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A B S T R A C T

Sparse Principal Component Analysis (sPCA) is a popular matrix factorization approach based on Principal
Component Analysis (PCA). It combines variance maximization and sparsity with the ultimate goal of improving
data interpretation. A main application of sPCA is to handle high-dimensional data, for example biological omics
data. In Part I of this series, we illustrated limitations of several state-of-the-art sPCA algorithms when modeling
noise-free data, simulated following an exact sPCA model. In this Part II we provide a thorough analysis of the
limitations of sPCA methods that use deflation for calculating subsequent, higher order, components. We show,
both theoretically and numerically, that deflation can lead to problems in the model interpretation, even for noise
free data. In addition, we contribute diagnostics to identify modeling problems in real-data analysis.
1. Introduction

The characteristics and the properties of algorithms to perform sparse
principal component analysis (sPCA) have been discussed in the statis-
tical and data analysis literature [1–4]. However, the derivation of
multi-component sPCA models, with two or more components, has
received limited attention.

This is the second paper of a series devoted to the critical assessment
of several widely used multi-component sPCA algorithms. In the first
paper [5], we showed that, under specific circumstances, many popular
sPCA variants [2,6] are unable to model noise-free sparse data accu-
rately. In this Part II, we provide a theoretical explanation for this
behavior, supported by Monte Carlo simulations, and propose diagnostic
statistics to identify modeling problems in real-data analysis. We focus on
approaches based on deflation, notably the Penalized Matrix Decompo-
sition (PMD) by Witten et al. [2] and the Group-wise PCA (GPCA) by
Camacho et al. [7]. We show that complex interaction among compo-
nents can lead to problems for model interpretation in sPCA.

The rest of the paper is organized as follows. Section 2 introduces the
use of deflation-based models in sPCA. Section 3 discusses sPCA algo-
rithms that are based on deflation. Section 4 describes the introduction of
artifacts in multi-component models based on deflation. Section 5 pre-
sents the materials and methods for the experimental part of this work.
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Section 6 quantifies the artifacts using simulated and real data and Sec-
tion 7 draws conclusions.

2. Sequential models based on deflation

A widely used approach in multi-component algorithms is to fit a
sequential series of single components. Often, this is done by deflating
each component from the data, in order to compute residuals to fit the
next component. Let us define XA(N�M) as the residual matrix after A�
1 components have been extracted from X1, which indicates the original
matrix of data. The basic equation for deflating XA is:

XAþ1 ¼ XA � tApT
A; (1)

where tA and pA are vectors of conformable size, representing the scores
and loadings for component A.

There are a number of matters regarding Eq. (1) that require in-
vestigations and that depend on how tA and pA were estimated, mainly:

a) In which sub-spaces are the different vectors located?
b) Can explained variances be calculated in a meaningful way?
c) What are the orthogonality properties of the deflation?
d) What are the rank reducing properties of the deflation?
vember 2020
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In this paper, we put special emphasis on the study of the sub-spaces
of the estimated parameters in connection with the deflation and its
orthogonality properties. The computation of explained variance in sPCA
was one of the topics in the first part of the series [5], and the rank
reducing properties are not treated here.

Deflation in sPCA can be complex, as shown by Mackey [1]. Deflation
approaches that work properly in PCA do not necessarily do so in sPCA.
Two popular forms of deflation in sPCA are projection deflation and the
deflation proposed by Mackey. Projection deflation and Mackey’s
deflation share similar properties. In the rest of the present paper, we will
generally refer to both projection deflation and Mackey’s deflation as
“loading deflation”.

There exist alternative, seldom used, strategies for sPCA deflation or
orthogonalization that present different properties from loading defla-
tion: these include the orthogonalization approach in PMD [2], the use of
scores for deflation, or the projection of the sparse loadings to the
row-space for subsequent deflation. The study of those methods is outside
of the scope of this paper.
2.1. Projection deflation

Considering an arbitrary vector pA 2 RM , the data matrix XA can be
deflated for pA with Eq. (1) using a projection step, so that

tA ¼ XApAðpT
ApAÞ�1

: (2)

The matrix XAþ1 can be explicitly written:

XAþ1 ¼ XAðI� pAðpT
ApAÞ�1pT

AÞ: (3)

The matrix I� pAðpT
ApAÞ�1pT

A, where I is the identity matrix of
appropriate size, projects orthogonally the rows of XA onto the space
orthogonal to pA. A property of this solution is that XAþ1pA ¼ 0̱, which is

due to the orthogonal regression step. The projection deflation is a form
o1f orthogonalization.1
2.2. Mackey’s deflation

Mackey’s deflation follows a sequential Gram-Schmidt
decomposition:

qA ¼ BApA; (4)

qA ¼ qA

� ffiffiffiffiffiffiffiffiffiffi
qT
AqA

q
; (5)

XAþ1 ¼ XAðI� qAq
T
AÞ; (6)

BAþ1 ¼ BAðI� qAq
T
AÞ; (7)

where B1 is initialized to the identity matrix of appropriate dimension.
For the first component, q1 equals the normalized sparse loading p1. For
subsequent components, qA is computed to be in the space orthogonal to
all previous sparse loadings {1,…, A � 1}. Mackey’s deflation can be re-
expressed as:

tA ¼ XAqA; (8)

and

XAþ1 ¼ XA � tAqT
A: (9)
1 Orthogonalization can also be done in the other mode: pTA ¼ ðtTAtAÞ�1tTAXA.
Then it can be shown that tA is orthogonal to XAþ1 (XT

Aþ1tA ¼ 0̱).

2

For the first component, Eqs. (8) and (9) in Mackey’s deflation equal
Eqs. (2) and (1) in projection deflation, provided p1 is of unit length in
the latter.

3. Sparse PCA algorithms using loading deflation

We consider two sPCA algorithms based on loading deflation: the
Penalized Matrix Decomposition (PMD) by Witten et al. [2] and the
Group-wise PCA (GPCA) by Camacho et al. [7].

3.1. Penalized Matrix Decomposition

The PMD extends a rank one Singular Value Decomposition (SVD) by
considering sparsity constraints in both the right and left vectors in the
matrix factorization. Restricting this framework to constrain only the
loadings, the sparse PCA problem is formulated as:

fp̂P
A; û

P
Ag¼ argmaxpA ;uA uT

AXApA s:t: kpAk1 � c2; kpAk22 � 1; kuAk22 � 1;

(10)

where the superscript P refers to PMD and p̂PA is obtained using a soft-
thresholding operator and subsequently ûPA is obtained by a least
squares operation. The corresponding pseudo-singular value is obtained
as:

d̂
P

A ¼ ðûP
AÞ

T
XAp̂

P
A: (11)

After the A-th component is obtained, the deflation is performed as:

XAþ1 ¼ XA � d̂
P

Aû
P
Aðp̂P

AÞ
T
: (12)

Since ûP
A and d̂

P

A are obtained by least squares (see Appendix A for a
proof), Eq. (12) equals the projection deflation discussed before.

3.2. Group-wise PCA

While most sPCA algorithms modify the classical PCA by including
sparsity-inducing constraints or penalties with the L0 or L1 norms [8],
Group-wise PCA uses a completely different approach. It starts with the
identification of a set of G (possibly overlapping) groups of correlated
variables. Then, the GPCA algorithm computes G candidate loading
vectors, where the g-th vector can only have non zero elements associated
to the variables in the g-th group. From these G candidates, only the one
that has the largest variance of the component, that is arg maxp
(bpTXT

AXAp) for p of unit length, is retained and it is used to deflate data
matrix XA using the deflation by Mackey.

4. Deflation in sparse PCA can produce artifacts

In this section, we discuss situations in which the deflation mecha-
nism can introduce artifacts or unexpected variance in sPCA models,
which may hamper their interpretation. Problems may arise depending
on the relationship among the sparse loadings, and with the data row-
space, so that we have basically two considerations to make:

● Are all loadings orthogonal?
● Are all loadings in the data row-space?

If the answer to the first question is no, the sparse components from
the second onwards may be difficult to interpret or even misleading,
since complex interactions among components are generated by the
deflation mechanism. This is especially the case when the answer to the
second question is also no, and sparse loadings are outside the data row-
space.

In the following, we will start by describing the concepts of data
column/row-spaces and their relevance in the sPCA context. Then we
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will proceed with the description of the situation when loadings are out
of the data row-space and non-orthogonal, which represents the most
challenging but common case. Finally, we will address the case when
loadings are inside the data row-space but non-orthogonal.
4.1. Sparse vectors and the data column and row-spaces

The column-space R(X1) of an N � M matrix X1 is the span of the
columns of X1, hence all vectors b 2 RN which can be written as b ¼ X1a
for arbitrary a 2 RM . Similarly, the row-space of X1 are all the vectors in
the form d ¼ XT

1c, for d 2 RM and c 2 RN , and it is denoted by RðXT
1Þ. It is

a well-known property of a PCA of X1 that the resulting scores and
loadings are in the column, respectively row-space, of X1 [9].

Let us focus on the row-space RðXT
1Þ since in most cases constraints to

obtained sparse PCA solutions are imposed on the loadings. Consider two
cases:

1. Low-dimensional case, when M � N
2. High-dimensional case, when M > N

Since X1 contains measured data, due to the presence of measurement
noise, we assume X1 to be of full rank, meaning the rank equals the size of
the smallest dimension.

In the low-dimensional case, the rank of X1 is M and thus RðXT
1Þ ¼

RM . Hence, all vectors of sizeM inRM are in the row-space of X1, and this
includes also sparse loadings. In the high-dimensional case, the rank ofX1

is N and RðXT
1Þ⊂RM and, as a consequence, some vectors of size M are in

the row-space of X1 and some are not. In this situation, sparse loadings
can be outside the row-space of X1 as a result of constraints/penalties
implemented to arrive at sparse solutions. See a proof in Appendix B.

From Eqs. (2) and (8), it also follows that t in sPCA is always in the
column-space of X1.
4.2. Non-orthogonal loadings out of the data row-space

As already discussed, the sparse loadings in sPCA can be outside the
row-space of the data, X1, from which they are fitted. As a matter of fact,
this is expected to happen in any data set with measurement noise. It
should be noted that going outside the original data space is an expected
consequence of using any form of regularization or constraint in the
model, since this modifies the data fitting towards some pre-imposed a
priori structure (such as sparsity). Provided that these a priori assumptions
are realistic, and data support them to a reasonable level, going outside
the data space is not a problem.

A sparse component will get outside the row-space RðXT
1ÞwhenM>N

and X1 itself is not sparse, which is the case when data contains noise
(likely the most general case) or because we employ sPCA as a means to
simplify the interpretation in non-sparse data. Even when X1 is sparse,
the component can get outside the data row-space (we will see this sit-
uation in the simulation examples).

When a loading p1 is outside RðXT
1Þ and X2 is obtained from loading

deflation (either projection or Mackey’s deflation), it holds that
RðXT

2Þ ⊈ RðXT
1Þ. Hence, we introduce new directions (artifacts) in X2

which were not present in the original data X1. This may be undesirable
because these artifacts might end up in components obtained from X2,
and thus lead to interpretations of the data that are incorrect.

To find the discrepancy between residuals after the deflation of A � 1
components, XA, and the original data X1, the residuals OA of projecting
RðXT

AÞ onto RðXT
1Þ can be considered:

OA ¼ ðI�XT
1 ðXT

1 Þ
þÞXT

A; (13)

where ðI�XT
1ðXT

1ÞþÞ describes the projection to the space orthogonal to
the row-space of X1. We refer to OA as the spurious residuals. If they are
3

not null, this means artifacts were introduced in the residuals XA after
deflation due to the departure of the row-space.

However, the fact that spurious residuals exist does not mean that
subsequent components are affected by artifacts. To measure the amount
of artifacts, that is, the amount of variance in a component that can not be
attributed to the original data andmust hence be considered spurious, we
can use the following expression:

ÔAþ1 ¼ ðI�XT
1 ðXT

1 ÞþÞðXT
AðXT

AÞþÞpAþ1t
T
Aþ1: (14)

Eq. (14) answers to the question of how much variance of component

pAþ1, represented by pAþ1t
T
Aþ1, lies in the row-space of XA, ðXT

AðXT
AÞ

þÞ, and
not in the row-space of X1, ðI � XT

1 ðXT
1 Þ

þÞ. This can be interpreted as how
much of pAþ1 is actually built from the spurious residuals in Eq. (13), and
therefore correspond to artifacts. A detailed description of the rationale
behind Eq. (14) can be found in Appendix B.3.

The percentage of artifacts of the component A þ 1 can be computed
as:

VarAAþ1 ¼ 100� trðÔT

Aþ1ÔAþ1Þ
trðpAþ1t

T
Aþ1tAþ1pT

Aþ1Þ
: (15)

This is a useful diagnostic statistic, as we will illustrate in the ex-
periments, to identify the amount of artifacts contaminating components.
If the percentage of artifacts is large, care should be taken to understand
how these would affect the interpretation component A þ 1.

4.3. Non-orthogonal loadings in the data row-space

Even for the unrealistic situation of data generated with a perfect
(noise-less) multi-component sPCA model, if the sparse loadings overlap,
sPCA may still be difficult to interpret. We say two sparse loadings
overlap when they have non-zero loadings in at least one common var-
iable. A multi-component sPCA model with overlapping components
inherits from PCA the rotational ambiguity: we can rotate several load-
ings maintaining the same performance in the loss function. A trivial case
to see this is when two sparse loadings have their non-zero elements in
the same, exact variables. Then, they can be rotated with orthogonal
rotation methods within the space of those variables, and the model loss
will remain the same. The study of rotational ambiguity in sPCA models
is outside of the scope of this paper, but it deserves future attention.

On the other hand, again in the optimistic situation of data generated
with a perfect (noise-less) multi-component sPCA model, even if a sparse
loading accurately matches a true component, loading deflation can
produce a transfer of variance among components that may affect
interpretation. This was observed for the first time in the case of multi-
block PLS [10]. We will make use of a toy example to illustrate the
problem. Let us take a data set X1 following a perfect sPCA model:

X1 ¼ TPT; (16)

with:

T ¼ 1=c �½xa; xb�; (17)

and

P ¼
�
c c 0
0 c c

�T
; (18)

where for convenience xa and xb are columns vectors i.i.d. following a
standard normal distribution and c ¼ ffiffiffi

2
p

=2. This results in:

X1 ¼ ½xa; xa þ xb; xb�: (19)

To give a little of context to this example, imagine that data comes
from a treatment-control experiment, that xa represents uninteresting
variance while xb contains the level of disease, and that we are looking
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for biomarkers for the effectiveness of that treatment. Therefore, the
second and third variables in X1 can be potential biomarkers since they
contain xb.

It can be seen that the first loading p1 ¼ [c, c, 0]T belongs to RðXT
1Þ,

and therefore we are not in the situation described in the previous sub-
section, where loadings were outside the data row-space. Let us perform
the deflation over X1 using the real loading. First, we estimate the scores
with Eq. (2) and residuals with Eq. (3):

t1 ¼ 2c � xa þ c � xb; (20)

and

X2 ¼ X1 � ½c � t1; c � t1; 0�: (21)

Operating:

X2 ¼ ½1 = 2 � xb; 1 = 2 � xb; xb�: (22)

Notice this derivation of the residuals of the first component is
equivalent with Mackey’s deflation.

Eq. (22) shows that xb has been transferred to the first column of the
deflated data, when it was not originally there. This affects the compu-
tation of subsequent sparse components, and their interpretation may be
misleading, since it can lead us to think that the first variable is related to
the disease of interest.

Generally speaking, this transfer effect introduces variance of some
components (or of some groups of variables) in others in the deflation
process, like it happens among blocks in multi-block models [10]. Like
the artifacts in the previous section, this transfer only happens for
overlapping sparse loadings, and in particular when loadings are
non-orthogonal.

In principle, given that in this case the artifacts are not the result of
departing from the data row-space, we cannot detect this problem using
the diagnostic statistic in Eq. (15). While this situation is highly unlikely
in real practice, the take-away message is that care should be taken for
over-interpreting sPCA models where loadings in different components
overlap.
2 In our experiments, values of AngDA below 20ordm; seem reasonable, but
more research is needed to determine reasonable thresholds for different data
structures.
3 Again, in our experiments, values of VarA below 20% seem reasonable, but

more research is needed also in this point.
4.4. Identification of problems in practical situations

To quantify the problems deriving from the limitations in loading
deflation sPCA, we define a set of diagnostic statistics. These statistics are
4

intended to provide a measure of the quality of the model in practical
applications with respect to the amount of distortion/artifacts intro-
duced, and are defined as follows:

● AngDA: The angle (in degrees) of the A-th sparse loading to the row-
space of X1. This parameter is between 0 and 90�.

● VarAA: The percentage of captured variance of the A-th component
that lies outside the data row-space RðXT

1Þ according to Eq. (15). This
parameter is between 0 and 100.

● RSS: The residual sum-of-squares normalized by the total sum-of-
squares of the data according to Eq. (23). This parameter is often
used as a model goodness criteria in sPCA [6,11].

RSS ¼ trðETEÞ
trðXTXÞ (23)

While the RSS is a commonly used statistic in sPCA, as far as we know,
the other two statistics have not been used before in this context.

In Fig. 1, we propose a number of steps intended to safely interpret
sPCA models obtained with loading deflation. The first step is to select
the number of components and non-zero elements following established
strategies, see for instance Ref. [2,12]. Subsequently, the AngDA statistic
is computed per component. Components which loadings do not overlap
with any other can be interpreted individually, using e.g. one-component
bar charts of scores and loadings. Care should be taken with components
of very high AngDA,2 since this may spot situations in which the sparsity
induced by the model is not supported by the data. For overlapping
loadings, the correlation should be computed. If the loadings of two
components are orthogonal, traditional score and loading plots can be
safely used for interpretation, again taking the AngDA values into
consideration. If loadings are not orthogonal, we are in the situation of
higher risk of artifacts. Therefore, we suggest to compute the VarA sta-
tistic, and only trust the interpretation of components where artifacts
remain reasonably low.3
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5. Material and methods

The numerical results in this paper are based on a number of simu-
lations and several variants of the sPCA algorithms outlined in Section 3.
Simulations and algorithms are inherited from the first paper of the series
[5] to which we refer the reader for more details.

5.1. Algorithms for sparse PCA2

The original definitions of PMD [2] and GPCA [7] differ in how they
fit components, as discussed in Section 3, and in how they deflate, PMD
using projection deflation and GPCA Mackey’s deflation. These steps can
be interchanged: we can use the PMD optimization function (10) coupled
with Mackey’s generalized deflation and GPCA with the projection
deflation. Thus, we consider the following variants of sPCA based on
deflation:

1. The PMD algorithm [2] with projection deflation (PMD-PD) and a
modified version using Mackey’s generalized deflation (PMD-M).

2. The GPCA algorithm [7] using projection deflation (GPCA-PD) and
Mackey ’s generalized deflation (GPCA-M).

For comparison, we also add the following sPCA techniques not based
on loading deflation and that are described in the first paper of the series
[5]. These will serve as a baseline to show the consequence of the
introduction of artifacts by loading deflation:

1. PMDwith scores orthogonalization [2] (PMD-O), instead of deflation.
2. The sPCA algorithm by Zou et al. [6] (SPCA-Z), which uses a simul-

taneous approach for model fitting.

5.2. Simulations

5.2.1. Orthogonal spectra
The orthogonal spectra are shown in Fig. 2, together with their

approximation by the selected set of sPCA methods. The data set is
generated from five mixtures of two compounds where the concentra-
tions of the compounds (T) are represented at the top level of the figure
and the pure spectra of the compounds (P) at the lower level of the figure.

No noise is introduced in the data, which is purely rank two. Loadings
follow a shape of spectra, are intentionally non-negative and non-
overlapping (thus orthogonal) and sparse. All sPCA methods can model
this noise-free data set with perfect accuracy, which reflects an absence of
rotational freedom.

5.2.2. Non-orthogonal spectra
The non-orthogonal spectra are shown in Fig. 3 with their approxi-

mation by the selected set of sPCA methods. The data set is generated
from five mixtures of three compounds. There is some overlap (common
variables/wavelengths) in the spectra of the compounds. Again, no noise
is introduced in the data, which is purely rank three. Scores for the first
component are not orthogonal to the other two, and they are all non-
negative and sparse. Note that no sPCA method considered in this se-
ries can model this noise-free data set with perfect accuracy, even though
data was simulated with a perfect sPCA model following Eq. (16).

5.2.3. Monte Carlo simulations
In order to generalize the results of the spectra examples, we

randomly generated a set of 100 data sets in which the components can
have a random number of non-zero loadings and the values of the scores
and loadings are also randomly selected. Each data set X is generated
with dimension 50 � 200 following a 5-component model with no noise.
This means that the data is exactly rank five. The loading vectors have
different degree of sparsity, contain both positive and negative values
and are usually correlated because non zero elements can overlap. The
scores can be non-orthogonal, are non-sparse and contain either positive
5

or negative values.

5.2.4. Selection of metaparameters
All sparse algorithms considered require the setting of one or more

metaparameters controlling the level of sparsity attained by the model.
PMD models and SPCA-Z, which allow for the selection of the number of
non-zeros elements, were set to meet the true number in the data gen-
eration. We set the GPCA models to meet, on average, the same level of
sparseness as the other methods. In this way all methods can be fairly
compared.

5.2.5. Accuracy statistics
Besides diagnostics in Section 4.4, which can be applied to real life

cases, we can define additional statistics that can be applied on simulated
data where the underlying data generation procedure is known. These
are:

● AccLA: The accuracy of identification of the sparse loadings, measured
as the congruence between the true loadings and their estimates. This
measure is akin to the absolute value of the Tucker’s φ congruent
coefficient [13,14], and takes values between 0 and 1.

● AccSA: The accuracy of identification of the sparse scores, measured
as the congruence between the true (known) scores and their esti-
mates normalized to length 1. This measure is akin to the absolute
value of the Tucker’s congruent coefficient and varies between 0 and
1.

5.3. Experimental data

We consider 23 mixtures prepared by mixing 5 chemicals with
varying concentrations according to a predetermined design (see Table 1
in the supplementary material of the original publication [15]). The
chemicals were two peptides (valine-tyrosine-valine and
valine-tyrosine-valine, a single amino acid (phenylalanine), a sugar
(maltoheptaose) and an alcohol (propanol). The 23 mixtures and the five
pure chemicals were prepared in aqueous phosphate buffer and acquired
using an NMR spectrometer operating at a nominal frequency of 500
MHz. For details on sample preparation and NMR experiments we refer
the reader to the original publication. Data were downloaded from www
.models.life.ku.dk/joda/prototype. The original high resolution NMR
data was binned to reduce dimensionality. The final data matrix of the
mixtures has size 23 � 634 and the pure chemical compound matrix has
size 5 � 634. Spectra are scaled to have maximum equal to 1 for ease of
visualization. Analysis has been performed on the original bucketed
values.

5.4. Software

All calculations have been performed in Matlab using the Matlab
MEDA-toolbox [16] which is freely available at the address:
github.com/josecamachop/MEDA-Toolbox. The VarAA and angDA sta-
tistics can be calculated using the function sparseart.m which takes as
inputs the loadings and the scores calculated with any given sparse PCA
algorithm.

6. Results

6.1. Simulation

We calculated these statistics for the sparse models fitted to the
orthogonal spectra, the non-orthogonal spectra and the Monte Carlo
simulations.

Table 1 shows the results for the orthogonal spectra. Since the
example has two components, AngDA, AccLA and AccSA, which are
computed from the model part of the factorization, go from A ¼ 1 to A ¼
2, while VarAA, which is computed from the residuals, takes A ¼ 2. The

http://www.models.life.ku.dk/joda/prototype
http://www.models.life.ku.dk/joda/prototype


Fig. 2. Orthogonal spectra example: true data and selected sPCA methods. True and approximate concentrations (scores) of the five mixtures are represented at the
top of the figures. Pure and approximate spectra (loadings) for twenty wavelengths are at the bottom of the figures. Please, refer to Ref. [5] for more details.
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AngDA reflect all sPCA loadings are inside the row-space. Moreover, as
expected for their orthogonality, no artifacts (VarA2) are found in the
components, and model present a perfect fit (RSS) and accuracy (AccLA
and AccSA).

Table 2 shows the results for the non-orthogonal spectra. Since the
example has three components, AngDA, AccLA and AccSA go from A ¼ 1
to A¼ 3, while VarAA goes from A¼ 2 to A¼ 3. According to the AngDA,
all sPCA loadings are outside the row-space, with a maximum angle
above 45� degrees of deviation. Generally speaking, this is an expected
behavior of sPCA models, since they use some form of penalties or con-
straints. However, in this case the data is noise-free and follows a perfect
sparse component model. Yet, the first component gets outside the data
row-space. The first component is shown in Fig. 3 and it is simulated to
have non-zero loadings in the first 10 variables. However, none of the
sPCA algorithms select the correct 10 variables in the first component,
probably as a result of rotational ambiguity and/or algorithmic inac-
curacies. This has more dramatic implications in deflation-based
methods, because residuals get outside the data row-space and artifacts
are generated within the following components. Artifacts can corrupt up
to 50% (VarA2) of the variance of components fitted after the first sparse
loading was deflated, and close to 80% (VarA3) after the first two load-
ings. This does not affect sPCA algorithms that do not use deflation: while
we can still compute VarAA for them, their value remains low and does
not reflect contamination with artifacts. We can generally see a higher fit
(lower RSS) in deflation methods and a direct relationship between the
generation of artifacts VarAA and the accuracy of the subsequent loading
(AccLA). Moreover, for the deflation-based approaches, accuracy tends to
deteriorate with the order of the component, something that does not
happen for SPCA-Z or PMD-O. The accuracy of the scores (AccSA) re-
mains similar among the approaches, except for the third component in
deflation-based PMD. This may be the consequence of the loss of
6

accuracy in the third loading. As a whole, we can see a direct relationship
between the artifacts and the loadings accuracy (poorer for deflation-
based approaches) which interestingly comes with a higher fit. The re-
sults in Table 2 reflect very well what is observed in Fig. 3.

Fig. 4 generalizes the previous results using the Monte Carlo experi-
ment. Recall that this example has five sparse components. Fig. 4a shows
that after the five are obtained, SPCA-Z and PMD-O remain close to the
row-space, while the deflation-based approaches get almost completely
outside. We see that the latter tend to leave the row-space increasingly
with the number of components, since the angle (AngDA) is monotonous
increasing. This is consistent with what observed in the non-orthogonal
spectra example. The percentage of artifacts induced by deflation-based
approaches is worrisome, reaching occasionally the 100% for the
fourth and fifth components. Accuracy in loadings and scores is much
worse in deflation-based approaches, especially in higher order compo-
nents as a result of the high percentage of artifacts. Therefore, for noise-
free random data and optimal selection of metaparameters, we can
conclude that non-deflation approaches outperform those based on the
deflation. Interestingly, again, this improvement does not correlate with
fit: sPCA variants with high fit are less accurate. This means that the
popular approach to assess the goodness of sPCA models based on
captured variance [6,11] is not generally valid.
6.2. Real example

To show the problems and limitations arising when using deflation
based approaches to extract higher order sparse components we analyzed
an experimental data X containing 23 mixtures of 5 different pure
chemical compounds. The NMR spectra of the mixtures are given in
Fig. 5A, and the spectra for the pure compounds are shown in Fig. 5B.

The data matrix X can be then decomposed using an sPCA model. We



Fig. 3. Non-orthogonal spectra example: true data and selected sPCA methods. True and approximate concentrations (scores) of the five mixtures are represented at
the top of the figures. Pure and approximate spectra (loadings) for twenty wavelengths are at the bottom of the figures. Please, refer to Refs. [5] for more details.

Table 1
Performance statistics of sPCA variants for the orthogonal spectra.

PMD-PD PMD-M GPCA-PD GPCA-M SPCA-Z PMD-O

AngD1 0 0 0 0 0 0
AngD2 0 0 0 0 0 0
VarA2 0 0 0 0 0 0
RSS 0 0 0 0 0 0
AccL1 1 1 1 1 1 1
AccL2 1 1 1 1 1 1
AccS1 1 1 1 1 1 1
AccS2 1 1 1 1 1 1

Table 2
Performance statistics of sPCA variants for the non-orthogonal spectra. * Statistic
VarAA is non-applicable to (meaningless for) sPCA methods not based on defla-
tion, but it can still be computed.

PMD-
PD

PMD-
M

GPCA-
PD

GPCA-
M

SPCA-Z PMD-O

AngD1 10.6 9.1 9.6 9.6 9.3 9.1
AngD2 19.1 15.0 21.5 21.5 12.4 15.2
AngD3 46.9 36.7 27.5 27.5 11.9 4.0
VarA2 20.4 17.2 51.1 51.1 NA (13.4)* NA (7.4)*
VarA3 77.5 68.1 37.9 37.9 NA (12.3)* NA (2.3)*
RSS 0.020 0.015 0.019 0.019 0.042 0.032
AccL1 0.975 0.980 0.983 0.983 0.979 0.980
AccL2 0.915 0.931 0.818 0.818 0.916 0.925
AccL3 0.478 0.602 0.859 0.859 0.953 0.987
AccS1 0.997 0.996 0.995 0.995 0.991 0.996
AccS2 0.997 0.999 0.991 0.991 0.993 0.996
AccS3 0.884 0.907 0.996 0.996 0.965 0.913
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used the PMD algorithm [2] with projection deflation (PMD-PD) to
extract sparse loadings under the assumption that each sparse loading
vector should represent a different chemical compound, i.e. the spectra of
the NMR. Note that the pure spectra are overlapping. Fitting a sPCA
model with the PMD requires to determine a priori the level of sparseness,
i.e. the number of non-zero loadings to retain for each component. In
real-life applications the level of sparsity is not known since the data
generation mechanism is also not known, especially in the case of com-
plex biological data. In this case, however, the data structure is known
and the most convenient sparsity can be inferred from the pure spectra.
Basically, we first sorted the pure spectra in descending order of variance
and then computed the number of variables with values larger than 0.05
for each pure spectra assigning it as the sparsity level for the first, second,
etc component. The number of non-zero loadings for each component
was set to 38, 31, 28, 37, and 12.

Since the data is a pure rank-five system, we fit a sparse model with
five components. The sparse loadings are given in Fig. 5C, side to side to
the pure spectra (panel B). The first and the fifth components agree,
albeit not perfectly, with the fourth and the fifth pure spectra as shown in
Fig. 5D, but for the other components there is little to no agreement with
the pure spectra. Also, there is not a good recovery of the true concen-
tration matrix, as shown in Fig. 5E with the AccSA statistics. These
problems are further summarized by the two statistics AngDA and varAA,
which are given in Fig. 5F: components one and five show reasonably low
statistics, which are higher in the case of the other components. The
value of varA1 is by definition 0. The value of varA5 is reasonably low,
given 4 components have been deflated before.

For real life applications we suggest to report the two statistics AngDA
and varAA for any deflation-based sPCA model and a cautious interpre-
tation of the sparse components whenever those statistics are excessively
large.



Fig. 4. Box Plots of the statistics for the Monte Carlo simulation.
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7. Conclusion

In Part I of this series, we described limitations of several state-of-the-
art Sparse Principal Component Analysis (sPCA) algorithms when
modeling noise-free data, simulated following an exact sPCA model. In
this second paper, we show both theoretically and numerically that
loading deflation can lead to the inclusion of artifacts or unexpected
variability from the second component onwards. This may result in a
wrong interpretation of the sPCAmodel. We also provide diagnostics that
can be used to detect the problem in practical applications: the angle with
the data row-space (AngDA) and the percentage of artifacts (VarA).
Furthermore, we propose a procedure to safely interpret sPCA models
with loading deflation using these statistics. We suggest to report the
statistics together with the sparse models in the literature where inter-
pretation is the modeling goal.

The described problems do not affect sparse loadings that are
orthogonal. One sub-class of orthogonal loadings are sparse loadings that
do not overlap (do not share common variables). It is useful to know in
practical applications that sPCA models with non-overlapping loadings
8

can be safely identified with deflation based algorithms.
Finally, as we showed in the examples, there is an interplay between

rotational ambiguity in sPCA models and the introduction of spurious
variance due to deflation. Future work is needed to establish how rota-
tional ambiguity can affect the interpretation of sPCA models in general.
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Fig. 5. Sparse PCA analysis of a data sets containing 23 mixtures of 5 pure chemical compounds. The sparse PCA model is obtained using the PMD algorithm [2]. A)
NMR spectra of the 23 chemical mixtures. B) NMR spectra of the 5 pure chemical mixtures (P1: tryptophane-glycine, P2: phenylalanine, P3: maltoheptaose, P4:
valine-tyrosine-valine, P5: propanol). C) Loading of the 5 sparse components. D) Agreement (AccL) between the pure spectra and the sparse loadings. E) Agreement
(AccS) between the true concentration matrix and the model scores. F) Summary of AngDA and VarA statistics summarizing departure from the data row-space and
variance due to artifacts. The pure spectra are ordered following the congruence of the loadings of the sparse PCA model given in panel D. x-axis for panel A, B and C
indicates the NMR variable index. Y-axis is arbitrary units.
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Appendix A. Deflation in PMD

Reference [2] describes the sPCA particularization of the more general PMD as an algorithm that follows Eq. (10) and where p̂PA is obtained by
soft-thresholding. Given p̂PA, Eq. (10) can be re-stated as:

ûP
A ¼ argmaxuA uT

AXA�1p̂
P
A; s:t: kuAk22 � 1: (A.1)

The least squares solution is given by the Lagrange method, defining function:

F ¼ uT
AXA�1p̂

P
A þ λðuT

AuA � 1Þ; (A.2)

and solving for ∂F
∂uA

¼ 0 and ∂F
∂λ ¼ 0. The former leads to the expression:

ûP
A ¼ XA�1p̂

P
A

λ
; (A.3)

while the latter simply sets ûPA to unit length, that is, sets λ ¼ kXA�1p̂PAk2:



J. Camacho et al. Chemometrics and Intelligent Laboratory Systems 208 (2021) 104212
ûP
A ¼ XA�1p̂

P
A

^P
: (A.4)
kXA�1pAk2

Subsequently, the least squares solution, given p̂P
A and ûP

A, of loss:

d̂
P

A ¼ argmaxdA kXA�1 � dAû
P
Aðp̂P

AÞ
Tk22 (A.5)

is derived from:

∂

���XA�1 � dAû
P
Aðp̂P

AÞ
Tk22

∂dA
¼ 2 �ðdA � p̂P

AðûP
AÞ

T �XT
A�1ÞûP

Aðp̂P
AÞ

T ¼ 0: (A.6)

yielding Eq. (11).

Appendix B. Sparse vectors and data column/row-space

Appendix B.1. Proofs of Case 1: Low-dimensional case M < N

Assuming data with noise, it holds that RðXT
1Þ ¼ RM . Since the rows of X2 are M-dimensional it holds that RðXT

2Þ⊆RM and thus RðXT
2Þ⊆RðXT

1Þ. The
row-wise deflation can be written as X2¼X1(I�ppT) assuming that kpk2¼ 1, for convenience andwithout lack of generality. Hence,XT

1 ¼XT
2 þ ppTXT

1 .
Both R(p) and RðXT

2Þ are in RðXT
1Þ and RðpÞ \ RðXT

2Þ ¼ 0, thus RðXT
1Þ ¼ RðXT

2Þ � RðppTÞ, where the symbol � indicates the direct sum. Consequently,
dimðRðXT

1ÞÞ ¼ dimðRðXT
2ÞÞ þ dimðRðppTÞÞ or M ¼ (M � 1) þ 1 since dim(R(ppT)) ¼ 1. Thus, the row-deflation ’peels of’ dimensions of X1 one by one.

Appendix B.2. Proofs of Case 2: High-dimensional case N < M

There are two possibilities: RðpÞ⊆RðXT
1Þ (case 2a) or RðpÞ ⊈ RðXT

1Þ (case 2b). The analysis of case 2a runs along the same lines as that of case 1 and
will not be repeated. Case 2b goes as follows. The starting equation is againX2¼X1(I�ppT), but since RðpÞ ⊈ RðXT

1Þ it holds now that RðXT
2Þ ⊈ RðXT

1Þ. To
find the discrepancy between RðXT

2Þ and RðXT
1Þ, the residuals E of projecting RðXT

2Þ onto RðXT
1Þ can be studied and these are E ¼ ðI�XT

1ðXT
1 Þ

þÞXT
2 (where

the superscript ’þ’ indicates the Moore-Penrose (MP) inverse. Substituting in X2¼ X1(I�ppT) in this equation and working it out using the properties of

the MP inverse shows that E ¼ ðXT
1ðXT

1Þþ �IÞppTXT
1 which can be written schematically as E ¼ XT

1A� pbT . This equation shows cleary what happens in
the two different situations: if RðpÞ⊆RðXT

1Þ then RðEÞ⊆RðXT
1Þ and if RðpÞ ⊈ RðXT

1Þ then RðEÞ ⊈ RðXT
1Þ and the more p is outside RðXT

1Þ, the more R(E) will
deviate from RðXT

1Þ.

Appendix B.3. High-dimensional case: consecutive components

Let us study the subspaces where consecutive loadings lie in the high-dimensional case. Take p1 and p2, fitted fromX1 and X2, respectively. Generally
speaking, we can write p1 ¼ p01 þ p?0

1 , so that p01 is the projection of p1 onto RðXT
1Þ and p?0

1 the orthogonal part. Then, it holds:

● Rðp01Þ⊆RðXT
1Þ

● Rðp?0
1 Þ?RðXT

1Þ
● ðp01ÞTp?0

1 ¼ 0

We can interpret that:

● p01: is the part of p1 that can be trace back to the data in X1.
● p?0

1 : is the part of p1 that actually makes it sparse.

In the same way, we can write p2 ¼ p12 þ p?1
2 , so that p12 is the projection of p2 in RðXT

2Þ and p?1
2 the orthogonal part. Given that RðXT

2Þ ⊈ RðXT
1Þ in the

high-dimensional case, we can further divide p12 into its projection onto RðXT
1Þ and the orthogonal part: p12 ¼ p1;02 þ p1;?0

2 , so that at the end we have:

p2 ¼ p1;02 þ p1;?0
2 þ p?1

2 , where:

● p1;02 : is the part of p2 that can be traced back to X2 and to the data in X1.

● p1;?0
2 : is the part of p2 that can be traced back to X2 but not to X1.

● p?1
2 : is the part of p2 that actually makes it sparse.

Equations (14) and (15) are intended to quantify p1;?0
2 or, generally speaking, pA;?0

Aþ1 , as described in the main body of the manuscript.
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