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ScienceDirect
Integrated Pest Management (IPM) is endorsed as the future

standard for crop protection worldwide. This holistic concept

integrates preventative and curative measures amongst which

host plant resistance (HPR) plays an essential role. Up to now

HPR has been a somewhat under-utilized tool in pest

management due to widespread use of pesticides and

technological hindrance. Thrips are key pests in agriculture and

horticulture worldwide. Here we provide an overview on the

current status of research on constitutive and induced HPR

including thrips–host relationships and thrips as virus vectors.

We stress modulation of plant defense responses by abiotic

and biotic elicitors to increase HPR and provide an outlook on

the increasing potential of HPR inspired by the fast

advancement of –omics techniques.
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Introduction
Global agriculture is at an important juncture and in a

period of great change, whereby Integrated Pest Man-

agement (IPM) is endorsed as the future paradigm for

crop protection [1]. The holistic concept of IPM empha-

sizes a systems approach integrating preventative and

curative intervention measures amongst which host plant

resistance (HPR) plays an essential role. Up to now HPR

has been a somewhat under-utilized tool in pest manage-

ment. Selection for yield, taste or appearance has greatly

reduced phenotypic and genetic diversity of cultivated

plants often accompanied by a loss of HPR [2]. This was

reasonable using pesticides on a large scale. Widely

spreading pesticide resistance and, especially for the

EU, more stringent pesticide regulations related to appar-

ent risks for human health, beneficial organisms and the

environment, reduce pesticide availability which makes
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established cropping systems highly vulnerable. HPR

incorporates varieties which hamper preference, repro-

duction, feeding and/or transmission of insect-borne

pathogens. Thrips species of the family Thripidae are

particularly polyphagous and contain key pests of a large

variety of ornamentals and vegetables worldwide [3],

including western flower thrips (WFT: Frankliniella occi-
dentalis), onion thrips (Thrips tabaci) and melon thrips

(Thrips palmi). In addition to direct feeding damage these

species are virus vectors of which tomato spotted wilt

virus (TSWV) is the economically most important [4��].
The present review provides an interdisciplinary over-

view of the current body of knowledge on constitutive

and inducible components of HPR to thrips, and dis-

cusses the potential of elicitors to modulate plant

defenses. Finally, we provide an outlook on the future

exploitation of HPR inspired by the fast advancement of

-omics techniques.

Host plant resistance to thrips
Over the past decades, great effort has been devoted

developing plant varieties with resistance to viruses

although, resistance to thrips feeding is recently gaining

attention [4��,5]. Empirical approaches to HPR often

involves phenotypic screening, that is, evaluation of

germplasm for resistant genotypes [6–14]. Advances in

phenotyping technologies support high-throughput char-

acterization of crop resistance to thrips [8,15]. Moreover,

the affordability of current omics technologies fosters a

major advancement in connecting genotype-phenotype

relationships to enhance our understanding of plant–

thrips defense mechanisms [16–21].

HPR results from a complex set of interdependent mech-

anisms (Figure 1) ranging from morphological barriers to

the complex array of signaling molecules of the plant’s

immune system. These plant-defensive responses are

associated with constitutive, thus always present traits,

or induced plant traits shaped upon attack or elicitation in

the plant’s morphology, physiology and/or chemistry pro-

ducing plant secondary metabolites [13,22]. Both ways are

not mutually exclusive and lead to direct or indirect

effects through attraction of natural enemies.

Constitutive defense
Constitutive barriers, including morphological leaf traits,

form a first line of defense against thrips [7,11,14,23,24].

Many studies are correlative with little consensus concern-

ing the role of leaf traits. For instance, feeding damage by

the viruliferous soybean thrips (Neohydatothrips variabilis)
www.sciencedirect.com
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Figure 1
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A schematic model for host plant resistance (HPR) to thrips. Thrips face direct constitutive plant defenses such as physical barriers (i.e. leaf

pubescence or trichomes), secondary defensive plant metabolites or indirect defenses such as the emission of volatile organic compounds. Upon

thrips feeding, damage typically appears as silver scars whereas tospoviruses (depicted by red virus particles), vectored by thrips, lead to

chlorotic ringspots (upper left part). Trips attack activates local plant immune responses by jasmonic acid (JA) production which is systemically

transported to undamaged plant tissues (red arrow). Tospoviruses induce the salicylic acid (SA) pathway and are capable of manipulating host

defenses through SA-JA antagonism to benefit their vector.
was reduced in genotypes with low pubescence [14]

whereas, inanotherstudyAbdelmaksoud etal. [24] reported
lower WFT infestations in strawberry cultivars with high

densities of non-glandular trichomes. However, in both

studies only a small number of genotypes was analyzed,

therefore, probably additional not measured traits were

interfering. In search for markers associated with thrips

resistance, Bac-Molenaar et al. [25��] reported that foliar

resistance to WFT was independent from glandular
www.sciencedirect.com 
trichome density and derived volatile compounds in a

mapping population derived from a resistant and non-

resistant tomato line. Metabolomic analysis identified leaf

a-tomatine and a non-elucidated phenolic compound as

putative defense metabolites related to WFT resistance. In

addition, glandular trichomes are known for their produc-

tion of sticky resinous substances, such as acylsugars. Their

importance to WFT resistance has been shown by Vosman

et al. [26]. Ben-Mahmoud et al. [27] demonstrated that
Current Opinion in Insect Science 2021, 45:28–34
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particularcombinationsofacylsugarswithspecificfattyacid

profiles,notonlyreducedWFTovipositionbutalsolowered

incidence of TSVW. Regarding defense compounds

Maharija et al. [17] reported two capsianosides and a flavo-

noid to correlate with WFT resistance using metabolite

quantitative trait loci (QTL) mapping. Concurrently, cap-

sianosides were negatively correlated with WFT prefer-

ence and damage in an untargeted metabolomic profiling

approach in Capsicum whereas, sucrose and malonylated

flavone glycosides were related to susceptibility [18]. In

addition,plantolfactorycuesplayarole indirectdefensesas

compositionandmagnitudeofvolatileemissionshapeshost

localization or preferences [28–32]. Moreover, thrips her-

bivory may also affect plant biochemistry through changes

in nutritional host quality [33,34] or by inducing defenses.

Inducible defense – signaling and
manipulation
While constitutive defenses have gathered substantial

attention in the majority of screening studies, induced

resistance is rapidly gaining interest [35]. In contrast to

constitutive defenses induced defenses are associated

with lower metabolic costs. All plants, whether resistant

or susceptible, respond to insect attack by induction of a

coordinated defense strategy primarily mediated by

endogenous phytohormonal signaling, followed by bio-

chemical cascades activating local and/or systemic

defense mechanisms (Figure 1). Among the early plant

responses, jasmonic acid (JA) acts as a main regulator of

induced thrips defenses [22,36,37]. Pepper plants colo-

nized by WFT enhanced the expression of the JA-related

marker genes CaLOX2 and CAPIN II [37]. Moreover,

WFT are susceptible to externally induced JA-mediated

defenses. Foliar JA application impaired feeding of WFT

[38,39] and increased duration of developmental stages

[40]. Unlike adults, feeding activities of WFT larvae were

observed to tolerate naturally induced levels of JA-

defenses suggesting that artificial induction of JA-regu-

lated defenses overamplifies rather than mimics natural

response [41]. Late plant responses include the produc-

tion of plant secondary metabolites [38,39].

In contrast, thrips-vectored viruses such as TSWV induce

the salicylic acid (SA) pathway which indirectly enhances

fitness and performance of the vector by exploiting SA-JA

antagonism [21]. In addition to immunological plant

modulation, viruses modify vector behavioral responses

to facilitate virus transmission [42,43]. Such behavioral

responses can be mediated by plant-derived cues such as

volatile alterations aimed at attracting [44] or repelling

vectors [45].

Whether defenses actually enhance plant resistance

depends on whether thrips have evolved counter adapta-

tions such as the ability to detoxify and degrade plant

toxins [34,46,47]. The underlying molecular components

of how thrips feeding modulates induced responses still
Current Opinion in Insect Science 2021, 45:28–34 
remains unclear [35]. There are indications that plant

responses to thrips are influenced by potential elicitors

such as saliva components [48�] and endosymbiotic-borne

cues [49].The latter points at the potential of different

bacterial groups in manipulating plant defense responses

to thrips, highlighting the importance of a multitrophic

context when considering thrips–plant interactions.

In complex food webs omnivorous thrips can affect plant-

mediated interactions of co-existing herbivorous arthro-

pods such as whiteflies [50] or aphids [51�]. Such dual

interactions may even cascade up to the third trophic

level by influencing preference and performance of nat-

ural enemies [51�]. A study by Ataide et al. [41], aimed to

disentangle direct and indirect effects of plant defenses,

demonstrated that feeding by predatory omnivorous

WFT larvae was independent from JA-mediated indirect

defense effects on spider mite prey quality.

Modulating defenses by plant resistance
inducers
Plant signals inducing resistance are highly conserved

among plant species. Accordingly, modulation of plant

defenses to increase HPR, through biotic and abiotic

elicitors (Figure 2), has a great potential [35].

Abiotic elicitors

Environmental factors such as photosynthetically active

radiation [52] and ultraviolet light [22,36,53] can mediate

HPR to thrips. Exogenously applied calcium chloride

improved resistance of kidney bean plants to WFT by

extending the larval developmental time [54]. Calcium

application only slightly induced the activities of defense-

related enzymes whereas more potent defense responses

were induced upon subsequent attack, a phenomenon

generally referred to as priming. Priming has also been

observed in UV-treated chrysanthemum, which experi-

enced a stronger induction of JA signaling after thrips

infestation [22]. While JA or its volatile derivative methyl

jasmonate are commonly tested synthetic elicitors to

mimic thrips induced plant responses [39], not much

progress has been made in the development of products

based on this mechanism.

Biotic elicitors

Regarding biotic elicitors, a growing body of research is

demonstrating how microbial communities mediate plant

defense through direct and indirect changes to plant immu-

nity and/or nutrition. Infiltration of tomato leaves with Pseu-
domonas syringae (Pst), producing the JA analogue coronatine,

reduced WFT feeding damage by reinforcing plant defense

metabolites, such as phenols [55]. Pst-derived and filtered

culture medium, as well as a coronatine defective Pst mutant

increased tomato resistance to thrips suggesting that induc-

tion of resistance did not require a living Pst population but

likely depends on other additional defense elicitors. Earth-

worm-driven modifications of soil properties, particularly
www.sciencedirect.com
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Figure 2
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Modulation of plant inducible defenses. Biotic elicitors (soil microbes, plant microbes and endophytes) as well as abiotic elicitors such as

ultraviolet light (UV), photosynthetically active radiation (PAR) and CO2 can be exploited as strategies to induce resistance to thrips.
through increased nitrogen availability and microbial activity,

decreased thrips abundance by inducing phenols as defense

compounds [56]. Muvea et al. [57] reported that colonization

of onions by the fungal endophyte Hypocrea lixii not only

enhanced resistance against T. tabaci but also reduced inci-

dence of thrips-transmitted iris yellowspot virus (IYSV). There

is a growing interest in manipulating soil microbiomes to

improve above-ground pest management.  Soil microbiomes,

conditioned by non-crop plants, induced aboveground resis-

tance inchrysanthemumstoWFT[58�],whichwaspositively
correlated with the amount of leaf chlorogenic acid as a

secondary defense compound.

Host plant resistance – quo vadis?
Development of HPR has been hampered for technolog-

ical reasons. A-priori knowledge on plant metabolites of
www.sciencedirect.com 
the crop in question was required for adequate chemical

analysis. Concurrently, large-scale screening of thrips

HPR on breeding populations was almost impossible

since only in-vivo bioassays could be performed. The

fast advancement of omics-techniques, however, enables

a much quicker and comprehensive understanding of

HPR to thrips. Genetic engineering has resulted in the

first-ever transgenic plant trait targeting thrips [59].

Transgenic cotton expressing a Bacillus thuringiensis pro-

tein showed substantially less damage to WFT and

tobacco thrips (Frankliniella fusca) [60�,61]. Gene-editing

tools such as CRISPR can further accelerate the intro-

duction of thrips HPR into crops. However, in Europe,

varieties based on this technology are subject to the same

stringent regulations as conventional genetically modified

organisms. Therefore, the combination of metabolomics
Current Opinion in Insect Science 2021, 45:28–34
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and QTL mapping identifying markers as selection tools

for thrips HPR in conventional breeding programs is a

very promising way forward. Especially since quantitative

traits depend on the cumulative action of several different

genes making it more difficult for thrips to break through

this defense. Because of the rapid progress in next gen-

eration sequencing more genomic crop sequences are

becoming available. However, ornamentals are often

polyploid and, although current techniques are fast, data

analysis and interpretation are still challenging. The use

of metabolomic markers shows potential for thrips HPR

screening in these commodities. Next to breeding for

conventional HPR, breeding for induced HPR offers a

completely new avenue, which needs to be explored.

Besides breeding, crop management techniques inducing

HPR look promising. The transition to more efficient but

energy saving LED light in greenhouses enables the use

of ultraviolet light as an abiotic elicitor. Also beneficial

microbes, used as biotic elicitors, registered as plant

protection products or biostimulants, offer great potential.

However, there is still relatively little known about their

molecular mode of action and interplay with the plant.

While HPR becomes increasingly important in thrips

management we should not look at this one-sided.

Viruses, vectored by thrips, can impact plant–thrips inter-

actions. Also, HPR may impact biological control organ-

isms. We advocate that HPR to thrips needs to be placed

into an IPM context. To fully exploit the potential of

HPR, also horizontal integration, thus concurrent protec-

tion to a broader spectrum of pests should be taken into

consideration.
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