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Propositions 
 
1. Although guilt-by-association (the principle behind many gene function prediction 

approaches) promotes “throwing data against the wall to see what sticks”, there is value 
in interpreting what did not “stick”. 
(this thesis) 

 
2. To aid data interoperability and re-use, the design of new -omics experiments should 

always consider the design of previous ones with similar objectives or parameters. 
(this thesis) 

 
3. Skilled computational scientists make themselves irrelevant for routine tasks, and 

indispensable for novel ones. 
 
4. Within Academia excess attention is given to the name and prestige of journals, 

laboratories and authors. 
 
5. The basics of “programming” and “computer science” will soon be seen as analogous to 

“literacy” and “numeracy”. 
 
6. Children should be taught about life that most adults, if not all, are making it up as they 

live. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Propositions belonging to the thesis, entitled 
Multi-omics Approaches for Biosynthetic Pathway Prediction in Plants 
Hernando Suarez 
Wageningen, 8 February 2021 
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1.1. The world’s finest chemists
Intrinsically tied to our history as omnivores, humans have consumed plants for

more than just nutrients since the dawn of our species, and likely even before.
Although the oldest suspected instance of medicinal plant usage dates to 60,000
BC, attributed to Neanderthals in the Shanidar Cave1, the practice of ingesting
plants to self-medicate has been documented in many non-human animals, who use
them for diverse purposes such as regulating gut acidity, purging intestinal parasites
and infections, or even as prophylaxis to prevent those and many other conditions2.
In fact, the discovery of many plants’ beneficial usages can be attributed to
observing animal behaviors2, tracing the origins of the plant natural product (NP)
discovery field to pharmacognosy, zoo-pharmacognosy and even ethology.

One reason for this may be the ubiquity of plant life throughout the globe: with
over 390,000 species3, it is estimated that ~80% of Earth’s biomass is composed of
plants4. Unaided by sessility, their effective proliferation and survival in the diverse
scenarios posed by Earth’s ecosystems can, at least in part, be attributed to plants’
specialized metabolism (SM)5. This part of plant metabolism involves the production
of a diverse range of metabolites of various degrees of complexity, which help plants
combat abiotic stresses, and mediate interactions with other organisms, be it
antagonistic (like herbivores) or mutualistic (like pollinators)6,7. As humans, we have
learned how to use these metabolites for our benefit, and have documented
approximately ~10,000 plant species for medicinal use, a stark contrast to the
~3,000 species that have been cultivated for food8.

Because of their abundance and diversity, it is no surprise that plant NPs have
found their way into multiple facets of human industry, from pharmaceutical
applications to flavors and fragrances9. Morphine, a natural alkaloid of opium poppy,
is perhaps the most famous of NPs with pharmaceutical application, but many others
have gained a foothold in medicine. One such example is artemisinin, a
sesquiterpene produced by sweet wormwood that is firmly established in
combination therapy to treat malaria and is also currently being studied for other
medicinal applications10. Another plant terpenoid that has been interwoven into
modern civilization is rubber: from gloves to tires, rubber is essential to all
manufacturing sectors, and while the majority of the rubber in the market is synthetic,
35% to 45% is natural rubber harvested almost exclusively from a single species11.
One plant NP is key to a ~$814 billion industry: nicotine, the highly addictive
stimulant behind the 5,300 billion cigarettes consumed yearly over the world12. 

Taming the wildly diverse world of plant specialized metabolism has evidently
pushed humanity forward. As we continue to face new challenges, it is undeniable
we must also continue learning from the world’s finest chemists.

1.2. A short timeline of plant specialized metabolism
research

The history of plant specialized metabolism research is best described by T.
Hartmann in his 2007 review of the history of the field13:

“Within 50 years a bewildering array of waste products turned into a classified
selection of chemical structures with indispensable ecological functions.”
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The history of plant NP discovery, however, is certainly older than fifty years: as
posited in 1.1., humans have likely been discovering and using beneficial plant
metabolites for most of the history of our species. The oldest documented evidence
of medicinal plants usage to prepare drugs is ~5,000 years old with 12 distinct plant-
based drug recipes, and a few centuries later, evidence shows knowledge of 365
recipes14. Arguably, these and the many other recipe preparations were informal or
unknowing attempts of isolating and identifying the plants’ beneficial NPs: “plant
secondary metabolism research pre-history”, as Hartmann calls it. The most
acknowledged success of these informal attempts happened in 1806, when F.
Sertürner isolated morphine from opium poppy, which sparked an era of new NP
discovery and isolation from a plethora of plants, including ipecacuanha, strychnos,
quinine and pomegranate14. To Hartmann, though, plant secondary metabolism
research formally starts in the 1950s, when radioactively-labeled molecules allowed
us to use biochemical evidence to trace back the biosynthetic pathways behind the
production of many plant NPs13.

In the world of bacteria and fungi, NP discovery around the same period revolved
around phenotypic screenings, bioassays in which antibacterial, antifungal or anti-
cancer activity was detected visually by measuring growth inhibition induced by
extracted metabolites. Between 1930 and 1970, thousands of new chemical entities
were discovered with this methododology15. The following decades introduced
genetics to the field in a more prevalent manner: by the 1970s, recombinant DNA
technology was developed for Escherichia coli (and later Streptomyces), which
allowed for the characterization of genes involved in important antibiotics like
penicillin and kanamycin15. Around a decade afterwards, by the mid-1980s, the first
enzyme-coding genes of plant secondary metabolism were cloned and functionally
expressed; shortly after cDNA for phenylpropanoid, alkaloid and terpene
biosynthesis from plant sources had been successfully cloned13.

It was in the early 2000s when genomics took the forefront of the field.
Improvements in sequencing technologies led to obtaining a 99% complete genome
sequence for Streptomyces coelicolor in 2002, the largest bacterial genome
sequence at the time. This study uncovered over 20 previously unidentified groups of
chromosomally clustered genes involved in the biosynthesis of specialized
metabolites16, and several biosynthetic gene clusters (BGCs) were subsequently
associated with distinct NPs. This quickly became a popular methodology to identify
SM pathways and their associated NP in microorganisms: within 10 years, hundreds
of gene clusters had been characterized, and this decade culminated in the release
of antiSMASH in 2011, a computational tool to quickly identify and annotate SM
gene clusters in bacteria and fungi with high confidence17. In the almost ten years
since then, around ~2,000 BGCs from microorganisms have been characterized
experimentally to link them to specific metabolic products18.

Although knowledge of chromosomally clustered SM genes in plants dates back
to 1997, when five genes required for DIBOA biosynthesis in maize (Bx1 through
Bx5) were found to be clustered on chromosome 419, it took several more years to
discover how widespread this phenomenon was in the plant kingdom. The next plant
BGC was identified in oat in 2004: Qi et al. identified multiple genes required for the
biosynthesis of the antimicrobial triterpenoid avenacin that were physically
clustered20. Similar to what was the case for bacteria and fungi, this discovery led to
~10 years of BGC discovery in plants, but at a slower pace: by 2016, over twenty
BGCs had been identified in plants21. The majority of plant NPs characterized during
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that time, however, were not synthesized by BGCs, instead by un-clustered or
partially clustered pathways and single-gene pathways; nevertheless, this effectively
demonstrated that analyzing these genomic structures was a valid method for NP
discovery in plants too, and the ongoing evolution of the NP discovery field brought
high expectation of newer, more complex, methods to identify novel metabolic
pathways by integrating multiple sources of data22.

Whereas the 2000s brought genomics to the forefront of the field, midway
through the 2010s one word had been added; now, computational genomics was the
name of the game. By 2015, using computational tools to mine -omics data was not
restricted to BGC identification. Similar efforts were being made using transcriptomic
data: the biosynthetic pathways for podophyllotoxin in mayapple23 and 4-
hydroxyindole-3-carbonyl nitrile (4-OH-ICN) in Arabidopsis thaliana24 were
elucidated by mining publicly available transcriptomic datasets, based on the
principle that genes that encode enzymes belonging to the same pathway have
correlated expression levels across samples. Indeed, large-scale analysis of
transcripts from several plants demonstrated that levels of coexpression among
genes involved in SM are larger than among other genes25, supporting this guilt-by-
association principle. Moreover, both studies combined transcriptomic with
metabolomic analyses to some extent: by analyzing the transcriptomes, they
identified genes likely involved in targeted pathways of interest; their hypotheses
were later reinforced through observed changes in the metabolome of mutants, or in
tobacco after heterologous combinatorial expression of the targeted enzymes. A
similar approach had been used to identify the final step in the biosynthesis of
noscapine a year before: analyses of the transcriptomes of multiple opium poppy
chemotypes were used to identify the noscapine synthase (NOS) before validating
their results with LC-MS/MS26. These informed sequential sets of multiple -omics
analyses illuminated the advantages that a fully integrated multi-omic analysis could
eventually bring to the table: gene expression and metabolite abundance are two
entry points to study the same metabolic pathways; measuring them simultaneously
and integrating these data could provide a more holistic view of it.

Concurrently, more computational tools geared towards SM pathway and NP
discovery were being developed: CoExpNetViz, a computational tool to compare
gene coexpression networks of different plant species through homology, was
released at the beginning of 201627. Their approach requires targeting genes of
interest, “baits”, in the transcriptome of two plant species. The algorithm then
identifies genes coexpressed with the bait genes, and then uses gene families from
PLAZA28 to group them according to cross-species orthology. The results are
visualized as networks depicting the groups of orthologous genes that are all
coexpressed with the bait genes across the two species. This tool was based on
previous work that led to the elucidation of the biosynthetic pathways for  α-
chaconine/solanine in potato by comparing its coexpression network with that of
tomato29. This research in particular was also aided by the close phylogenetic
relatedness of tomato and potato, and the fact that the pathway genes were
physically clustered, demonstrating that comparative transcriptomics, phylogenomics
and BGC identification can also be seamlessly integrated through computational
solutions.

As more genomes continued to become available, it was undeniable that plant
specialized metabolism research was on the verge of a computational revolution.
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1.3. A new era in natural products discovery
The increasing availability of plant genomes and transcriptomes before the start

of this PhD project presented a challenge and an opportunity within the field: new
approaches needed to be developed to effectively and efficiently mine the large sets
of data generated by high throughput -omics.

1.3.1. Biosynthetic Gene Clusters
As discussed in 1.2., before the start of this PhD, around 2016, just over twenty

BGCs had been identified in plants through a variety of methods21. The first
computational study identifying the potential of finding chromosomally colocated
genes as a strategy to discover novel SM pathways in plants had been published a
couple of years earlier; in 2014 Chae et al. examined the A. thaliana, Sorghum
bicolor, soybean, and rice genomes and identified groups of genes that were
chromosomally clustered; they found that between 22% and 31% of the plants’
metabolic genes were located in these clusters, more than expected by chance30.
Moreover, they queried the A. thaliana gene clusters within a large-scale microarray
dataset and concluded that gene clusters with genes involved in SM were more likely
to be coexpressed than the clusters without SM genes30. This, and the increasing
number of characterized BGCs in plant genomes introduced a unique opportunity for
the NP discovery and SM research fields: rapid computational discovery of SM
BGCs took the neighboring bacteria and fungi kingdoms into a “gene cluster
revolution”31, and the revolution could cross the border.

Concurrently to our development of plantiSMASH to tackle this opportunity (see
chapter 2), other tools were being developed to mine plant genomes and predict
BGCs that could be associated with SM pathways. Schläpfer et al. developed
PlantClusterFinder, an algorithm to detect metabolic gene clusters in plants32. Their
method consisted of identifying SM genes in a genome, and then using a sliding
window to search for chromosomal regions with clustered SM genes. With this
strategy, they identified clusters in 21 plant species, and over 1,700 of the clusters
(15%) had SM genes. Interestingly, they found that SM pathways were more than
twice as likely to contain genes that are physically clustered than non-SM pathways.
Lastly, of the thirteen characterized pathways known in the species they used in their
study, Schläpfer et al. identified twelve with the help of PlantClusterFinder. Shortly
after, Töpfer et al. released the PhytoClust Tool for the metabolic gene cluster
discovery in plant genomes33, and used it to mine 31 plant genomes, identifying
thousands of clusters. Despite using a distinct computational approach and having
studied different species, their findings were in line with those of Schläpfer et al., and
both studies in turn effectively supported the previous work of Chae et al.30: the
relation between plant specialized metabolism and gene clusters is ripe for
exploitation and can easily guide plant NP discovery.

Studying plant BGCs has been shown to be beneficial not only to NP discovery,
but also to better understand the evolution of SM pathways in plants. Along with
identifying the gene cluster involved in the biosynthesis of the triterpenoid avenacin
in oat, Qi et al. also found the cluster was located in a region of the genome not
conserved in other cereals, suggesting this BGC had not been assembled in a



11conserved in other cereals, suggesting this BGC had not been assembled in a

common ancestor20. Similar conclusions were reached with the characterization of
the BGC responsible for the biosynthesis of the triterpenoid thalianol in A. thaliana:
this cluster is unlikely to have a common origin with avenacin, indicating both
triterpenoid clusters were assembled recently, and independently34. The
characterization of the BGC for marneral, another triterpenoid produced by A.
thaliana, provided another piece of the puzzle: Field et al. found that while the
marneral and thalianol clusters likely shared a common ancestor, the marneral
cluster was not found in Arabidopsis lyrata despite its close phylogenetic relatedness
to A. thaliana35; this suggested the marneral cluster had been recently lost in A.
lyrata. Taken together, these findings indicate the assembly and disassembly of plant
BGCs is very dynamic; thus, understanding the processes responsible for BGC
evolution can help us unlock the secrets behind the diverse range of metabolites that
plants can produce.

Altogether, the research of BGCs in plants has the capacity to deeply contribute
to many aspects of plant biology research, particularly regarding specialized
metabolism. The development and improvement of algorithms aimed at identifying
and predicting BGCs is thus crucial for the growth of the field.

1.3.2. Coexpression Networks
Identifying coexpressed genes has been a very successful approach to mine

transcriptome datasets. Analyzing coexpression allows us to identify gene functions
and characterize SM pathways. The level of coexpression among any two genes can
be measured using a variety of metrics, such as the Pearson correlation coefficient
(PCC) or Spearman’s rank. This strategy has resulted in many discoveries within the
field23,24,36,37, but it demands a priori knowledge of the function of some genes to
propagate their annotations to those whose function is unknown. Acquiring such prior
knowledge manually, however, may not be straightforward in plant genomes, many of
which have over 40,000 genes38, with a large number of them being functionally
uncharacterized. 

One approach to overcome this obstacle is using coexpression networks; they
are one of the multiple types of gene networks that can be generated from gene
expression data39,40, and represent genes as nodes connected by edges/links if the
genes show coexpression correlation above a predetermined threshold. In A.
thaliana, coexpression networks have been shown to capture the functional
categorization of genes by grouping them in clusters or modules of tightly
coexpressed genes, which have similar function or regulation41. Moreover, evidence
suggest that the function and members of some gene modules are conserved
through speciation events42, allowing the propagation of annotations between
species with more confidence. When handling large datasets, however,
coexpression networks can become too complex to readily interpret22,39,43, in part
due to unobserved factors that affect gene expression and may cause correlation
among genes44, which in turn may lead to an increase in type I errors when
interpreting the significance of correlated genes in a network or module. In summary,
better gene prioritization methods need to be developed to improve the confidence of
predictions from the analysis of coexpression networks.

To address this, many strategies are being developed. For example, a more
robust statistical backdrop has been introduced45, and many network module
detection algorithms have been developed or adapted for transcriptomic research.



12detection algorithms have been developed or adapted for transcriptomic research.
Some of these methods have been determined to be particularly good at identifying
sets of genes associated with a specific function46, or were even specifically
designed to predict plant SM pathways47. Another approach to remedy the
emergence of type I errors is to compare the coexpression networks of different
species. As mentioned in 1.2., this strategy has already led to the identification of
NPs in plants29, and more recently it has been proposed as a method to study the
evolution of SM pathways in plants48. While the previously discussed CoExpNetViz27

was designed to compare coexpression networks with the purpose of SM pathway
discovery, it still requires a priori knowledge in the form of bait genes, making it less
useful for genomes with lower-quality annotations, or those that are phylogenomically
distant from well-annotated genomes (which makes it difficult to propagate
annotations through homology). Other algorithms, though, have successfully
analyzed the transcriptome of more evolutionarily distant species: for example,
Netotea et al. developed ComPlEx, which they used to compare the coexpression
network of A. thaliana, Populus trichocarpa and Oryza sativa, revealing common
network motifs enriched with the same GO terms in all three species49. CoMPlEx,
however, only uses these three genomes (and more recently, CoMPlEx 2 compares
A. thaliana, P. trichocarpa and Picea abies50); this is in contrast to CoExpNetViz,
which allows comparative analyses of transcriptomes input by the user, and severely
limits its usage.

While the power of comparatively analyzing gene coexpression to guide plant SM
pathway discovery is clear, no comprehensive computational strategy has been
developed that can simultaneously tackle all the challenges it presents. A unique
opportunity stands here, as comparative analyses can provide biological insights in
multiple species. Thus, the development of computational tools that can provide
high-confidence SM pathway predictions through comparative transcriptomics has
potential to significantly extend our knowledge of plant biology.

1.3.3. Multi-omics Integration
Another way to improve the mining of -omics datasets is through integrated multi-

omics analyses. Above, we briefly discussed how sequential transcriptomic and
metabolomic analyses led to the discovery of several SM pathways and their
associated metabolites23,24,26: the observations made in gene expression profiles
allowed the authors of these studies to prepare metabolomic experiments to validate
their hypotheses. This sequence of analyses differs from an integrated multi-omics
analysis; the latter is performed as a single simultaneous comprehensive analysis.
This strategy is particularly advantageous in complex biological systems, where a
multi-omics analysis can provide a holistic view by combining advantages of different
omics technologies. For example, in clinical research, many multi-omics integration
tools are used for cancer prognosis prediction, which helps physicians decide
treatments and improve patient survival51. Similarly, this strategy has a lot of
potential to guide plant SM pathway discovery52.

The popularity and success of transcriptomic and metabolomic analyses for SM
pathway discovery present them as prime candidates for multi-omic integration, and
multiple methods have been developed to integrate their datasets. For example, the
experiments can be designed to send one set of replicates to RNA-Seq, and another
set to mass spectrometry (MS) analysis; alternatively, each sample can be split,
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sending one half to each -omics analysis. Later, integrating the datasets can be done
in different manners too. For example, Urbanczyk-Wochniak et al. performed a
correlation analysis between transcripts and metabolite profiles in potato tubers and
identified more than double the number of significantly correlated pairs than would be
expected by chance53. They also mapped their transcriptome and metabolome onto
known reactions, as well as the enzymes, substrates and products involved; their
results indicated that the correlation between substrate and enzyme was higher than
that of product and enzyme53. Similar results were later found in an integrated
analysis of the transcriptome and metabolome of Catharanthus roseus: genes and
metabolites involved in terpenoid indole alkaloid biosynthesis showed a high degree
of correlation54.

These and other strategies for transcriptomic and metabolomic integration have
been reviewed in detail before55, with each presenting unique advantages and
limitations; however, a common thread among them is the high noise levels that
often hide metabolite-gene associations. Indeed, gene and metabolites known to be
closely related in pathways often do not show correlation. For example, ter Kuile and
Westerhoff found that metabolic fluxes in parasitic protists did not correlate
proportionally with the concentration of the corresponding enzymes56. Similarly,
Moxley et al. showed that mRNA expression of enzyme-coding genes did not
correlate well with metabolic flux changes in yeast57. While these two studies
evaluated the integration of metabolomic and transcriptomic data in other organisms,
plants have a vastly more complex metabolic system than yeast and protists, making
it very likely that straightforward simple correlation of gene expression and
metabolite abundance will not lead to high confidence predictions. It is therefore
clear that, similar to what is the case for coexpression network analysis, multi-omics
integration requires more advanced gene/metabolite association prioritization
methods to improve their performance and power in plant SM research and NP
discovery.

1.4. Contributions of this thesis
This PhD thesis aims at tackling some of the unique opportunities that

computational genomics has brought to the plant SM pathway discovery field. In 1.2
and 1.3., we discussed many of these opportunities and obstacles, but the focus
during my PhD research was directed at multi-omics solutions; namely, the
development of computational methods to analyze data from multiple -omics sources
for the purpose of SM pathway discovery in plants.

In chapter 2, we introduce plantiSMASH, a computational tool for the automated
identification, annotation and expression analysis of plant biosynthetic gene clusters.
This project aims at facilitating the study of plant BGCs, which, as discussed in
1.3.1., can guide NP discovery and SM pathway evolution research. To do this, we
base our pipeline on antiSMASH58, following a similar workflow, user inputs and
GUI, but customizing it specifically for the particularities of plant genomes and
adding a coexpression analysis module. We use plantiSMASH to mine publicly-
available chromosome-level plant genome assemblies and identify hundreds of
candidate BGCs, including all experimentally characterized BGCs in the genomes
we mine. 

In chapter 3, we continue the research of plant BGCs, this time with the purpose



14In chapter 3, we continue the research of plant BGCs, this time with the purpose

of understanding the manner in which they assemble during evolution and
reconstructing the evolutionary relationships between closely related BGCs and
BGC-like genomic structures. For this, we focus on a family of triterpene clusters in
Brassicaceae, including the thalianol34 and marneral35 clusters discussed in 1.3.1..
Centering our analysis on the scaffold-generating enzyme responsible for the
triterpene scaffold of both pathways, an oxidosqualene cyclase (OSC), we query the
genome of thirteen Brassicaceae species to identify the genes flanking each OSC, a
region we name their “genomic neighborhood” (GN). We then compare the evolution
of the SM genes in the GNs with the known species phylogeny of Brassicaceae,
which leads us to uncover the most likely historical scenarios for the assembly and
metabolic diversification of the Brassicaceae triterpene BGCs.

In chapter 4, we explore using comparative analysis of transcriptomic networks
to guide SM pathway discovery. For this we develop CADE-HEroN, a computational
workflow designed to tackle limitations the analysis of coexpression networks
discussed in 1.3.2.. CADE-HEroN allows users to input their own transcriptomes,
genome assemblies and homolog relationships to identify conserved gene
expression patterns among different species. Our algorithm allows users to either
input bait genes and target specific metabolic processes of interest, or to generate a
comparative time-series analysis that facilitates untargeted analysis. We use our
workflow to study the phosphate starvation response in A. thaliana, tomato and rice,
and identify a number of genes that have a conserved behavior across the three
species and are likely to be coregulated. Some of the genes our analysis highlights
are already known to be involved in phosphate starvation, proving this workflow can
recover functionally related genes, while others were not yet functionally annotated,
providing a source of candidate genes that may be prioritized for experimental
characterization.

In chapter 5, we present MEANtools, an integrative multi-omics approach for
metabolic pathway prediction. Our objective is to tackle some of the limitations of
transcriptomic and metabolomic integration discussed in 1.3.3., and increase the
confidence in SM pathway predictions generated from the correlation of gene
expression and metabolite abundance datasets. We integrate the datasets not only
through correlation, but through an enzymatic reaction database that links the
relationships between known metabolites, reactions and enzymes. In this manner,
MEANtools can predict potential metabolic pathways. Predicted pathways, and the
genes, metabolites and reactions involved, are presented to the user in a graphic
manner for easy interpretation. In addition, the user can use the algorithm in a
variety of modes according to their needs and the data they have available. Lastly,
we use MEANtools to generate pathway predictions based on a paired
transcriptomic-metabolomic dataset in tomato that was previously used for the
characterization of the falcarindiol pathway59; this shows that our algorithm was able
to correctly predict multiple steps within this pathway. With this, we present a
computational tool that can, in a rapid and automated manner, help scientists
generate testable hypotheses about biosynthetic pathways, and the genes, reactions
and metabolites involved in them.

Finally, in chapter 6 we discuss the main findings, conclusions and perspectives
gathered along the development of all research projects and the writing of this thesis.
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2.1. Abstract
Plant specialized metabolites are chemically highly diverse, play key roles in

host–microbe interactions, have important nutritional value in crops and are
frequently applied as medicines. It has recently become clear that plant biosynthetic
pathway-encoding genes are sometimes densely clustered in specific genomic loci:
biosynthetic gene clusters (BGCs). Here, we introduce plantiSMASH, a versatile
online analysis platform that automates the identification of candidate plant BGCs.
Moreover, it allows integration of transcriptomic data to prioritize candidate BGCs
based on the coexpression patterns of predicted biosynthetic enzyme-coding genes,
and facilitates comparative genomic analysis to study the evolutionary conservation
of each cluster. Applied on 48 high-quality plant genomes, plantiSMASH identifies a
rich diversity of candidate plant BGCs. These results will guide further experimental
exploration of the nature and dynamics of gene clustering in plant metabolism.
Moreover, spurred by the continuing decrease in costs of plant genome sequencing,
they will allow genome mining technologies to be applied to plant natural product
discovery. The plantiSMASH web server, precalculated results and source code are
freely available from http://plantismash.secondarymetabolites.org.

2.2. Introduction
Across Planet Earth, bacteria, fungi and plants produce an immense diversity of

specialized metabolites, each with their own specific ecological roles in the manifold
interorganismal interactions in which they engage. This diverse specialized
metabolism is a rich source of natural products that are used widely in medicine,
agriculture and manufacturing. In bacteria and fungi, where genes for most
specialized metabolic pathways are physically clustered in socalled biosynthetic
gene clusters (BGCs), the rapid accumulation of genome sequences has
revolutionized the process of natural product discovery: indeed, genome mining has
now become a dominant method for the discovery of novel molecules (1–4). In this
genome mining process, BGCs are computationally identified in genome sequences
and then linked to molecules through functional analysis (e.g. using metabolomic
data, chemical structure predictions, mutant libraries and/or heterologous
expression). Many sequence based aspects of this genome mining procedure are
facilitated by the antiSMASH framework, which was launched in 2010 (5) and has
seen continuous development since then (6,7). The genome mining procedure has
two main purposes: (i) finding biosynthetic genes for important known compounds to
allow heterologous production through fermentation in industrial strains, and (ii)
identifying novel natural product chemistry guided by biosynthetic gene cluster
diversity. Altogether, this development has appropriately been termed the ‘gene
cluster revolution’ (1).

In recent years, it has become clear that not only microbial, but also plant
biosynthetic pathways are frequently chromosomally clustered: after the initial
discoveries of the cyclic hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin3-one
(DIBOA) and avenacin gene clusters (8,9), around thirty plant BGCs have been
discovered (10,11). Together, they encode the production of a wide range of different
compounds, including cyclic hydroxamic acids, di- and triterpenes, steroidal and
benzylisoquinoline alkaloids, cyanogenic glucosides and polyketides. In the genome
of the model plant species Arabidopsis thaliana alone, four BGCs have been linked
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to specific metabolites and recent analyses based on epigenomic profiling indicate
the presence of various additional uncharacterized ones (12).

Various technological developments in eukaryote genome sequencing (13) are
finally making complete plant genome sequencing feasible at larger scales: high-
quality plant genome sequences for almost 100 species are already publicly
available, and more or less complete genomes can be sequenced for as little as 10–
50k US dollars each. Hence, genome mining may become an important
methodology in the study of plant natural products as well, and a realistic opportunity
thus presents itself for the plant natural product research community to have a ‘gene
cluster revolution’ of its own. Naturally, a key technology required to realize this is a
computational framework specifically designed for the identification and analysis of
plant BGCs. Importantly, tools available for bacterial and fungal genome mining do
not suffice for plants (14), as (i) plant biosynthetic pathways involve unique enzyme
families not found in bacteria and fungi; (ii) not all plant biosynthetic pathways are
clustered (e.g. anthocyanins (15)), so identification of a biosynthetic gene does not
equal identification of a BGC; (iii) intergenic distances in plant genomes are larger
and much more variable (16–19); (iv) plant genomes contain clustered groups of
genes (e.g. tandem arrays) whose products do not constitute a pathway; (v) several
plant pathways are split across more than one BGC (20,21).

Here, we introduce antiSMASH for plants (or ‘plantiSMASH’ in short), which has
been designed to tackle each of these challenges. Through a comprehensive library
of profile Hidden Markov Models (pHMMs) for enzyme families known to be involved
in plant biosynthetic pathways, combined with CD-HIT clustering of predicted protein
sequences belonging to the same family, it allows the efficient identification of
genomic loci encoding multiple different (sub)families of specialized metabolic
enzymes. Moreover, comparative genomic analysis as well as analysis of gene
expression patterns within these candidate BGCs allow assessment of each locus
for its likelihood to encode genes working together in one pathway. Finally,
coexpression analysis between candidate BGCs and with other genes across the
genome allows identification of biosynthetic pathways that are encoded on multiple
loci. To exploit this new framework, we offer an initial analysis of BGC diversity
across the plant kingdom, which showcases the presence of many complex
biosynthetic loci in diverse species.

2.3. Methods and Implementation

2.3.1. A procedure for the identification of candidate plant
biosynthetic gene clusters

The microbial version of antiSMASH (5) predicts BGCs by using HMMer (22) to
identify specific (combinations of) signature protein domains that belong to scaffold
generating enzymes specific for a class of biosynthetic pathways. Subsequently, hit
genes are used as anchors from which gene clusters are extended upstream and
downstream by a specified extension distance.

Although very effective for detecting biosynthetic clusters in bacteria and fungi,
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this procedure is unfit to detect biosynthetic gene clusters in plants, for the reasons
described above. To address this, a novel detection strategy was chosen (Figure 1):
instead of identifying BGCs through the identification of core scaffold-generating
genes alone, plantiSMASH identifies them by looking for all genes predicted to
encode biosynthetic enzymes, including those required for tailoring of the scaffold.

Figure 1. General strategy followed by plantiSMASH for the identification of plant BGCs. First,
plantiSMASH identifies biosynthetic genes (having a hit on one of the 62 pHMMs) that are located in
close proximity to each other. Subsequently, it will look for the co-occurrence of at least three
biosynthetic enzyme-coding genes, comprising at least two different enzyme types. (Based on the
results of the CD-HIT clustering of encoded protein sequences, closely related duplicate genes will
only be counted once). Afterward, identified clusters are extended to incorporate any flanking genes.
Finally, each cluster is classified based on the presence of core enzymes (see Supplementary Table
S1). In this example, the detected cluster is assigned to the ‘Terpene’ class due to the presence of a
terpene synthase-encoding gene.

To determine what constitutes a high-potential candidate BGC, we make use of
the recently proposed definition for plant BGCs as ‘genomic loci encoding genes for
a minimum of three different types of biosynthetic reactions (i.e. genes encoding
functionally different (sub)classes of enzymes)’ (14). (Albeit arbitrary, this definition
correctly describes all known plant BGCs at the moment and is open to improvement
as more are discovered.) Accordingly, with default settings plantiSMASH defines
clusters as loci where at least three different enzyme subclasses belonging to at
least two different enzyme classes are co-located on the same locus. Enzyme
classes are identified using pHMMs specific for each class (Supplementary Table
S1); to count the number of subclasses of each enzyme class at a certain locus, the
CD-HIT algorithm (23) is employed for sequence-based clustering to identify groups
of sequences within an enzyme class with (by default)>50% mutual amino acid
sequence identity. This successfully distinguishes potentially real BGCs from tandem
repeat regions that are also frequently found in genomes (Supplementary Table S2).

In order to identify all classes of biosynthetic enzymes known to be involved in
plant specialized metabolic pathways, we performed a comprehensive literature
search of previously characterized plant biosynthetic pathways, which resulted in a
list of 62 protein domains that have been associated with specialized metabolic
pathways in plants (see Supplementary Table S1). Fifty-seven of these protein
domains are represented by pHMMs from the Pfam database (24), and custom
pHMMs were generated for five enzyme families not (fully) covered by Pfam
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domains. We consciously refrained from attempting to construct custom pHMMs for
all enzyme families known to be involved in plant biosynthetic pathways, as the
limited amount of training data available would lead to an overly strict prediction
system that would no longer be able to detect biosynthetic novelty; instead, we
assume that the broad enzyme families covered by Pfam domains are likely to be
biosynthetically involved if multiple enzymes from these different families are
encoded together in the same locus. As in the microbial version of antiSMASH, the
presence of genes predicted to encode signature enzymes (defined as enzymes that
determine the chemical class of the end compound, such as terpene synthases) in a
candidate BGC are used to assign a cluster to a biosynthetic class (see
Supplementary Table S3 for cluster rules). However, compared to the microbial
version, the biosynthetic classes in ‘plantiSMASH’ are more of an approximation,
since not all signature enzyme families used can be unequivocally used to predict
the compound type; e.g. while strictosidine synthase (25) and norcoclaurine
synthase (26) are well-characterized members of the Bet v1 enzyme family, it is not
clear what proportion of this family have similar Pictet-Spenglerase(-like) catalytic
activities.

Another particular challenge for BGC detection in plant genomes is the large
variation in gene density that occurs not only between but also within plant genomes
(16–19). Replacing the static kilobase distance cut-off of microbial antiSMASH by a
fixed cut-off based on the maximum number of genes that lie between each pHMM
hit also does not provide a solution, as BGCs would then be allowed to cross large
repeat regions or even centromeres. Therefore, we chose an alternative, more
dynamic, cut-off that is a linear function of local gene density (defined as the gene
density of the ten genes nearest to a pHMM hit), and applies a multiplier to calculate
the cut-off in kb that is optimal for that specific genomic region (see Supplementary
Table S2 and Figures S1 and S2 for results illustrating calibration of the defaults).

2.3.2. Flexible and user-friendly input and output
To obtain reliable BGC predictions, a high-quality annotation of gene features in a

genome is essential. While we do make available the option to run GlimmerHMM
(27) on plant genome sequences, performing de novo gene finding on a raw FASTA
file is not desirable, given the relatively low accuracy of such a procedure. Because,
additionally, the GenBank and EMBL input formats previously accepted for
antiSMASH are not available for many plant genomes, we now allow users to supply
input also in FASTA+GFF3 format, currently the most widely used format for
describing plant genome annotations. For this, we implemented a new module based
on Biopython’s GFF parsing package (http://biopython.org/wiki/GFF_Parsing)
capable of combining the CDS features from the input sequence, if any, with those of
a file compliant to the Generic Feature Format Version 3 as defined by The
Sequence Ontology in 2003 (https://github.com/The-Sequence-Ontology/
Specifications/blob/master/gff3.md). To properly match GFF3 CDS features to their
correct sequence, the module demands record names
(chromosome/scaffold/contigs) to be identical in both inputs; the only exception being
if both inputs only contain one record, in which case the requirement is instead that
no feature has coordinates outside the sequence range. This new module allows
plantiSMASH to be used with genomes that are only annotated with GFF3 files,
such as many of those present in the Joint Genome Institute’s Phytozome database
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(28).
Based on the biosynthetic gene cluster predictions, a rich and interactive HTML

output is generated (Figure 2), which is largely reminiscent of the output of microbial
antiSMASH jobs (5). Additionally, genes in the visualization page for each candidate
BGC are colored based on the class of enzymes encoded, and a legend is provided
that details the color scheme. On mouse click, panels for each gene provide
information on the pHMMs that have hits against it, as well as on the amino acid
identity to homologous genes within the same locus as calculated by CD-HIT.

Figure 2. Outputs generated by the plantiSMASH pipeline. The figure illustrates several
visualized outputs generated by plantiSMASH, as they appear for various biosynthetic gene clusters
of known natural products. (A) Visual overview generated for each gene cluster; in this case, the
tirucalladienol cluster from Arabidopsis thaliana (47) is shown. Gene annotations and pHMM hit
details appear on mouse click. Also, ClusterBlast output showing alignment of homologous genomic
loci across other genomes of related species is provided. (B) Example of a gene expression heat
map, showing coexpression among the core genes of the marneral BGC from A. Thaliana (48) (and
not with the flanking genes). (C) Hive plot on the overview page, which highlights pairs of candidate
BGCs which show many coexpression correlations between their genes; in this example view, the
coexpression links between the two loci encoding α-tomatine biosynthesis in Solanum lycopersicum
(20) are highlighted (clusters 31 and 44). (D) Example ego network that summarizes coexpression
correlations between members of the α-tomatine gene (cluster 44), as well as with genes in other
gene clusters (including the other α-tomatine biosynthetic locus, cluster 31) and with genes
elsewhere on the genome.

2.3.3. Coexpression analysis identifies pathways within
and between gene clusters

As plant scientists are just beginning to understand the phenomenon of metabolic
gene clustering in plant genomes, it is currently unknown which proportion of
genomic loci that encode multiple contiguous biosynthetic enzyme-encoding genes
are bona fide BGCs in the sense that their constituent genes are involved in one
specific pathway. One powerful strategy to predict whether genes are involved in the
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same pathway is the use of coexpression analysis, in which their expression patterns
are compared across a wide range of samples. This strategy has proven very
effective in the de novo identification of gene sets involved in biosynthetic pathways,
even if they are not physically clustered on the chromosome (29).

To allow detailed investigation of whether genes in a cluster show coexpression,
we added a dedicated analysis module: CoExpress. This module reads
transcriptomic datasets, either in SOFT format (from the NCBI Gene Expression
Omnibus) or in comma-separated (CSV) format, and generates powerful
visualizations of these data for each candidate BGC. Because combining many
datasets into one coexpression analysis may blot out coexpression signals that are
very specific to certain biological or chemical treatments (which often highly
specifically incite expression of plant specialized metabolic pathways), we designed
the module in such a way that it visualizes one transcriptomic dataset at a time. This
has the added value that the user can browse through multiple datasets and can
individually assess specific samples that are linked to a treatment of interest.

The visualizations of within-cluster coexpression patterns are 2-fold: first, a
hierarchically clustered heatmap visualization, plotted using a modified version of the
InCHlib (http://www.openscreen.cz/software/inchlib/home) JavaScript library, offers a
direct view of patterns in and relationships between the supplied normalized gene
expression values. The dendrogram is generated using a coexpression distance
metric with a complete-linkage hierarchical clustering method. In this metric, the
Pearson Correlation Coefficient (PCC) is transformed directly into a distance value
scaled from 0 to 200 (0 for PCC = 1, or positively correlated, and 200 for PCC = -1
or negatively correlated). In order to make correlations maximally visible, the color
scheme is normalized per gene (row) by default; however, the user can also select
for the color scheme to be normalized by sample (column). Second, a gene cluster-
specific coexpression network (30) (with a default distance based cutoff of <50,
dynamically adjustable) summarizes the correlations and helps to identify specific
groups of genes in the locus that are highly coexpressed: these occur as connected
components with high numbers of edges.

Coexpression analysis is not just useful for analysis of functional connections
within a candidate BGC, but also allows prediction of functional links with other
genomic loci. It is now well-understood that several plant BGCs do not act alone, but
rather in concert with another BGC or with individual enzyme-coding genes
elsewhere on the genome (11). Therefore, plantiSMASH leverages coexpression
data to offer two analyses that identify these trans-genomic interactions: first, the
BGC-specific coexpression network can be extended to display a first-order ego
network that incorporates genes elsewhere on the genome that either (i) are
members of another candidate BGC and show high gene expression correlation
(>0.9 PCC) with at least one gene in the BGC, or (ii) contain a ‘biosynthetic’ domain
(defined as being one of the domains in Supplementary Table S1) and show high
gene expression correlation with at least two genes in the BGC, at least one of which
being a biosynthetic gene itself. Second, interactions between candidate BGCs are
summarized in a hive plot, in which pairs of clusters are connected by an edge if the
genes of both clusters create at least one subnetwork that satisfies the following
criteria: (i) all nodes belong to the same Louvain community (31), as determined by
analyzing the full coexpression network of all candidate clusters’ genes; (ii) all nodes
have a transitivity greater than zero; (iii) the subnetwork contains at least two genes
from each cluster; (iv) the subnetwork contains at least one gene per cluster that has
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a biosynthetic domain; and (v) The subnetwork contains at least three genes with a
biosynthetic domain. This highlights arrangements of pairs of clusters that may be
linked functionally via coexpression, and is reminiscent of the characterized -
tomatine biosynthetic pathway in Solanum lycopersicum, which is encoded in two
separate clusters that are highly coexpressed (20). All in all, the coexpression
analysis of candidate BGCs allows effective prioritization for, e.g. heterologous
expression studies. Yet, it should still be kept in mind that loci that do not show high
coexpression might still encode genes that are jointly involved in a biosynthetic
pathway, e.g. if the transcriptomic samples available do not include any treatments
that induce the expression of the pathway, or if expression of the pathway is
sequestered either spatially across tissues or in terms of timing.

2.3.4. Comparative genomic analysis shows conservation
and diversification

Comparing a candidate BGC with homologous genomic loci in other plant
genomes can give important information on its evolutionary conservation or
diversification. Whereas strong conservation of clusteredness across larger periods
of evolutionary time may point to a selective advantage of clustering for these genes,
diversification of BGCs by cooption of other enzyme-coding genes may give clues to
finding novel variants of natural products that have been generated through
directional pathway evolution. In order to facilitate such comparative analysis on a
case-by-case basis, we constructed a plant-specific version of the antiSMASH
ClusterBlast module. To do so, we ran plantiSMASH on a collection of all publicly
available plant genomes, obtained from NCBI’s GenBank, JGI’s Phytozome and
Kazusa (32). In order to avoid cases where loci homologous to detected candidate
BGCs would not be included in the database by not satisfying the identification
criteria, the thresholds for this search were lowered to find all genomic loci with two
or more different enzymes, where the CD-HIT cut-off was also set to a generously
inclusive level of 0.9. A total of 7978 genomic loci were thus included in the plant
ClusterBlast database. As in the microbial version of antiSMASH, the translated
protein sequence of each predicted gene in a candidate BGC is searched against
this database using the DIAMOND algorithm (33) and genomic loci are sorted based
on the number of hits, conserved synteny and cumulative bit score. To also facilitate
direct comparison with known plant BGCs, all plant BGCs with known products for
which the sequence was available were added to the MIBiG repository (34), which
allows users to find similarities between newly identified and known clusters with the
KnownClusterBlast module of antiSMASH.

2.3.5. Precomputed results allow fast access to
comprehensive plantiSMASH results

In order to allow users to directly access plantiSMASH results for publicly
available plant genomes, runs for 47 high quality plant genomes were precomputed
and made available online at http://plantismash.secondarymetabolites.org/precalc.
Importantly, publicly available gene expression datasets with sufficient numbers of
samples to be suitable for coexpression analysis were loaded into these results. In
total, 73 transcriptomic datasets were included for five species: A. thaliana, S.
lycopersicum, Oryza sativa, Zea mays and Glycine max (Supplementary Tables S4–
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7). As an indication for web server users: the computations took about 24 min per
genome on average, on a 2 GHz CPU, depending on the size of the genome and
pre-selected additional analyses including the co-expression analysis (see further
details in Supplementary Table S4).

Sequences that are not publicly available (as well as available sequences with
custom transcriptomic datasets) can be analyzed directly using the plantiSMASH
web server at http://plantismash.secondarymetabolites.org. In this way,
plantiSMASH results for all kinds of genomes and transcriptomes are optimally
available to users.

2.4. Results and Discussion

2.4.1. PlantiSMASH successfully detects all experimentally
characterized plant biosynthetic gene clusters

Even though only a relatively small set of plant BGCs has been discovered,
these ∼30 BGCs still present the best objective test case for the BGC detection
algorithm. Importantly, they range from complex BGCs with many different enzyme-
coding genes, such as the noscapine and cucurbitacin BGCs (21,35), to relatively
simple ones that only encode a couple of enzymes, such as the dhurrin and
linamarin/lotaustralin BGCs (36). Of this set, only 19 BGCs have annotated
sequence information publicly available. When plantiSMASH was run on a multi-
GenBank file containing accurately annotated versions of these 19 known BGCs, all
clusters were successfully detected with default settings. When run on different
genome annotation versions available from GenBank or Phytozome, BGCs of low
complexity (i.e. with a small number of enzyme-coding genes) were occasionally
missed when key genes were missing from the structural annotations or when many
false positive gene assignments were present in the region of interest (affecting the
dynamic gene density-based cut-off of plantiSMASH): for example, the linamarin
BGC from Lotus japonicus was not detected in assembly/annotation version 3.0,
while it was detected in the older version 2.5. This highlights the importance of using
high-quality genome annotations supported by transcriptomic data when using
plantiSMASH to search for BGCs of interest. Alternatively, the stand-alone version
of plantiSMASH provides additional cut-off methods (e.g. raw distance-based or
gene-count-based) that can be attempted as well to mitigate such issues.

2.4.2. Plant genomes contain large numbers of complex
biosynthetic gene clusters

When run on the 47 plant genomes for which chromosomelevel assemblies are
currently available on either NCBI or Phytozome, plantiSMASH found a wide variety
of candidate BGC numbers across plant taxonomy (Figure 3). In general, the
numbers of candidate BGCs were relatively even between monocots and dicots
(while very low in the only moss genome included), while the largest numbers of
BGCs were found in dicot genomes. These outliers all corresponded to recent
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(partial) genome amplification events, such as in the case of Camelina sativa (37)
with 88 candidate BGCs, Brassica napus (38) with 68 candidate BGCs and G. max
(39) with 76 candidate BGCs.

Figure 3. Numbers of candidate BGCs identified across the Plant Kingdom. (A) PlantiSMASH
BGC predictions plotted onto a phylogenetic tree of plant species for which chromosome-level
genome assemblies are available. The blue bars indicate the number of candidate BGCs per
genome, the red bars indicate the most complex candidate BGC identified in each species (in terms
of the number of unique enzymes encoded, as defined by CD-HIT groups). (B) Number of candidate
BGCs plotted versus the total number of genes; as expected, more BGCs are found in larger
genomes. Outliers represent genomes that have recently undergone whole-genome duplication, and
the moss Physcomitrella patens, in the genome of which only a very low number of candidate BGCs
is found. (C) Number of candidate BGCs plotted versus the number of genes with pHMM hits to
biosynthetic domains. (D) Number of genes with biosynthetic domains plotted against the total
number of genes; a linear correspondence is largely observed.

In many plant genomes, candidate BGCs of high complexity were identified, with
as many as seven or eight different enzymatic classes encoded in the same tight
genomic region. These constitutions are clearly non-random and make it promising
to study candidate BGCs even in the absence of coexpression data. Dozens of such
complex BGCs were found, which cover all known as well as putative pathway
classes; examples are provided in Figure 4.
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Figure 4. Example candidate BGCs identified by plantiSMASH. Five example candidate BGCs
are shown, which cover a diverse range of enzymatic classes. Dozens of candidate BGCs of
comparable complexity can be found across the precomputed plantiSMASH results that are available
online.

2.4.3. Coexpression patterns can guide BGC prioritization
We subjected the candidate BGCs identified in the genome of A. thaliana to a

more detailed statistical analysis using within-cluster coexpression in a merged
transcriptomic dataset. For this, we compiled two sets of gene expression datasets,
one containing transcriptomic experiments of biological treatments (defense;
Supplementary Table S5) and one containing experiments of hormone treatments
and non-biological stress inductions (Supplementary Table S6). Together, these
datasets comprise transcriptomic measurements of 1047 samples. The Mann–
Whitney U one-sided test was selected to test which of the A. thaliana BGCs have a
statistically greater within-cluster coexpression distribution than the genome’s
background coexpression distribution. Given a BGC consisting of x genes, the
background distribution for the statistical test of this cluster contains all PCCs
between pairs of genes that are x-1, x-2, ..., 0 genes away from each other across
the entire genome (except predicted BGCs). Only genes observed in all
transcriptomic experiments were allowed in the test, and only PCCs between genes
that each have a Median Absolute Deviation >0 are added to the distributions. Lastly,
the CD-HIT algorithm was run on the entire A. thaliana proteome at 0.5 identity
cutoff (same as plantiSMASH’s default) to cluster all similar enzymes. The same
statistical tests were repeated afterward, but this time discarding PCCs between
genes that code for enzymes within the same CD-HIT cluster, ensuring both
distributions only include coexpression of genes that produce enzymes of different
classes, which more accurately resembles the type of interactions desired in a bona
fide BGC. The results of these analyses (Supplementary Table S8 and Figure S3)
show that at a significance level of 0.05, 11 predicted BGCs showed statistically
higher within cluster coexpression than their respective background distribution even
when discarding coexpression between genes in the same CD-HIT cluster. This list
includes the four known A. thaliana BGCs, encoding the biosynthetic pathways for
arabidiol/baruol (P = 2.92e-40), thalianol (P = 1.94e-17), marneral (P = 7.03e-10)
and tirucalla-7,24-dien3-ol (P = 1.10e-4), which corroborates that coexpression is a



30and tirucalla-7,24-dien3-ol (P = 1.10e-4), which corroborates that coexpression is a
valid criterion to prioritize functional BGCs.

There are several explanations for the fact that strong coexpression is observed
for some candidate BGCs but not others. A first explanation is that their coordinated
expression is induced by conditions not included in these transcriptomic
experiments; in other words, absence of evidence of coexpression is not evidence of
absence of coexpression. A second explanation is that a number of candidate BGCs
probably do not encode entire consistently coexpressed biosynthetic pathways by
themselves; evidence for this comes from an analysis of characterized enzyme-
coding genes inside these candidate BGCs (Supplementary Table S9); e.g.
AT1G24100 and AT5G57220, which occur in two different candidate BGCs, are
known to each be involved in a different branch of glucosinolate biosynthesis (40,41),
a complex multifurcated pathway that shows only partial and fragmented genomic
clustering. Contrary to what might be expected, however, there was no strong
correlation (R = 0.004, and P = 0.64 when fitting linear regression) of coexpression
with cluster size, which suggests that the default plantiSMASH BGC prediction cut-
offs are not set too inclusively.

All in all, coexpression analysis provides a powerful tool to prioritize the candidate
BGCs detected by plantiSMASH that are most likely to encode functional pathways.

2.5. Conclusions
The highly automated discovery of candidate BGCs by plantiSMASH and the

powerful visualizations of coexpression data that allow their prioritization present a
key technological step in the route toward high-throughput genome mining of plant
natural products. As plant genome sequencing and assembly technologies continue
to improve at a rapid pace, it is likely that high-quality plant genomes for thousands
of species will soon be available; hence, ‘clustered’ biosynthetic pathways present
low-hanging fruits for the discovery of novel molecules. Empowered by synthetic
biology tools and powerful heterologous expression systems in yeast and tobacco
(42–46), this will likely make it possible to scale up plant natural product discovery
tremendously.

Continued development of the antiSMASH/plantiSMAS H framework in the
future is needed to further accelerate this process: e.g. the development of
(machine-learning) algorithms that predict substrate specificities of key enzymes like
terpene synthases, and the systematic construction of pHMMs for automated
subclassification of complex enzyme families such as cytochrome P450s and
glycosyltransferases, will allow more powerful predictions of the natural product
structural diversity encoded in diverse BGCs. Additionally, detailed evolutionary
genomic analysis of the phenomenon of gene clustering, including BGC birth, death
and change processes, will further our understanding of how BGCs facilitate natural
product diversification during evolution. As more plant BGCs are experimentally
characterized, the algorithms will co-evolve with the knowledge gained, and more
detailed class-specific cluster detection rules could be designed; moreover, it will
become clearer what does and what does not constitute a bona fide BGC. Finally,
when scientists further unravel the complexities of tissue-specific and differentially
timed gene expression of plant biosynthetic pathways, we will learn more on how
best to leverage coexpression data for biosynthetic pathway prediction.

Thus, a more comprehensive understanding of the remarkable successes of



31Thus, a more comprehensive understanding of the remarkable successes of

evolution to generate an immense diversity of powerful bioactive molecules will
hopefully make it possible for biological engineers to mimic nature’s strategies and
deliver many useful new molecules for use in agricultural, cosmetic, dietary and
clinical applications.

2.6. Supplementary Information
Supplementary figures and tables are available to download from:

https://doi.org/10.1093/nar/gkx305
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3.1. Introduction
Plants are chemical engineers par excellence, and are collectively estimated to

make over a million different specialized metabolites (Afendi et al., 2012). These
compounds have important ecological functions, providing protection against attack
by pests and pathogens, inhibiting the growth of competing plants, shaping the plant
microbiome, and serving as attractants for seed dispersal agents and pollinators
(Weng et al., 2012a; Huang et al., 2019). Plant natural products also are a rich
source of bioactives for medicinal, agricultural and industrial applications (Böttger et
al., 2018). Despite their tremendous chemical diversity, the mechanisms
underpinning the evolution of new metabolic pathways are poorly understood.
Although individual enzymes are known to be recruited primarily through gene
duplication, often involving sub‐ or neo‐functionalization, little is known about how
pathways consisting of multiple biosynthetic steps originate (Weng, 2014). It has
recently become apparent that the genes for the biosynthesis of various natural
products, such as the plant defence compound avenacin A‐1 from oat (antimicrobial
triterpene) (Qi et al., 2004), noscapine from opium poppy (anticancer alkaloid)
(Winzer et al., 2012; Guo et al., 2018), and dhurrin from sorghum (an insect repellent
cyanogenic glycoside) (Takos et al., 2011) are clustered in plant genomes. These
plant biosynthetic gene clusters (BGCs) consist of at least three different classes of
enzyme‐encoding genes (Medema & Osbourn, 2016) and bring unique perspectives
towards metabolic innovation and diversification. First, plant BGCs have not
originated from microbes via horizontal gene transfer. Instead, they appear to have
arisen from plant genes by as yet unknown mechanisms, presumably honed by
rounds of natural selection (Field & Osbourn, 2008). Those BGCs that make the
same/very similar types of compounds are usually restricted to a narrow taxonomic
window of closely related lineages (Nutzmann et al., 2016), suggesting that these
BGCs must have assembled relatively recently in evolutionary time. Second, plant
BGCs usually contain a gene encoding an enzyme that makes the natural product
scaffold, along with a combination of genes encoding other types of enzymes that
modify this scaffold (tailoring enzymes) (Medema & Osbourn, 2016). The ‘rules’ that
govern the evolutionary interplay between genes encoding different scaffold‐
generating enzymes and tailoring enzymes are not understood. Therefore,
understanding the evolution and diversification of plant BGCs is expected to offer
new insights into how plants have acquired the ability to synthesize such a
remarkable diversity and complexity of specialized metabolites.

The terpenoids are the major class of plant natural products, comprising ~40% of
the plant natural products discovered thus far (Chassagne et al., 2019); of these, the
triterpenes are the largest and most structurally complex (> 20 000 reported so far)
(Christianson, 2017). We have previously shown that the genes for the biosynthesis
of structurally diverse triterpenes are organized in BGCs in the genome of the model
plant Arabidopsis thaliana (Field & Osbourn, 2008). Arabidopsis thaliana is a
member of the mustard family, Brassicaceae (Cruciferae), which includes
economically important crop plants such as turnip, cabbage and oilseed rape. When
we started this project, 13 high‐quality sequenced Brassicaceae genomes covering
lineages I‐II (Beilstein et al., 2010) and early diverging species were available
(Supporting Information Table S1). The evolutionary relationships among most of



37(Supporting Information Table S1). The evolutionary relationships among most of
these genomes are well‐defined by phylogenomic analysis (Beilstein et al., 2010).
Furthermore, several explicit examples of gene duplication‐promoted metabolic
innovation have been reported in the Brassicaceae (Weng et al., 2012b; Edger et al.,
2015; Liu et al., 2016), demonstrating that Brassicaceae genomes are excellent
working materials for exploring the genomic basis underpinning metabolic
diversification. Herein we take advantage of the extensive resource of available high‐
quality genome sequences to systematically investigate the genomic mechanisms
underlying triterpene diversification in the wider Brassicaceae.

3.2. Materials and Methods

3.2.1. Genome mining
Genomes were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/), CoGE

(https://www.genomevolution.org/coge/) and Phytozome v.12.0
(https://phytozome.jgi.doe.gov/) in GenBank format. To thoroughly identify
oxidosqualene cyclase (OSC) loci, both Hmmer3 (Finn et al., 2011) and Blastp
(Altschul et al., 1990) were used to identify OSC homologues. The Hmmer profiles
(pHMMs) were downloaded from the PFAM library (Finn et al., 2016). PF13243
(targeting OSC N‐terminal) and PF13249 (targeting OSC C‐terminal) were used to
search for OSC homologues with hmmsearch. The cut_tc (trusted cut‐off) option
was used. For Blastp, protein identity ≥ 40 and bit score ≥ 100 were used as cut‐offs,
and AtCAS1 (At2g07050) was used as query sequence. Blastp identified the same
OSCs present in the Hmmer analysis, but Hmmer showed slightly more candidates.
The Hmmer output was aligned with outgroup protein PGGT1B_sp
(geranylgeranyltransferase type I) by using Muscle (Edgar, 2004), generating a
multiple sequence alignment (MSA). The MSA then was trimmed manually to keep
only the conserved domains and used to build a phylogenetic tree with FastTree 2.1
using standard parameters (Price et al., 2010). Support for tree nodes was assessed
using fast global bootstrap iterations (Tamatakis et al., 2008; Price et al., 2010).
Bootstrap values (1000 iterations) > 0.7 are shown in Fig. S1. Proteins grouped with
outgroup PGGT1B_sp were discarded (nine proteins). To fully annotate the tree, we
propagated subfamily annotations present in A. thaliana, resulting in three distinct
groups: clade I, clade II and the sterol clade (Field and Osbourn, 2008). Another
phylogeny of OSCs was reconstructed using the RAxML method (Kozlov et al.,
2019), which generated a tree with 134 of 164 partitions identical to the tree
generated by FastTree, differing mainly in some deep ancestral splits that are
difficult to resolve (Fig. S2). Pfam domains PF00067 and PF02458 were used to
identify members of the cytochrome P450 (CYP) gene/protein family and the
acyltransferase (ACT) gene/protein family, respectively. The identified CYP and ACT
genes were pooled separately, and we used the hmmalign – trim option to trim
nonconserved domains. Hmmalign‐based MSAs were taken as input to infer
phylogenetic trees with FastTree. Well‐annotated A. thaliana CYPs (Nelson, 2009)
and ACTs (Tuominen et al., 2011) were used as markers to annotate protein families



38and ACTs (Tuominen et al., 2011) were used as markers to annotate protein families

and subfamilies in the phylogenetic tree (Figs S3, S4). The CYPs that were
functionally characterized in this study were formally assigned to subfamilies and
named as CYP708A9, CYP708A10, CYP705A38, CYP708A11 and CYP705A37v2
according to procedures of the Cytochrome P450 homepage (Nelson, 2009).

3.2.2. Genomic Neighbourhoods (GN) association analysis
We developed a simple tool to identify and isolate the GNs of a given list of target

genes based on a user‐specified number of flanking genes. In this study, we defined
‘GNs’ as the OSC flanking regions extending five genes either side of an OSC gene.
This resulted in most GNs consisting of 11 genes with two exceptions: OSCs located
in a scaffold with < 11 genes result in smaller GNs, and OSCs in close proximity to
each other result in overlapping GNs, which are merged into one large GN
containing more than 11 genes. After identifying all OSC GNs across the
Brassicaceae genomes, Pfam protein domain content was predicted using Hmmer.

Because of the differences in domain content among the GNs of the three OSC
clades (Field & Osbourn, 2008), we explored the enrichment of protein domains in
the OSC GNs separately for each OSC clade by comparing them to the rest of the
genomes with a hypergeometric test (one‐tailed exact Fisher's test) and the
Bonferroni correction for multiple comparisons. The close phylogenetic relationships
between the species in our study potentially presents a problem for standard
statistical procedures, because various studies have shown that the common
evolutionary history of related species results in an abundance of type I errors
(Martins & Garland 1991; Martins et al., 2002), in part due to the nonindependence
of the samples. To address the possibility of an inflation of degrees of freedom within
the enrichment test, we used the OSC phylogenetic tree that we had generated
previously and grouped together all monophyletic groups of leaves that share the
trait targeted by the test. We used the conservative assumption that each clade of
OSCs for which all GNs contain a particular protein domain represents a group of
vertically inherited orthologues. Based on this, we then selected only the leaf with the
highest target protein domain count for the enrichment test, instead of each leaf
individually, effectively increasing the independence of the samples and resulting in a
reduction of successful counts (k in the hypergeometric test). Because of the high
abundance of CYP and Transferase domains in the OSC GNs, we also tested the
enrichment of CYP and Transferase subfamilies separately.

Multiple methods that incorporate phylogenetic information into statistical
procedures have been developed, with no method being objectively better than all
others in all cases. All of them have the disadvantage, compared to the Fisher's
exact test, that they do not take into account the frequency at which a given domain
occurs in the rest of the genome. To further reduce the problems that arise from
phylogenetic relatedness, in our study, we selected two of these phylogenetic
methods to complement our initial exploration of enriched domains: phylogenetic
logistic regression (PLR), and phylogenetic generalized linear mixed models
(PGLMM) (Ives & Garland, 2010), both of which have been shown to be robust and
adequate for studying the evolution of binary traits (Garamszegi, 2014). The main
difference between the models is how the phylogenetic component is applied to the
regression models: in PLR models, the dependent variable (the trait of interest)
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evolves to 0 or 1 through a lineage according to a switching rate, whereas PGLMM
includes an additional hidden trait that evolves through the phylogenetic tree and
determines the probability of the dependent variable evolving to 0 or 1 at the tip.
When using regression methods such as PLR and PGLMM, the strength of
association between the dependent and independent variables is not symmetrical,
making their selection an important step for correct interpretation. We selected the
absence and presence of OSC subfamilies in the GNs as the independent variables
(i.e. the GN‐centric OSC belonging either to clade I, clade II or the sterol clade), and
the absence and presence of each of the other protein domains as dependent
variables; this approach allows us to interpret significant associations in the
regression models that indicate whether the absence/presence of a given OSC
subfamily (as opposed to others) in a GN is a strong predictor of the
absence/presence of specific protein domains in their GNs.

We performed the phylogenetic regressions in R/ape v.5.0 using the
‘binaryPGLMM’ function found in the package (Paradis et al., 2004) for PGLMM,
and R/phylolm v.2.6 (Ho & Ané 2014) for PLR. Because we were interpreting the
results of the two regression models in conjunction with other statistical tests and
phylogenomic analysis, we set the significance threshold at P < 0.1 and did not apply
multiple testing correction.

3.2.3. All‐vs‐all comparison of OSC GNs
In order to assess the similarity amongst the identified OSC GNs, we first

measured the average amino acid identity between protein domains that appear in
compared GNs. In the case of GNs with multiple copies of any domain, the
sequence identity of all possible domain pairs is identified and the Hungarian
algorithm (Kuhn, 1955) is used to select the pairs resulting in the highest average.
When a GN has extra copies of a protein domain, the highest identity scores are
selected, and the additional domains are removed until both GNs have the same
number of copies, after which the Hungarian algorithm is used. We next used two
other tools from BiG‐Scape (Navarro‐Muñoz et al., 2018)
(https://git.wageningenur.nl/medema-group/BiG-SCAPE) to compare GNs. BiG‐
Scape compares loci with multiple genes based on three criteria, two of which are of
interest to us: domain composition similarity, measured here with the Jaccard index
of identified protein domains, and domain sequence similarity (DSS), measured by
averaging the sequence similarity of shared domains, with a score penalization when
a GN has extra copies of a protein domain that are not present in the other. To
ensure a fair comparison, only OSC GNs with ≥ 11 genes were selected as input for
the tool.

3.2.4. Mapping GNs to their whole‐genome duplication
(WGD)‐derived syntenic blocks

The WGD‐derived syntenic regions in A. thaliana are defined by ‘anchor genes’
which retain sequence similarity with its paralogue in its sister region, and the full list
of anchor genes and syntenic regions is publicly available (Freeling et al., 2007). We
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identified the anchor genes upstream and downstream of each OSC GN and used
them to define their corresponding sister regions. To compare each GN with its sister
region, we generated a MSA with Muscle (Edgar, 2004) and a sequence similarity
matrix with R/seqinr v.3.4 (Charif & Lobry, 2007).

3.2.5. Ancestral states reconstruction
We pruned and isolated clade II OSCs from the phylogenetic tree and then

removed the 11 leaves corresponding to GNs with < 11 genes. Given that GNs with
multiple OSCs appear as multiple leaves in the phylogenetic tree, only one leaf was
selected as being representative of the neighborhood based on maximizing the DSS
(domain sequence similarity) index with the surrounding leaves in the tree; the
nonrepresentative OSC leaves were removed.

In order to explore the evolutionary history of the selected GNs, we assigned
binary traits to each leaf according to the presence (=1) or absence (=0) of the most
abundant tailoring enzymes within the clade II OSC GNs (CYP702A, CYP705A,
CYP708A and ACT IIIa) and reconstructed their ancestral states through the tree via
maximum parsimony by using the Mesquite software (Maddison & Maddison, 2008).
We selected the maximum parsimony criterion because it does not require the
assumption of an underlying model of evolution for the assembly of plant biosynthetic
gene clusters (BGCs), a process that is still poorly understood.

We used the CYP and ACT phylogenetic trees to validate the ancestral state
reconstruction of CYP705A and ACT IIIa in the OSC tree. For this, we pruned both
trees to remove all genes in a scaffold with < 11 genes (32 CYP705As, 59 ACT
IIIas) and isolated the CYP705A and ACT IIIa subtrees. Furthermore, as additional
validation, we also reconstructed the ancestral states on an OSC phylogeny
generated by RAxML. Although the resulting tree had some differences in the deep
ancestral splits (Fig. S2), ancestral state reconstruction on this tree would lead to the
same conclusions regarding multiple parallel origins of complex triterpene
biosynthetic loci.

3.2.6. Evolutionary tests
The OSC protein‐coding DNA sequences were aligned with TranslatorX

(Abascal et al., 2010). Genes with sequence length < 2200 nucleotides and poorly
aligned genes were both filtered. The final alignment and the input tree used for the
various evolutionary tests can be found on Zenodo (doi: 10.5281/zenodo.3531676).
This alignment was subjected to evolutionary tests in the HyPHy package (Pond et
al., 2005). BUSTED analysis was used to infer whether a gene has experienced
positive selection at at least one site on at least one branch (Murrell et al., 2015).
MEME analysis was used to detect individual sites evolving under positive selection
in a proportion of branches (Murrell et al., 2012). For both analyses, ‘universal
genetic code’ was selected and P < 0.05 was set for significance.

3.2.7. Plant material and growth conditions
Capsella rubella (Monte Gargano) and Brassica rapa (r‐o‐18) seeds were

obtained from Lars Østergaard and Arabidopsis lyrata seeds (accession VLP6) from



41obtained from Lars Østergaard and Arabidopsis lyrata seeds (accession VLP6) from

Levi Yant (John Innes Centre). Plants were grown from these seeds in a controlled
growth chamber at 22°C under long‐day light conditions (16 h : 8 h, light : dark).
Nicotiana benthamiana plants were grown in a glasshouse, under the same long‐day
light conditions.

3.2.8. RNA isolation and RT‐qPCR analysis
Total RNA for A. thaliana, A. lyrata and C. rubella were isolated from post‐

flowering plants using TRIzol reagent (ThermoFisher, Carlsbad, CA, USA). Roots
were dug out from soil and then washed thoroughly with water. Leaves were
collected from rosettes and stems were collected from the basal second internodes.
Plant material was frozen in liquid N2 immediately after harvesting. Reverse
transcription reactions were performed using ≤ 2 μg of total RNA, random primers
and a reverse transcription kit (Agilent, Santa Clara, CA, USA). The cDNAs were
used as templates for quantitative (q)PCR analysis which was carried out using a
CFX Real‐time PCR system (Bio‐Rad). PCR reactions (15 μl) consisted of: 7.5 μl
SYBR Green I master mix solution (Roche), 1 μl gene specific primers, 5× diluted
cDNAs and water. The amplification protocol involved denaturation at 95°C for 2
min, followed by 39 cycles of 95°C for 10 s and 62°C for 20 s. Amplicon dissociation
curves (i.e. melting curves) were recorded after cycle 39 by heating from 65 to 95°C
in 0.5°C increments. The specificity of the amplification products was verified by
melting curve analysis. ACTIN or PP2A was used as a reference. Normalized gene
expression levels were calculated using the 2−ΔΔCt method (Livak & Schmittgen,
2001). The qPCR experiments were conducted using three independent biological
replicates, each consisting of three technical replicates. Primers are listed in Table
S2.

3.2.9. Isolation of mutants of C. rubella
Isolation of TILLING (Targeting Induced Local Lesions IN Genomes)

mutants
Capsella rubella TILLING mutants were ordered from RevGenUK

(https://jicbio.nbi.ac.uk/revgen.html) at the John Innes Centre. Pre‐screening was
carried out with DNA pools from M2 progeny by sequencing of PCR products
amplified using specific primer pairs (Table S2). Ten M3 seeds from each positive
line were sown. Thirteen independent lines bearing a mutation in CYP708A9 and ten
with a mutation in CYP705A38 gene were obtained. No CYP708A10 TILLING
mutant lines were identified (Fig. S5a,b). Mutations were confirmed by sequencing.
Only line Mcr705‐8 showed accumulation of tirucalla‐8,24‐dien‐3β,23‐diol (Ti2) in
comparison to wild‐type (WT). This line was then crossed with the WT line. The F2
population derived from these crosses was used for metabolite analysis and
morphological phenotyping analysis.

Constructs for CRISPR‐Cas9 vector and mutant isolation
Golden Gate (GG) assembly of a CRISPR‐Cas9 vector for genome editing using
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the seed FAST‐RFP as screen marker (Shimada et al., 2010) was carried out as
described recently (Castel et al., 2019). Two gene‐specific guide RNA (gRNA)‐
targeting sequences before a protospacer adjacent motif (PAM, NGG) site were
selected (Fig. S5c). Briefly, the gRNA targeting sequences were synthesized within
forward primers. Together with a universal reverse primer, a c. 200‐bp fragment
including CRISPR‐Cas9 targeting fragment and gRNA backbone was amplified by
PCR. The level 1 GG reaction contained: 20 ng pICSL90002 plasmid, 2.5 ng gRNA
fused fragment, 61 ng pICH47751 (for gRNA1) or pICH47761 plasmid (for gRNA2),
1 μl Bsa I HF New England Biolabs (NEB, Ipswich, MA, USA), 1.5 μl 10× Bovine
serum albumin (BSA), 1.5 μl T4 ligase buffer (10×), 1 μl T4 ligase and water (final
volume 15 μl). The GG assembly protocol was as follows: (37°C for 4 min, 16°C for
3 min) × 25 cycles, then 65°C for 10 min. The gRNA targeting sequence region after
GG assembly was verified by sequencing. The level 2 GG reaction contained: 160
ng pICSL4723 plasmid, 83 ng pICSL11015 plasmid, 135 ng BCJJ358 plasmid, 59
ng pICH47751 assembled gRNA1 level 1 product, 59 ng pICH47761 assembled
gRNA2 level 1 product, 41 ng pICH41780, 0.5 μl Bpi I, 1.5 μl 10× BSA, 1.5 μl T4
ligase buffer (10×), 0.5 μl T4 ligase and water (final volume 15 μl). The GG assembly
protocol was set up as: (37°C for 3 min, 16°C for 4 min) × 25 cycles, 65°C for 10
min. HindIII digestion was used to verify the level 2 GG assembled product.
Agrobacterium tumefaciens strain LBA4404 carrying the CRISPR‐Cas9 construct
was used for transformation of C. rubella plants. The floral dipping method used for
A. thaliana (Clough & Bent, 1998) was adopted. The concentration of Silwet‐70 was
reduced to 0.15%. Thirty flowering plants were used for floral dipping. T0 fluorescent
seeds were screened with a Leica M205FA stereo microscope with a 530 nm‐red
fluorescent protein (RFP) LED light source. Twelve fluorescent seeds were obtained.
Two T1 lines that had undergone genome editing were identified. One of these (T1‐
#20) had a 100‐bp deletion within the CYP708A10 gene in a T1 leaf sample and was
therefore used for next‐generation screening. Twenty‐four nonfluorescent (to avoid
CRISPR/Cas9 construct on genome) T1‐#20 seeds were sown to generate T2 lines.
Twelve independent T2 lines showed genome editing on the CYP708A10 gene and
were then sown to generate T3 lines. Two independent homozygous lines in the T3
generation were used for metabolic analyses.

3.2.10. Transient expression in N. benthamiana
Construct generation
The cDNAs for the A. lyrata AL8G20190, AL8G20160, AL8G20150 and

AL8G20140 genes were amplified from root cDNA, and those of the C. rubella
genes Carubv10016727m, Carubv10017128m, Carubv10017289m,
Carubv10017243m and Carubv10017044m were amplified from cDNA from flower
buds. The cDNAs were cloned into the GATEWAY entry vector pDONR207
(Invitrogen) and the constructs were verified by sequencing. The corresponding
genes also were amplified from genomic DNA and cloned and sequenced.
AL8G20140 and Carubv10017243m were misannotated in the Phytozome v.12
database. The revised sequences and single nucleotide variants are listed in Table
S3. The B. rapa genes could not be cloned from available cDNA libraries (root,
leaves, stems, flowers and siliques). Genomic DNA was therefore used as template
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to clone the Brara.I04560, Brara.I04561, Brara.I04562 and Brara.I04563 genes. The
sequences of these genes (if different from those represented in the Phytozome v.12
database) are listed in Table S3. The cloned genes were then inserted into the
pEAQ‐Dest‐1 expression vector (Sainsbury et al., 2009). Constructs were verified by
sequencing and introduced into A. tumefaciens strain LBA4404.

Agro‐infiltration of N. benthamiana leaves
The strains harbouring expression constructs were freshly grown on Lysogeny

Broth (LB) plates with antibiotic selection (50 μg ml–1 kanamycin, 50 μg ml–1
rifamycin, 100 μg ml–1 streptomycin). For small‐scale analysis, multiple clones were
picked and inoculated into 10 ml LB broth. Cultures were then incubated in a shaker
(28°C and 220 rpm) for about 16 h until the OD600 reached c. 2.0. For large‐scale
analysis, the 10 ml culture was further inoculated to make 1 L culture. LBA4404 cells
were pelleted by centrifuging at 4500 g for 20 min and supernatants were discarded.
The pellets were then resuspended in freshly made MMA buffer (10 mM MgCl2, 10
mM MES/KOH pH5.6, 150 μM acetosyringone) and diluted to OD600 0.2. For
combinatorial assay, strains harbouring different constructs were mixed and
infiltrated by a syringe without a needle for small‐scale analysis. For triterpene
purification and NMR analysis, around 75 to 100 plants were infiltrated batch‐wise by
a previously described customized vacuum infiltration system (Reed et al., 2017).
Leaves were harvested 6 d post‐infiltration and lyophilized.

3.2.11. Metabolite extraction and analysis
Metabolite extraction
Three dry N. benthamiana leaf disks (9 cm diameter) were ground and saponified

by mixture of ethanol/H2O/KOH pellets in 9 : 1 : 1 (v/v/w) (1 ml) at 70°C for 1 h. The
ethanol was removed by evaporation (1 h, 70°C), and the samples were extracted
with 1 ml ethyl acetate/H2O in 1 : 1 (v/v). The suspensions were centrifuged at 16
000 g for 1 min and the supernatants collected. The supernatants were dried under
N2 and resuspended in 50 μl derivatizing reagent, 1‐(Trimethylsilyl)imidazole‐
Pyridine mixture (Sigma‐Aldrich). The samples were incubated at 70°C for 30 min
before analysis by GC‐MS analysis. For C. rubella metabolites extraction, c. 30 mg
of fresh tissues (leaves or flowers) were ground. Samples were extracted and
prepared for GC‐MS as described above. Ground samples used for LC‐MS analysis
were extracted with 1 ml ethyl acetate (shaken overnight). The samples were then
extracted with 500 μl of water. The supernatants were dried under N2 and
resuspended in 100 μl methanol. The samples were all cleaned via 0.22‐μm nylon
filter tube (Spin‐x centrifuge tube; Costar, Cole‐Pamer, St Neots, UK) prior to LC‐
MS analysis.

GC‐MS and LC‐MS‐IT‐TOF analysis
GC was performed on an Agilent 7890B fitted with a Zebron ZB5‐HT Inferno

capillary column (Phenomenex, Torrance, CA, USA). A 1‐μl aliquot of each sample
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was injected by a splitless pulse method (2.07 bar pulse pressure) with a GC inlet
temperature of 250°C. The oven temperature program began from 170°C (held for 2
min) to 290°C (held for 4 min) at a speed of 6°C min–1 and switched to 340°C (held
1 min) at a rate of 20°C min–1. Helium was used as carrier gas and the flow rate
was set as 1 ml min–1.

LC‐MS analysis was carried out on a Prominence/Nexera UHPLC system
attached to an Ion‐trap time‐of‐flight (ToF) mass spectrometer (Shimadzu, Kyoto,
Japan). Separation was performed on a 100 × 2.1 mm 2.6 μm Kinetex EVO reverse
phase column (Phenomenemex), using the following gradient of methanol (solvent
B) vs 0.1% formic acid in water (solvent A): 0 min, 70% B; 10 min, 95% B; 11 min,
95% B; 11.1 min, 70% B; 14.5 min, 70% B. The flow rate was 0.5 ml min–1 and the
run temperature was set at 40°C. Detection was collected by positive electrospray
MS. Spectra were collected from m/z 200–2000 with automatic sensitivity control set
to a target of 70% optimal base peak intensity. Spray chamber conditions were:
250°C for curved desorbation line, 300°C for heat block, 1.3 l min−1 for nebulizer
gas, and drying gas is ‘on’. The instrument was calibrated immediately before
analysis, using sodium trifluoroacetate cluster ions according to the manufacturer's
instructions.

3.2.12. Triterpene purification and NMR analysis
Freeze‐dried N. benthamiana leaves were thoroughly extracted using a

SpeedExtractor (E‐914). The extraction method was set as: solvent: ethyl acetate;
pressure: 130 bar; three cycles, Hold time Cycle 1: 0 min; Hold time Cycle 2: 5 min;
Hold time Cycle 3: 5 min. The extracts were dried by rotatory evaporation. The crude
extracts were dissolved in ethanol and saponified by strong basic anion exchange
resin amberSEP 900 hydroxide beads (Sigma‐Aldrich) for about 30 min (the solvent
turned to yellow) (Stephenson et al., 2018). The solvent was filtered by a mixture
layers of Celite 545 (Sigma‐Aldrich) and fat‐free quartz sand (Buchi 037689). The
eluted solvent was dried, loaded to an IsoleraOne system silica gel column
(BioTage® SNAP Vitra K‐Sil 100g, Uppsala, Sweden) and separated with a gradient
of 0–100% ethyl acetate. Fractions (164 ml) were collected in 200 ml Duran bottles
and aliquots (5 μl) monitored on thin layer chromatography (TLC) plate (70644‐
50EA, Sigma‐Aldrich). Triterpenes were visualized by spraying of fresh‐made
vanillin‐sulfuric acid reagent (1 g vanillin dissolved in 100 ml of 50% sulfuric acid.)
Depending on the purity, additional separation of selected fractions was carried out
using a smaller volume column (BioTage® SNAP Vitra KP‐Sil 10g) with 5% ethyl
acetate in dichloromethane (DCM) as eluent solvent. Fractions from each step were
assessed both by TLC and GC‐MS analysis. Around 2–5 mg purified compounds
were collected and subjected to NMR analysis.

Purified compounds were analysed by NMR spectroscopy. DEPT‐135, DEPT‐
edited‐HSQC, COSY, and HMBC experiments were used to fully assign 1H and
13C spectra, or spectra were compared to the literature if reported previously. NMR
spectra were recorded in Fourier transform mode at a nominal frequency of 400 MHz
for 1H NMR, and 100 MHz for 13C NMR, using the specified deuterated solvent.
Chemical shifts were recorded in ppm and referenced to the residual solvent peak or
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to an internal tetramethylsilane (TMS) standard. Multiplicities are described as: s,
singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; t, triplet; q, quartet;
m, multiplet; br, broad; appt, apparent; coupling constants are reported in Hz as
observed and not corrected for second order effects (Table S4).

3.3. Results

3.3.1. Investigation of the genome neighborhoods around
triterpene synthase genes

The first committed step in triterpene biosynthesis is catalyzed by triterpene
synthases – also known as OSCs. Our systematic analysis of 13 sequenced
Brassicaceae genomes identified a total of 163 predicted OSC genes (Table S1).
These OSCs grouped into three major clades: the sterol clade, containing OSCs
implicated in primary sterol biosynthesis, and two other clades (I and II), a topology
consistent with our earlier investigations of OSCs in A. thaliana (Field & Osbourn,
2008; Field et al., 2011). The OSCs located in the previously reported A. thaliana
BGCs all belong to clade II (Figs 1a, S1a).
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Fig. 1. Associations between clade II oxidosqualene cyclases (OSCs) and cytochrome P450
(CYP) and acyltransferase (ACT) subfamilies in the Brassicaceae, in rapidly evolving genomic
regions. (a) Maximum‐likelihood tree of clade II OSC protein sequences, including representative
sterol and clade I OSCs (see Supporting Information Fig. S1 for the full 163 Brassicaceae OSCs).
Characterized OSCs for Arabidopsis thaliana biosynthetic gene clusters (BGCs) are indicated in
bold; *, OSCs characterized in this study. The ancestral states of CYPs and ACTs in the clade II
OSC gene neighbourhoods (GNs) were reconstructed with maximum parsimony and inferred
changes in state (gene gains and losses) are shown. (b) OSC GNs. The genes encoding the OSC in
each tree leaf in a are positioned in the middle. Arrows denote the strand directionality of genes.
CYP and ACT subfamilies are denoted by colours (see key). (c) Heat map showing the CYP and
ACT domains in the OSC GNs. The colour scale bar shows copy number values.

We then examined the immediate GNs around all 163 OSC genes, extending
five genes on either side (Fig. 1b; Table S5; all GNs are publicly available in
GenBank format at doi: 10.5281/zenodo.3531676) and tested which Pfam domains
were over‐represented in the OSC GNs relative to genome‐wide distribution. To
reduce potential phylogenetic bias due to genes likely derived from common
ancestors, domains that appeared consistently in the GNs of monophyletic branches
of OSCs were binned and only the leaf with the largest number of domain
appearances was counted (‘conservative’ hypergeometric test, P < 0.01; see
Methods). The results indicate that the sterol, clade I and clade II OSC genes have
distinct GN associations (Tables 1, S6). In general, the Pfam domains associated
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with sterol OSC genes do not have any anticipated roles in specialized metabolism.
Although significant associations between clade I OSC genes and ACT Pfam
domains were detected (Tables 1, S6), there currently is no evidence that clade I
OSCs and ACTs form functional BGCs. The clade II OSC genes, however, were
significantly associated with both CYP and ACT genes, both of which encode
potential triterpene scaffold‐modifying enzymes (Tables 1, S6). Such associations
were further supported by phylogenetic regression analyses (Table S6; Notes S1)
and ‘nonconservative’ hypergeometric analysis (Table S7; Notes S1). Altogether, our
analyses suggest that the evolutionary histories of clade I, clade II and sterol OSC
GNs are distinct (Fig. 1a,b; Table 1), and importantly, that clade II OSC genes
associated with CYP and ACT genes may reside in potential BGCs (Medema &
Osbourn, 2016).

Table 1. Domains significantly associated with the Brassicaceae oxidosqualene cyclases (OSCs)
from the three phylogenetic clades. Association outcome (P < 0.01) of conservative Fisher's exact
test (with Bonferroni correction) is listed. The full list can be found in Supporting Information Table
S6. Enzymatic domains are indicated by *

In order to further elucidate the relationship between clade II OSCs, CYPs and
ACTs (in total, 58, 76 and 15 in the clade II OSC GNs, respectively), we identified all
CYP and ACT genes in the 13 Brassicaceae and four outgroup genomes and
annotated all of the CYP and ACT subfamilies by propagating the annotations of
characterized genes from A. thaliana. Our analysis revealed that all ACT genes
present in clade II OSC GNs belong to the ACT IIIa subfamily, whereas those in
clade I OSC GNs belong to a distinct ACT subfamily, ACT IIIb (Fig. S3). The CYP



48clade I OSC GNs belong to a distinct ACT subfamily, ACT IIIb (Fig. S3). The CYP

genes associated with clade II OSC genes belong to a total of eight families, of
which 86% are in the CYP708, CYP702 and CYP705 families (Figs 1c, S4).

3.3.2. All‐vs‐all comparison of clade II OSC genome
neighborhoods

Because of the abundance of genes encoding potential triterpene scaffold‐
modifying enzymes in clade II OSC GNs, 72% (36 of 50) of which fulfil our definition
of BGCs (Medema & Osbourn, 2016), we focused on this clade to explore their
evolutionary relationships. After pruning the clade to ensure that all GNs had at least
five genes flanking each OSC, we performed an all‐vs‐all comparison of these GNs
using three distinct methods: to measure architectural similarity (enzyme family
content), we used the Jaccard index of Pfam domains, and as proxies for specific
enzymatic function similarity or divergence, we measured the average amino acid
identity of shared protein domains and the DSS index, which further considers the
differing number of appearances of each domain in each GN (see Methods) (Fig. 2;
Table S8). To avoid bias due to flanking genes not involved in specialized
metabolism, we took into account only those domains known to be involved in
specialized metabolic pathways in plants (Kautsar et al., 2017). Intriguingly, on the
one hand, the domain content of clade II OSC GNs is very dynamic (439 of 741 GN
pairs having no shared domains), suggesting rapid gene turnover in the OSC
flanking regions. On the other, around 24% (73 of 302) of the GN pairs that have
domains in common have highly similar domain compositions (Jaccard index ≥ 0.5),
consistent with nonrandom associations of CYPs and ACTs with the OSCs from this
clade. Surprisingly, in 58% of the GN pairs, the average amino acid identity between
shared domains (177 of 302) falls below 50%, and 84% of GN pairs (257 of 302)
have a DSS index ≤ 0.3. This suggests that OSC‐centric neighbourhoods with
similar enzyme family compositions are either undergoing rapid evolution or have
evolved multiple times independently. In line with the latter, ancestral state
reconstruction, based on maximum parsimony and supported by detailed analysis in
the phylogeny of the tailoring enzymes (Notes S1), indicates multiple parallel gene
gain and loss events of the major CYPs and ACTs in the OSC‐centric
neighbourhoods (Figs 1a, S6). Interestingly, three of the six clade II OSC GNs
(including the previously characterized thalianol and marneral BGCs) in A. thaliana
are located in dynamic chromosomal regions that do not show synteny with regions
originating from the ancient WGD in Brassicaceae (Freeling et al., 2007). This again
indicates that the loci around clade II OSCs are highly dynamic. Thus, the
evolutionary dynamics of the OSC genomic neighbourhoods indicates a general
pattern of independent and parallel evolution of the enzyme family compositions of
these loci.
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Fig. 2. Independently evolved triterpene biosynthetic gene clusters (BGCs) frequently converge
towards similar enzyme family content, yet with low mutual sequence identity. Enzymatic domains
from each genome neighbourhood (GN) are compared in an all‐vs‐all fashion. The Jaccard Index
was used to measure the architectural similarity (enzyme family content) across the GNs, and the
domain sequence similarity (DSS) index to quantify the similarity of the underlying protein
sequences. The colour scale bar shows similarity score values. The clade II oxidosqualene cyclase
(OSC) tree was used to shape the structure of the heat map. Characterized OSCs for Arabidopsis
thaliana BGCs are indicated in bold. *, OSCs characterized in this study. The diagonal line separates
the Jaccard Index (left) and the DSS Index (right) comparisons. The numbers indicate: Jaccard (1)
and DSS (2) index comparisons of the A. thaliana thalianol BGC GN with a putative BGC in
Arabidopsis lyrata; Jaccard (3) and DSS (4) index comparisons of the A. thaliana thalianol BGC GN
with a putative BGC in Capsella rubella; Jaccard (5) and DSS (6) index comparisons of the C.
rubella BGC GN with a putative BGC in Brassica rapa.

3.3.3. Functional analysis of selected representative BGCs
In some cases, ancestral state reconstruction indicates that similar enzyme

composition can be traced back to a recent common ancestry. For example, the
CYP705A and ACT IIIa domains were present in some reconstructed ancestral
OSC GNs (Fig. S6) at the base of certain monophyletic branches, including the one
containing the previously characterized thalianol BGC from A. thaliana (Fig. 3a). The
thalianol BGC consists of genes encoding an OSC, two CYPs (a CYP708A and a
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CYP705A), and one ACT (Field & Osbourn, 2008; Huang et al., 2019). Our previous
work and the current analysis indicate that a closely related (as yet uncharacterized)
BGC is present in the sister species (Field et al., 2011) (Fig. 3a). The genes within
these two BGCs (labelled 1 and 2, respectively in Fig. 2) share high nucleotide
sequence identity and occur in the same genomic order. These clusters both have
root‐specific expression profiles (Fig. 3b) and are located in syntenic genomic blocks
(Field et al., 2011) (Table S9). They are therefore likely to share a common
evolutionary origin. To evaluate the function of the predicted A. lyrata BGC, we
cloned the genes and expressed them in N. benthamiana using transient agro‐
infiltration (Sainsbury et al., 2009; Reed et al., 2017). These experiments confirmed
that the A. lyrata OSC, CYP708A, CYP705A and ACT enzymes are functionally
equivalent to their counterparts in A. thaliana, and when co‐expressed together
produce (‐)‐3β,7β‐dihydroxy‐16‐keto‐thalian‐15‐yl acetate (Th3) (Huang et al., 2019)
(Fig. 3c). The presence of thalianol pathway BGCs in A. thaliana and A. lyrata thus
represents an example of conserved BGCs in closely related species.
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Fig 3. Conservation and diversification of similar triterpene biosynthetic gene clusters (BGCs).
(a) Schematic of three triterpene BGCs from Arabidopsis thaliana, Arabidopsis lyrata and Capsella
rubella. (b) Expression profiles of the BGC and BGC‐flanking genes for the three BGCs shown in
(a). The numerical values for the blue‐to‐red gradient bar represent normalized expression levels
relative to roots from reverse transcription quantitative (RT‐q)PCR analysis (2−∆∆Ct). (c) Transient
expression of A. thaliana thalianol BGC genes and the putative A. lyrata BGC genes in Nicotiana
benthamiana. GC‐MS total ion chromatograms (TICs) and extracted ion chromatograms (EICs) for
two characteristic ions (261 and 317) of Th3 are shown. (d) TIC of extracts from: N. benthamiana
leaves transiently co‐expressing different combinations of the C. rubella BGC genes (upper panel);
flower extracts from wild‐type and mutant C. rubella lines (lower panel). The data are representative
of at least two separate experiments. (e) The thalianol pathway in A. lyrata and the C. rubella
tirucallol pathway. Enzymes are colour‐coded according to the key in (a).
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By contrast, many other pairs of putative BGCs identified in our large‐scale
analysis of Brassicaceae genomes appeared to have similar domain composition,
but very limited sequence similarity (Fig. 2). Moreover, the ancestral state
reconstruction suggested that CYPs and ACTs had been recruited to these GNs
independently. An example of this is a predicted BGC in pink shepherd's purse (C.
rubella). Just like the A. thaliana and A. lyrata thalianol clusters, this BGC contains
domains for OSC, CYP708, CYP705 and ACT enzymes. However, the gene order is
different, the sequence identity with the A. thaliana thalianol cluster is low (labelled 3
and 4, respectively in Fig. 2; average domain amino acid identity = 45% and DSS =
0.3) and there is an additional CYP708A gene (Fig. 3a). Unlike the thalianol BGC,
the C. rubella gene cluster is expressed preferentially in the buds (Fig. 3b). The
OSC from this cluster yielded a product (Ti1) when expressed in N. benthamiana,
which we subsequently showed by NMR to be the triterpene tirucallol (Fig. 3d,e;
Table S4A). Through combinatorial expression we then showed that the enzymes
encoded by the neighbouring CYP and ACT genes were able to successively modify
tirucallol. Specifically, co‐expression of the OSC with CYP708A9 yielded (Ti2);
further inclusion of CYP705A38 gave conversion of (Ti2) to (Ti3); compound (Ti3)
was further modified by CYP708A10 to give (Ti4) (Fig. 3d). The ACT was able to
further modify (Ti4) to give (Ti5) with very low conversion (Fig. S7). The structures of
compounds Ti1, Ti2, Ti3 and Ti4 were determined by NMR (Table S4B–D). That of
Ti5 was inferred by LC‐MS (Fig. S7). The pathway is shown in Fig. 3e. Metabolite
analysis of C. rubella TILLING/CRISPR‐Cas9 mutants for CYP705A38 and
CYP708A10 (Figs 3d, S5) provided further support for the pathway shown in Fig. 3e.
Phylogenetic analysis indicates that CYPs and ACTs associated with the A. thaliana
thalianol and C. rubella tirucallol BGCs are scattered across their respective enzyme
family trees, rather than forming a subclade (Figs S3, S4). Furthermore, the A.
thaliana thalianol BGC and C. rubella tirucallol BGC can be traced back to different
ancestral crucifer karyotype blocks (Lysak et al., 2016) (W and K‐L, respectively;
Table S9). Collectively, our results indicate that although the C. rubella BGC has
superficial similarities with the A. thaliana and A. lyrata thalianol pathway BGCs in
terms of domain composition, it is functionally distinct and has evolved
independently.

We also investigated the function of a candidate BGC from Brassica rapa, which
belongs to Brassicaceae lineage II. This group separated from common ancestors of
Brassicaceae lineage I species (which include A. thaliana and C. rubella) around 20
Myr ago (Hohmann et al., 2015). This candidate BGC contains genes predicted to
encode an OSC, two CYPs (a CYP708A and a CYP705A), and an ACT. Expression
of these genes in N. benthamiana revealed that the OSC produces the triterpene
euphol, and that the associated CYP705A and ACT are able to metabolize this
triterpene (Fig. S8). Activity was not, however, detected for the CYP708A.
Interestingly, euphol is an epimer of tirucallol. Given the complex genomic history of
the Brassicaceae, common ancestry cannot be fully excluded for these loci. Yet, the
fact that the tirucallol and euphol OSCs are located in different ACK blocks (L and I,
respectively; Table S9), the paraphyly of these two OSCs in the OSC phylogeny, and
the observation that the ACTs within these loci are not monophyletic, indicate that
parallel events are likely to have taken place in the evolutionary history of these two
loci (labelled 5 and 6 in Fig. 2), in this case with likely a parallel metabolic outcome.

We next applied Branch‐Site Unrestricted Statistical Test for Episodic
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Diversification (BUSTED) analysis across the three OSC clades, and we found
evidence for gene‐wide positive selection on clade II (Fig. 4a). In line with this,
Mixed Effects Model of Evolution (MEME) analysis identified five sites in the clade II
OSC alignment under positive selection (Fig. 4b). The episodic selection, however,
is restricted to a limited number of branches, indicating clade II OSCs are evolving
independently. Consistently, tailoring genes (CYP and ACT) contributing to clade II
OSC/CYP or clade II OSC/CYP/ACT associations are scattered on their respective
phylogenetic trees (Fig. 4c,d). Together with the ancestral state reconstruction, we
propose that dynamic ancestral OSC GNs independently shuffle a core palette of
decorating domains, forming divergent BGCs throughout the radiation of
Brassicaceae species (Fig. 4e).
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Fig 4. Independent evolution of clade II oxidosqualene cyclase (OSC) related biosynthetic gene
clusters. (a) BUSTED (Branch‐Site Unrestricted Statistical Test for Episodic Diversification) analysis
on the three clades of Brassicaceae OSCs. Evidence for gene‐wide positive selection was found for
clade II OSC. (b) Mixed Effects Model of Evolution (MEME) analysis on clade II OSCs. Five sites
from limited branches were found to be under positive selections (P < 0.05). (c, d) Clade II
OSC/CYP and clade II OSC/CYP/ACT associations are marked on cytochrome P450 (CYP) (c) and
acyltransferase (ACT) (d) phylogenetic trees. The genes of Arabidopsis thaliana thalianol BGC and
Capsella rubella tirucallol BGC are indicated. (e) Proposed model for the evolution of the A. thaliana
and A. lyrata thalianol BGCs and the C. rubella tirucallol BGC. The plausible ancestral states of
cluster assembly were drawn based on ancestral states reconstructions. The recruited domains can
be traced on the phylogeny in (c) and (d).
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3.4. Discussion
How individual enzymes have evolved to achieve metabolic diversity is relatively

well‐understood (Benderoth et al., 2006; Weng et al., 2012a; Hofberger et al., 2013;
Hamberger & Bak, 2013; Moghe & Last, 2015; Barco & Clay, 2019), whereas the
mechanisms of evolution of multi‐step pathways are more elusive. In comparison to
nonclustered pathways, biosynthetic gene clusters (BGCs) provide unique material
with which to systematically study the evolutionary processes underpinning the birth
of plant metabolic pathways. Here, our systematic genomic neighbourhood (GN)
analysis of oxidosqualene cyclases (OSCs) across multiple Brassicaceae genomes
has revealed that clade II OSC genes are predisposed to clustering with genes for
potential triterpene scaffold‐modifying enzymes. The number of genomes that we
used in this study is small in relation to the >3000 species in the Brassicaceae.
Ancestral state reconstruction with a larger dataset – once other genome sequences
become available – may therefore produce a different outcome. However, our
dataset is representative of the two major Brassicaceae lineages (I and II) and also
includes the early diverging species Aethionema arabicum. The overall picture
delineating parallel recruitment events in these dynamic genomic neighborhoods is
highly supported and is corroborated by the evidence from cytochrome P450 (CYP)
and acyltransferase (ACT) phylogenies as well as ancestral karyotype
reconstruction.

Compared to previous analyses of plant BGCs (Kautsar et al., 2017; Töpfer et
al., 2017; Schläpfer et al., 2017), our phylogenomic analysis of OSCs across
multiple Brassicaceae genomes provides, for the first time, a comprehensive picture
of their genomic evolution across all relevant loci, whether they constitute gene
clusters or not. Our phylogenetic analyses of the key gene families, along with their
contextualization in whole‐genome duplication (WGD)‐derived subgenomes (Fig.
S9), provide clear evidence for recurrent independent assembly of BGCs containing
OSC, CYP and ACT genes across the Brassicaceae, leading to divergent or parallel
metabolic outcomes (Fig. 4e).

Because of the importance of triterpenes in mediating interactions with herbivores
and microbiota (Hostettmann & Marston, 1995; Papadopoulou et al., 1999; Nielsen
et al., 2010; Sohrabi et al., 2015; Zhou et al., 2016; Huang et al., 2019), we
speculate that, similar to the case of resistance gene clusters in plant genomes
(Michelmore & Meyers, 1998), triterpene GNs undergo rapid and dynamic evolution,
forming ‘evolutionary playgrounds’ that enable rapid adaption to ever‐changing
environmental stresses (Field et al., 2011). Triterpenoid scaffold diversification is
achieved using a specific palette of CYPs (primarily CYP705A, CYP708A,
CYP702A) and ACTs (ACT IIIa) (Fig. 5). The CYP716A family, which has been
suggested as a major contributor to the diversification of triterpenoids in eudicot
plants (Miettinen et al., 2017), appeared only rarely among the CYPs in
Brassicaceae in clade II OSC GNs. The molecular mechanisms by which BGCs
form is not yet known, although miniature inverted‐repeat transposable elements
(MITEs) have been implicated in cluster assembly and/or regulation (Boutanaev &
Osbourn, 2018).
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Fig. 5. Drivers of triterpene diversification in the Brassicaceae. The biosynthesis of diverse
triterpenes in the Brassicaceae is achieved by ‘mixing, matching and diverging’ a core palette of
clade II oxidosqualene cyclases (OSCs), cytochrome P450s (CYPs) belonging primarily to the
CYP705A, CYP708A, and CYP702A subfamilies, and acyltransferases (ACTs) belonging to the ACT
IIIa subfamily. Examples of characterized biosynthetic gene clusters (BGCs) and their products are
shown. Arrows denote the strand directionality of genes.

Our investigations reveal a novel genomic basis for metabolic diversification in
plants through mixing, matching and diverging natural combinations of enzyme
families. They further open up opportunities to mimic and expand on plant metabolic
diversity by using synthetic biology approaches to engineer diverse bioactive
molecules through combinatorial biosynthesis (Fig. 5), for which efficient
heterologous expression platforms are now available in yeast (Scheler et al., 2016;
Arendt et al., 2017; Bathe et al., 2019) as well as tobacco (Reed et al., 2017). Thus,
our increased understanding of pathway formation paves the path to further explore
and exploit the biological activities of triterpenes and other plant natural products
toward applications in medicine and agriculture.

3.5. Supplementary Information
Supplementary figures and tables are available to download from:

https://doi.org/10.1111/nph.16338
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4.1. Abstract
Phosphorus (P) is an indispensable nutrient for most plant functions, and

inorganic phosphate, from which Pi fertilizer is made, is a finite resource. Because of
this, there is a large interest in understanding the mechanisms of Pi metabolism in
plants, the adaption of plants to low-phosphate conditions and the regulatory
mechanisms that underlie this adaptation. Due to the ubiquitous importance of P in
plant metabolism, we hypothesised cellular systems related to Pi metabolism to be
largely conserved across monocots and eudicots. Comparative transcriptomics is a
useful framework for identifying such conserved responses: it allows de novo
predictions in more than one species with higher confidence than when analysing
transcriptomes independently, because spurious associations are unlikely to be
observed repeatedly. To study the phosphate starvation response using comparative
transcriptomics, we developed CADE-HEroN, a computational workflow that
combines targeted and untargeted approaches to study the transcriptomes of
multiple plants comparatively through coexpression and differential expression
analyses across time-series data. We applied our approach to data obtained from
phosphate starvation experiments in rice, tomato and Arabidopsis, which yielded
several candidate genes for functional characterization that are hypothesised to be
involved in the biosynthesis of strigolactones and related metabolites. Furthermore,
integrating differential and coexpression analyses across species led to the
identification of important metabolic pathways associated with Pi starvation
responses, related to gibberellin, lipid and carotenoid biosynthesis. This association
thus appears to be conserved throughout eudicots and monocots. Our analyses
provide concrete guidance for genetic dissection of the phosphate starvation
response across species, and may serve as a model for the utilization of
comparative transcriptomics to characterize and visualize conserved metabolic
processes.

4.2. Introduction
Phosphorus (P) is an indispensable nutrient for most plant functions and is

mostly assimilated by plants from the soil as inorganic phosphate (Pi). This process
has low efficiency: only ~30% of Pi added to the soil as fertilizer is captured by
plants, while the rest is unavailable due to fixation in the soil and microbial activity1.
Because rock phosphate, from which Pi fertilizer is made, is a finite resource, there
is a large interest in understanding the mechanisms of Pi metabolism in plants, and
more importantly, the adaption of plants to low-phosphate conditions and the
regulatory mechanisms that underlie this adaptation2. One such mechanism involves
the biosynthesis of strigolactones, a class of plant hormones that not only regulate
the plant response to low Pi

3,4, but also increase Pi acquisition and reduce Pi
utilization5. Recently, we used transcriptome analysis to better understand the
phosphate starvation response and strigolactones biosynthesis in tomato (Wang et
al., manuscript in preparation) and rice (Zhang et al., manuscript in preparation),
which confirmed that the genes involved in strigolactones biosynthesis are
upregulated under Pi starvation and showed that strigolactones have an integral role
in the full P starvation transcriptional response of these two species. However, the
strigolactones biosynthetic pathway and its regulation in response to low phosphate
are still largely a black box. Due to the ubiquitous importance of P in plant
processes, we expect processes surrounding Pi metabolism to be largely conserved
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across monocots and eudicots. Indeed, the functions of certain Pi transporters and
non-coding RNAs involved in Pi deficiency responses have already been shown to
be conserved between Arabidopsis thaliana and Oryza sativa6. It is not known,
however, how widespread this apparent conservation is, and which specific
responses are conserved.

To deepen our understanding of differences and commonalities in Pi metabolism
across the plant Kingdom, we can use comparative transcriptomics. This framework
has the advantage of enabling one to better understand conserved metabolic
processes, transfer knowledge from model to non-model species, and make de novo
predictions in more than one species with higher confidence than when analysing
transcriptomes independently, because false associations are unlikely to be
observed repeatedly7,8. In recent studies, this methodology has been successfully
applied for plant natural product discovery. The expression profiles of genes with
known orthology relationships in closely related Cucurbitaceae were analysed and
compared, leading to the characterization of genes involved in the biosynthesis of
cucurbitacins and regulators of bitterness in melon, watermelon and cucumber9. In
another study, the -solanin/-chaconine pathways in tomato and potato were
characterized by analysing the expression and coexpression of genes involved in
glycoalkaloid metabolism in solanaceous plants10. The latter analysis was aided by
the CoExpNetViz tool, which allows users to analyse their own transcriptome,
orthology relationships and specific target genes, and then displays networks
showing which genes are coexpressed with the targets in more than one species11.

While these previous approaches are useful to research the conservation of a
given subset of genes, such as those involved in the strigolactones biosynthetic
pathway, they do not allow global comparisons of transcriptomic responses, such as
for the phosphate starvation response. This requires an untargeted analysis that
allows to concurrently study the expression of all genes across all timepoints,
something especially critical when considering evolutionarily distant species, in which
the rate of the metabolic response may differ. Some algorithms for untargeted
comparative transcriptomics have been previously developed12,13, such as
IsoRankN14, which was used to compare the coexpression networks of rice and
maize, where common network motifs with the same GO term enrichment were
identified in both networks, indicating functional conservation of orthologous genes15.
However, more effective methods to analyse transcriptomic responses across time
series data are desirable, as are tools that allow users to concurrently analyse and
integrate targeted and untargeted approaches on different species for comparative
transcriptome analysis.

To study the effects of phosphate starvation in the transcriptome of multiple plant
species, we selected this comparative transcriptomic framework and studied the
gene expression time series data sets of the phosphate starvation response in A.
thaliana, O. sativa and S. lycopersicum. For this, we developed a computational
workflow, CADE-HEroN (Comparative Analysis of Differential Expression, Homologs
Expression, Coexpression Networks) that combines targeted and untargeted
approaches to study the transcriptome of multiple plants comparatively by leveraging
coexpression, differential expression, and user-set orthology relationships. We used
this workflow to perform a targeted analysis of genes involved in strigolactones
biosynthesis in all three species and examine common properties of their global
coexpression networks in an unsupervised way to identify conserved responses
related to gibberellin, xanthophylls and tocopherol biosynthesis and lipid metabolic



65related to gibberellin, xanthophylls and tocopherol biosynthesis and lipid metabolic
processes.

4.3. Material and Methods
RNA-Seq datasets. Gene expression datasets from Zhang et al. and Wang et

al. (unpublished data) were used in combination with a dataset comprising similar
experimental conditions in A. thaliana (AT), which were retrieved from NCBI’s GEO,
with identifier GSE7485616. The experimental setup from Zhang et al. is as follows:
wildtype and D mutant rice plants were grown for a week on normal conditions, after
which some were moved to a low phosphate environment. Root and shoot samples
were taken from days 7, 8, 10, 14, 14.6 and 15 from the start of the experiment. The
phosphate replenishment treatment was performed from day 14 onwards. The
experimental setup from Wang et al. is as follows: wildtype and CCD8 mutant tomato
plants were grown for a week on normal conditions. After this, some were subjected
to phosphate starvation. Root samples were taken from days 9, 10, 11, 12 and 14
after the start of the experiment. Phosphate replenishment was performed on day
12. The experimental setup for GSE7485616 is as follows: Arabidopsis thaliana
ecotype Columbia plants were grown for 10 days. On this day, some plants were
moved to a phosphate-deficient medium. Root samples were taken on days 10, 11
and 13 from the start of the experiment.

RNA-Seq analysis. Expression analysis was performed in R 3.6.117 with the
edgeR package 3.26.818. Genes with less than 1 count per million reads mapped
(CPM) in at least two samples were removed from the analysis. Reads were
normalized by library and exon size (reads per kilobase per million mapped reads,
RPKM). Differential gene expression (DGE) test P-values were corrected with the
Bonferroni method, and the significance threshold was set at P<0.1 and logFC>1.

Coexpression analysis. Coexpression was defined for each plant species and
tissue type independently using Pearson’s Correlation Coefficient (PCC). Gene-pairs
with PCC<0.7 were removed from further analysis. The results of this analysis were
used to create an independent transcriptomic network per plant species, with genes
represented as nodes, and edges representing coexpressed gene pairs. The
networks were then integrated with edges linking genes with known orthologous
relationships, as retrieved from EnsemblPlants (release 39)19 through the BioMart
data mining tool20. 

Target genes. The integrated transcriptomic network was used to extract
subnetworks based on target genes known to be involved in strigolactones
biosynthesis and phosphate starvation responses3: CCD7 (AT2G44990,
Solyc01g090660, OS04G0550600), CCD8 (AT4G32810, Solyc08g066650,
OS01G0746400), MAX1 (AT2G26170, Solyc08g062950, OS04G0550600), and
D27 (AT1G03055, Solyc09g065750; we could not identify the D27 ortholog in the
rice transcriptome).

Orthologous Communities (OCs). The OC of a target gene is a cross-species
coexpression network defined by the group of genes that are coexpressed with the
target in more than one species, as identified through orthologous relationships. OCs
are generated by: (1) isolating the coexpression network neighbourhood of a target
gene, (2) identifying the target’s ortholog in another species and isolating the
corresponding neighbourhood, (3) removing genes which have orthologs not
coexpressed with the target gene. 
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Orthologous Communities of Differentially Expressed Genes (OC-DEGs).
To identify common differential transcriptomic responses, results from our DGE
analysis were used to generate networks which include experimental conditions as a
new node type. In this network, edges do not have a weight and only link genes to
experimental conditions in which they were found to be differentially expressed. By
using the same methodology to identify OCs on this DGE network, OC-DEGs are
identified.

Untargeted analysis. To identify genes that were coexpressed in a similar
manner across O. sativa (OS) and S. lycopersicum (SL), a coexpression network
was generated in which each node represents a “gene family” instead of a gene.
These “gene families” are defined by the orthology relationship of the genes: most
nodes represent one SL gene and its OS ortholog, while some nodes may represent
e.g. two SL genes and one OS gene if the orthology relationship is one-to-many. In
this network, edges link a gene family composed of genes that are all coexpressed
with the genes of the same species in the gene family at the opposite end of the
edge (Suppl. Fig. 1). 

4.4. Results and Discussion

4.4.1. Abbreviations
AT = Arabidopsis thaliana
OS = Oryza sativa
SL = Solanum lycopersicum
OC = Orthologous Community

4.4.2. Conserved coexpression across rice and tomato
indicates an ancient relationship between gibberellin,
strigolactones and xanthophyllsbiosynthesis

Strigolactones biosynthesis has been shown to be strongly affected by phosphate
starvation3,4 and our own research (Wang et al., Zhang et al., manuscripts in
preparation) indicates strigolactones are also needed for the phosphate starvation
response. In order to identify genes coexpressed with the core strigolactones
biosynthetic genes (CCD7, CCD8, MAX1 and MAX2), we performed a targeted
analysis to identify orthologous groups that are coexpressed with these bait genes in
more than one species, so-called Orthologous Communities (OCs). We identified
eight OCs around the four bait genes, which together describe the common
transcriptomic response to phosphate starvation of the genes involved in
strigolactones biosynthesis in three evolutionary distant species. A summary of this
analysis can be seen in Table 1 (the full list of genes in each OC is provided in
Suppl. Table 1).
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Table 1. Summary of the OC analysis in rice, tomato and A. thaliana, with the number of genes
identified in each OC.

Four of the identified OCs among the three plant species were centred around
CCD8, which includes the largest OC: 151 genes are coexpressed with CCD8 in OS
and SL. The second largest OC, around CCD7 in OS and SL, only has 76 genes, all
of which are part of the CCD8 OC as well. We performed a GO term enrichment
analysis on these genes and found the CCD7/8 OC to be enriched in genes involved
in lipid metabolism, terpenoid and gibberellin biosynthesis (Suppl. Table 2 for the
OS genes, and Suppl. Table 3 for SL). The expression pattern of the genes
annotated with these GO terms can be seen in Fig. 1A) for OS, and Fig. 1B) for SL.
The genes annotated with terpenoid biosynthesis encode three enzymes within the
xanthophylls biosynthetic pathway: a ζ-carotene desaturase (ZDS)
(Solyc01g097810/OS07G0204900), a prolycopene isomerase CRTISO
(Solyc10g081650/OS11G0572700), and a carotenoid β-hydroxylase CYP97A29
(Solyc04g051190/OS02G0817900). The coexpression of ZDS and CRTISO with
CCD7/8 is perhaps not surprising, as they both acti a few enzymatic steps upstream
of it: as seen in Fig. 1C), ZDS acts directly upstream of CRTISO, and the reaction
catalysed by CRTISO results in all-trans-lycopene, which if modified by the enzyme
LCY-β, results in β-carotene. This is the substrate CCD7 acts on to enter the
strigolactones biosynthetic pathway. However, the coexpression of CYP97A29 is
unexpected; this enzyme acts downstream of LCY-ε, which competes for all-trans-
lycopene with LCY-β, to produce zeinoxanthin21, the key precursor for xanthophylls
pathways. A possible relationship between the strigolactones and xantophylls
pathway in a phosphate starvation context is intriguing: Pi deficiency has been
shown to cause chlorophyll loss, which may lead to photo-oxidative stress if not
counter-acted by non-photochemical quenching mechanisms such as the multiple
xanthophylls cycles22. Interestingly, the taxonomically ubiquitous violaxanthin cycle
(V-cycle) occurs parallel to the strigolactones pathway, downstream of β-carotene,
whereas the taxonomically restricted lutein epoxide cycle (Lx-cycle) starts with lutein,
two enzymatic steps downstream of ɑ-carotene, after the transformation of ɑ-
carotene into zeinoxanthin by CYP97A2923. While the presence of an Lx-cycle has
not been reported in any of the species analysed in this study24, we speculate that
because the V-cycle and CCD7 would compete for the same substrate (β-carotene),
an unknown mechanism could be promoting the Lx-cycle, or a similar undiscovered
xanthophyll cycle in rice and tomato, to counter-act Pi deficiency-induced photo-
oxidative stress.
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Fig. 1. Expression pattern of CCD7/8 and the genes in A) rice and B) tomato coexpressed with
these and annotated with gibberellin and carotenoid biosynthesis. The experimental conditions have
been ordered for ease of comparison. C) The gibberellin, strigolactones and xanthophylls
biosynthetic pathways.

The genes annotated as involved in gibberellin biosynthesis in the CCD7/8 OC
encode the enzymes ent-copalyl diphosphate synthase (CDS)
(Solyc06g084240/OS02G0278700) and ent-kaurene oxidase
(Solyc04g083160/OS06G0570100), two of the first three enzymes in the gibberellin
biosynthesis pathway25. This pathway also has a close relationship with the
carotenoid pathway by sharing the same precursor, all-trans-geranyl-geranyl
diphosphate, on which CDS directly acts, as seen in Fig. 1C). Furthermore, just like
strigolactones have a well-established involvement in Pi deficiency responses in AT,
OS and SL26,27, some studies have previously identified gibberellin as having a
regulatory function in some Pi deficiency responses in A. thaliana28.

A caveat in these analyses is that sequence-based orthology prediction does not
guarantee functional equivalence at the biochemical level. However, similar
expression patterns across similar experimental conditions of predicted orthologues
strongly suggest a conserved function. Altogether, we speculate that identifying
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xanthophylls and gibberellin biosynthesis genes closely coexpressed with CCD7/8 in
tomato and rice suggests that they may have interlinked functions in the phosphate
starvation response, that a similar regulation mechanism may exist across monocots
and eudicots, and that much of the genetic machinery and functions behind these
metabolic processes, such as the regulatory role of gibberellin, might have been
conserved from before the divergence of monocots and eudicots.

4.4.3. A conserved transcriptomic response across three
plant species uncovers new candidate enzymes for
strigolactones biosynthesis

As our knowledge of the strigolactones biosynthesis pathway is still incomplete29,
we next investigated whether cross-species coexpression analysis could generate
new hypotheses regarding additional enzymes that might be involved in this pathway.
The full CCD8 OC can be generated by identifying the CCD8 OC for each pair of
species (43 genes in AT+OS, 151 genes in OS+SL, and 56 genes in AT+SL) in
addition to the CCD8 OC among all three species, as seen in Fig. 2. We
concatenated this list and removed duplicate genes and target genes from the list
(CCD7, CCD8, MAX1 and MAX2); this results in a full CCD8 OC of 233 genes.
Interestingly, some genes may appear in multiple of these OCs but not in the three-
species OC, which is a consequence of incomplete orthology relationships in the
input annotations (for example, the input data may show orthology between gene
SL1 and OS1 and between SL1 and AT1, but not between AT1 and OS1, causing
them to not appear in the three-species OC). The genes that appear in the OC of
multiple bait genes are prime candidates for functional characterization and
experimental validation, as these show conserved and strong coexpression with all
known core strigolactones biosynthetic genes. Much is still unknown regarding these
genes; for example, we queried the 233 genes from the CCD8 OC in UniProt30 and
retrieved annotations for 226 of them (Suppl. Table 4). Among the 91 SL genes
present in this table, we found that 35 of them contain the words “uncharacterized
protein”. Further research on these genes could lead to the annotation of enzymes,
transporters or regulators associated with Pi deficiency and/or strigolactones
biosynthesis across three distinct plant species.
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Fig. 2. The CCD8 OCs. Nodes represent genes, coloured by species: A. thaliana genes are
green, S. lycopersicum genes are red, and O. sativa genes are teal. The big nodes are the target
genes (CCD8). Gray edges link genes that are coexpressed (PCC>0.7), blue edges link orthologous
genes.

Only two orthology groups are coexpressed with CCD8 in all three species,
making up seven genes: two from AT, two from SL and three from OS. We analysed
this group of genes in more detail. The two orthologous groups of genes in the AT-
OS-SL CCD8 OC correspond to a gene family encoding U-box proteins
(AT5G51270, OS06G0140800 and Solyc05g051610), and a gene family encoding
cytochrome P450 enzymes that has been duplicated in OS (AT4G22690,
Solyc08g079300, OS01G0700500 and OS08G0547900 [64.3% protein sequence
identity]). These genes are specifically interesting, as the U-Box domain has been
found to be involved in several abiotic stress responses in plants, including having a
regulatory role in strigolactones and gibberellin signalling31, while cytochrome P450s
have already been shown to be involved in the strigolactones biosynthetic pathway
via MAX1, an enzyme that acts downstream of CCD7/832,33.

4.4.4. Communities of differentially expressed genes are
conserved across eudicots and monocots

To study orthologous groups of genes that are specifically induced or inhibited by
the phosphate starvation response, we then evaluated the common transcriptomic
differential responses between OS and SL by identifying OC-DEGs. We did not
include the AT dataset in this and the next part of the study because only the
normalized gene expression (in RPKM) was publicly available, and DEG analysis
requires the raw counts for accurate results. Due to the design of the experiments,
only one sample is directly comparable among the two experiments: day 2 after the
start of phosphate starvation (day 10 from the start of experiments). We identified an
OC-DEG targeting this experimental condition consisting of 46 differentially
expressed genes, corresponding to 20 gene families. Interestingly, the majority of



71expressed genes, corresponding to 20 gene families. Interestingly, the majority of
these genes consist of upregulated genes (Suppl. Table 5) with only two exceptions:
OS04G0665600 and its ortholog Solyc10g080460.1, with a logFC of -1.21 and -1.28
respectively when compared to the control sample.

Because we did not expect the phosphate starvation response of these two
distantly related plant species that were, moreover, grown under different conditions,
to occur at the same rate, we repeated the OC-DEG search across all experimental
condition comparison groups (phosphate starvation and replenishment vs control
samples at the same timepoints) in both species, but only considered gene families
with genes that are upregulated or downregulated in both species (Tables 2-3).
While we previously showed that, at day 2 of phosphate starvation (day 10 of the
experiment), 20 gene families were differentially expressed in OS and SL (19
upregulated and 1 downregulated), there is high overlap of upregulated genes
families in both species between days 10-12 in SL and days 14-15 in OS: 37 genes
in average throughout these comparisons, with the highest overlap occurring at day
14.6 of the OS starvation experiment, and day 11 for SL, where a total of 42 gene
families are upregulated in both species. In contrast, very few genes are commonly
upregulated in both species during the Pi replenishment process, where
downregulation plays a more important and conserved role: 31 gene families in
average are downregulated in both species in response to Pi replenishment. These
results show that conserved transcriptomic responses during Pi deficiency across
monocots and eudicots are not constrained to coexpression across time points, but
also to differential gene expression at individual time points, and specifically strong
induction of significant sets of genes. This is important because previous evidence
shows that the function and members of coexpressed gene modules can be
conserved through speciation events15, making comparative transcriptomics a
powerful methodology to prioritize new candidate genes for functional
characterization in conserved processes.

Table 2. Summary of the OC-DEG analysis in rice and tomato, showing the number of gene
families that are upregulated in both species for any two comparison groups.
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Table 3. Summary of the OC-DEG analysis in rice and tomato, showing the number of genes
families that are downregulated in both species for any two comparison groups.

4.4.5. An untargeted comparative time-series gene
expression analysis reveals a conserved phosphate
starvation response core gene set

While the results above show that a targeted approach can successfully generate
interesting hypotheses about specific pathways, such an analysis is always biased
by the specific target genes that are used. Hence, in order to compare the
phosphate starvation response time series data sets in a more unbiased and
comprehensive manner, we developed an untargeted mode for our analysis tools
(see Methods) that reconstructs a global coexpression network of orthologous genes
across species, and applied this on the OS and SL datasets. This analysis resulted
in a complex coexpression network of 713 gene families and 2201 coexpression
links among them, as seen in Fig. 3. This reveals that a total of 791 OS genes form
a coexpression network under phosphate starvation with a similar topology as their
811 ortholog genes in SL.

Fig. 3. Timelapse view of the expression fold changes of gene families that are coexpressed
during Pi starvation in S. lycopersicum (SL) and O. sativa (OS). Nodes represent gene families (e.g.
one gene of each species if one-to-one orthology relationship). Edges link coexpressed gene



73one gene of each species if one-to-one orthology relationship). Edges link coexpressed gene
families. Nodes are coloured according to the highest absolute logFC value within that node,
separately for each timepoint and each species (see color key). A) logFC values at day 8 in OS, B)
day 10 in OS, C) day 14 in OS, and D) day 15 in OS. E) logFC values at day 9 in SL, F) day 10 in
SL, G) day 11 in SL, and H) day 12 in SL.

To distinguish which groups of gene families are likely to be directly involved in Pi
starvation or replenishment, we integrated this coexpression network analysis with
DGE analysis and generated eight distinct graphical representations of the same
network: one for either plant species in each of the four days of the Pi starvation
experiment. For the OS graphs, we coloured each node according to the logFC
value of the OS gene within the gene family, and in case the node represented two
or more OS genes (in the case of one-to-many or many-to-many ortholog
relationships), we selected as representative the gene with the highest absolute
logFC value. We then repeated the procedure for the SL set of graphs. This
effectively resulted in a “timelapse view” of the expression fold changes of gene
families that are coexpressed during Pi starvation in both plants, as seen in Fig. 3.
We can observe the expression changes in OS genes during Pi starvation on days
8, 10, 14 and 15 in Fig. 3A)-D), and the expression changes in SL genes during
days 9, 10, 11 and 12 in Fig. 3E)-H).

In both species, the main cluster at the center of the network, highlighted as
“cluster I” in the figure, mostly starts being upregulated in the second timepoint (day
10, Fig. 3B,F), and in SL a number of genes remain upregulated on day 11 (Fig.
3G), but the expression of most return to normal on day 12 (Fig. 3H) or day 14 in
OS (Fig. 3C). Of note, this cluster has upregulated genes involved in tocopherol
biosynthesis, which, like xanthophylls, have been linked to protection against photo-
oxidative stress and low phosphate availability34,35. The most striking commonality
between the species is a cluster of gene families on the top left of the network,
highlighted as “cluster II”, which show consistent upregulation by Pi starvation at all
timepoints, with most gene families being upregulated already at the second
timepoint (Fig. 3B,F). Interestingly the upregulation in cluster II is more pronounced
in OS, and by the last timepoint (Fig. 3D), only 4 gene families in this cluster are not
strongly upregulated in this species. There are 53 gene families in this cluster,
representing 76 OS genes and their 54 orthologous genes in SL, as seen in Suppl.
Table 6. A GO term analysis revealed cluster II is enriched in OS genes annotated
with organophosphate catabolism, and lipid metabolic processes, in particular
glycero- and phospholipids: OS04G0394100, OS02G0514500 and OS08G0535700,
paralogs that belong to the same orthology group with Solyc02g094400. Indeed,
under Pi starvation plants undergo multiple lipid metabolic processes to replace
phospholipids across different types of membranes at the cell level and conserve
phosphate36–38. In the future, further analysis of yet uncharacterized gene families in
this cluster may lead to additional insights regarding the phosphate starvation
response, and annotation of functionally conserved genes across multiple plant
species: 16 out of 54 SL genes in this cluster are annotated as uncharacterized in
UniProt. 

Altogether, this analysis suggests that the conserved core of the phosphate
starvation response across monocots and eudicots involves coregulated lipid
metabolic processes, and coregulated metabolic pathways that lead to the
biosynthesis of gibberellin, strigolactones, xanthophylls and tocopherols, among
others.
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4.5. Conclusions
Focusing the analysis around the genes known to be involved in strigolactones

biosynthesis yielded several candidate genes for functional characterization in regard
to their involvement within the strigolactones pathway. Furthermore, the differential
expression and untargeted analyses retrieved important metabolic pathways known
to be associated with Pi starvation responses that thus appear to be conserved
throughout eudicots and monocots. These associated responses constituted a small
portion of the global common networks, and further research within the other network
modules may yield multiple other conserved processes associated to Pi starvation in
plants. In the future, our framework for comparative analysis of differential and
coexpression networks may be used as a powerful methodology to characterize
conserved pathways and transcriptomic responses in other biological systems and
conditions as well. 

4.6. Tool availability
We have made CADE-HEroN, our computational workflow to identify OCs and

OC-DEGs, fully available at https://git.wageningenur.nl/medema-group/cade-heron/

4.7. Supplementary Information
Supplementary figures and tables are available to download from:

https://doi.org/10.5281/zenodo.4056494
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5.1. Abstract
Plants harbour a highly diverse and complex specialized metabolism, with key

functions in pollination, stress response, microbiome modulation and defence
against herbivores and pathogens. Contemporary omics-based approaches to
identify the underlying enzymatic pathways have so far largely been dominated by
genomic and transcriptomic methods that use known metabolites or enzymes as a
starting point. Multi-omics integration has the potential to solve this limitation by
allowing the prediction of metabolic pathway to be made through simultaneous
observations in multiple -omic sources that are used to generate a single hypothesis.
However, no systematic, unsupervised multi-omics method has been developed that
integrates transcriptomic, metabolomic and genomic data for untargeted specialized
metabolic pathway discovery. Here, we present MEANtools, a multi-omics analysis
workflow that integrates genomic, transcriptomic and metabolomic data with
enzymatic reaction databases to predict metabolic pathways, by identifying mass
differences between metabolites that are co-abundant with transcripts whose
enzymatic products are capable of catalyzing reactions that can explain these.
MEANtools has a flexible and user-friendly input and output, and allows users to
tune the enzymatic reactions that are retrieved from the database to generate
metabolic pathway predictions; for example, by retrieving only experimentally
validated reactions, or by selecting a taxa of origin. We illustrate MEANtools’ usage
with a paired transcriptomic-metabolomic experiment and show that it is able to
predict multiple steps in the recently characterized falcarindiol biosynthetic pathway
in tomato. This demonstrates its potential to generate testable hypotheses on
metabolites, enzymes and reactions in metabolic pathways.

5.2. Introduction
Plants produce a wide array of natural products (NPs) with abundant chemical

diversity and complexity1. Specialized metabolites have a wide range of uses in a
variety of industries, ranging from pharmacological, to flavors and fragrances2. This
has fueled an interest in new methodologies to predict and identify specialized
metabolites and the metabolic pathways different species use to produce them3.
Indeed, the field studying specialized metabolism has come a long way since the
discovery of penicillin in fungi ~90 years ago: from mostly phenotypic screening
methods in the 1940s, to the bioinformatics- and genomics-based methods
developed in recent years to study both microorganisms and plants4,5. In recent
years, the high level of success and many advances in bioinformatics and –omics
analysis have resulted in an ever-increasing number of high-quality genome
assemblies, as well as transcriptome, metabolome, and enzymatic reaction datasets,
Moreover, advances in synthetic biology allow the results of in silico analyses to be
more easily validated in vivo, increasing the rate at which novel NPs and their
producing enzymes can be characterized. For instance, transient expression of plant
enzymes in tobacco allows enzyme and metabolic pathway characterization within a
matter of weeks6. Taken together, the plant functional genomics field has entered a
new era7.

This computational era of plant NP functional genomics has so far largely been
defined by genomic and transcriptomic strategies5. Examples of the former include
computational tools such as plantiSMASH8 and PhytoClust9, which identify
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chromosomally co-localized clusters of genes that may encode specialized metabolic
pathways. Transcriptomic strategies rely on the guilt-by-association principle10 to
identify enzyme-coding genes with concerted expression that are therefore likely to
function within the same metabolic pathway; however, these methods require prior
knowledge about expected enzyme functions to link the enzyme-coding genes to
specific metabolites: for example, by targeting known metabolites or enzymes, their
structural or functional annotations can be used to generate hypotheses about the
metabolic pathways they are associated with11,12. More recently, tools like
CoExpNetViz13 and CADE-HEroN (Suarez et. al, manuscript in preparation)
leverage sequence homology for this purpose by using transcriptomes from multiple
species, however many plant enzymatic functions are known to be species-
specific14, and therefore unlikely to be predicted by these methods.

A promising solution to this limitation may be found in the integration of data from
multiple –omic sources. Plant specialized metabolism is a complex interaction of
multiple biological systems working synergistically, and multi-omics techniques offer
a holistic view of the process. They allow researchers to acquire a more accurate
understanding of metabolism and reduce type I and type II errors in the predicted
associations among genes, metabolites and enzymatic reactions by integrating
observations from various data sources to predict metabolic pathways15. Multi-omics
integration strategies can be broadly separated into four categories: conceptual,
statistical, model and pathway-based. Each strategy presents distinct challenges and
all have been reviewed in detail before, with multiple examples of successful
usage15,16. Despite this no systematic, unsupervised multi-omics method has been
developed that integrates transcriptomic, metabolomic and genomic data for
untargeted specialized metabolic pathway discovery.

In this paper, we present MEANtools, a multi-omics analysis workflow that
combines correlation-based and pathway-based integration techniques along with
the guilt-by-association principle to predict metabolic pathways, and the enzyme-
coding genes and metabolites associated with each prediction, presenting
researchers with hypotheses that can be prioritized for experimental validation. (Fig.
1). MEANtools predicts metabolic pathways by correlating the expression of
enzyme-coding genes with co-abundant metabolites in paired transcriptomic-
metabolomic experiments. Although this methodology has aided the characterization
of diverse metabolic processes in plants17,18 by reducing the dimensionality of the
problem and thus generating a small set of testable hypotheses19, it is known to
result in a high number of false positive metabolite-transcript associations20.
Therefore, we leverage RetroRules21, a retrosynthesis-oriented database of
enzymatic reactions annotated with known and predicted protein domains and
enzymes linked to each reaction, to assess whether observed chemical changes of
metabolites (identified as mass shifts) can be explained by positing subsequent
catalytic steps that are known to be catalyzed by protein families encoded in
coexpressed gene modules. MEANtools generates a metabolic network based on
enzymatic reaction databases, a workflow used by many computational tools for
retrosynthetic metabolic pathway design or reconstruction22; however, MEANtools
uses metabolome, transcriptome and metabolome data as well in this process,
allowing users to explore the biosynthetic potential of any molecular structure and
generate concrete hypotheses about possible pathways leading up to (or from) a
given metabolite, which can be tested in the laboratory. Results are displayed in a
variety of formats for users to interact with, describing predicted metabolic pathways
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along with the metabolites, enzymes and reactions that are potentially involved in
them. Altogether, MEANtools serves as strong basis for the development of
methodologies to explore ways in which paired genomic, transcriptomic and
metabolomic data can be used to analyze biosynthetic diversity.

5.3. Methods and Implementation

5.3.1. MEANtools workflow
MEANtools generates metabolic pathway predictions by integrating metabolomic,

transcriptomic and genomic data with enzymatic reaction databases, as seen in Fig.
1. For this purpose, the user can annotate a (sub)set of mass signatures (mass-to-
charge ratios of measured ions) in the metabolomic dataset with metabolite
structures, and/or MEANtools can assign structure predictions by identifying adducts
in the metabolome and querying NPDB (Natural Product Database), a
comprehensive database of natural product structures which has been compiled by
combining a range of public databases (Stokman et al., in preparation; http://…).
Possible links between metabolites and transcripts are first identified by calculating
correlations across samples, and the correlated pairs are then queried in RetroRules
to identify transcript-metabolite pairs in which the transcript encodes an enzyme with
a protein domain capable of catalyzing an enzymatic reaction that has the correlated
metabolite as possible substrate or product. MEANtools then maps the products of
each successful reaction to other mass signatures in the metabolome, or to
unmeasured “ghost” mass signatures (explained further down below). This
procedure is then repeated iteratively according to the user’s specifications to predict
further reactions from the new products and generate a reaction network. Finally,
MEANtools analyzes the resulting network to provide the user with possible
metabolic pathway predictions that can then be browsed in Cytoscape23, or displayed
as figures indicating each metabolite, reaction, and possible enzymes that may
explain the transformations required.
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Fig. 1. MEANtools predicts metabolic pathways by integrating transcriptomic, metabolomic and
genomic data. A) First, correlations are computed between expression levels of transcripts and
abundances of metabolites. B) Mass signatures in the metabolome are queried against RetroRules
to identify pairs with mass differences associated with known enzymatic reactions. C) The protein
families/domains encoded by the genes in the correlated transcript-metabolite pairs are used to
query RetroRules and identify which enzymatic reactions may be associated with each transcript. D)
MEANtools then integrates the results of previous steps to identify cases in which metabolite pairs
are correlated to a transcript that encodes an enzyme capable of catalyzing a reaction that explains
their mutual mass difference. E) Finally, MEANtools maps the product of these reactions to other
mass signatures in the metabolome, and repeats the procedure to generate pathway predictions.

5.3.2. Correlation-based integration generates testable
associations

In stage A, MEANtools processes transcriptome and metabolome data from
paired datasets. The transcriptome must be input in a CSV table of normalized gene
expression data (RPKM/FPKM), and the metabolome as a CSV table of metabolite
abundance, with mass signatures as rows and samples as columns. Both inputs are
converted into DataFrames with the Pandas Python package (v0.24.2)24, leveraging
its merge function for each data integration and annotation step. MEANtools uses
SciPy (v1.2.1)25 to calculate Spearman’s rank correlations and identify pairs of
transcripts and mass signatures with positively or negatively correlated expression
(0.7) and abundance throughout the input, according to user-set correlation
thresholds. Additionally, MEANtools also provides the user the option to use
Pearson’s correlation coefficient instead, and/or select a custom correlation cutoff to
increase the number of resulting associations at the expense of reliability.

Global reconstruction of co-expression modules in gene expression data has
been shown to be a powerful method to identify groups of genes involved in the
same metabolic pathway when querying for modules with genes that encode
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biosynthetic enzymes26. Because of this, selecting as input for MEANtools only
genes present in this type of coexpression modules has the potential to result in
increased confidence of the predictions as they will have a higher chance of being
associated with the same metabolic pathway than otherwise. To facilitate this
process, MEANtools includes our own implementation of the approach to identify
gene coexpression clusters described by Wisecaver et al.26 as an optional pre-
processing step. Furthermore, MEANtools allows users to visualize the expression
of each cluster in heatmaps with genes sorted in three categories according to the
protein domains they encode, following the same categorization used by
plantiSMASH8: scaffold-generating enzymes, tailoring enzymes, and the remaining
genes.

5.3.3. Mass-shifts associated to reactions serve as
templates for pathway prediction

In stage B, MEANtools scans the metabolome to identify mass signatures that
could represent metabolites in same metabolic pathway. For this purpose,
MEANtools queries all enzymatic reactions in RetroRules and cross-references
them with MetaNetX27, a repository of metabolic networks that MEANtools uses to
identify the mass differences between the main products and substrates of all
reactions. MEANtools then annotates all reactions with an associated mass shift.
This only needs to be performed once, upon retrieving or updating the RetroRules
database.

MEANtools uses the generated associations between reactions and mass shifts
to scan the input metabolome and identify pairs of mass signatures with a difference
in mass-charge ratio that can be explained by a known reaction, annotating one
mass signature as possible substrate and the other as possible product. Moreover,
because a mass shift may be explained by more than one reaction, and many
reactions are reversible, any pair of mass signatures can be annotated with multiple
reactions in both directions. Furthermore, because it cannot be assumed that all
metabolites in a metabolic pathway will be present at sufficient levels to be detected
in the metabolome, MEANtools generates “ghost mass signatures” which serve as
an intermediate unmeasured metabolite between any two metabolites with measured
mass signatures, a concept that was recently applied by Metwork to generate
metabolic networks based on MS/MS spectra28. Based on the combination of
reaction-mass-shift associations and bridging ghost mass signatures, MEANtools
generates a reaction network composed of mass signatures linked by annotated
reactions that serves as the basis for the prediction of metabolic pathways.

5.3.4. Curated Pfam-reaction annotations constrain
metabolite-enzyme associations

Stage C occurs concurrently: MEANtools integrates the metabolomic-
transcriptomic correlation data from the first stage as a constraint to identify
reactions in the generated reaction network that can be explained by one of the
enzymes encoded by genes that are correlated to the mass signatures linked by the
reaction. To this end, we adapted the RetroRules database, which is populated with
~17,000 reactions annotated with enzymes that are predicted to be associated with
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them21. The majority of these annotated enzyme-reaction associations, however, are
the result of propagating the annotation of characterized reactions to other reactions
with the same or similar enzyme commission (EC) number, and are therefore likely
to contain too many errors to function as an effective constraint for our applications.
In order to increase confidence in the enzymatic annotations we cross-referenced
each reaction in RetroRules to the manually curated reaction databases Rhea29 and
KEGG30, identified reaction-enzyme associations supported by experimental
evidence and then propagated these annotations through KEGG Orthology groups.
This resulted in a curated set of 5,168 reactions and 2,706,626 respective high-
confidence reaction-enzyme associations (Suppl. Table 1). To increase the number
of enzymatic transformations available for metabolic pathway predictions, we
generated a second, less strict, set of associations. For this, we used
ECDomainMiner31, a tool designed to infer reaction associations between EC
numbers and Pfam32 domains for automatic annotation. Using the first set of curated
rules as a starting point, we identified a set of associations thus inferred with at least
0.95 confidence. We then selected all other reactions from RetroRules with an EC
number and Pfam annotations identical to this high-confidence set, and included
them in a second set of associations, resulting in 7,070 reactions and 3,135,908
reaction-enzyme associations. We generated a third set of 10,650 reactions and
3,203,412 reaction-enzyme associations by identifying RetroRules reactions
annotated with fewer than 7 Pfams, an arbitrary cut off that serves as a tradeoff
between enzymatic annotation specificity and the number of preserved reactions.
MEANtools includes these three different reaction-enzyme associations datasets as
settings (strict, medium and loose, respectively) to allow the user to constrain the
predictions for specific purposes and find the right balance between sensitivity and
specificity, considering the tradeoff between enzymatic annotation confidence and
diversity of the resulting set of enzymatic reactions.

By cross-checking these reaction-enzyme association data sets with sets of
correlated enzyme-coding genes and metabolites, MEANtools effectively filters the
set of possible mass shift-reaction associations based on -omics evidence. Thus,
MEANtools generates a reaction network where each node is a mass signature
within the metabolome, or an unmeasured ghost mass signature. In this network,
nodes are linked by directed edges representing enzymatic reactions that can be
catalyzed by at least one of the enzyme families encoded by the genes correlated to
one of the two mass signatures the reaction links.

5.3.5. MEANtools predicts metabolic pathways supported
by multi-omics input and enzymatic reaction databases

In stage D, MEANtools uses the reaction network to generate pathway
predictions. To this end, it first predicts possible metabolites and their corresponding
molecular structures for each mass signature by identifying possible adducts and
querying NPDB (Stokman et al., in preparation), or a user-defined metabolite
database that can be supplied in CSV format. MEANtools then uses the rdkit Python
package(v 2019.03.2.0)33 to generate in silico molecules resulting from each reaction
associated substrate(s). Because of the large number of reactions in RetroRules,
generating all product molecules for the metabolite structures predicted in a
metabolome by querying all reactions can become time-consuming and
computationally taxing. Every successful reaction will result in new metabolites that
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are ready to be queried again to predict a potential pathway, leading to iterations that
are increasingly larger. To speed up this process, MEANtools guides the generation
of in silico molecules by -omics evidence, namely the reaction-substrate pairs
identified in the previous stage. To further expedite each iteration, MEANtools
queries reactions according to key substructures present in the substrate molecule
using a divide-and-conquer strategy as seen in Fig. 2. For each metabolite structure
(Fig. 2 A)), MEANtools starts by querying the presence of specific atoms in the
structure, like N or C (Fig. 2 B)). Upon success, in the next step MEANtools queries
reactions that only involve simple substructures, like N=N and C=C, and if both
atoms are present, reactions centered on the substructures C=N and C-N are also
queried (Fig. 2 C)). In the next round, MEANtools queries more complex
substructures according to which substructures have already been identified, for
example, only metabolites with the substructure C=N are queried for reactions
centered on the C=N-C substructure (Fig. 2 D)), and this process ends for each
metabolite when a round does not result in any successful queries. This process is
expedited further by only querying reactions that would result in metabolites with a
mass signature that can be mapped in the metabolome, or as a ghost mass
signature. MEANtools precomputes this map of substructures once, upon retrieving
or updating the RetroRules database. Altogether, this strategy lets MEANtools utilize
computing time efficiently when generating in silico molecules. 
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Fig. 2. MEANtools identifies possible reactions for a molecular structure according to a divide-
and-conquer strategy. For each metabolite, MEANtools first queries the presence of key atoms, and
then continues to query, in rounds, increasingly complex reactant substructures according to which
substructures have already been identified. For example, A) a set of metabolites is initially queried
for the presence of B) nitrogen and carbon atoms. C) Metabolites that pass these criteria are then be
queried for more complex substructures like C-N or C=C. D) In the following round, MEANtools
queries substructures with more complexity according to which substructures have already been
identified: in this manner, only metabolites with the N=C substructure are queried for the N=C-N
substructure.

As a result of this stage, MEANtools generates series of ensuing reactions with
predicted products for all mass signature-pairs, associated correlated enzyme-
coding genes, and references to the characterized reactions and enzymes that
served as rules to predict this reaction. An example of this can be seen in Fig. 3,
where a characterized dehydrogenation serves as template to predict a
dehydrogenation of octadecene diynoic acid. This last stage can be iterated multiple
times (as desired by the user), to generate pathway predictions that extend beyond
one enzymatic reaction away from the initial query molecule.
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Fig. 3. MEANtools uses reaction rules from known enzymatic reactions to identify predict
structures in metabolic pathways. For example, the dehydrogenation of 1-Octanol into 1-Octanal
(KEGG reaction: R02878) is used as template to predict the dehydrogenation of octadecene diynoic
acid.

5.3.6. Easy-to-browse untargeted and targeted metabolic
pathway predictions

In stage E, MEANtools analyses the resulting reaction network generated in
previous stages to predict candidate metabolic pathways of interest to the user. For
this purpose, MEANtools uses the NetworkX Python package (v2.4)34 to generate
one subnetwork for each of the initial metabolites input by the user. MEANtools
converts each subnetwork into a directed acyclic graph (DAG) by identifying all
cycles within the network that represent predicted reversible reactions, only retaining
links that are able to move the reaction forward and away from the initial metabolite.
In the case of cycles between metabolites at the same reaction distance from the
initial metabolite, the edge with the weakest enzyme-metabolite correlation is
removed. This method effectively generates various DAGs rooted at the initial
metabolites, for which candidate metabolic pathways can be predicted by identifying
the longest reaction path in each subnetwork that starts from the initial metabolite.
The method is repeated to generate a DAG with each initial metabolite at the end of
the reaction, resulting in two pathway predictions for each input structure.
MEANtools then outputs the full reaction network and all DAGs as CSV tables that
are easy to import and browse in Cytoscape23. Lastly, pathway predictions are output
as SVG image files, detailing the metabolites, reactions and genes involved, and
their respective correlations.

To aid users in exploring the predictions, MEANtools provides an option to
generate SVG files for each of the molecular structures predicted in previous stages,
which allows users to identify and prioritize structures or reactions of interest. Upon
identification, MEANtools can generate DAGs and pathway predictions rooted at any
molecule selected by the user. Finally, the user can also select specific metabolites
and, if available, MEANtools will generate a pathway prediction containing all
metabolites specified by the user.
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5.3.7. Flexible and user-friendly input and output
Although MEANtools is focused on the analysis of paired transcriptomic-

metabolomic datasets, it can also be used with only metabolome data, or to analyse
the biosynthetic potential of a specific metabolite structure. In total, MEANtools
provides five tool modes according to which data the user inputs, as seen in Table 1.
Tool modes 1 and 2 were described above and generate pathway predictions
supported by the metabolome and transcriptome, with their only difference being the
origin of the metabolite structure prediction: database prediction or targeted user
input. Tool modes 3 and 4 generate pathway predictions only using the metabolome,
and thus will not use enzyme expression-metabolite abundance correlation evidence
as a restriction. However, by adding the genome annotation as input, MEANtools will
add to each pathway prediction all genes that encode enzymes capable of each
reaction step and restrict the output to Pfam domains encoded in the genome
sequence. Finally, tool mode 5 allows the user to generate the unrestricted network
of biosynthetic potential starting from a specific metabolite structure according to
known enzymatic reactions.

Table 1. MEANtools can be used in five tool modes, according to the data used as input. Tool
modes 1 and 2 generate pathway predictions supported by the metabolome and transcriptome. Tool
modes 3 and 4 generate pathway predictions only using only the metabolome. Tool mode 5 allows
the user to generate the biosynthetic potential starting of specific metabolite structures according to
known enzymatic reactions.

5.4. Results and Discussion

5.4.1. Identification of multi-omics correlation clusters help
prioritize datapoints in the transcriptome and metabolome

To demonstrate MEANtools as a metabolic pathway predictions workflow, we
used the paired transcriptomic-metabolomic dataset generated and described by
Jeon et al.35. This dataset is the result of seven fungal and bacterial elicitations
applied to tomato leaves, sampled over two days in triplicates, resulting in 87
samples for which gene expression data were collected and for which abundances of
11,266 mass signatures were measured.

Because of the high number of mass signatures, using MEANtools in an
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unsupervised manner (tool modes 2 and 4) can be time-consuming and
computationally taxing, as it will produce numerous structure predictions. To reduce
the number of datapoints, we used MEANtools to identify clusters of coexpressed
genes that encode enzymes with known biosynthetic potential, along with the mass
signatures correlated to them (see Methods). The results of this analysis module are
visualized in Fig. 4 A) with an automatically generated heatmap describing the
expression changes in the genes within the clusters identified, and Fig. 4 B), which
details the correlation of the coexpressed genes with mass signatures. By browsing
these heatmaps and this network, users can easily prioritize genes and mass
signatures of interest. An example of a gene coexpression of this process can be
seen in Fig. 4: we identified a cluster (circled in Fig. 4A)) with enzyme members with
potentially interesting biosynthetic potential (detailed in Fig. 4B)), such as terpene
synthases and protein domains known to modify terpene scaffolds, such as
acyltransferases and P450s36. As seen in Fig 4. A), many of these genes (blue
nodes) correlate with many mass signatures (red nodes), making it a group of 75
genes and 70 mass signatures that could be used as a basis for unsupervised
pathway prediction using any of the tool modes of MEANtools, in order to guide
further experimental analysis and characterization.
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Fig. 4. MEANtools identifies gene expression clusters with genes that encode biosynthetic

protein domains. A) Transcript-metabolite correlation network of genes within a biosynthetic
coexpression cluster. Nodes represent genes (blue), metabolites (red) and clusters (green).  B)
MEANtools generates a gene expression heatmap for each identified biosynthetic coexpression
cluster. Expression is normalized by samples (columns) and genes are sorted in three categories
according to encoded protein domains: scaffold-generating enzymes at the top, followed by tailoring
enzymes, and lastly the remaining genes.

5.4.2. MEANtools predicts parts of the proposed
falcarindiol biosynthesis pathway

Jeon et al.’s research led to a proposed metabolic pathway for the biosynthesis of
falcarindiol, the candidate enzyme classes for each reaction step, and the
identification of some genes (potentially) involved in the pathway. To validate
MEANtools’ predictions, we identified all mass signatures that can be predicted for
the eight structures in the falcarindiol pathway. Because Jeon et al. focused mainly
on M+Na and M+H adducts, we selected only mass signature predictions
corresponding to these adducts with a tolerance of 60ppm. This resulted in a total of
45 mass signatures mapped to 8 structures (Suppl. Table 2), which were used as
the metabolite structure input for a MEANtools analysis in mode 1.

By using only experimentally validated enzyme-reaction associations (“strict”
settings), and a minimum absolute Spearman correlation coefficient of 0.5,
MEANtools predicts the second step of the falcarindiol biosynthesis pathway
proposed by Jeon et al. (crepenynic acid -> dehydrocrepenynic acid), seen in Fig. 5
A). Among the genes that MEANtools predicts may be involved in this reaction is
Solyc12g100250, which Jeon et al. identified as a major desaturase in the
falcarindiol pathway that was linked to this reaction using transient expression.
MEANtools also predicts steps five and six of the pathway proposed by Jeon et al.
(octadecadiene diyonic acid -> metabolite_6 -> metabolite_7), seen in Fig. 5 B), and
provides candidate genes encoding enzymes with a protein domain that has been
characterized as able to perform each reaction. Lastly, by using only the structure
predictions, metabolome data and genome annotations (tool mode 3), MEANtools
anticipates the second step of the pathway (crepenynic acid -> dehydrocrepenynic
acid) and steps four, five and six (octadecene diynoic acid -> octadecadiene diynoic
acid -> metabolite_6 -> metabolite_7), pictured in Fig. 5 C) as a metabolite network.
Interestingly, in this tool mode, MEANtools anticipates a step of the pathway it does
not with strict settings. To further explore the predictive power of MEANtools, we
repeated the analysis with “medium” and “loose” settings, and a distribution of the
correlation coefficients of all predicted gene-metabolite associations for the
falcarindiol pathway at each setting can be seen in Suppl. Fig. 1. Here, we can see
MEANtools predicts 7 genes with ADH_N and NAD_binding_10 Pfam domains that
are, with lower confidence than the other predictions, predicted to potentially perform
the dehydrogenation of octadecene diynoic acid. A table with all of the predictions
can be found in Suppl. Table 3.
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Fig. 5. MEANtools predicts parts of the falcarindiol pathway as proposed by Jeon et al.35, and
the genes responsible for each enzymatic step. A “^” or “v” sign next to each gene indicates whether
it is correlated to the abundance of the substrate or the product of each step: green indicates positive
correlation, red indicates negative correlation, and blue indicates the gene is correlated to multiple
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mass signatures, with some positively, and some negatively. A) MEANtools predicts 55 possible
genes for the second step of falcarindiol biosynthesis (crepenynic acid -> dehydrocrepenynic acid),
including 4 genes with the FA_desaturase Pfam domain, and Solyc12g100250, the gene Jeon et al.
identified as the desaturase that catalyses this step in the pathway. MEANtools also anticipates the
possible production of another metabolite outside the falcarindiol pathway (VM_4535953) and
provides a set of candidate genes that could be involved.  B) MEANtools predicts steps five and six
of falcarindiol biosynthesis (octadecadiene diyonic acid -> metabolite_6 -> metabolite_7). Among the
genes predicted for the fifth step are six genes with p450 or FA_desaturase protein domains. While
the cytochrome p450 enzymes are the most likely candidates for this hydroxylation reaction, the fact
that MEANtools also indicates FA_desaturase enzymes as candidates for the reaction is explained
by the evidence that AlkB1 (not pictured), a known Pseudomonas FA_desaturase, is capable of
hydroxilation37. MEANtools also anticipates the possible production of another metabolite outside the
falcarindiol pathway (here designated VM_4602317) and identifies a redox enzyme that could
potentially be involved. C) An overview of the biosynthetic potential of the metabolites in the
falcarindiol biosynthetic pathway generated using MEANtools based on genome information only,
without filtering them with expression correlation data. Each node represents a unique metabolite,
and arrows link metabolites that can be transformed into one another through a known enzymatic
reaction. Black nodes indicate the metabolites in the falcarindiol biosynthetic pathway. MEANtools
anticipates the second step of the pathway (crepenynic acid -> dehydrocrepenynic acid) and steps
four, five and six (octadecene diynoic acid -> octadecadiene diynoic acid -> metabolite_6 ->
metabolite_7).

5.5. Conclusions
MEANtools can generate testable hypotheses on metabolic pathways rapidly,

with little to no prior knowledge, by integrating multi-omics data. This method
effectively automates the identification of key Pfam domains required for a specific
reaction and allows users to tune the reaction-Pfam domain associations according
to their level of confidence, or based on the taxa of origin. For this purpose,
MEANtools queries RetroRules, a retrosynthesis-oriented enzymatic reactions
database, showing that tools and methods within the retrosynthetic biology and
synthetic pathway design fields have considerable application potential for metabolic
pathway prediction and potentially NP discovery. While we present MEANtools as a
metabolic pathway prediction approach, its different modes allow for diverse usage,
such as for retrosynthetic pathway design by targeting specific metabolite structures
without metabolome or transcriptome data (tool mode 5). To disentangle reaction
networks into useful predictions, MEANtools converts them into DAGs, which allow
the quick identification of linear metabolic pathways, which are presented to the user
along with the metabolites, enzymes and reactions involved in them.

5.6. Future perspectives
Because of MEANtools’ flexible and modular design, there is room for

improvement in many of its individual processing steps. Annotating mass signatures
with predicted structures can be improved by using MS/MS data to increase
accuracy and allow validation, in a similar way as done by Metwork28. Converting
predicted reaction networks into DAGs was the only method we used to study and
present unsupervised predictions, but more complex manipulations of the network
may allow for predictions better tailored for the user, such as prioritizing specific
reactions or molecular substructures. Further curating the reaction-Pfam domain
associations, or allowing the user better control over them, could improve the
method as well: some enzyme domains may be linked to large numbers of reactions,
likely to lead to false positives when the objective is to predict pathways, but could be
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useful when exploring the biosynthetic potential of a structure when designing a
synthetic pathway. Altogether, we present a novel computational method to predict
metabolic pathways and is guided by multi-omic evidence, allowing researchers to
quickly generate testable and easy-to-browse hypotheses. Furthermore, we
anticipate that our work provides the basis for future work to expand the numbers of
ways in which paired genomic, transcriptomic and metabolomic data can be used to
analyze biosynthetic diversity.

5.7. Tool availability
MEANtools is fully available at https://git.wageningenur.nl/medema-

group/meantools/

5.8. Supplementary Information
Supplementary figures and tables are available to download from:

https://doi.org/10.5281/zenodo.4056591
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Chapter 6
General Discussion
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6.1. General remarks
As discussed in the introduction to this thesis, before the start of this PhD, by

early 2016, plant specialized metabolism research was on the verge of a
computational revolution. This brought multiple opportunities and challenges to the
field, and multiple contributions to maximize the power of novel computational
methods to discover, characterize or predict specialized metabolic pathways and
their associated natural products in plants were reviewed. The common thread
among the strategies discussed is the aim to increase confidence in associations
and predictions, by extracting more knowledge or information from -omics data
sources. During my PhD research, I developed several strategies towards achieving
this aim.

In summary, we can classify all strategies under two main categories: single-omic
and multi-omics strategies. Besides their eponymous characteristics (the usage of
one or more -omics), their main difference is that of direction: single-omic methods
reveal insight by looking inwards into the dataset to reveal new information, while
multi-omics methods do so by looking outwards, and comparing what is learned with
what can be learned from other data sources.

Chapter 2 provides a good example of an inward-looking strategy with
plantiSMASH, mainly focusing on the analysis of genomics data. The tool, however,
does provide a form of multi-omics analysis through a coexpression analysis on the
input transcriptome, as it pertains to the biosynthetic gene clusters (BGC) predicted
in the input genome; and in the background, through the library of plant SM protein
domains that we curated based on many known SM pathways in literature, that in
turn undoubtedly used many other -omics sources during characterization.
Nevertheless, this “external knowledge” is used differently than in multi-omics
analyses: it is used to annotate the genome and generate a set of assumptions
based on which a prediction can be proposed. In the case of plantiSMASH,
annotations of protein domains and SM biosynthesis functions constitute the
assumptions made, and the predicted BGCs are the proposition. In multi-omics
analyses, the external knowledge from another -omic source is a main part of the
prediction itself, such as the association between mass signatures abundances and
transcripts expression made by MEANtools discussed in chapter 5.

plantiSMASH itself, and its framework, has the potential to be used as a tool
within larger workflows. For example, we previously mentioned the characterization
of avenacin1, thalianol2, marneral3 and α-chaconine/solanine4 BGCs, and how
comparative genomics provided insight about their evolutionary trajectories: the
authors compared the specific BGC with the matching genomic region in other
species, which allowed them to gain evolutionary insights into the BGC itself. We
exploited this strategy in chapter 3 with some differences. Rather than setting a
specific BGC as our object of study like in previous research, we focused our
comparative analyses around a more general type of genomic elements: genomic
neighborhoods (GN) containing genes encoding oxidosqualene cyclases (OSC),
cytochrome P450 (CYP) and acyltransferases (ACT), constrained only by the
Brassicaceae genomes available at the time. This allowed us to generate insights
into all GNs at the same time, rather than about one or two specific BGC as had
been done in previous research. 

As we discussed before, the need for better prioritization is a common limitation
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across the plant SM research field. We tackled this limitation in chapter 4, where we
developed CADE-HEroN, a workflow to prioritize groups of genes based on a
comparative transcriptomic analysis. We continued to explore gene prioritization
solutions in chapter 5 with the integration of transcriptomic and metabolomic
analyses using an enzymatic reaction library. Both projects also benefitted from
modules aimed at facilitating untargeted analysis: CADE-HEroN through a
comparative time-series gene expression analysis, and MEANtools through the
predicted reaction networks that can be browsed in multiple formats.

The idea of a future integration of these two tools is tantalizing: predicted
metabolic pathways involving genes with expression patterns conserved across
species would be great candidates for experimental validation. Moreover, all of the
computational tools and pipelines we developed throughout this thesis could
potentially be integrated within one single workflow; in this way, we could maximally
use the guilt-by-association principle and provide SM pathway predictions based on
observations that come from the genomes, transcriptomes, metabolomes and
phylogenetic relationships of multiple species. While this would be a seemingly large
endeavor to undertake for the discovery of one or two pathways, a generic
computational tool could eventually be developed for a comprehensive automated
analysis across many plant species at the same time.

6.2. Where plants meet microorganisms
We have previously discussed how plant SM research and NP discovery has

learned from the neighboring bacteria and fungi kingdoms: BGC discovery and
characterization was the dominant guide in NP discovery in microorganisms before it
gained popularity within the plant kingdom. In chapter 2 we introduced
plantiSMASH, a computational tool for BGC discovery in plants, based on
antiSMASH which has successfully aided in the characterization of thousands of
BGCs in microorganisms to date5,6. Throughout this thesis, we have discussed how
using BGCs and BGC-like structures has resulted in several NP discoveries and
contributed immensely to understanding plant specialized metabolism. Whether the
so-called “gene cluster revolution”7 crosses the border to neighboring kingdoms or
not, it is safe to conclude that studying BGCs will be a mainstay of plant SM
research and NP discovery going forward.

This, however, begs one logical question, what else can plant researchers learn
from those working on microorganisms?

The BiG-SCAPE/CORASON framework8 is a good example: after identifying
BGCs through antiSMASH, BiG-SCAPE generates a similarity network among
predicted BGCs and those in a database of BGCs. This similarity network is used to
group BGCs into gene cluster families (GCFs), which are then queried by
CORASON with a multi-locus phylogenetic analysis to reveal their evolutionary
relationships. The authors demonstrated the usefulness of this strategy to guide NP
discovery by mining 3,080 actinobacterial genomes, which led to the discovery of
seven new detoxins8.

A tool like plantiSMASH could in the future be integrated with a phylogenetic
analysis similar to the one we developed in chapter 3 and with the BiG-
SCAPE/CORASON framework that has demonstrably successful results with
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microbial BGCs. This would result in a larger comprehensive multi-omics pipeline.
For example, a user could input a few closely related genomes of their choice, along
with a tree describing their phylogenetic relatedness; the tool would predict BGCs
and GNs in all genomes, and then perform a multiple sequence analysis of the
scaffold-generating enzymes identified in all clusters and an automated analysis with
the BiG-SCAPE/CORASON framework. Our previous analysis suggests that, unlike
in microorganisms, the subsequent GCFs would tend to group BGCs and GNs that
may have evolved independently, which requires the inclusion of phylogenetic
analyses per gene family, customized for plants. The framework we developed in
chapter 3 would be key for this: the new computational tool would need to
differentiate well between protein subfamilies, generate ancestral state
reconstructions of the GCFs and integrate the phylogenetic tree of the genomes into
the analysis. The user would then receive information on the predicted BGCs and
GNs, accompanied by their predicted evolutionary relationships. This would in turn
allow the user to make better decisions regarding experimental validation. 

Another advance in microbial NP discovery that has yet to be adapted to plants is
the capacity to predict chemical structures directly from genome sequences. The
substrate specificity of NRPS adenylation domains and PKS acyltransferase
domains can be analyzed by a range of tools and algorithms, such as antiSMASH,
to predict the chemical structures of the metabolites associated with a set of
metabolic genes9. No similar strategy has been developed yet for plant genomes,
and some obstacles as to why are readily apparent: even when focusing on a
specific family of metabolites, like triterpenes, some tailoring enzymes like
cytochrome P450s have a diverse range of catalytic activities and regioselectivities,
some of them being species-specific10. While more research focused on
characterizing and categorizing the functions of plant enzymes will be key to develop
a similar predictive strategy in plants, a good start would lie in computationally mining
the vast amount of existing literature on the subject. Some of the work we presented
in chapter 5 provides a foundation for this: MEANtools mines the RetroRules
database to associate enzymatic domains to specific molecular substructures.
MEANtools cannot provide a metabolic structure prediction de novo (and uses the
transcriptome and metabolome in addition to the genome), but very often the
precursors of SM pathways are metabolites from primary metabolism11; therefore,
targeting a library of known metabolites in the primary metabolism of the species
being queried with MEANtools could provide good set of predicted NPs. Moreover,
the continuing development of databases annotating and associating metabolic
enzymes, and reactions, like RetroRules12, and tools using these databases, will
have a great positive impact. Altogether, chemical structure prediction based on
plant SM pathway discovery is not entirely out of reach.

6.3. Pathway prediction and retrosynthetic analysis: two
sides of the same coin

In chapter 5 we introduced RetroRules, a database of enzymatic reactions for
metabolic engineering and retrosynthesis workflows12. This database was primarily
designed to aid in retrosynthetic analysis, a kind of analysis that is more closely
associated with the synthetic route design and drug discovery fields than plant SM
research. This strategy aims at identifying the reaction mechanisms towards a target
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molecule, which in essence is the same as metabolic pathway discovery, but with a
different set of constraints due to their in vivo or in vitro nature. The main difference,
however, lies in the direction in which the information is processed: retrosynthetic
analysis is a top-down approach where pathway prediction is bottom-up.

We can picture a reaction pathway as a pyramid. At the top of the pyramid rests
the final metabolite of the reaction: a NP of interest or a synthetic drug for which we
intend to discover the reaction mechanisms towards their production. The bricks in
the pyramid constitute the myriad of mechanisms that permit the synthesis of the
final metabolite, including the main reactions in the pathway, the production of
necessary cofactors and catalysts, and the conditions leading to them. 

Retrosynthetic analysis explores this pyramid from the top down: it aims at
identifying the reaction mechanism of a target molecule by converting the chemical
structure into simpler structures, and then further simplifying those and repeating the
process until molecules that can be made by known reaction mechanisms are
reached. Researchers start from the top of the pyramid (the final metabolite of the
pathway) and lay bricks below it until they design an architecture that they are
comfortable with. This is distinct from most strategies in SM and NP discovery, which
more generally follow a bottom-up approach: individual analyses and observations
are integrated piece by piece until a prediction about the system can be confidently
reached, such as generating insights about the SM system or the prediction of a
pathway; by laying bricks one a time, they may be laid on top of each other too, in
the same manner as new analyses rely on the knowledge from previous ones to
reach an adequate interpretation. This strategy is well exemplified in the previously
discussed studies that led to the characterization of the biosynthetic pathways for
podophyllotoxin in mayapple13, 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN) in
Arabidopsis thaliana14 and noscapine in opium poppy15 in which observations from
transcriptomic experiments were used to appropriately design metabolomic
experiments that the authors could use to “map the pyramid” of the metabolic
pathways.

In reality, researchers often have a final or intermediate metabolite, class of
metabolites, or a genomic feature of interest in hand when designing and interpreting
their -omics experiments and analyses. This makes the de facto strategies more akin
to a middle-out approach: exploring the pyramid with a mix of bottom-up and top-
down approaches.

This is an advantageous aspect in SM research: knowledge of at least the
metabolite class of a NP can give important information regarding its structural
characteristics, which in turn provides information about certain enzymes required for
their biosynthesis, a “guide” to explore the pyramid. A common example of this is
querying for scaffold-generating enzymes when targeting a specific class of
metabolites, but some information about tailoring enzymes involved in a pathway can
also be deduced: Jeon et al. used characteristics of the fatty acid backbone of
falcarindiol to guide the identification of the fatty acid desaturases involved in the
pathway16. Another genomic feature that can serve as the pyramid’s guide are
BGCs: the characterization of the α-chaconine/solanine BGC in potato was guided
by the characteristics of the α-tomatine BGC in tomato4.

In chapter 5 we presented MEANtools, which leveraged the RetroRules
database for retrosynthetic analysis to generate testable hypotheses about
biosynthetic pathways and facilitating plant SM research and NP discovery. We
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developed a cheminformatic framework based on the generic reaction databases
that RetroRules consolidates to predict the reactions involved in plant metabolic
pathways. The integration of this database is based on the assumption that
knowledge and tools from the synthetic route design/drug discovery fields can be
transferred successfully to the field of plant biology (and vice versa), which has the
potential of benefitting both. MEANtools shows us how this integration can benefit
plant biology by using reaction rules derived from characterized enzymes across the
tree of life to predict possible metabolic pathways in plants, and as researchers
discover and characterize new metabolic pathways, retrosynthetic databases like
RetroRules can grow, in turn benefiting the synthetic route design/drug discovery
fields.

Another example of a set of retrosynthetic analysis tools with potential to guide
plant metabolic pathway discovery are molecular similarity algorithms. These
algorithms are used to query novel molecules in large small-molecule databases to
identify similar bioactive molecules with properties that may be shared by the
molecule of interest. This method is called virtual screening, and has been used
successfully for a long time in drug discovery17. There exists an overlap between this
method and metabolic pathway discovery. The metabolites within a metabolic
pathway often constitute a group of metabolites with high degree of molecular
similarity; a method able to identify similar molecules could potentially identify
metabolites within the same pathway. This idea has been explored in the past: KCF-
S is a method to describe and compare molecules, which has been designed with
the specific purpose of identifying pairs of metabolites that can possibly be converted
into each other through an enzymatic reaction18. The authors demonstrated this
strategy by querying a database of molecules, and their algorithm grouped
molecules that were less structurally diverse than clusters generated by other tools,
with many metabolite pairs being one enzymatic reaction away from each other18;
recently, they released their method as a Python package19. Above, we discussed
how in silico prediction of de novo metabolic structures awaits in the future of plant
SM research, and molecular similarity algorithms could be key to link de novo
structure predictions with known precursors from a metabolite database. Integrating
these methods with a cheminformatic framework capable of predicting reaction
pathways and associated substrates based on molecular substructures (such as the
one we developed for MEANtools in chapter 5) will effectively create a fully top-
down pathway discovery strategy within the plant SM and NP discovery fields.

6.4. A cornucopia of data, methods, and tools: Sophie’s
choice?

Chief among the contributions of computational genomics to plants NP discovery
and SM research is the myriad of distinct tools and methods that researchers can
take advantage of for any -omics dataset. In this thesis we discussed a few of these
methods to guide metabolic pathway discovery: genome sequences can be queried
for BGCs20,21 and/or compared with other sequences and BGCs2–4; transcriptomes
can be used to identify coexpressed genes13,14,22,23, or to generate coexpression
networks and identify coexpressed modules24–26, all of which can be compared with
other transcriptomes4,27,28; also, metabolomes can be analyzed along with the
previously mentioned workflows either sequentially13–15 or in an integrated manner29–
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31 to generate and validate hypotheses.
Moreover, computational genomics has facilitated the usage of previously

acquired knowledge: the continuously growing databases of genomes,
transcriptomes, metabolomes, characterized pathways, enzymatic reactions and
BGCs that can be used to reinforce observations in -omics analyses performed in
newer data. While new “wet lab” -omics experiments are always needed to acquire
new knowledge, uncovering how it is related to previously acquired knowledge in
literature is a powerful strategy to produce discoveries with higher confidence than
otherwise. This is evidenced in the main chapters of this thesis: a connecting thread
of this research has been the development of methods that integrate publicly
available resources for the analyses.

When using any particular -omics dataset to elucidate a metabolic pathway or to
identify a natural product, it is undeniably cheaper to run many computational
analyses, or compare the dataset to literature, than it is to run more “wet lab”
experiments. This generates interest in running as many computational analyses as
possible, but in a world where time and other extra-scientific limitations are at play,
the large number of tools, methods, datasets and databases in literature can be a
problem for researchers: it can be taxing to select the appropriate set of analyses
and tools for a specific research project. While many authors will say their tool,
method or workflow is the best available for what they do, as supported by a variety
of qualifications or metrics, the truth may lie in the opposite end: instead of selecting
the best set of analyses and tools for the job, a researcher could default to running
all analyses that are possible and that can contribute to elucidating a targeted
objective.

First, this would demand a unified repository of tools and methods with proper
categorization and documentation. Something similar exists in Galaxy, a web-based
scientific biomedical analysis platform for genomic, proteomic and metabolomic
analyses, bringing together >5,500 tools32. A similar platform for NP discovery could
host or package the computational tools mentioned in this thesis and more, along
with a user-friendly GUI and documentation to allow easier access to bioinformatic
tools to plant biologists. Developing this platform would certainly be a large
undertaking, but extensive literature already covers the advantages, disadvantages,
and best way of using many of these methods and tools26,31,33,34. Furthermore, the
majority of plant NP discovery computational tools have similar or interchangeable
file formats; for example, the majority of transcriptomic analyses discussed in this
thesis start with counts or F/RPKM values as input, and all methods we discussed
involving protein prediction do so through the PFAM library35 or EC numbers, two
annotation types (sequence/structure and function) that were recently shown to be
highly associated36.

It may be possible that some analyses and tools will not contribute towards the
objective a researcher has set, or the data they have available. For example, a BGC
prediction analysis may not have much to offer when using a low-quality genome
assembly with short contigs, or when targeting an un-clustered pathway, and
differential expression analyses are not well suited to identify meaningful patterns in
pairs of transcriptome samples that have the majority of genes differentially
expressed. In other words, a simple database or repository of tools would not entirely
solve the problem of how to select the appropriate set of analyses and tools,
although it would make it easier. To properly solve this problem, a big characteristic
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of any prospective unified repository of plants NP discovery tools would require a
good degree of automation; the database could effectively make this selection
process happen in silico instead.

Many automated tools discussed, and developed, through this thesis
demonstrate a part of how such platform could be automated: plantiSMASH and
MEANtools integrate different automated analyses according to the input (and their
formats) and allow advanced users to further customize parameters of specific steps
or how the output is formatted. A unified repository of tools could work similarly,
starting with a preliminary format and quality control analysis of the inputs to
determine the best set of tools according to predetermined rulesets or recipes.
Moreover, as more users use the database, they could save and make public their
recipes/rulesets for other researchers to use. For the less advanced users, this could
be presented to the user as suggestions or pre-checked defaults. Altogether, this
could result in a platform in which biologists input their raw multi-omics data, select a
set of analyses and their specified parameters and/or targets, click run, and receive
within a day a large number of high-confidence predictions ready for human
interpretation. 

An example of a platform that aims to provide such a unified repository
framework can be found in KBase, a knowledgebase that consolidates a number of
tools to analyze -omics data and predict biological functions 37. This knowledgebase
not only solves the problem of discoverability, accessibility and utilization of many
tools, but also integrates data from genome, metabolite and reaction databases,
facilitating their selection process too. Moreover, KBase bolsters a user-friendly GUI,
making the process more straightforward for biologists with less expertise in
bioinformatic analyses. This could be a good foundation whence a plant NP
discovery equivalent could be constructed; although KBase focuses mainly on
microbial genome analysis, it does include plant genomes in its knowledgebase too.
Furthermore, many of the tools developed through this PhD, and discussed as
possible follow-ups within this thesis, provide a good initial set of tools to be added
and integrated into recipes and rulesets uniquely aimed at plant genomes.

The development of this platform would be a large undertaking, but it would bring
unmeasurable benefits to the field: it would make the plethora of existing
bioinformatic tools, methods and databases more easily discoverable and accessible
to researchers, especially if framed within a user-friendly interface. As we have
discussed above, the computational aspect of the plants NP discovery and SM
research fields is still rather young, making this a good moment to start the
development of this kind of unified platform. As the impact of computational
genomics in the field continues to grow, the number of tools, methods and databases
will multiply: not only will this make the development of such platform harder, but by
then a one-stop-platform for all NP discovery needs might become a necessity rather
than a boon.

6.5. Closing remarks
It is undeniable that computational genomics has provided a cornucopia of

opportunities for SM plant research in the shape of computational tools and
methods, each of them with their own set of challenges and limitations. More
importantly, each new method and tool has brought new promises too, of the myriad
of new ideas and integrated methods that could be implemented in the future; each



104of new ideas and integrated methods that could be implemented in the future; each
generation increasing the speed at which advancements are made. With this thesis I
contributed to this process. The plant SM research field is richer today than it was
four years ago, and it will likely be exponentially richer four years from now.
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Summary
The field of plant natural product (NP) discovery has changed substantially since

the isolation of morphine from opium poppy in 1806. The largest of these changes
came in the last decade with the integration of computational genomics into the field,
which resulted in the development of a plethora of computational methods that aid in
the discovery of new plant NPs and the biosynthetic pathways, metabolites and
enzymes associated with them. As more computational methods continue to be
developed, and more plant genomes are sequenced, the NP discovery field is ripe
with obstacles and opportunities uniquely suited to multi-omics solutions.

In chapter 1, we explore the history of the plant NP discovery field and highlight
some of the strategies used throughout. We also discuss the state of the field and
some of the obstacles and opportunities that computational genomics introduced,
mainly regarding the identification of plant biosynthetic gene clusters (BGCs),
analysis of coexpression networks and multi-omics integration.

In chapter 2, we present a computational tool for the automated identification,
annotation and expression analysis of plant BGCs: plantiSMASH. Here, we show
how BGC identification can guide plant NP discovery by mining all publicly available
chromosome-level plant genome assemblies and recovering all BGCs
experimentally characterized at the time, along with a wide range of putative novel
ones. Furthermore, we develop a coexpression analysis module, which facilitates the
integration of a transcriptomic analysis to any predicted BGC. In chapter 3, we
leverage BGCs and BGC-like genomic structures to study the evolution of triterpene
biosynthetic pathways in plants. Here, we queried 13 Brassicaceae plant genomes to
identify all oxidosqualene cyclases (OSC), and the genomic regions flanking them.
We use these regions to perform a series of phylogenetic analyses to compare the
evolution of biosynthetic genes with that of the associated Brassicaceae species and
uncover the most likely evolutionary events that led to the assembly and
diversification of Brassicaceae triterpene BGCs. In chapter 4, we introduce CADE-
HEroN: a workflow for comparative analysis of the coexpression networks of multiple
species to guide the discovery of plant specialized metabolic (SM) pathways. We
use this workflow to study the SM pathways associated with the phosphate
starvation response in Arabidopsis thaliana, tomato and rice. This resulted in the
identification of many genes of known and unknown function that have a conserved
behavior under phosphate starvation across the three species. In chapter 5, we
describe the development of an integrative multi-omics approach for plant SM
pathway prediction: MEANtools. This computational tool integrates data from paired
transcriptomic-metabolomic datasets to predict potential metabolic pathways, and
the reactions, metabolites and genes involved in them. In this manner, MEANtools
can help scientists generate testable hypotheses about biosynthetic pathways, which
we showcase by using our pipeline with a recently published paired transcriptomic-
metabolomic dataset.

We conclude this thesis in chapter 6, discussing how the plant NP discovery and
SM research fields have benefitted from cross-pollination with adjacent fields, and
how to better take advantage of this and the many other opportunities discussed
throughout the thesis.
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