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Severe acute malnutrition (SAM) is a major contributor to global mortality in children under 5 years. Mortality has
decreased; however, the long-term cardiometabolic consequences of SAM and its subtypes, severe wasting (SW) and
edematous malnutrition (EM), are not well understood. We evaluated the metabolic profiles of adult SAM survivors using
targeted metabolomic analyses.

This cohort study of 122 adult SAM survivors (SW = 69, EM = 53) and 90 age-, sex-, and BMI-matched community
participants (CPs) quantified serum metabolites using direct flow injection mass spectrometry combined with reverse-
phase liquid chromatography. Univariate and sparse partial least square discriminant analyses (sPLS-DAs) assessed
differences in metabolic profiles and identified the most discriminative metabolites.

Seventy-seven metabolite variables were significant in distinguishing between SAM survivors (28.4 ± 8.8 years, 24.0 ±
6.1 kg/m2) and CPs (28.4 ± 8.9 years, 23.3 ± 4.4 kg/m2) (mean ± SDs) in univariate and sPLS-DA models. Compared
with CPs, SAM survivors had less liver fat; higher branched-chain amino acids (BCAAs), urea cycle metabolites, and
kynurenine/tryptophan (KT) ratio (P < 0.001); and lower β-hydroxybutyric acid and acylcarnitine/free carnitine ratio (P <
0.001), which were both associated with hepatic steatosis (P […]
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Introduction
Worldwide, an estimated 16.6 million children under the age of  5 years are severely wasted (1), and 
severe acute malnutrition (SAM) remains a significant contributor to global mortality (1). As more 
children survive episodes of  SAM, there is a growing need to understand whether this early life expo-
sure is associated with long-term health risks, including the development of  noncommunicable diseases 
(NCDs). Unlike prenatal undernutrition, which has been associated with increased rates of  type 2 

BACKGROUND. Severe acute malnutrition (SAM) is a major contributor to global mortality 
in children under 5 years. Mortality has decreased; however, the long-term cardiometabolic 
consequences of SAM and its subtypes, severe wasting (SW) and edematous malnutrition (EM), 
are not well understood. We evaluated the metabolic profiles of adult SAM survivors using targeted 
metabolomic analyses.

METHODS. This cohort study of 122 adult SAM survivors (SW = 69, EM = 53) and 90 age-, sex-, 
and BMI-matched community participants (CPs) quantified serum metabolites using direct flow 
injection mass spectrometry combined with reverse-phase liquid chromatography. Univariate and 
sparse partial least square discriminant analyses (sPLS-DAs) assessed differences in metabolic 
profiles and identified the most discriminative metabolites.

RESULTS. Seventy-seven metabolite variables were significant in distinguishing between SAM 
survivors (28.4 ± 8.8 years, 24.0 ± 6.1 kg/m2) and CPs (28.4 ± 8.9 years, 23.3 ± 4.4 kg/m2) (mean ± 
SDs) in univariate and sPLS-DA models. Compared with CPs, SAM survivors had less liver fat; higher 
branched-chain amino acids (BCAAs), urea cycle metabolites, and kynurenine/tryptophan (KT) 
ratio (P < 0.001); and lower β-hydroxybutyric acid and acylcarnitine/free carnitine ratio (P < 0.001), 
which were both associated with hepatic steatosis (P < 0.001). SW and EM survivors had similar 
metabolic profiles as did stunted and nonstunted SAM survivors.

CONCLUSION. Adult SAM survivors have distinct metabolic profiles that suggest reduced 
β-oxidation and greater risk of type 2 diabetes (BCAAs, KT ratio, urea cycle metabolites) compared 
with CPs. This indicates that early childhood SAM exposure has long-term metabolic consequences 
that may worsen with age and require targeted clinical management.
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diabetes (T2D), hypertension, coronary heart disease, and stroke in adulthood (2–4), the long-term 
consequences of  SAM in early childhood are poorly understood.

Limited data link early childhood growth failure to increased cardiovascular disease risk (dyslipidemia, 
hypertension, and glucose intolerance) in later life (5). Norwegian children with below-average weight and 
BMI in early life experienced more cardiovascular events by 64 years of  age, but only after undergoing rap-
id weight rebound in later childhood (6). Childhood exposure to the Chinese famine (from 1959 through 
1962) was also shown to predict increased diabetes risk in adulthood, specifically among those who experi-
enced the most severe famine conditions (7). Similarly, adults exposed to the Biafran famine in early child-
hood had an increased prevalence of  high blood pressure (8); however, the study lacked birth weight data 
and was therefore unable to separate the effects of  fetal and infant famine exposure (8).

Acutely, SAM (defined by weight-for-height z score < –3, mid-upper arm circumference < 115 mm, and/or 
bilateral pitting edema) (9) is associated with several alterations in intermediary metabolism, normally tightly 
regulated by hormones such as insulin and glucagon. Insulin secretion is impaired during SAM (10, 11) and 
was shown to remain impaired up to 6 weeks after the body weight of children improved (12). While Mala-
wian children diagnosed with SAM had profoundly different metabolic profiles from controls after hospital 
discharge (13), we recently reported that 7 years posttreatment, their metabolic profiles were similar (14). Addi-
tionally, the 2 clinical phenotypes of SAM (severe wasting and edematous malnutrition) have different interme-
diary metabolism during the acute illness, as illustrated by differences in endogenous glucose production (15), 
lipolysis, and lipid oxidation (16). These differences have been reported to resolve with nutritional recovery 
(16). However, knowing that NCDs develop later in life, often in the context of chronic obesity, conclusions 
about persisting metabolic effects of SAM are difficult to draw based on studies in these younger cohorts.

There is a paucity of  data regarding the metabolic profiles of  adult SAM survivors. Early postnatal mal-
nutrition was associated with decreased insulin sensitivity and glucose intolerance in young Mexican men, 
independent of  birth weight (17). Conversely, Jamaican adult SAM survivors and controls were reported 
to have similar insulin sensitivity, insulin clearance, and adiponectin levels (18), but survivors of  severe 
wasting had decreased glucose tolerance and worse pancreatic β cell function than survivors of  edematous 
malnutrition (19). The 2 SAM phenotypes also showed differential patterns of  gene methylation as adults, 
particularly in immune, metabolic, body composition, and cardiovascular pathways (20), but a control 
group was not available for comparison. We therefore conducted metabolomic analyses in a subset of  these 
individuals, because while the evidence suggests greater cardiometabolic risk in some adult SAM survivors, 
both the mechanisms and the metabolic intermediaries remain poorly understood.

This study is the first to our knowledge to compare the metabolic profiles of  adult SAM survivors with 
those of  matched community participants and relate these profiles to the risk of  T2D, hypertension, and fatty 
liver disease. Survivors of  severe wasting and edematous malnutrition were also contrasted to understand if  
their metabolic presentations are divergent in adulthood. We hypothesized that adult SAM survivors, espe-
cially those who experienced severe wasting, would present with a metabolic profile that suggests greater 
cardiometabolic risk compared with unexposed controls.

Results
Participant characteristics. The clinical characteristics of  the adult SAM survivors (n = 69 survivors of  severe 
wasting; n = 53 survivors of  edematous malnutrition) and 90 community participants selected for metabolom-
ic analysis are described in Table 1. This subset of  122 adult SAM survivors were similar (with respect to age, 
sex, and BMI) to the other 194 participants with whom they were enrolled and the 297 subjects who could 
have been available for enrollment. SAM survivors and community participants had similar socioeconomic 
status, and in line with findings from the full cohort, this subset of  SAM survivors had shorter stature (P = 
0.03) and higher L/S ratio, i.e., less liver fat (P < 0.01), compared with community participants. Furthermore, 
survivors of  severe wasting weighed less (P < 0.001) and had lower BMI (P < 0.001), waist circumference (P < 
0.01), fat mass (P < 0.01), android fat (P = 0.013), and lean mass (P = 0.04) than survivors of  edematous mal-
nutrition. Also, in this subset, survivors of  severe wasting still tended toward worse pancreatic β cell function 
(IGI) compared with survivors of  edematous malnutrition (P = 0.052).

Clinical differences between survivors of  SAM and community participants were most apparent in 
men. A sex-stratified analysis showed that male survivors of  SAM were shorter (170.6 ± 7.8 cm vs. 176.0 
± 7.1 cm; P < 0.001), weighed less (63.6 ± 12.5 kg vs. 68.1 ± 9.4 kg; P = 0.03), and had lower lean mass 
(53.5 ± 7.8 kg vs. 57.5 ± 6.6 kg; P = 0.003) but had higher android-to-gynoid fat (AG) ratio (0.92 ± 0.19 
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vs. 0.85 ± 0.19; P = 0.047) and L/S ratio, i.e., less liver fat (1.23 ± 0.1 vs. 1.17 ± 0.1; P = 0.034), than male 
community participants (Supplemental Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.141316DS1). Furthermore, this “small” phenotype among male SAM 
survivors was mainly driven by those who had experienced severe wasting because they were lighter (60.3 
± 11 kg vs. 69.1 ± 14 kg; P = 0.005), with a lower BMI (20.6 [19.2–22.5] kg/m2 vs. 22.9 [20–24.8] kg/m2; 
P = 0.02) and lean mass (51.5 ± 7.6 kg vs. 56.8 ± 7 kg; P = 0.007), than survivors of  edematous malnutri-
tion (data not shown). Similar to males, the “small” phenotype was also observed in women who survived 
severe wasting because they had lower weight (64.1 ± 18 kg vs. 75.2 ± 19 kg; P = 0.027), lower BMI (23.3 
[20.2–27.6] kg/m2 vs. 29.8 [21.6–32.5] kg/m2; P = 0.026), smaller waist circumference (76.3 [70.4–88.8] cm 
vs. 90.4 [76.2–101] cm; P = 0.049), and less lean mass (38.1 ± 5.7 kg vs. 41.6 ± 5.5 kg; P = 0.02) than wom-
en who survived edematous malnutrition. Women who survived severe wasting also had a lower oDI (186, 
range 118–232, vs. 279, range 197–368; P = 0.035) and a tendency toward lower mean liver attenuation (P 
= 0.07) than women who survived edematous malnutrition (data not shown).

Metabolite detection and quantification. Of  the 143 metabolites screened by the University of  Alberta’s 
The Metabolomics Innovation Centre (TMIC) PRIME Assay and direct injection mass spectrometry 
(DIMS) with a reverse-phase liquid chromatography and tandem mass spectrometry (LC-MS/MS) system, 
130 metabolites passed the predetermined quality control cutoffs, including 13 biogenic amines, 22 amino 
acids, 14 lysophosphatidylcholines, 10 sphingomyelins and 10 phosphatidylcholines, 40 acylcarnitines, 16 
organic acids, 1 monosaccharide, and 4 other molecules (Supplemental Table 2, P = 0.077; for β-hydroxy-
butyric acid model, P = 0.052). Supplemental Table 1 presents the median concentrations of  all mea-
sured metabolites, 7 calculated summary variables (e.g., total, essential, aromatic [AAA], branched-chain 

Table 1. Clinical characteristics of study participants used for metabolomic analysis

Community 
participants (n = 90)

SAM survivors (n = 
122)

Community 
participants vs. SAM 

survivors P

Severe wasting  
(n = 69)

Edematous 
malnutrition (n = 53)

Severe wasting 
vs. edematous 
malnutrition P

M/F (n) 49/41 64/58 0.78 40/29 24/29 0.20
Age (years) 25.6 [21.6, 33.1] 25.9 [21.4, 33.7] 0.98 25 [20.2, 31.9] 28 [22.4, 34.4] 0.052
Weight (kg) 67 ± 13 67 ± 16 0.88 62 ± 14 72 ± 17 <0.001
Height (cm) 170 ± 10 167 ± 9 0.03 168 ± 9 166 ± 9 0.36
BMI (kg/m2) 22.3 [20.2, 25.1] 22.4 [19.8, 27.1] 0.90 21.4 [19.4, 23.3] 24.4 [20.7, 30.3] <0.001
Waist circumference 
(cm)

74.7 [71.1, 82.4] 75.9 [69.4, 87.4] 0.99 74.7 [69, 78.8] 78 [70.4, 95.2] 0.007

Fat mass (kg) 9.5 [4.8, 21.2] 9.99 [4.3, 24.5] 1.00 8.1 [3.8, 16.4] 16 [5.6, 31.5] 0.008
Lean mass (kg) 49 ± 11 47.1 ± 9.7 0.19 46 ± 9.5 48.5 ± 9.8 0.040
Android fat (kg) 0.66 [0.30, 1.54] 0.76 [0.28, 1.99] 0.69 0.66 [0.27, 1.2] 1.08 [0.32, 2.65] 0.013
Android-to-gynoid 
ratio

0.85 ± 0.19 0.9 ± 0.21 0.11 0.91 ± 0.23 0.89 ± 0.2 0.58

Systolic blood 
pressure (mmHg)

113 ± 11 112 ± 13 0.11 111 ± 11 112 ± 14 0.57

Diastolic blood 
pressure (mmHg)

71.6 ± 11 70.9 ± 13 0.69 70.4 ± 12 71.3 ± 13 0.70

Fasting glucose 
(mmol/L)

4.59 ± 0.53 4.62 ± 0.51 0.73 4.65 ± 0.42 4.59 ± 0.58 0.53

Fasting insulin  
(μIU/mL)

3.63 [1.47, 6.62] 3.68 [2.3, 5.93] 0.60 3.74 [2.3, 5.83] 3.54 [2.32, 6.2] 0.94

HOMA-IR 0.67 [0.30, 1.41] 0.73 [0.47, 1.16] 0.60 0.75 [0.47, 1.01] 0.68 [0.46, 1.18] 0.77
WBISI 162 [95.6, 251] 153 [107, 236] 0.81 152 [96, 211] 153 [118, 248] 0.53
IGI 8.9 [5.56, 13.6] 7.35 [4.79, 12] 0.15 5.8 [3.92, 11] 7.89 [5.41, 13.8] 0.052
oDI 326 [168, 578] 301 [173, 519] 0.41 247 [162, 438] 363 [226, 537] 0.18
MLA (HU) 63.1 ± 4.3 64.1 ± 4.5 0.17 64.6 ± 4.6 63.7 ± 4.4 0.35
L/S ratio 1.18 ± 0.11 1.23 ± 0.13 0.017 1.22 ± 0.13 1.25 ± 0.14 0.48

Variables expressed as means ± SDs where data were normally distributed and otherwise as medians and IQR: [first quartile, third quartile]. Bold text 
indicates statistically significant P values. HOMA-IR, homeostatic model assessment-insulin resistance; WBISI, whole body insulin sensitivity index; IGI, 
insulinogenic index; oDI, oral disposition index; MLA, mean liver attenuation; HU, Hounsfield units; L/S ratio, liver-to-spleen attenuation ratio.
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[BCAA], glucogenic, and ketogenic amino acids), and 13 ratio variables, such as the kynurenine/trypto-
phan (KT) ratio and the Fischer ratio. Only 2 values were below the detection range and were replaced by 
half  the limit of  detection (LOD) of  that metabolite (hippuric acid). No sample outlier or inherent cluster-
ing was detected by principal component analysis (PCA) (data not shown).

A subset of  SAM survivors are metabolically distinguishable from community participants. Several metabolite 
variables differed between SAM survivors and community participants, and overall, metabolite profiles 
could be used to distinguish most SAM cases from those of  community participants (Figure 1). While cor-
recting for age, sex, and BMI (and age and sex only), 77 metabolite variables met the feature selection crite-
ria of  both being FDR significant in univariate linear models (Figure 1A) and being selected by the sparse 
PLS-DA models using cross-validation designed to distinguish between SAM survivors and community 
participants (Figure 1B and Figure 2). Based on permutation testing, group classification by the PLS-DA 
model was better than random (P < 0.001) (Supplemental Figure 1). The mean BER based on centroid 
distance was 18% ± 0.7%, with an R2 = 0.38, and Q2 = 0.39 (indicating acceptable consistency between 
the predicted and original data) (21), while the area under receiver operating characteristic (ROC) curves 
(AUROCs) for PLS-component1 = 0.87. The results were similar when a training/test split of  the cohort 
was used; AUROC was 0.85 (95% CI 0.80–0.91) for the training set with a misclassification error of  14.6%. 
For the test set, AUROC was 0.83 (95% CI 0.71–0.95) with a misclassification error of  17.4%.

Specifically, the 77 differential variables were 16/40 acylcarnitines, 20/22 amino acids, 4/10 sphin-
gomyelins, 11/14 lysophosphatidylcholines, 7/14 phosphatidylcholines, 7/16 organic acids, and 12/20 
summary and ratio variables. Results from univariate analyses are detailed in Supplemental Table 2. The 
top 15 metabolites that best distinguished SAM survivors and community participants based on variable 
importance in the projection score are listed in Table 2 and presented in Figure 3. As seen in the correlation 
plot (Figure 2), the mean concentrations of  most amino acids, namely leucine, aspartic acid, glutamic acid, 
valine, and threonine, and related summary values (e.g., total essential amino acids, urea cycle amino acids, 
BCAAs, BCAA/AAA), were higher in SAM survivors. However, tryptophan was a notable exception as 
it was lower in adult SAM survivors compared with community participants, and this was linked to SAM 
survivors having higher KT ratios. Similarly, choline and a subset of  phosphatidylcholines, sphingomye-
lins, and lysophosphatidylcholines — PC ae C36:0, PC aa C36:0, PC aa C36:6, SM(OH) C24.1, lysoPC 
a 16:0 — were also higher in SAM survivors. In contrast, the mean concentration of  most acylcarnitines 
(including C5:1-DC, C3:1, and C14) and certain sphingomyelins and lysophosphatidylcholines [SM(OH) 
C22.1, SM(OH) C22.2, and lysoPC a 20:3] were lower in SAM survivors than in community participants. 
Additionally, the ratio of  acylcarnitine to free carnitine (C2/C0), a marker of  fatty acid β-oxidation, was 
lower in SAM survivors, as was β-hydroxybutyric acid. While the overall sparse PLS-DA model suggests 
that the metabolic profile of  many SAM survivors can be distinguished from that of  community partici-
pants, the observed fold change between groups of  individual metabolite variables was very small. Some 
SAM survivors seemed more readily distinguishable from control participants; however, this potential sub-
group was not related to SAM type (i.e., severe wasting vs. edematous malnutrition) (Supplemental Figure 
2). Additionally, while roughly 43% of  female SAM survivors and 56% of  male SAM survivors were below 
average height for the population (i.e., women < 160.8 cm, men < 171.8 cm), SAM survivors of  either 
sex who were below average height and those who were at or above average height had similar metabolic 
profiles (data not shown).

Survivors of  SAM have similar metabolic profiles. Our PLS-DA models adjusted for age, sex, and BMI 
could not distinguish the metabolic profiles of  SAM survivors who experienced edematous SAM from 
those who experienced severe wasting (Figure 4). Permutation testing showed that classification of  the 2 
SAM phenotypes by the PLS-DA model was not better than random (P = 0.71). The mean BER based on 
centroid distance was 56.3% ± 0.03%, R2 = 0.063, Q2 = –0.35, and AUC for PLS-component1 = 0.76.

Similarly, age-, sex-, and BMI-adjusted univariate linear models did not identify any differential metab-
olite variable between the 2 SAM phenotypes. Results from generalized linear models additionally adjusted 
for birth weight or income were also nonsignificant for all metabolites tested (data not shown).

Specific metabolite variables are associated with cardiometabolic risk factors. Metabolite variables that dif-
fer with SAM exposure and are related to cardiometabolic risk were tested for association with fat 
mass, mean diastolic pressure, mean systolic pressure, HOMA-IR, WBISI, oDI, and estimates of  liver 
fat while adjusting for age, sex, and BMI. Box plots of  these selected metabolite variables (i.e., BCAA/
AAA ratio, KT ratio, urea cycle metabolites, choline, betaine, glutamic acid, C2/C0, β-hydroxybutyric 
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acid) are presented in Figure 3. After accounting for multiple testing, we found that both β-hydroxybu-
tyric acid and C2/C0 were associated with measures of  liver fat (Figure 5). These variables were highly 
correlated (P = 0.88, P < 0.0001) and inversely associated with both MLA (P = –0.34, P < 0.0001) 
and L/S ratio (P = –0.33, P = 0.0002). The interactive effect between SAM exposure and MLA (i.e., 
difference in slope) was tested but only tended toward significance (interaction term for C2/C0 model, 
P = 0.077; for β-hydroxybutyric acid model, P = 0.052, Figure 5). Overall, models explained a rela-
tively modest proportion of  variance. The models for β-hydroxybutyric acid versus MLA or L/S ratio 
both had an adjusted R2 of  0.21, but the partial R2 for SAM exposure was only 0.060 (in the case of  
MLA) and 0.049 (in the case of  L/S) (Supplemental Table 3). The C2/C0 models were slightly stronger 
(MLA, adj. R2 0.33; L/S ratio, adj. R2 0.40). However, SAM exposure still explained less than 7% of  
variance in C2/C0 (partial R2 0.058 and 0.068, respectively) (Supplemental Table 3).

Participant subclusters are driven by sex, body composition, and metabolites. To further explore participant 
subclustering in an agnostic manner, we ran a similarity network fusion (SNF) analysis (Figure 6). This 
method first builds networks of  similar participants based on each data set separately and then fuses these 
single data networks through iterations of  spectral clustering. This unsupervised method was used to inte-
grate the 3 data types available (i.e., clinical features, body composition, and metabolite variables) (Supple-
mental Table 4) and reveal participant subclusters based on the similarity between subjects.

As visualized by the split in dark (male) versus pale (female) colors in the top horizontal border of  
heatmaps, the clusters obtained from clinical features (Figure 6A) and body composition (Figure 6B) most-
ly aligned with sex (NMI, 0.40 and 0.61, respectively). Body composition clusters were mainly associated 
with measures of  adiposity (truncal fat mass, android fat mass, and total fat mass; P < 0.001) and lean 
mass (total lean mass and lean mass in trunk, leg, and arm compartments; P < 0.001). However, while men 
mostly grouped together in body composition cluster 3 (BMI 21.9 ± 2.5; fat mass 6.3 kg ± 4.2; lean mass 56 
kg ± 6.0), women were further split into 2 subclusters that differed mainly by measures of  adiposity, where 

Figure 1. Group classification of adult SAM survivors and age-, sex-, and BMI-matched community participants based on the serum concentrations of 
metabolite variables. (A) Volcano plot displaying the differential metabolite variables measured in serum of either adult SAM survivors (n = 122) or com-
munity participants (n = 90). The horizontal x axis plots the log2 fold change of metabolite variables between groups, while the vertical y axis represents 
the negative log10 FDR-corrected P value obtained from linear models testing group differences while adjusting for age, sex, and BMI. Gray dots represent 
metabolite variables that are nonsignificant (NS); blue dots are those with FDR-corrected P < 0.05; red dots are those with both FDR-corrected P < 0.05 
and a log2 fold change between groups > 0.25 or < –0.25. Positive x values represent metabolite variables that are higher in adult SAM survivors while 
negative x values represent those that are lower. (B) Two-dimensional sparse partial least square determinant analysis (sPLS-DA) score plot showing a 
partial separation of adult SAM survivors (blue circles) and community participants (red circles) based on the serum concentrations of the top selected 
metabolite variables. Crossed circles indicate group centroids colored as per legend, and the white versus light blue zones demarcate the decision line for 
group classification. sPLS-DA was performed on standardized concentrations of metabolites that were Box-Cox transformed and adjusted for age, sex, 
and BMI. BER, balanced error rate.
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cluster 1 (n = 30) was composed of  lean individuals (BMI 19.5 ± 2.2; fat mass 10.6 kg ± 4.8; lean mass 
34.5 kg ± 4.8) while cluster 2 (n = 51) mostly grouped women that tended toward overweight and obesity 
(BMI 28.4 ± 5.1; fat mass 30.4 kg ± 10.7; lean mass 41.0 kg ± 6.4, P < 0.001). Similarity clustering based 
on metabolite variables generally split SAM survivors versus community participants (blue vs. red, NMI, 
0.33); the small subcluster of  8 participants identified (Figure 6C) is possibly related to deviations from the 
study protocol such as incomplete fasting. The integration of  all data types (Figure 6D) revealed that the 2 
most prominent participant clusters (K = 2) were strongly related to sex (NMI 0.90, K = 2 cluster 1: n = 72, 
female 99% [light gray nodes]; K = 2 cluster 2: n = 83, 99% males [dark gray nodes]). The long separating 
edges (red and yellow) between these clusters were mostly related to body composition. When participants 
were grouped into 4 clusters (K = 4), the NMI was 0.53 for the groups cross-split by both sex and SAM 
exposure. However, as seen in the alluvial plot, which traces how individuals flow between clusters split, 
the women-dominated groups contained a mix of  survivors and community participants, with K = 4 clus-
ter 2 (n = 43) containing 49% female cases and 51% community participants (light gray nodes) and K = 4 
cluster 3 (n = 32) containing 53% female cases and 34% community participants (blue nodes). However, the 
men-dominated group (K = 2 cluster 2) split along SAM exposure as K = 4 cluster 4 (n = 39) contained 87% 
male survivors (white nodes) while K = 4 cluster 1 (n = 41) contained 78% male community participants 
(dark gray nodes). Also, the similarity grouping subclusters tended to be driven by metabolic features, as 
illustrated by for example the tight net of  short blue edges between nodes of  K = 4 cluster 1 and K = 4 cluster 
4. Thus, subclusters associated with having experienced SAM in childhood were more evident in males.

Discussion
This study is one of  the first to investigate the metabolic profiles of  adults who were hospitalized with 
severe malnutrition in early childhood using targeted metabolomic analyses. As we hypothesized, the meta-
bolic profiles of  adult SAM survivors differed from community participants, and several of  the distinguish-
ing metabolite variables had recognized associations with cardiometabolic risk factors.

We report that Jamaican adult SAM survivors (age 28.4 ± 8.8 years, >20 years after hospital discharge) 
showed differences from community participants of  overall similar age, BMI, and body composition in 77 
metabolite variables measured in fasting serum. The profile differences were related to increases in most 

Figure 2. Correlation plot of the 77 retained metabolite variables in serum that best distinguish SAM survivors (n = 122) from community partic-
ipants(n = 90) based on sPLS-DA. Asterisks indicate metabolite variables that also have both an FDR-corrected P < 0.05 and an absolute log2 fold 
change > 0.25 in univariate models. AA, amino acids; FC, fold change.
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amino acids but not tryptophan; increases in choline and certain phosphatidylcholines, sphingomyelins, 
and lysophosphatidylcholines; and decreases in many acylcarnitines in SAM survivors compared with 
community participants. It is to be noted, however, that the observed fold change of  individual metabolite 
variables was very small in the fasted state. These differences might be amplified with age or after a met-
abolic challenge. Additionally, some SAM survivors were more readily distinguishable from community 
participants than others and might thus be more vulnerable to cardiometabolic risk.

In contrast, we have previously shown that younger Malawian SAM survivors (aged 9.6 ± 1.6 years, 7 years 
after hospital discharge) did not show differences in their metabolic profiles compared with community and 
sibling participants (14). Thus, the metabolic signatures linked to NCDs that we describe may start to manifest 
as SAM survivors age. Our cohort is itself  relatively young in terms of developing NCDs, yet differences that 
could set adult SAM survivors on a potentially unfavorable health trajectory were already detected. Differences 
between the 2 settings could also be linked to factors other than age, such as specific environmental exposures 

Table 2. The top 15 metabolite variables that best distinguished SAM survivors and community participants in age, sex, and BMI-
adjusted univariate linear models and multivariate sPLS-DA models

Metabolites Metabolite class Community 
participants

SAM 
survivors

SAM survivors vs. community participants

Univariate linear models VIP – multivariate  
sPLS-DA models

n = 90 n = 122 β SEM P FDR–P Component 
1

Component 
2

PC acyl–alkyl (ae) 
C36:0

Phosphatidylcholine 0.515 
[0.457–0.611]

0.768 
[0.565–
0.947]

–0.346 0.043 4.73E–14 7.10E–12 3.54 3.20

SM(OH) C22:1 Sphingomyelin 10.5 [9.15–
12.6]

8.45  
[7.25–10.6]

0.219 0.034 4.91E–10 3.68E–08 2.62 2.37

C5:1–DC 
(glutaconylcarnitine)

Acylcarnitine 0.019 
[0.016–
0.022]

0.015 
[0.013–
0.018]

0.245 0.038 1.16E–09 5.78E–08 2.59 2.34

LysoPC a C20:3 Lysophosphatidylcholine 3.63 [3.19–
3.93]

2.92 
 [2.52–3.45]

0.52 0.086 7.57E–09 1.89E–07 2.42 2.19

BCAA/AAA Ratio 1.44 [1.32–
1.54]

1.65  
[1.42–1.8]

–0.119 0.02 6.97E–09 1.89E–07 2.41 2.18

PC diacyl (aa) C36:6 Phosphatidylcholine 0.267 
[0.204–
0.342]

0.374 
[0.267–
0.482]

–0.304 0.055 8.28E–08 1.24E–06 2.40 2.17

SM(OH) C22:2 Sphingomyelin 8.73 [7.3–
10.5]

7.49  
[6.09–8.96]

0.279 0.046 5.25E–09 1.89E–07 2.38 2.16

SM(OH) C24:1 Sphingomyelin 1.13 [0.977–
1.34]

1.45  
[1.17–1.71]

–0.226 0.04 5.40E–08 1.01E–06 2.25 2.03

C3:1 Acylcarnitine 0.034 
[0.016–
0.039]

0.017 
[0.014–
0.021]

1.76 0.307 3.53E–08 7.56E–07 2.24 2.77

Aspartic acid Amino acid 19.6 [16.4–
26.6]

30.3  
[22.5–41.1]

–0.101 0.018 6.28E–08 1.05E–06 2.21 2.00

Leucine Amino acid 122 [107–136]136 [120–157] –50.4 9.48 2.64E–07 3.60E–06 2.04 1.85
LysoPC a C16:0 Lysophosphatidylcholine 70.9 [61.4–

84.3]
86.3 [72.7–

104]
–0.403 0.078 4.66E–07 5.83E–06 1.97 1.79

PC diacyl (aa) C36:0 Phosphatidylcholine 2.27 [2.05–
2.9]

2.87  
[2.27–3.44]

–0.129 0.026 1.01E–06 1.17E–05 1.91 1.73

Kynurenine/
tryptophan

Ratio 0.033 
[0.027–
0.042]

0.041 
[0.034–
0.052]

–0.12 0.024 1.56E–06 1.51E–05 1.85 1.70

BCAAs Summary variable 348 [311–
388]

386  
[351–432]

–1560 315 1.60E–06 1.51E–05 1.83 1.75

Data are presented as median [IQR]. P values from univariate models adjusted using Benjamini-Hochberg FDR. sPLS-DA was conducted on standardized 
Box-Cox–transformed variables adjusted for age, sex, and BMI. Metabolite variables were retained when stably selected in top 84 features at least 80% of 
the time across validation folds. Significance threshold: FDR-corrected P < 0.05. sPLS-DA; sparse partial least square discriminant analysis; VIP; variable 
importance in the projection. 
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(pollution, water quality, obesity, and adult dietary patterns) or differences in diagnostic criteria and treatment 
strategies. Additionally, in our previous study, more than 15% of the children were HIV-positive and more than 
31% had unknown HIV status, whereas HIV-positive individuals were excluded from this current study.

Our secondary hypothesis was that survivors of  severe wasting would have a distinct metabolic pro-
file from survivors of  edematous malnutrition, especially given that severe wasting is associated with 
lower birth weight (22). However, while survivors of  severe wasting had lower BMI, waist circumference, 
lean mass, fat mass, and android fat than survivors of  edematous malnutrition, metabolic differences 
were not found between survivors of  these 2 phenotypes. It is notable that although these young adult 
SAM survivors were not overweight generally (mean BMI < 25 kg/m2), survivors of  severe wasting had 

Figure 3. Box plots of differentially expressed metabolite variables in serum from the TMIC PRIME Assay mass spectrometry–based analysis between 
SAM survivors (n = 122) and age-, sex-, and BMI-matched community participants (n = 90). Box plots summarize medians (midline) and IQRs; circles rep-
resent outlying data points; FDR-corrected P values are presented. Gray box includes the top 15 metabolite variables that were most differential between 
groups; black box highlights differential metabolites previously associated with NCDs. Lyso PC, lysophosphatidylcholines; SM, sphingomyelins, PC aa, 
phosphatidylcholine di-acyl; PC ae, phosphatidylcholines acyl-alkyl.
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lower lean muscle mass. Thus, the observed changes in body composition between SAM phenotypes 
might not be sufficient, at this stage, to differentially influence their metabolic profiles in a way that can 
be detected with a static measure of  fasting serum. However, survivors of  severe wasting could still be at 
greater long-term risk, especially considering the link between reduced lean muscle mass and the devel-
opment of  NCDs later in life (23, 24). Additionally, we acknowledge that the effects of  aging and/or a 
metabolic challenge in this group will be important to evaluate in future studies because many of  these 
young and mostly lean participants might still either be suffering from low nutrition quality (at worst) or 
not be exposed to a sufficiently obesogenic diet.

The association between SAM exposure and adult body size and composition is sex specific. We report an inter-
action between sex, SAM exposure, and adult anthropometry and body composition. Male SAM survivors 
showed a “small” phenotype, being of  shorter stature, weighing less, and having less lean mass, while having 
a greater AG fat ratio than males from the community. This finding might have intrauterine origins as boys 
grow faster than girls from an early stage of  gestation, and this makes them more vulnerable if  their nutrition 
is compromised (25). Greater AG fat ratio and reduced lean mass in male SAM survivors might have import-
ant clinical and metabolic implications, as these factors are associated with an increased risk for metabolic 
syndrome in healthy adults (26). Additionally, they might also be at risk for later sarcopenic obesity. In keep-
ing with the idea of  greater long-term risk in male SAM survivors, Mexican men who experienced malnutri-
tion in their first year of  life were shown to be more glucose intolerant and hyperinsulinemic compared with 

Figure 4. Two-dimensional PLS-DA score plot showing group classification of adult survivors of severe wasting (n = 
69, green circles) and edematous malnutrition (n = 53, blue circles) based on the serum concentrations of measured 
metabolite variables. Crossed circles indicate group centroids colored as per legend; the white versus light blue zones 
demarcate the decision line for group classification. PLS-DA was performed on standardized concentrations of metab-
olites that were Box-Cox transformed and adjusted for age, sex, and BMI.
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controls, using OGTT (17). While female SAM survivors did not differ in body composition from females 
from the community, clustering analysis revealed that women may show more diverse body type subgroups, 
which could mask the effects of  SAM exposure. Also, this divergent sex effect could be due to BMI represent-
ing slightly different body composition in men (muscle mass per unit height) versus women (fat mass per unit 
height). These differences, particularly in height, lean mass, and body fat distribution, could impose an addi-
tional cardiometabolic risk particularly in male SAM survivors, especially if  they become obese in later life.

Metabolic profiles in relation to risk of  T2D. We questioned specifically whether metabolic perturbations 
linked to having experienced SAM in early childhood could persist and/or be associated with the car-
diometabolic risk profiles of  adult survivors.

As previously demonstrated (19), some members of  this cohort of  adult SAM survivors had similar 
insulin sensitivity and β cell function to community participants. However, this subset of  SAM survivors 
had higher concentrations of  BCAAs and AAAs, 5 of  which (isoleucine, leucine, valine, tyrosine, and 
phenylalanine) have reported associations with diabetes risk in normoglycemic individuals (27). Addi-
tionally, adult SAM survivors had lower tryptophan and an associated higher KT ratio, which has been 

Figure 5. Pairwise correlation plots. Pairwise correlation plots between concentrations of 
β-hydroxybutyric acid, acylcarnitine-to-carnitine ratio, MLA, and L/S ratio in SAM survivors  
(n = 65) and community participants (n = 69). Correlations were evaluated with nonparametric 
Spearman’s test.
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identified as a predictor of  incident T2D and coronary events, with the dysregulation of  the KT meta-
bolic pathway described as one of  the mechanisms of  insulin resistance (28). Further, SAM survivors 
had higher median concentrations of  urea cycle amino acids (arginine, citrulline, ornithine, aspartic 
acid, and urea), which have been associated with T2D (29, 30). The higher glutamic acid seen in SAM 
survivors has also been associated with both increased 2-hour plasma glucose and higher tertiles of  
HOMA-IR (31).

Furthermore, 2 phosphatidylcholine subclasses (diacyl and acyl-alkyl phosphatidylcholines) were high-
er in SAM survivors than community participants, with PC ae C36:0 showing the greatest difference. These 
structural lipids (i.e., constituents of  cell membranes) are also involved in cell signaling and metabolic con-
trol (32), and together with other choline-containing phospholipids, such as lysophosphatidylcholines and 
sphingomyelins, have been linked to increased risk of  T2D (33). Some studies report lower acyl-alkyl-phos-
phatidylcholines in subjects with insulin resistance (34), but these results were not replicated in our cohort.

Taken together, these metabolic findings could suggest greater risk of  glucose dysmetabolism and even-
tual T2D in SAM survivors, albeit in the current absence of  overtly impaired insulin sensitivity or clinical 
disease that may develop with obesity and age based on oral glucose tolerance test (OGTT) (35).

Metabolic profiles in relation to risk of  fatty liver disease. The hydrolysis of  lipid stores and the oxidation of  
fatty acids are key acute adaptive responses to SAM, evidenced by high circulating levels of  free fatty acids 
(FFAs), ketones, and even-numbered acylcarnitines (36). Ultimately, in both SAM phenotypes, hepatic 

Figure 6. Participant pairwise similarity. Participant pairwise similarity (n = 155) presented by heatmaps (left) and networks (right) generated from (A) 
clinical characteristics, (B) body composition, (C) metabolite variables, and (D) all data types integrated by SNF to form 2 or 4 (K = 2 vs. K = 4) clusters of 
participants based on the spectral clustering of similarity matrices. The alluvial plot illustrates the redistribution of participants classified into either 2 or 
4 clusters where each flow line, colored as per legend, represents the redistribution of a participant between groups. Heatmap colors indicate similarity 
between participants (dark blue, low similarity; progression toward yellow, increasing similarity). Colors in top horizontal border code for participant attri-
butes: SAM survivors (blue) versus community participants (red) and men (dark) versus women (pale). In network plots, nodes (circles) represent partici-
pants colored in gray scale by cluster assignment as per vertical border legend on right of heatmaps. Network edges (lines) represent participants’ pairwise 
similarities: as per legend, colors indicate contributing data type(s), and both edge thickness and length reflect similarity between participant pairs (i.e., 
long edges connect participants with low similarity, and short edges connect those with high similarity). Normalized Mutual Information (NMI) metrics 
assess clustering quality by indicating whether cluster assignment reflects known group labels (e.g., sex or SAM exposure); NMI values are between 0 and 
1, with 1 indicating perfect cluster alignment with group labels and 0 having no mutual information (i.e., groups are completely split across clusters). CP, 
community participant; SNF, similarity network fusion.
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mitochondrial function is reduced and associated with hepatic steatosis (37, 38). Although hepatic fat does 
accumulate during a SAM episode, it resolves completely (albeit slowly) with recovery (39). However, it is 
unclear whether any lingering metabolic perturbations could affect later hepatic fat metabolism.

Nonalcoholic fatty liver disease (NAFLD) results from either excess FFA delivery from diet or peripheral 
stores (secondary to peripheral insulin resistance) or decreased intrahepatic FFA oxidation and increased de 
novo lipogenesis (40). While SAM survivors had less liver fat than community participants, the difference was 
small, and both groups failed to meet the criteria for moderate-to-severe fatty liver (L/S < 1). However, com-
pared with community participants, SAM survivors had lower β-hydroxybutyric acid concentrations and lower 
C2/C0 (related to lower acylcarnitine, C2, concentrations). C2 and β-hydroxybutyric acid were highly correlated 
in our data and are both known to regulate β-oxidation of FFA. β-hydroxybutyric acid is a marker of hepatic 
ketogenesis after FFA oxidation, and its production rate is the major determinant of its concentration in serum 
(41, 42). Carnitine is essential for the uptake of fatty acids into mitochondria prior to β-oxidation and is known 
to be reduced in persons with NAFLD (43). Interestingly, the associations between liver fat and both β-hydroxy-
butyric acid and C2/C0 are weaker in SAM survivors compared with community participants, suggesting that 
the diagnosis of SAM might somehow diminish the association between these metabolites and liver fat.

These metabolic findings suggest that while early life SAM may limit β-oxidation, at this stage, the 
impact on the development of  NAFLD is inconclusive. This is consistent with a recent study in rodents 
where protein restriction after weaning and subsequent feeding of  a high-fat and -carbohydrate diet did not 
induce hepatic steatosis (44). However, decreased fatty acid oxidation in SAM survivors could represent 
a harbinger for later hepatic steatosis in these currently still young, lean SAM survivors. Additionally, 
the timing and severity of  the early nutritional insult (prenatal vs. postnatal) might variably influence the 
development of  NAFLD, and, because intrauterine growth restriction has been associated with subsequent 
NAFLD (45), the combined insults may be additive. Changes in metabolites other than those related to 
β-oxidation could also potentially affect the risk of  developing NAFLD. For example, the higher KT ratio 
seen in SAM survivors might be evidence of  defective indoleamine 2,3-dioxygenase activity, and this has 
been associated with liver inflammation and fibrosis (46).

Metabolic evidence of  risk of  hypertension. SAM survivors and community participants had similar systol-
ic and diastolic blood pressure. Although 20.8% of our participants had elevated blood pressure readings 
(21.3% with measured diastolic blood pressure ≥ 80 mmHg, 3.9% with measured systolic blood pressure ≥ 
140 mmHg), we did not demonstrate a significant association between any targeted metabolite and elevated 
systolic blood pressure, elevated diastolic blood pressure, or a combination of  the two. However, choline and 
choline-containing molecules have a reported association with the development of  hypertension (47), and 
both choline and phosphatidylcholine concentrations were higher in SAM survivors compared with commu-
nity participants. Several other metabolites with reported associations with elevated blood pressure ([alpha]-1 
acid glycoproteins, ref. 47; and serum free fatty acids, i.e., heptanoic, oleic, nonanoic, eicosanoic, and hexano-
ic acids, ref. 48) were not targeted for analysis in this study; thus, our findings may be inconclusive.

Limitations and strengths. This study has limitations. First, although representative of  the full cohort 
based on age, sex, and BMI, the number of  participants analyzed here included less than half  of  those 
enrolled in the main cohort; thus, certain subanalyses might be underpowered. Additionally, CT scans 
are less reliable at evaluating mild liver fat accumulation. Also, metabolites measured at fasting must be 
interpreted with some caution because their concentrations do not reflect pathway flux (increased pro-
duction versus decreased utilization). Missing data in certain variables (e.g., birth weight for community 
participants, specific dietary information, income, and L/S ratio) made it difficult to account for additional 
suspected confounders and/or include all participants for certain analyses, such as SNF. Despite these 
limitations, the study was strengthened by several factors: (a) the cohort is very well characterized with rich 
longitudinal clinical data, (b) we ensured high analytical sensitivity by using targeted mass spectrometry 
and measuring serum as opposed to plasma, and (c) data were analyzed using conventional statistical 
approaches with both supervised and unsupervised machine learning methods for feature selection, con-
trolling FDRs, mitigating overfitting, and describing general patterns. Importantly, we demonstrated for the 
first time to our knowledge that early life SAM could lead to metabolic derangements more than 20 years 
later, and these may be tracked over time to identify patients at particular risk of  developing NCDs.

Conclusions. This study is the first to our knowledge to investigate the metabolic profiles of adults who were 
hospitalized for severe acute malnutrition in early childhood. Our data provide evidence that metabolic profil-
ing can distinguish adult survivors of SAM from unexposed participants living in the same communities and 
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of similar age, sex, and BMI. Some metabolite variables that are greater in adult SAM survivors are associated 
with the risk of T2D and may be signatures of reduced hepatic fatty acid oxidation and possibly NAFLD. 
These findings should be validated further using stable isotopes that can capture pathway flux, by exposing 
SAM survivors to specific metabolic challenges and by repeating studies in older cohorts. Our findings support 
the hypothesis that persons exposed to SAM in early life have long-term metabolic consequences that could 
affect risk for NCDs, and thus, they may benefit from targeted clinical case management.

Methods
Study design/subjects. This is a secondary analysis of  the JAMAKAS Study, a cohort study that selected 
participants based on exposure to SAM in early childhood (detailed flow chart presented in Figure 7). SAM 
diagnosis was based on the Wellcome criteria (49), the most widely used classification for malnutrition up 
to 1999. Children presenting with a weight-for-age of  60%–80% and edema were diagnosed with kwashi-
orkor, here referred to as edematous malnutrition, while those with a weight-for-age less than 60% without 
edema had marasmus, here referred to as severe wasting (49).

Selection of  adult SAM survivors for metabolomics analysis. The cohort was assembled by reviewing the 
records of  all 1336 patients admitted to the Tropical Metabolism Research Unit of  the University Hospital 
of  the West Indies between the years 1963 and 1993 with a diagnosis of  SAM at age 6 months to 5 years 
(22). With an inpatient mortality rate of  3.5%, a total of  1289 surviving adults from the cohort were theo-
retically available for tracing. Using the last recorded address and name of  parents, community health aides 
and nurses were able to identify a current address for 729 adult SAM survivors; the remaining 560 members 
of  the cohort were not traced. We excluded all persons with an acute illness, using glucocorticoids, with a 
known history of  a hemoglobinopathy, or who were pregnant or lactating or unable to give written informed 
consent. Of  the 729 persons traced, a further 116 were unavailable to the study because of  refusal (n = 14), 
illness (n = 19), migration (n = 53), and pregnancy (n = 30), leaving 613 persons available for recruitment. 
Of  these, 316 adult SAM survivors enrolled in the JAMAKAS Study, and a subset of  122 SAM survivors 
submitted appropriate fasting blood samples for metabolomic analysis in the JA-MET study (Figure 7).

Figure 7. Flow chart detailing recruitment of adult survivors of SAM (n = 122) and community participants (n = 90). 
“Unable to participate” includes adult survivors of SAM who were unavailable because of migration (n = 53), illness (n = 
19), refusal (n = 14), or pregnancy (n = 30). TMRU, Tropical Metabolism Research Unit; UHWI, University Hospital of the 
West Indies; JAMAKAS, Jamaica Marasmus and Kwashiorkor Adult Survivors; JA-MET, Jamaica Metabolomics.
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Selection of  community participants for metabolomics analysis. Community participants were purposefully 
selected to be from the same socioeconomic group as SAM survivors. Community health aides recruited 
159 participants from within the same communities where each adult SAM survivor lived as follows: start-
ing on the street where the SAM survivor lived, visits were conducted house to house alternately on either 
side of  the road. If  unsuccessful, adjacent streets were similarly visited. Height and weight were measured 
in the field using a stadiometer and a digital scale that was calibrated daily. Community participants were 
matched based on age ± 5 years, sex, and BMI ± 2 kg/m2 that fell within the same BMI class as the SAM 
survivor being matched (i.e., underweight, less than 18.5 kg/m2; normal, 18.5 to 24.9 kg/m2; overweight, 
25 to 29.9 kg/m2; and obese, greater than 30 kg/m2). Like SAM survivors, community participants were 
asked about their general health status using a standardized questionnaire (50). Additional exclusion cri-
teria for community participants were a reported history of  SAM and being related to a SAM participant 
within the study. A total of  90 community participants submitted fasting blood samples for metabolomic 
analysis in the JA-MET study.

Measurements. All assessments and measurements were done contemporaneously in both SAM survi-
vors and community participants as follows.

Anthropometry. Body weight was measured to the nearest 0.1 kg using a portable scale (Seca 770). Using 
a minimum of  2 readings, height was measured to the nearest 0.1 cm using a stadiometer (Invicta) with 
the participant’s head held in the Frankfurt plane. Waist circumference was measured to the nearest 0.1 
cm using a standardized protocol, i.e., at the midpoint between the iliac crest and the lowest rib with the 
participant standing erect (51).

Body composition. Dual x-ray absorptiometry using a Lunar Prodigy machine (GE Healthcare) was used 
to perform a whole-body scan on each participant. Regions of  interest (ROIs) were demarcated to obtain 
percentage body fat, fat mass, and lean tissue for total body and regional body compartments.

Liver fat. Liver fat was estimated with established criteria validated by other groups using liver biopsy 
as the gold standard (52–54). Specifically, using a Phillips Brilliance 64-slice scanner, a single cross-section-
al 5-mm-width CT scan (of  120 kVp, 100 mA) at the intervertebral disc space between T12 and L1 was 
obtained to image both the liver and the spleen. Data obtained from CT scans were analyzed using E-Film 
software. Three ROIs were placed on the liver (posterior right lobe, anterior right lobe and left lobe), and 
1 ROI was placed on the spleen. Each ROI measured a minimum of  1 cm2 and excluded all major blood 
vessels. ROI attenuation was documented in HU. MLA was calculated using ROIs in the liver, and the L/S 
ratio was calculated using ROIs in the liver and the spleen. MLA ≤ 40 HU and L/S ratio ≤ 1 both indicate 
moderate-to-severe fatty liver.

Intra-abdominal fat. A second abdominal CT scan was taken between the L4 and L5 intervertebral disc 
space perpendicular to the scan table, which represented the abdominal area midway L3 and L4. Images 
taken from the CT scanner were analyzed with the Tissue Composition Module Beta 1.0 software package 
(Mindways). On each CT image, total adipose area (TAA) and visceral adipose tissue (VAT) were mea-
sured by QCT Pro (55). Subcutaneous adipose tissue (SAT) was calculated as follows: TAA – VAT = SAT.

Oral glucose tolerance test. After a 10- to 12-hour overnight fast, participants underwent a 75 g OGTT. 
At 0, 30, 60, 90, and 120 minutes, 5 mL of  blood was taken through an antecubital cannula into chilled 
fluoridated and heparinized tubes for plasma glucose and insulin measurements. The following indices 
were calculated:

HOMA-IR = (I0 × G0)/22.5, where G0 and I0 reflect basal (fasting) glucose and insulin in SI units (56).
WBISI = 10,000/(G0 × I0 × Gm × Im)0.5, where G0 and I0 reflect basal glucose and insulin and Gm and 

Im the mean concentrations of  glucose and insulin during OGTT.
Insulin secretion was estimated using IGI = (I30 – I0)/(G30 – G0), where I30 and I0 are insulin concentra-

tions at 30 and 0 minutes and G30 and G0 are glucose concentrations at 30 and 0 minutes.
oDI, pancreatic β cell function adjusted for insulin sensitivity = IGI × WBISI.
Targeted metabolomic profiling. Participants were asked to avoid strenuous exercise and alcohol/caf-

feine intake the day before testing and were fasted overnight for 10–12 hours. Blood samples were 
collected between 8:30 and 9:30 am and centrifuged (Allegra 6R centrifuge) for 10 minutes at a relative 
centrifugal force of  1711g at 4°C within 30 minutes of  collection. Serum specimens were immediately 
stored at –80°C for later metabolomic analysis. Metabolomic analyses were conducted at TMIC at 
the University of  Alberta, Edmonton, Canada. Samples were screened for all 143 metabolites includ-
ed in the TMIC PRIME Assay. This targeted quantitative metabolomics approach was applied using 
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both DIMS and reverse-phase LC-MS/MS performed on an API4000 Qtrap tandem mass spectrometer 
(Applied Biosystems/MDS Analytical Technologies). This assay was used for the targeted identifica-
tion and quantification of  several endogenous metabolites, including biogenic amines (P = 20); amino 
acids (P = 21); glycerophospholipids (P = 34) including lysophosphatidylcholines (P = 15), sphingomy-
elins (P = 10), and phosphatidylcholines (P = 9); acylcarnitines (P = 40); organic acids (P = 17); mono-
saccharides (P = 1); histidines (P = 2); and others (P = 4). The method combined the derivatization and 
extraction of  analytes and the selective mass spectrometric detection using multiple reaction monitoring 
pairs. Isotope-labeled internal standards and other internal standards were used for metabolite quantifi-
cation. Data analysis was done using Analyst 1.6.2.

Each identified metabolite was included in the data analysis if  it passed the following quality control 
cutoffs: (a) a mean coefficient of  variability < 25% across experimental batches, (b) >90% detected values, 
and (c) ≥LOD in at least 50% of  either study group (i.e., adult SAM survivors or community participants). 
If  a specific metabolite measure was below the detection range, the value was replaced by half  the LOD of  
that metabolite.

Statistics. The sample size was convenience based, restricted by the number of  stored serum samples 
from the cohort. The primary analysis aimed to compare the metabolomic profiles of  adult SAM survivors 
and community participants. Secondary analyses were conducted to (a) compare the metabolite profiles 
of  adult survivors who had experienced edematous malnutrition versus severe wasting and (b) relate the 
metabolic profiles to markers of  T2D, hypertension, and fatty liver disease.

PCA was used on standardized values to detect sample outliers and examine inherent clustering 
and correlations. To assess differences in metabolite profiles, we conducted both univariate and PLS 
multivariate analyses. Generalized linear regression models were performed on Box-Cox–transformed 
variables while adjusting for age, sex, and BMI. Additional models were also run with further adjust-
ment for income. Model fit was assessed through inspection of  residuals, and P values were corrected 
for multiple testing using Benjamini-Hochberg FDR. An FDR-adjusted P < 0.05 was considered signifi-
cant. The mixOmics package was used to perform sparse PLS-DA or sparse PLS regression to reveal the 
multivariate relationships between metabolites and their association to either participant groups or clin-
ical features (57). These methods implement feature selection through ℓ1 regularization (LASSO, ref. 
58) where top discriminative or associated features can be ranked. For this analysis, metabolites were 
Box-Cox transformed and adjusted for age, sex, and BMI using linear regression and using model resid-
uals for downstream analyses. Model performance was assessed with quality assessment statistic (Q2) 
≥ 0.4, BER < 30%, and AUROC > 0.7. SNF analyses were conducted as implemented by the SNFtool 
package in R (59). Participant similarity networks were constructed for each of  the data types; then 
these networks were combined into a single network that highlights the common network signals (59).

All analyses were done in the full cohort while adjusting for age, sex, and BMI and additionally for 
income and stratified by sex. Data were analyzed using R Statistical Software (version 3.5.1).

Study approval. This study was conducted according to the guidelines laid down in the Declaration of  
Helsinki. All procedures involving human subjects were approved by The University of  the West Indies 
Ethics Committee (reference: ECP 34, 17/18) and the Hospital for Sick Children Research Ethics Board 
(REB: 1000059930). Written informed consent was obtained from all participants.
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