLUP evalu-
ation of genomically preselected animals, it is sufficient to 
supply the model with (a) information representative of the 
reference data used in the evaluation at preselection stage 
and (b) genotypes and phenotypes of the preselected ani-
mals, which are the main source of information that informs 
ssGBLUP that the preselected animals are a better-than-
average subset of offspring of their parents. When (some) 
parents of selection candidates are not genotyped, genotypes 
of preculled animals, together with genotypes of preselected 
animals, help in more accurately imputing genotypes of their 
ungenotyped parents in ssGBLUP evaluations at both prese-
lection and subsequent evaluation stages. In such situations, 
genotypes of preculled animals are needed in subsequent ss-
GBLUP evaluations to estimate GEBV of their preselected 
sibs without preselection bias.
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