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A B S T R A C T   

The growth and yield of crops within a farm largely vary among fields. Farms are increasing in size by acquiring 
smaller land parcels from different farmers who have different management strategies. As a result, between-field 
variability increases and understanding such variability is a necessity for precision farming. New data analysis 
techniques are needed in this context, especially given the trend that more farms are collecting more data. 
Therefore, this study has the objective to provide a data analysis methodology to analyze within-year variability 
and identify year-independent factors that influence growth. As a second objective, we applied this novel 
methodology to a case study, where we analyzed potato growth data of four successive years of a farm in the 
south of the Netherlands. 

The methodology consists of three main steps: (1) describing growth using mixed models, (2) clustering and 
explaining growth by correlating the clusters to (a) yield, (b) other plant characteristics and (c) to defining, 
limiting and reducing variables, and (3) predicting growth by automatically selecting a regression model. 

By applying our method on the potato growth data, we obtained the following results. The main results of the 
work are: (1) the estimated growth curves of the stems, haulm and tubers explain the between-field variability in 
growth well very well (R2 of 0.85, 0.74 and 0.89, respectively), (2) clusters with a stem length between 110 and 
130 cm have the highest average yield, (3) deeper groundwater level and sugar beet or grass as previously 
cultivated crop positively influence growth, and (4) N and K fertilization must be adjusted for optimal growth. 

Concluding, this study responds to the quest for new data-based methods for sustainable intensification, and is 
the first to explicitly analyze and explain differences in crop growth between fields in practice. In addition, clear 
management advice could be provided, showing the scientific and practical potential of our methodology.   

1. Introduction 

The growth and yield of crops within a farm largely vary among 
fields. Understanding and predicting such differences are crucial for 
farm management. This becomes even more important with the 
observed increase in farm sizes (Mandryk et al., 2012), in which the 
number of fields increases by acquiring small land parcels that were 
managed by different farmers and thus have a heterogeneous past. Farm 
management is complicated by climate change causing extreme weather 
circumstances to occur more regularly (Schaap et al., 2013; Diogo et al., 

2017). Given the fact that climatic circumstances have a strong influence 
on the potential yield (Van Ittersum et al., 2013) and that weather cir-
cumstances at the beginning and during the season are unpredictable, it 
is clear that farm management is a challenging task. 

To manage all fields well and enable precision farming, it is instru-
mental to obtain understanding of within-farm variability and the main 
factors that cause this. Even though weather circumstances are different 
between years, some soil and management variables might be preferable 
in all circumstances. Identifying these variables that influence within- 
year variability independent of specific weather circumstances allows 
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for a more robust management strategy at the farm to reduce within- 
farm variability and increase the overall yield. 

Understanding growth and variability over fields is as old as arable 
farming itself and over the time the methods have become more 
advanced. Since the 1960s, more systematic studies are conducted that 
aim for quantitative understanding of variability in yield (De Wit, 1959; 
Alberda, 1962). Many of these methods are based on experiments 
and/or crop growth simulation models (Affholder et al., 2013; Subedi 
and Ma, 2009). These studies have provided valuable insights in the role 
of specific factors. Although these studies are important, they often focus 
on specific management, climatic and environmental factors, but do not 
lead to a complete insight and overview in how these factors all together 
influence yield variability. Therefore, they can only provide partial in-
sights and partial guidance for the farmer to adjust his or her manage-
ment. New agronomic research methods are necessary to accelerate 
innovation in identification of best management practices for a given 
crop, soil and climate combination, as also advocated by Cassman and 
Grassini (2020). 

To contribute to this call, alternative methodologies can be imagined 
that are more empirical in nature. Such data-based methodologies are 
enabled by the current trend that a growing number of farms collects an 
increasing amount of data, which, in turn, is made possible by the 
availability of new data collection methods (see, e.g., the recent review 
(Beza et al., 2017)). Farm-collected data bring new opportunities, 
because they allow to investigate crop performance under farmer’s 

conditions. This is important, because farmers’ conditions differ from 
experimental conditions; they vary between farmers and over time. 
On-farm collected data can be considered equivalent to running hun-
dreds of field experiments that capture management and interactions 
between management and environmental factors (Edreira-Rattalino 
et al., 2017). The availability of these data calls for new data analysis 
techniques that can explain yield variability at farm level (Cassman and 
Grassini, 2020; Silva et al., 2017; Delmotte et al., 2011). Such (quanti-
tative) explanations can lead to strong advice to farmers on how, where 
and when to take appropriate management actions. 

In practice, many potato (Solanum tuberosum L.) farms experience 
differences in yield (Redulla et al., 2002). One of these farms is a potato 
farm in the south of the Netherlands (Reidsma et al., 2015). In partic-
ular, while some fields led to more than 80 ton ha− 1 yield, other fields 
did not obtain more than 50 ton ha− 1. In addition, the farmer has 
intensively collected data between 2013 and 2016. Such data consist of 
data of the plant growth. Next to the plant growth data, the farmer 
collected data of the soil conditions, weather circumstances and the 
farm’s management. This resulted in a very detailed dataset of all kinds 
of factors that could possibly influence variability in growth and yield. 

Motivated by the above observations, the first objective of this paper 
is to provide a data-based methodology to model and predict within- 
farm variability and identify year-independent factors influencing 
growth and yield. To demonstrate the validity of this novel approach, 
forming the second objective of this paper, we applied the new 

Fig. 1. Schematic representation of the proposed methodology.  

P.J.A.M. Mulders et al.                                                                                                                                                                                                                        



European Journal of Agronomy 123 (2021) 126220

3

methodology on a case study of the above-mentioned potato farm in the 
south of the Netherlands, where we showed how the results of the 
methodology can result in new insights for the farmer to improve farm 
management. 

2. Material and methods 

2.1. Overview of the methodology 

In the upcoming sections, we introduced our methodology to analyze 
between-field variability. This methodology consisted of a set of statis-
tical methods which can be used to determine important factors that 
influence differences in growth. In cases where longitudinal growth data 
have been collected, our proposed methodology can be applied. The first 
step of the methodology is to describe the between-field variability using 
mixed models. In this step, a field-specific curve is estimated to describe 
the growth throughout the season. The second step is to cluster these 
curves by applying k-means to obtain homogeneous growth curves. 
Based on these clusters, three different relationships with growth are 
explained: (a) the relationship to yield, (b) to other plant characteristics, 
and (c) to defining, limiting and reducing variables, using techniques 
such as ANOVA. In the third step, covariates are automatically selected 
using stepwise regression for a predictive model of plant growth. By 
excluding year-specific effects of the mixed model, the selected cova-
riates influence within-year variability in growth. An overview of these 
steps can be found in Fig. 1. In the following Sections, we start by 
introducing the dataset of the case study. Then, we explain each of the 
steps in more detail and show how to apply these steps on the data of our 
case study. 

2.2. Data 

The data were collected by potato farm Van den Borne Aardappelen 
in the Netherlands. The data from 2013 until 2016 were used. The data 
consisted of measurements of potato plant characteristics from around 
100 fields each year (Table A.1). These fields varied from year-to-year 
and were located in both Belgium and the Netherlands. The farmer 
started collecting data with the main purpose of monitoring the potato 
growth on the farm’s fields, so he could adjust management based on the 
measurements of the field. One sampling round consisted of sampling on 
all fields, and on each field three plants were measured. A sampling 
moment consisted of measuring plant characteristics, such as the stem 
length, haulm weight and tuber weight. All measurements have taken 
place at the median of the electrical conductivity of the field, as the 
farmer assumed that this spot represented the entire field best. Because 
only three plants per sampling moment were taken, it was important to 
verify to what extent these plants are representative for the final yield at 
the field (see Section 2.3.2). The samples were taken between two and 
seven times throughout the growing season, while 2015 and 2016 were 
sampled more intensively. Only fields with at least two measurements 
were used in this analysis. 

Besides plant measurements, the data contained variables that could 
influence growth. These variables were divided into defining (D), 
limiting (L) and reducing (R) variables (Van Ittersum et al., 2003). The 
variables were further sub-categorized into soil (s), management (m) 
and weather (w) variables. A detailed description of all variables can be 
found in Appendix A. 

The farmer cultivates mainly Fontane potatoes for the French fries 
industry. These potatoes are grown on sandy soils. Only 22 km away 
from the farm, a meteorological station captured the temperature, 

radiation and rainfall. In winter (December, January and February), the 
measured temperature is on average 6.3 ◦C, while in summer (June, July 
and August) the mean temperature is 22.9 ◦C (1972–2012). On a yearly 
basis, 807.1 mm yr− 1 precipitation falls on average. Solar radiation 
fluctuates between winter and summer, where it reaches its maximum of 
about 17.2 MJ m− 2. The dataset was extended with field-specific sums of 
total amount and duration of precipitation and the temperature sum 
(Tsum) since planting until haulm killing. The method used to calculate 
the Tsum can be found in Eq. (B.1) in Appendix B. A sum of the amount 
and duration of solar radiation was calculated from the estimated day of 
emergence (30 days after planting) until haulm killing. The average 
relative humidity (RH) from the day of planting until haulm killing was 
added to the dataset as well. 

For each field, the groundwater level during summer (GLS) and 
winter (GLW) were added. Additionally, data about the soil type were 
included. The soil data from Belgium and the Netherlands were collected 
from soil maps (Lambert, 1990; Steur et al., 1985). 

2.3. Describing, explaining and predicting growth 

2.3.1. Describing growth 
The first step of the methodology was to model between-field vari-

ability. We modeled variability between fields by describing the growth 
of the plant (characteristics) as field-specific curves. The growth was 
described using mixed models (Verbeke and Molenberghs, 2009). Mixed 
models have mixed effects. These consist of fixed effects that describe 
the yearly average growth, and random effects that describe the 
field-specific shift from this average based on the variance-covariance 
structure of the repeated data. Characteristics of mixed models are 
that they can handle missing data well and are able to model 
non-equidistant time intervals between measurements, allowing to 
model growth curves of fields with only a few observations by 
employing the variance-covariance structure of the entire dataset. 
Depending on the shape of the growth curve and the underlying distri-
bution of the data, an appropriate mixed model was chosen (e.g., a 
linear, generalized linear or non-linear mixed model) (Kachman, 2000; 
Lindstrom and Bates, 1990). The curve of a plant characteristic was 
modeled according to its biological growth over time, starting at the day 
of planting. The quality of the fitted model was evaluated with R2 (linear 
regression on observed and mixed model predicted observations). 
Because any inferences on the variables that cause variation between 
fields were based on these models, it was important that the fit of the 
curve was high. 

For the case study of the potato farm, we estimated field-specific 
curves for the haulm weight, stem length and tuber weight as a func-
tion of days after planting. Each of the plant characteristics was esti-
mated separately. The number of days after planting on which samples 
were taken were standardized by dividing by its standard deviation for 
numerical purposes only. Time was reset to zero for each year. 

Haulm weight. Haulm weight has a steep increase in the beginning of 
the season and decreases at the end of the season due to leaf senescence 
(Kolbe and Stephan-Beckmann, 1997). This pattern was described with a 
quadratic function without intercept, i.e., the haulm weight was fit to 
the following linear mixed model (Eq. (1)): 

yijk = (βk + Si)tijk + (γk + Ui)t2
ijk + ϵijk (1)  

Here, yijk was the haulm weight in ton ha− 1 on the corresponding stan-
dardized growth day tijk at field i ∈ I = {1,…,N} on day after planting j 
at year k ∈ K = {2013,2014,2015,2016} with ti1k = 0, ∀i ∈ I, ∀k ∈ K, 
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βk and γk were year-specific fixed effects and Si and Ui were random 
effects. The random effects were multivariate normally distributed ac-
cording to 
(

Si
Ui

)

∼ 𝒩

((
0
0

)

,

(
σ2

1 σ12

σ12 σ2
2

))

(2)  

Finally, ϵijk was the error term, which was assumed to be normally 
distributed 𝒩(0, τ2) representing variability around the growth curves. 
The restricted maximum likelihood was used to estimate the parameters 
using PROC MIXED of SAS (Singer, 1998). 

Stem length. Stem length slowly increases in the beginning of the 
season, followed by a linear increase until the plant stops growing 
(Farran and Mingo-Castel, 2006; Bodlaender, 1960). This behavior was 
described with an S-curve. The responses of the stem length followed a 
normal distribution. A non-linear mixed model as in Eq. (3) was used to 
fit the data: 

yijk =
αk + Ui

1 + exp(− c(tijk − (βk + Si)))
+ ϵijk (3)  

Here, yijk was the stem length in cm on standardized day tijk, where j was 
the day after planting at field i in year k. αk and βk were fixed effect 
parameters for year k ∈ K and c was an overall fixed effect. Ui and Si 
were random effects for field i. The random effects were assumed to 
follow a multivariate normal distribution, equivalent to the random 
effects of the linear mixed model in Eq. (2). 

The error term ϵijk was assumed to be normally distributed, just as the 
error term of the haulm weight. Due to the non-linearity of the function, 
the marginal log likelihood was approximated with an adaptive 
Gauss–Hermite quadrature rule. The parameters were estimated with 
PROC NLMIXED with SAS (Wolfinger, 1999). 

Tuber weight. The growth curve of tuber weight was S-shaped (Dyson 
and Watson, 1971). The same curve was used as for the stem length (Eq. 
(3)), where yijk was the tuber weight in ton ha− 1 on field i at day after 
planting j in year k. 

2.3.2. Clustering and explaining growth 
The second step consisted of clustering field-specific growth curves 

to obtain homogeneous groups of fields in terms of growth. These 

clusters had three different purposes: (a) relate plant growth to yield, (b) 
relate the growth of the plant characteristics to each other, and (c) relate 
growth to defining, limiting and reducing variables. 

The estimated Ui and Si of the stem length, tuber weight and haulm 
weight (Eqs. (1) and (3)) were clustered separately with k-means (Jain, 
2010), resulting in different clusters for each of the plant characteristics. 
k-means requires a pre-determined number for k. For 1 ≤ k ≤ 25, the 
optimal value of k was determined by calculating the BIC (Schwarz et al., 
1978). We selected the number of clusters k, i.e., the BIC is slowing down 
in its improvement: the so-called elbow turning point. The elbow is often 
determined visually, but it is not always clear what the exact turning 
point is. Therefore, the BIC was determined automatically by fitting a 
piecewise linear change point model to the BIC points over the different 
number of clusters. The change point on k that minimized the mean 
squared error was chosen as the optimal number of clusters. 

Because k-means was applied on Ui and Si, the yearly-average was 
excluded from the clusters (which was captured in αk, βk and γk of Eqs. 
(1) and (3)). In practice, this meant that clusters were made based on the 
relative shift away from the average growth, and not on the total amount 
of growth that a specific field experienced. This resulted in clusters 
consisting of fields from all years. Nominal logistic regression was used 
to verify if clusters contained relatively many fields from a specific year 
(significant if p < 0.05). 

For the first objective of the cluster analysis, ANOVA was applied in 
order to understand the influence of the growth clusters on yield. Each 
plant characteristic was evaluated separately, and differences between 
plant characteristic clusters were significant if p < 0.05. 

For the second purpose, the clusters were ranked based on the 
average maximum value in growth within the season, in which the 
clusters with rank 1 had the highest growth. As a result, each field was 
associated with three differently ranked clusters, corresponding to the 
tuber weight, stem length and haulm weight clusters. Pearson correla-
tion was applied on these rankings of all individual fields to investigate 
the correlation between the different plant characteristics. 

For the final purpose, one-way ANOVA for continuous variables, a 
Chi-square approach for binary covariates or nominal logistic regression 
for categorical variables were used per plant characteristic to evaluate 
which defining, limiting and reducing variables were significantly 
different among clusters, where the cluster was used as the independent 
variable. Each variable’s relation to the plant growth cluster was eval-
uated separately. Differences were significant when p < 0.05. 

2.3.3. Predicting growth 
In the third step, we automatically selected a model to predict 

between-field variability in growth. Here, we chose the plant charac-
teristic that was highly correlated with yield and of which the fit of the 
estimated growth curves was high. In our case study, this held for the 
stem length (Tables 1 and 2 ). Because we were interested in the within- 
year variability, our goal was to find a model that solely predicted the 

Table 2 
Mean yield (ton ha− 1), standard deviation (SD) and number of fields per cluster.  

Cluster Haulm weight Stem length Tuber weight  

Mean (ton ha− 1)  SD # fields  Mean SD # fields  Mean SD # fields  

1 68.3 16.1 15 66.7 10.9 20 62.4 15.2 24 
2 62.5 15.8 50 66.6 15.5 51 62.6 14.8 80 
3 63.5 14.7 77 62.5 14.3 89 63.4 15.4 141 
4 60.8 13.8 108 60.6 15.0 88 54.3 13.9 81 
5 56.0 14.5 72 56.5 13.6 79 49.8 14.8 36 
6 45.6 16.8 31 41.1 13.7 31 - -   

Table 1 
Fit statistics of the plant characteristics.  

Plant characteristic R2  Standard error 

Tuber weight 0.887 6.35 
Stem length 0.849 9.49 
Haulm weight 0.736 5.78  
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field-specific shift from the yearly average growth curve. Therefore, we 
selected coefficients and their interactions that predicted random effects 
Ui and Si of Eq. (3), and excluded αk, βk and c from the analysis. Two 
separate models were created for Ui and Si. 

For our case study, it was necessary to exclude data of the soil 
samples and origin of the seed samples, in contrast to the approach in 
Section 2.3.2. The reason was that soil data were only present for a few 
fields in 2015 and 2016. Using these samples would have resulted in a 
model that only predicts variability of a few fields within these two 
years, because only data with no missing values of the variables of in-
terest could be used to create a predictive model. The origin of the seed 
potatoes had changed throughout the years. 2013 and 2014 had a large 
variety in seed potato origins and of many fields it is unknown which 
farm delivered the seed potatoes. Additionally, some fields were culti-
vated with seed potatoes from different farms, which made it impossible 
to trace back which origin the sampled plants had. 

The correlation between all possible predictors was investigated. 
Predictors between which the correlation was higher than |r| > 0.7 were 
considered as a possible threat for collinearity (Dormann et al., 2013). 
Only one predictor remained in the dataset representing the group of 
predictors to which that predictor was correlated, where we picked the 
predictor that represented the other members in the group most 
naturally. 

After removing highly correlated predictors, stepwise regression was 
used to select predictors and interactions. Hierarchy was enforced: an 
interaction effect was only allowed when both main effects were present 
in the model. As a selection criterion, the AICc was used (Hurvich and 
Tsai, 1989). We did not consider significance of the selected model, 
because significance is not a reliable selection criterion and often leads 
to the wrong model (Ward et al., 2010; Nuzzo, 2014; Lo et al., 2015). 
Some categories of nominal variables consisted of only very few obser-
vations, which resulted in inflated standard errors and biasing the entire 
model: if such a variable was selected by AICc, these observations were 
removed from the dataset and stepwise regression was rerun until a 
stable regression model was found (e.g., no inflated standard errors 
anymore). The models were fit on the training set and validated on the 
test set using the R2. 

3. Results 

3.1. Describing potato growth 

In the first step, we started modeling between-field variability. The 
obtained R2 of the field-specific curves of the haulm weight, tuber 
weight and stem length were high (Table 1). The high R2 shows that the 
fitted models represented the variability in growth very well, despite the 
fact that only three plants were measured per sampling moment. This 
made the growth curves an appropriate basis for the analysis in step 2 
and 3. As an example, Fig. 2 shows three fields with the measured and 
predicted stem length on different days after planting. 

Fig. 3. Correlations between tuber growth, stem length and haulm weight.  

Fig. 2. Example of three fields of the actual stem length measurements and the 
predicted stem length. 

Fig. 4. Average haulm growth curve per cluster.  
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3.2. Clustering and predicting potato growth 

For the second step, we started with determining the number of 
clusters necessary for each plant characteristic. The change point anal-
ysis, i.e., the found elbow, showed that the field specific curves of the 
haulm weight and stem length should be divided into seven clusters and 
field specific tuber weight curves into six. One cluster of the tuber 
weight consisted of one field, while haulm weight and stem length both 
had one cluster that consisted of only two fields. These clusters consisted 
of fields of which the growth of that specific plant characteristic was 
exceptionally high. Because the interest lies in the overall trend, we 
decided to remove these fields for the further cluster analysis. 

There was no significant relationship between the different years and 
clusters of the haulm weight and the tuber weight (p > 0.05), but the 
stem length showed a small significant relationship with year (p =

0.045). The last cluster contained relatively many fields of 2016 
(Table C.1). This was not surprising, as this year’s yield was very low 
(Table A.1). The other clusters consisted of more or less the same frac-
tion of fields per year, indicating that the results showed a pattern that 
was relatively independent of the year-specific circumstances. 

3.2.1. Correlation between potato growth and yield 
The first purpose of clustering fields was to find the correlation be-

tween growth and yield. The average yield per cluster is provided in 
Table 2. The differences in yield were significantly different between 
haulm weight clusters (F(5,347) = 9.08, p < 0.001, η2 = 0.12, 95% 
CI = [0.05,0.17]), stem length clusters (F(5,351) = 55.15, p < 0.001, η2 =

0.14, 95%CI = [0.08, 0.20]) and tuber weight clusters (F(4,352) = 9.51, 
p < 0.001, η2 = 0.10, 95%CI = [0.04, 0.15]). We found a strong corre-
lation between the growth curves and yield. This indicates that although 
only three plants were sampled per measure moment, the growth curves 
still represented the growth of the entire field fairly well. Clusters have 
been put in descending order with respect to the average maximum 
growth per cluster. 

Haulm weight and stem length growth had a clear pattern in relation 

to yield: clusters with more haulm growth and longer stems contain 
often fields with more yield. In contrast to our expectation, the pattern of 
decreasing yield along with cluster number was less clear for the tuber 
weight: the first three clusters had a similar average yield, while the 
average yield in the last two cluster was around 10 ton ha− 1 lower. 

3.2.2. Correlation between different plant characteristics 
The second purpose of the cluster analysis was to relate the growth of 

different plant characteristics with each other. The plant characteristics 
were positively correlated with each other (Fig. 3). This was expected, 
because stem length and haulm weight both showed a similar pattern 
with yield per cluster. These two plant characteristics have a slightly 
weaker positive correlation with tuber weight, similar to the weaker 
decrease in yield per cluster. 

3.2.3. Correlation between growth, soil, weather and management variables 
The final purpose of the cluster analysis was to determine the rela-

tionship between growth and defining, limiting and reducing variables. 
Table 5 shows an overview of variables that were significantly different 
among any of the plant characteristic clusters. All analyzed variables can 
be found in Appendix D. Each of the plant characteristics is discussed 
separately. The cluster with the most haulm reached on average around 
40 ton ha− 1 and the cluster with the least haulm growth reached only 
15 ton ha− 1 (Fig. 4). The growth of the haulm weight was mainly 
influenced by the defining weather and management variables 
(Table 5). The average values and number of occurrences per haulm 
weight cluster were calculated to investigate if a pattern could be found 
in increasing growth and the significant variables (Tables 3 and 4).In 
line with expectations, a longer growing season and thus a larger 
amount and duration of radiation, a longer duration of rainfall and a 
larger Tsum resulted in more haulm growth. A larger planting distance 
between plants resulted in more haulm growth. The cluster with the 
most haulm growth was planted the earliest in the season and the field 
with the least growth was planted on average 10 days later than the first 
cluster. Clusters with more haulm were irrigated more often, with an 
exception of the first cluster. Fields in 2015 and 2016 showed an in-
fluence of Mg in the soil on haulm growth. Within the average haulm 
weight clusters, the Mg soil content was the highest. This indicated that 
Mg interacts with a different covariate. Fields with a deeper GLS often 
had more haulm growth. Unexpectedly, the clusters with more haulm 
growth more often suffered from nematodes (Table 4). 

Six stem length clusters were identified, where the highest cluster 
reached a stem length of 140 cm, while the shortest stems only reached a 
maximum of 60 cm (Fig. 5). Stem length growth was influenced by 
defining management and weather variables. Additionally, the limiting 
variables played an important role in the stem length growth (Table 5). 

Table 3 
Average values of significant variables in haulm weight clusters.  

Cluster Total growing 
days 

Planting distance 
(cm) 

Days until 
planting 

Radiation amount 
(MJ m− 2)  

Radiation duration 
(h) 

Tsum 
(◦C)  

Irrigation 
(#) 

GLS 
(cm) 

Mg in soil 
(kg ha− 1)  

1 157 36 106 30 1203 2507 0.6 122 170 
2 157 36 109 30 1220 2537 0.9 121 214 
3 152 33 110 30 1190 2443 0.8 116 270 
4 152 33 109 29 1192 2441 0.6 117 234 
5 149 34 111 29 1169 2409 0.4 116 230 
6 149 33 116 29 1166 2431 0.4 116 188  

Table 4 
Number of significant variables per haulm weight cluster.  

Cluster No nematodes Nematodes 

1 8 7 
2 33 17 
3 55 22 
4 88 20 
5 67 9 
6 28 4  
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Table 5 
Overview of the cluster analysis of the haulm weight, stem length and tuber weight. Indexes are categorized into defining (D), limiting (L), reducing (R) variables with subcategories: management (m), soil (s) and weather 
(w). Significance codes (p): ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% and ‘n.s.’ for p > 0.05. When a variable is significant and continuous, the effect size, F-value, confidence interval and sign are provided as well. Sign indicates how a 
variable relates to growth, where a positive relation indicates an increase in growth and the variable itself. Sign codes: ‘+ ’: positive, ‘ − ’: negative, ‘∧’: first positive, but the effect becomes negative at some point, ‘∨’: first 
negative, but the effect becomes positive at some point.    

Haulm weight Stem length Tuber weight   

F-value  p  η2  95%CI Sign F-value  p  η2  95%CI Sign F-value  p  η2  95%CI Sign 

D.m Total growing days F(5,310) = 3.35  ** 0.051 [0.0,0.09] + F(5,310)=3.91  ** 0.06 [0.01,0.10] + n.s.     
Planting distance F(5,352) = 2.84  * 0.038 [0.0,0.07] + n.s.     n.s.     
Origin seed tubers  n.s.     ***     n.s.     
Variety  n.s.     ***     n.s.     
Days until planting F(5,352) = 2.52  * 0.031 [0.0,0.06] − F(5,352) = 4.39  *** 0.058 [0.01,0.10] ∧ n.s.    

D.w Radiation amount F(5,310) = 2.97  * 0.046 [0.0,0.08] + F(5,310) = 3.15  ** 0.048 [0.0,0.09] + n.s.     
Radiation duration F(5,310) = 2.93  * 0.045 [0.0,0.08] + F(5,310) = 3.28  * 0.05 [0.0,0.09] + n.s.     
Tsum F(5,310) = 3.66  ** 0.056 [0.01,0.10] + F(5,310) = 2.74  * 0.042 [0.0,0.08] + n.s.    

L.m Irrigation F(5,352) = 2.48  * 0.034 [0.0,0.07] ∨ n.s.    F(4,357) = 3.33  * 0.036 [0.0,0.07] ∨

K fertilizer (50%)  n.s.     n.s.    F(4,357) = 2.65  ** 0.029 [0.0,0.06] ∧

Solid N fertilizer  n.s.    F(5,352) = 2.71  * 0.037 [0.0,0.07] ∧ n.s.     
P from manure  n.s.     n.s.    F(4,356) = 2.42  * 0.026 [0.0,0.06] ∧

Liquid N fertilizer based on sulfite  n.s.     n.s.    F(4,357) = 2.74  * 0.03 [0.0,0.06] ∧

Urea  n.s.    F(5,352) = 4.91  *** 0.065 [0.02,0.11] ∨ n.s.    
L.s Clay fraction  n.s.     n.s.    F(4,353) = 4.31  ** 0.047 [0.01,0.09] ∧

GLS F(5,345) = 2.76  * 0.039 [0.0,0.07] + F(5,345) = 2.82  * 0.039 [0.0,0.07] + n.s.     
Mg in soil F(5,122) = 3.01  * 0.11 [0.01,0.19] ∨ n.s.     n.s.     
K in soil  n.s.    F(5,126) = 2.87  * 0.1 [0.0,0.18] + n.s.    

L.w Rainfall duration  n.s.    F(5,310) = 5.15  *** 0.076 [0.02,0.13] + n.s.    
R.s Nematodes  **     n.s.     n.s.     
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Per cluster, the mean of the significant variables was calculated to 
investigate the relationship with stem length growth and the number of 
occurrences per variety were given (Tables 6 and C.2). Due to the high 
correlation between the stem length and the haulm weight, the results of 
the stem length cluster analysis were similar to the haulm weight cluster 
analysis. A longer growing season resulted in longer stems. This directly 
related to the total radiation amount, radiation duration, the Tsum from 
planting until haulm killing and the rainfall duration. The first five 
clusters were planted around the same date, but the cluster with the 
shortest stems were planted on average a week later. A deeper GLS re-
sults in longer stems and in 2015 and 2016, a higher K soil content 

resulted in longer stems. High urea application was observed in clusters 
with medium stem growth. The clusters with shorter stems more often 
had fields where other varieties were cultivated than the farmer’s main 
cultivated variety Fontane (Table C.2). There was a large variety be-
tween seed potato origin (Appendix E), of which many origins only 
occurred a few times within the dataset. No clear pattern could be found 
in these occurrences per cluster. 

Five tuber weight clusters were identified and these clusters ranged 
between a minimum 40 ton ha− 1 and a maximum of 80 ton ha− 1 at the 
last sampling moment (which is 2 to 4 weeks before haulm killing) 
(Fig. 6). In contrast to the haulm weight and stem length cluster analysis, 
none of the defining weather and management variables were signifi-
cant (Table 5). Lack of significant defining variables related to the 
relatively weak relation between tuber growth during the season and 
final yield. Only five limiting variables were significant, of which the 
average values per cluster are presented in Table 7. The clusters with a 
larger tuber weight had on average more water available: either the clay 
fraction was relatively high or it was possible to irrigate the fields. There 
was no clear pattern in the amount of fertilization between the tuber 
weight clusters. Relationships between defining, limiting and reducing 
variables and growth were not consistent between plant characteristics 
(Table 5). This suggests that we need to look at a combination of factors. 

3.3. Predicting potato growth 

In the third and final step, we created a predictive model of growth. 
We started detecting correlations between the predictors. Radiation 
amount, radiation duration, rainfall duration and Tsum were highly 

Fig. 5. Average stem length growth per cluster.  

Table 7 
Average value per tuber weight cluster of significant variables.  

Cluster Irrigation 
(#) 

K fertilizer 
(50%) 
(kg ha− 1)  

P from 
manure 
(kg ha− 1)  

N fertilizer 
based on 
sulfite 
(l ha− 1)  

Clay 
fraction 
(%) 

1 0.3 23 81 92 6 
2 0.9 3 89 79 5 
3 0.7 2 86 57 5 
4 0.5 7 69 84 5 
5 0.4 10 107 77 6  

Table 8 
Fit statistics of the predictive models.  

Variable Training R2  Standard error Test R2  

Ui  0.22 16.3 0.20 
Si  0.21 0.17 0.15  

Fig. 6. Average tuber growth curve per cluster.  

Table 6 
Average values of significant variables in stem length clusters.  

Cluster Total 
growing days 

Days until 
planting 

Radiation amount 
(MJ m− 2)  

Radiation 
duration (h) 

Tsum 
(◦C)  

Urea 
(l ha− 1)  

GLS 
(cm) 

Solid N fertilizer 
(kg ha− 1)  

K in soil 
(kg ha− 1)  

Rainfall 
duration (h) 

1 155 112 30 1214 2510 54 123 209 289 218 
2 156 111 30 1206 2500 73 119 196 211 222 
3 154 109 29 1197 2456 102 116 178 200 216 
4 150 109 30 1171 2419 115 118 177 177 206 
5 152 109 29 1195 2445 85 116 237 138 213 
6 143 119 29 1146 2368 40 115 254 152 205  
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correlated with the number of growing days. The number of growing 
days therefore stayed in the dataset, representing the increase in radi-
ation, rainfall and temperature throughout the season. Some of the nu-
trients in the manure were correlated as well: the amount of N released 
during the season was correlated with the amount of N directly avail-
able. The amount of N released during the season was strongly corre-
lated with the other nutrients; we chose to only keep N directly available 
in the season in the dataset. Finally, the amount of Mg and S in manure 
were highly correlated. Mg was kept, representing both the amount of 
Mg and S in the manure. 

Stepwise regression was applied to select a predictive model for Ui 
and Si. This resulted in two regression equations, of which the co-
efficients are represented in Tables 9 and 10 . Ui and Si represent 
between-field variability and do not take into account the average 
growth per year. Ui relates to variability in maximum stem length. Eq. 
(3) is a symmetric curve and Si relates to its midpoint, where a positive 
value of Si implies longer period until the maximum stem length is 
achieved. 

The regression equations of Ui and Si were fit on the training set, 
resulting in an R2 of 22% for Ui and 21% for Si (Table 8). The quality of 
the equations was evaluated on the test set. The regression equation of 
Ui explains 20% of the variability in Ui and the equation of Si explains 
15% of the variability in Si in the test set. 

Similar to the cluster analysis (Table C.2), the influence of variety on 
the stem length was also visible in the predictive model, where Fontane 
resulted in the longest stems (Table 9). The previously cultivated crop 
was of influence on the growth of the stems and the different interaction 
terms with the rotation crop suggested that preferable field conditions 
were different per previous crop: as maize was the reference category, a 
positive influence of a deeper GLS was found on these fields. The posi-
tive effect of a deep GLS was strengthened at fields previously cultivated 
with grass. At first glance, it seemed that the effect of a deep GLS 
reversed, if the previous crop was sugar beet. This effect, however, 
should be interpreted cautiously. In the dataset, the fields on which 
sugar beet was cultivated, consisted of only a small range of different 
GLSs, e.g., between 112 and 120 cm, while the GLS of all fields ranged 
between 75 and 125 cm. This made it hard to estimate what would 
happen if the GLS was shallower, for example around 80 cm, and 
cultivated with sugar beet the year before. Considering main effects and 
interaction terms, the model predicted that long stems could be achieved 
on fields with sugar beet or grass as previous crop, while stems on fields 
previously cultivated with maize remained shorter. 

Urea and the solid N fertilizer both had negative main coefficients: 
the interaction term of the solid N fertilizer and maize only increased the 
negative effect on growth. The negative effect of urea could be flipped 
on fields that were previously cultivated with grass or sugar beet, where 
a high urea application positively influenced growth. 

Similar variables influencing Si were found (Table 10). Here, a pos-
itive coefficient corresponded to a delay in growth. Ivory Russet, Lud-
milla and Miranda all mature faster than Fontane. The deeper the GLS, 
the larger the delay in stem growth and stem growth was delayed the 
most at fields that were little fertilized. High fertilization amounts 
increased the growth speed. 

4. Discussion 

4.1. Explaining variability in growth: Implications for the farm 

We have applied our data analysis methodology on the case study of 
the Dutch potato farm. We start with shortly summarizing our main 
findings, and throughout the remainder of this section, we discuss how 
these obtained results retrieved from applying the methodology on the 
case study should be interpreted and can be used to improve farm 
management. 

We started with (1) estimating field-specific curves, and results 
showed that these curves described between-variability in growth of the 
haulm weight, stem length and tuber weight very well (R2 of 0.74, 0.85, 
and 0.89 respectively). The second step, in which we clustered curves 
and explained growth and yield, showed that (2a) stem length and 
haulm weight were important for yield, while tuber weight growth had a 
less clear relation with yield, (2b) stem length and haulm weight were 
highly correlated with each other, but were less correlated with tuber 
growth and 2c) the most important variables that explain growth 
throughout the season were the length of the growing season (the longer 
the better), the variety, seed potato properties (origin), planting dis-
tance, GLS, the presence of nematodes, the soil content of K and Mg and 
finally, N fertilization. In the final step, (3) we automatically selected a 
predictive model for stem growth. In line with the results of the second 
step, the GLS, N fertilization and variety were selected to predict growth. 
In addition, the previously cultivated crop was selected as well. 

The farmer should aim for a stem length between 110 and 130 cm 
and a haulm weight of 40 ton ha− 1, because the first step showed that in 
clusters with that amount of growth on average 67 ton ha− 1 was 

Table 10 
Predictions of Si. Significance codes (p): ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% and ‘n.s.’ for 
p > 0.05.  

Coefficient Value p  Standard error 

Intercept − 6.25× 10− 1  ** 2.25× 10− 1  

P manure (kg ha− 1)  − 3.38× 10− 4  * 1.47× 10− 4  

Solid N fertilizer (kg ha− 1)  1.99× 10− 3  n.s. 1.02× 10− 3  

Urea (l ha− 1)  − 2.60× 10− 4  n.s. 1.38× 10− 4  

GLS (cm) 6.52× 10− 3  *** 1.88× 10− 3  

Variety: Fontane 0   
Variety: Ivory Russet − 2.33× 10− 1  *** 5.80× 10− 2  

Variety: Ludmilla − 4.63× 10− 2  n.s. 6.00× 10− 2  

Variety: Miranda − 1.44× 10− 1  *** 2.98× 10− 2  

GLS*Solid N fertilizer − 2.00× 10− 5  * 8.66× 10− 6   

Table 9 
Predictions of Ui. Significance codes (p): ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% and ‘n.s.’ for 
p > 0.05.  

Coefficient Value p  Standard error 

Intercept − 22.3  n.s. 15.7 
Variety: Fontane 0   
Variety: Ivory Russet − 26.9  *** 5.8 
Variety: Ludmilla − 6.8  n.s. 6.4 
Variety: Miranda − 12.83  *** 3 

Solid N fertilizer (kg ha− 1)  − 0.019  n.s. 0.011 

Urea (l ha− 1)  − 0.031  n.s. 0.016 

GLS (cm) 0.25 n.s. 0.13 
Previous crop: Maize 0   
Previous crop: Grassland − 38.3  n.s. 32.7 
Previous crop: Sugar beet 93.4 n.s. 86.9 
Solid N fertilizer * Maize 0   
Solid N fertilizer * Grassland − 0.027  n.s. 0.022 
Solid N fertilizer * Sugarbeet − 0.0034  n.s. 0.038 
Urea * Maize 0   
Urea * Grass 0.034 n.s. 0.033 
Urea * Sugar beet 0.091 n.s. 0.053 
GLS * Maize 0   
GLS * Grassland 0.39 n.s. 0.27 
GLS * Sugar beet − 0.85  n.s. 0.70  
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obtained, which was 10 ton ha− 1 above the average. Hence, haulm and 
stem growth were a good indication for final yield, as also observed in 
other studies (Ivins and Bremner, 1965; Khurana and McLaren, 1982; 
Boyd et al., 2002). To our surprise, the relation between final yield and 
tuber weight growth was less visible. The farmer stopped sampling be-
tween two weeks and a month before haulm killing, and apparently the 
tuber weight growth after this moment could be better predicted by 
growth of other characteristics until that moment than tuber weight 
itself. This may be related to the physiological age of seed tubers. 
Physiologically older seeds result on average in high yields in shorter 
growing seasons, while younger seeds perform better in longer growing 
seasons (Caldiz et al., 2001). Older seeds might have already reached 
maturity at last sampling point, while the younger seeds continued 
growing in that final period, closing the gap in weight with the older 
seeds. Also, abundant water and nutrient availability may lead to more 
stem and haulm growth as compared with tuber growth early in the 
season, but providing resources for additional tuber growth at the end of 
the season. 

In the second step, we identified other important seed potato prop-
erties (next to physiological age). Firstly, the origin of the different seed 
potatoes (which is likely related to physiological age) influenced stem 
growth. A second important variable related to seed properties was the 
planting distance, where a larger planting distance correlated to more 
haulm per hectare. At this specific farm, large seed potatoes are planted 
with more space between them and large seed potatoes are often planted 
earlier, because the farmer believes that this is more beneficial for the 
final yield. Although the differences in growth depending on planting 
distance and origin indicated that seed potato quality correlated to 
between-field variability, these variables were highly linked to the 
vision of the farmer and it is unclear what would happen if the farmer 
changes this strategy. As our research confirms that seed potato quality 
is an important factor determining final yield (Struik and Wiersema, 
1999), more research is needed to investigate the exact influence of seed 
potato quality on yield. 

Plants with a high tuber weight, long stems and a high haulm weight 
were expected on irrigated fields with a deep GLS: these fields did not 
only experience less stress of an excess of water, they experienced less 
stress of a lack as water as well. A likely explanation of this effect is that a 
shallower GLS increased stress of water excess, which reduced stem 
length and haulm growth (Van Loon, 1981; Deblonde and Ledent, 
2001). The tuber weight cluster analysis results indicated that the fields 
within the lowest cluster experienced stress of water excess as well: the 
clay fraction was on average high and therefore these fields had a higher 
water holding capacity (Dunne and Willmott, 1996). These results are 
similar to results of Maestrini and Basso (2018), who showed that across 
the USA, yields are more unstable in very wet fields. Finally, we 
observed that fields with more haulm more often had nematodes. This 
related to the GLS: nematodes disease incidence was higher on dry soil 
conditions (e.g., having a deep GLS) than on wet soil conditions (with a 
shallow GLS) (Lootsma and Scholte, 1997). This indicated that pre-
venting a lack of excess of water was more important than the presence 
of nematodes, and that still high yields could be obtained on fields with 
nematodes. 

Soil data were only available in 2015 and 2016, and two soil nutri-
ents were identified as significant in the cluster analysis, implying that at 
least in these two years a similar effect of nutrients was found. At this 
farm, there could be an opportunity to improve K application, as we 
found that the longer the stems, the higher the K soil content, but we did 
not observe that clusters with a low K soil content had a higher 

potassium application through fertilizer or manure. In addition, the Mg 
soil content in the average haulm weight clusters was high and was 
slightly lower within the clusters with the most and smallest haulm 
growth. This pattern implied that Mg interacted with another variable. 
As interactions were not considered in the cluster analysis, we cannot 
determine with exact certainty with which variable Mg interacted. 
However, haulm weight and stem length clusters were highly correlated 
and it is thus likely that the data patterns between clusters for these plant 
characteristics were similar (although not necessarily significant). As we 
know that a high Mg soil content limits K availability (Laughlin, 1966; 
Laekemariam et al., 2018), it might be that the decrease in stem length 
and haulm weight was strengthened due to the high Mg amount in the 
average growth clusters. 

Besides K application, N application is of relevance. The effect of 
solid N fertilizer and urea, however, were not consistent between the 
cluster analysis and the predictive model. For example, solid N fertilizer 
always had a negative effect in the predictive model, while the fields 
within the clusters with the longest stems had the largest amount of solid 
N fertilizer applied on them. A possible reason why it may be hard to 
estimate the exact effect of N fertilization on stem length is that the 
response to fertilization depends on secondary nutrients, micronutrients 
and soil carbon (Kihara et al., 2016), and it is unknown how these 
conditions differed from field-to-field. The interaction terms between 
urea or the solid N fertilizer and the previous crop support this: each 
rotation crop has a different influence on the nutrient content and 
organic matter in the soil (Riedell et al., 2009; Lemaire et al., 2015; 
Götze et al., 2016), influencing the response to fertilization. Another 
reason is that fertilizer N application is relatively high and similar across 
field, similar to the rest of the Netherlands (Silva et al., 2017). Under 
such conditions, also other studies found little yield response to N 
application (Silva et al., 2017). Additional research is required to 
investigate which soil properties influence response to N fertilization. 

At this specific farm, many of the fields are rented and the area in 
which the fields lie, is large. As a result, it takes around 45 days to plant 
all fields. Because the farmer does not control what happens to the soil in 
the years that he is not cultivating it, strategically planning when to 
plant which field with what type of seed potato highly influences plant 
growth and final yield. When renting a field, GLS, the soil K content and 
the previous cultivated crop can help to indicate how much growth is 
expected. On these fields, the farmer could plant early in the season to 
enforce a long growing season to improve stem and haulm growth 
resulting in high yields. Furthermore, results suggest that larger and 
physiologically younger seed potatoes result in longer growth and 
higher yields, but this should be further investigated experimentally. 

4.2. Implications for other farms 

As farms are increasing in size (Mandryk et al., 2012), more farms are 
challenged with a longer planting period and a more heterogeneous soil. 
All large farms require a planting strategy, facing the same decisions as 
this specific farm. In addition, we expect that in a moderate maritime 
climate, similar results should be found on sandy soils. Because of the 
limited water holding capacity of sandy soils, it is likely that the com-
bination of irrigation and a low GLS avoids both a lack and an excess of 
water. 

If farms would like to monitor their own within-farm variability in 
growth, the first question to be answered is on what spatial scale vari-
ability is observed. The farm of the case study cultivates many small 
fields, many having an area of only 2 ha, and it thus makes sense to 
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sample per field. Other farms may consist of only a few very large fields. 
In such cases, it could be beneficial to determine zones, for example, 
based on electrical conductivity of the soil (Corwin and Lesch, 2005). 
When choosing which fields or zones to follow, the farmer should ensure 
that these fields are randomly sampled, e.g., ensuring that both good and 
bad fields are sampled and that they are randomly distributed over the 
total areal. In order to estimate field-specific growth curves, it is 
necessary to determine an appropriate sample size and a number of 
repeated measures per zone or field. This is, however, a trade-off be-
tween the considered fields or zones and the number of repeated mea-
sures per field or zone, where the absolute minimum of repeated 
measures is three (Curran et al., 2010). Non-linear growth curves 
require slightly more data points per field or zone, because they describe 
three different stages during growth (Grimm et al., 2011). 

Destructive sampling of different plant characteristics throughout 
the season enables to model growth throughout the season. At the case 
study, only three plants were sampled at each sampling moment. 
Nevertheless, the plant growth clusters showed a strong correlation with 
yield. A possible explanation for the strong correlation between growth 
and yield is that the total sampled area spanned around 5 m2, because at 
most fields 6 or 7 repeated measurements were performed. However, 
there were still inconsistencies in the relationship between yield and 
growth. This indicates that further research is necessary to investigate 
what sampling strategy is necessary to get a good representation of an 
entire field. 

4.3. Methodological considerations 

The proposed methodology is applicable to analyze data on farm- 
level, but it can also be applied to data of multiple farms. When on a 
farm or farms longitudinal data have been collected, mixed models 
provide an efficient way to model the between-field variability. This 
methodology handles missing data well and is robust against samples 
with non-equidistant spacing (Curran et al., 2010). Additionally, mixed 
models allow the modeler to choose an appropriate function to describe 
growth. 

Our methodology consists of three steps, where step 2 and 3 are used 
to investigate between-field differences. Clustering fields allows for an 
initial screening of all variables to determine which factors play an 
important role in defining, limiting and reducing growth. Furthermore, 
it gives clear insight in the relationship between the growth develop-
ment and yield. The second analysis selects a predictive model that al-
lows to investigate more complex relationships between factors and 
growth. Because a linear regression model is used to predict growth, the 
relation between growth and the factors is easy to interpret. Explanatory 
power of the models was still relatively small, but this is common when 
analyzing farm data, because of multiple factors that interact (Silva 
et al., 2020; van Heerwaarden et al., 2018). 

In the third step, we selected some non-significant variables, because 
we used the AICc as the selection criterion. Non-significant variables 
remained in the model. Significance is not a good indicator for predic-
tive power. Moreover, selecting on basis of significance, often leads to 
the wrong model (Ward et al., 2010; Nuzzo, 2014; Lo et al., 2015). As we 
were searching for a model with high predictive model, we did not rely 
on significance to validate the quality of the model, but on predictive 
power on unseen data (e.g., the test set). 

The plants were sampled at the median of the electrical conductivity 
of the field, while the defining, limiting and reducing variables are often 
related to average values of the field or to the weather conditions of the 
complete area. Because data are collected by a farmer and data collec-
tion is costly in both time and money, collecting more data of the plant 
on multiple spots within the field is often not possible in practice. 
However, the current data collection already allows to model variability 
between fields and gives opportunities to farmers to collect this type of 
data themselves. 

In this paper, data from 2013 until 2016 were analyzed. Within-year 

variability was analyzed that were independent of year-specific condi-
tions. Effects that are only present in specific weather circumstances are 
not found due to the focus of the study. However, the methodology can 
be applied to investigate year-specific differences as well. 

5. Conclusion 

Applying the methodology on the case study of a potato farm in the 
south of the Netherlands led to the following results. Stem length and 
haulm weight appeared to be indicators for the potential final potato 
yield, where good yields were obtained if the stems were between 110 
and 130 cm long and the haulm weighs around 40 ton ha− 1 (yields are 
on average 67 ton ha− 1 in these clusters). Because more haulm was 
associated with more yield, management could be improved by moni-
toring and controlling the haulm growth throughout the season. The 
relation between tuber growth and yield was less visible. This indicates 
that the potato growth at the end of the season was important for the 
final yield. Sampling potatoes in this period could help to improve un-
derstanding of the relationship between tuber growth and yield. 

Variability in growth could mainly be explained by the length of the 
growing season (i.e., planting date) and other defining variables such as 
the planting distance and the variety. Further, fields previously culti-
vated with grass or sugar beet, and fields with a deep groundwater level 
during summer, especially if they are irrigated, had higher stem growth, 
resulting in higher yields. The latter indicated that preventing stress 
from both an excess and a lack of water was important. By anticipating 
where and how higher growth and yields can be expected, the farmer 
can tactically decide when to plant what. 

Further, application of inputs should be adapted to expected growth 
and yield. The farmer should reduce the amount of N application on 
these fields, applying just enough nutrients for the total growth, as our 
analysis showed that fields with very short stems and low yields were 
often fertilized intensively. In addition, the farmer should consider 
variable K fertilization to compensate for differences in K availability: 
more growth was found on fields with a higher amount of K in the soil, 
while no effect of K fertilizer was found on growth, which indicates that 
fields with more growth thus had on average more K to their disposal. 

This article mainly focused on identifying factors that are indepen-
dent of weather circumstances influencing potato yield. Future work 
should investigate how year-specific conditions influence between-field 
variability. Years with beneficial weather circumstances could require a 
different management protocol than years with large periods of drought 
or extensive rain. Additionally, the influence of within-season manage-
ment decisions should be investigated to optimize operational 
management. 
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Appendix A  

Table A.2 
Description of data, categorized into defining (D), limiting (L) and reducing (R) factors with subcategories management (m), soil (s) and weather (w).  

Variable Index Unit Scale Time Source Additional comments 

Haulm weight  ton ha− 1  Field 2–7 times per season Farmer Three plants are pulled and weighed in grams, transformed 
to kilos per hectare (Appendix B, Eq. (B.2)) 

Stem length  cm Field 2–7 times per season Farmer Average length of three plants 
Tuber weight  ton ha− 1  Field 2–7 times per season Farmer Three plants are pulled out and weighed in grams, 

transformed to kilos per hectare (Appendix B, Eq. (B.2)) 
Yield  ton ha− 1  Field End Weighed on the bridge  

Variety D.m Name Field Start Seed grower Fontane, Ivory Russet, Ludmilla, Miranda, Dakota, Lady 
Anna 

Seed tuber origin  Name Field Start Seed grower Varies, see Appendix ref 
Planting distance  cm Field Start Setting planting 

machine 
Planting distance is decided by the farmer based on the size 
of the seed potatoes and the expected fertility of the field 

Growing days planting  Days Field Start Start counting from 
planting 

Summations stops at haulm killing 

Radiation amount D.w J cm− 2  Region Daily from estimated 
day of emergence 

Weather station KNMI 
in Eindhoven 

Summation stops at haulm killing 

Radiation duration  Hour Region Daily from estimated 
day of emergence 

Weather station KNMI 
in Eindhoven 

Summation stops at haulm killing 

Temperature sum (Tsum)  ◦C day− 1  Region Daily from planting 
until haulm killing 

Weather station KNMI 
in Eindhoven 

Summation stops when haulm is killed. See Appendix B for 
the specific calculation of the Tsum (Eq. (B.1)) 

Irrigation L.m # Field During growing season Van den Borne 
Aardappelen  

K fertilizer (50%) (K50)  kg ha− 1  Field During growing season Van den Borne 
Aardappelen 

K fertilizer containing 50% K, only applied in 2013 

K fertilizer (60%) (K60)  kg ha− 1  Field During growing season Van den Borne 
Aardappelen 

K fertilizer containing 60% K, applied in 2014–2016 

Solid N fertilizer (KAS)  kg ha− 1  Field During growing season Van den Borne 
Aardappelen 

N fertilizer 

Manure type  Name Field During growing season Van den Borne 
Aardappelen 

Meat cow manure, calf manure, dairy manure, pig manure, 
goat manure, chicken manure, compost 

Manure amount  m3 ha− 1  Field During growing season Van den Borne 
Aardappelen  

Magnesium from manure  kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

Nitrogen from manure  kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

Nitrogen released during 
season from manure  

kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

Phosphorus from manure  kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

Potassium from manure  kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

Sulfite from manure  kg ha− 1  Field Start Van den Borne 
Aardappelen 

Estimated amount based on manure type 

N fertilizer based on sulfite  l ha− 1  Field During growing season Van den Borne 
Aardappelen 

Liquid nitrogen fertilizer (sulfazote) 

Urea  l ha− 1  Field During growing season Van den Borne 
Aardappelen 

Liquid nitrogen fertilizer 

Groundwater level during 
summer (GLS) 

L.s cm Field Start Soil maps   

cm Field Start Soil maps  

(continued on next page) 

Table A.1 
Number of fields and final yield per year.  

Year Number of fields Yield (ton ha− 1)  Standard deviation 

2013 112 60 13 
2014 135 69 13 
2015 133 62 14 
2016 112 44 13  
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Appendix B 

Tsum1 =
∑

i

⎧
⎨

⎩

max(ti) + min(ti)

2
if 2 ≤

max(ti) + min(ti)

2
≤ 30

0 otherwise
where i is growing day (B.1)  

y(ton ha− 1) =
ỹ(g/3 plants) ∗ 13.333 ∗ 0.85)

planting distance (cm) ∗ 3/100)
(B.2) 

Where we correct for the row distance of 75 cm and for a yield loss of 15% (e.g., 85% yield remains). 

Appendix C  

Table A.2 (continued ) 

Variable Index Unit Scale Time Source Additional comments 

Groundwater level during 
winter 

Boron soil sample  g ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Calcium soil sample  kg ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Iron soil sample  g ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Magnesium soil sample  kg ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Manganese soil sample  g ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Nitrogen soil sample  kg ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Phosphorus soil sample  kg ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Zinc soil sample  g ha− 1  Field After applying organic 
manure 

Eurofins protocol Collected since 2015, measured at the same place as the spot 
on which the samples are taken 

Nutrient content  Class Field Beginning of the season Eurofins protocol Estimated by the farmer 
Rainfall amount L.w mm Region Daily from planting Weather station KNMI 

in Eindhoven 
Summation stops at haulm killing 

Rainfall duration  Hour Region Daily from planting Weather station KNMI 
in Eindhoven 

Summation stops at haulm killing 

Relative humidity  % Region Daily from planting Weather station KNMI 
in Eindhoven 

Summation stops at haulm killing 

Granule R.m Yes or no Field Start Van den Borne 
Aardappelen 

Applied to control nematodes 

Previous crop  Name Field Start Van den Borne 
Aardappelen 

Cultivated by Van den Borne or a different farmer 

Nematodes R.s Yes or no Field Start Van den Borne 
Aardappelen 

Pest affecting potatoes  

Table C.1 
Number of fields per year in the stem length clusters.  

Cluster 2013 2014 2015 2016 

1 5 4 5 6 
2 18 9 12 12 
3 29 28 17 15 
4 29 32 10 17 
5 22 19 20 18 
6 7 2 7 15  

Table C.2 
Counts per stem length cluster of variety. Stems are the longest in cluster 1.   

Fontane Ivory Russet Ludmilla Miranda Dakota Lady Anna 

1 20 0 0 0 0 0 
2 50 0 0 1 0 0 
3 74 1 5 9 0 0 
4 71 1 4 12 0 0 
5 59 1 2 14 2 1 
6 13 9 0 9 0 0  
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Appendix D  

Appendix E  

Table D.1 
Overview of all variables that were checked for significant differences between haulm weight, stem length and tuber weight clusters. Indexes are categorized into 
defining (D), limiting (L), reducing (R) variables with subcategories: management (m), soil (s) and weather (w). Significance codes (p): ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% and 
‘n.s.’ for p > 0.05.    

Haulm weight Stem length Tuber weight 

D.m Total growing days ** ** n.s.  
Planting distance * n.s. n.s.  
Size of the seed tubers n.s. n.s. n.s.  
Origin seed tubers n.s. *** n.s.  
Variety n.s. *** n.s.  
Days until planting * *** n.s. 

D.w Radiation amount * ** n.s.  
Radiation duration * * n.s.  
Tsum ** * n.s. 

L.m Irrigation * n.s. *  
K fertilizer (50%)  n.s. n.s. **  
K fertilizer (60%)  n.s. n.s. n.s.  
Solid N fertilizer n.s. * n.s.  
Manure type n.s. n.s. n.s.  
Manure amount n.s. n.s. n.s.  
N available from manure n.s. n.s. n.s.  
N during season from manure n.s. n.s. n.s.  
P from manure n.s. n.s. *  
K from manure n.s. n.s. n.s.  
Mg from manure n.s. n.s. n.s.  
S from manure n.s. n.s. n.s.  
N fertilizer based on sulfite n.s. n.s. *  
Urea n.s. *** n.s. 

L.s Clay fraction n.s. n.s. **  
Drought sensitivity n.s. n.s. n.s.  
GLS * * n.s.  
Groundwater level during winter n.s. n.s. n.s.  
B in soil n.s. n.s. n.s.  
Ca in soil n.s. n.s. n.s.  
Fe in soil n.s. n.s. n.s.  
Mg in soil * n.s. n.s.  
Mn in soil n.s. n.s. n.s.  
N in soil n.s. n.s. n.s.  
P in soil n.s. n.s. n.s.  
K in soil n.s. * n.s.  
Si in soil n.s. n.s. n.s.  
Zn in soil n.s. n.s. n.s.  
Nutrient content n.s. n.s. n.s. 

L.w Rainfall amount n.s. n.s. n.s.  
Rainfall duration n.s. *** n.s.  
Relative humidity n.s. n.s. n.s. 

R.m Granule n.s. n.s. n.s.  
Rotation crop n.s. n.s. n.s. 

R.s Nematodes ** n.s. n.s.  

Table E.1 
Counts per stem length cluster of the origin of the seed potatoes. Seed potato farmers are anonymized  

Cluster Farm 1 Farm 2 Farm 3 Farm 4 Farm 5 Farm 6 Farm 7 Farm 8 Farm 9 Farm 10 Farm 11 Farm 12 

1 1 1 0 0 0 0 0 0 0 0 0 2 
2 0 1 0 0 0 0 0 0 0 0 1 3 
3 0 0 0 0 3 0 7 0 1 0 0 8 
4 0 0 1 1 1 1 2 0 0 2 0 4 
5 0 0 0 0 1 0 0 2 0 0 1 5 
6 0 0 0 0 0 0 0 1 2 0 1 1 
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