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Abstract 
In greenhouse horticulture, efficiency of climate control and plant protection can 

be improved by having an accurate impression of plant status, such as photosynthesis 
or chemical composition. Recent advances in remote sensing technologies have 
brought about a range of innovations in precision agriculture, with the potential for 
adaptation to greenhouses. Simple, traditionally used indices employ only one or two 
spectral bands, in which the contributions of various pigments and leaf or canopy 
structure can highly overlap. Consequently, such indices may be insufficient for 
applications. State-of-the-art models have been developed that can better interpret 
hyper- and multispectral leaf and canopy imagery by employing the biochemical and 
radiative transfer properties of vegetation. An example is the soil-canopy observation 
of photosynthesis and energy balance (SCOPE) model, which was developed specifically 
for crop canopies. Here we present one of the pillars of SCOPE, the leaf radiative 
transfer (RT) model Fluspect. Fluspect simulates leaf chlorophyll fluorescence, 
reflectance and transmittance spectra. The model can be inverted to obtain estimates 
of leaf chlorophylls, carotenoids, anthocyanins, xanthophyll epoxidation, water and dry 
matter content. Moreover, it can be linked to a model for leaf photosynthesis and when 
inverted, provide a method to estimate photosynthesis directly from leaf spectral 
information. We test the model against a tomato data set, with measured hyperspectral 
images, chlorophyll, sugar, acid, starch, dry matter content and nutrients. The first 
study of the data set, using partial least square regression, showed that hyperspectral 
images have a high correlation with important fruit and leaf compounds. We compared 
these results to Fluspect retrievals and conventional vegetation indices. In the paper, 
we discuss the potential added value of using RT models in greenhouse horticulture. 

Keywords: hyperspectral imagery, leaf reflectance, Fluspect, pigment content, tomato 

INTRODUCTION 
From the beginning of earth observation, i.e., gaining information of Earth’s physical, 

chemical and biological characteristics by remote sensing methods, the interpretation of the 
information hidden in the images of vegetation has been of great interest to scientist in many 
different scientific fields. By being able to remotely and therefore non-destructively determine 
plant biophysical characteristics, costly and time-consuming destructive (ground) 
measurements can be avoided. 

Different methods are available for interpretation of vegetation images. The simplest 
method is the use of indices. One of the best known and used, but also the oldest index is NDVI 
or normalized difference vegetation index. NDVI is also known as the ‘greenness index’ and it 
simply identifies the red/infrared ratio. All indices usually consist of only a few wavelengths: 
a biophysically significant and a reference wavelength (Sims and Gamon, 2002; Mahlein et al., 
2013). A more advanced methods are the mechanistic radiative transfer (RT) models. Leaf and 
canopy RT models are based on a physical description of light absorption and scattering by 
leaves or canopies, and are therefore useful in designing reflectance indices, performing 
sensitivity analyses, and developing inversion procedures to accurately retrieve biophysical 
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properties from images of leaves or plants. Among all the codes published so far, the SAIL 
canopy bidirectional reflectance model and the PROSPECT leaf optical properties model are 
the most popular (Jacquemoud et al., 2009). In the last decade, the canopy model SAIL was 
combined with an upgraded version of the leaf model PROSPECT, called Fluspect (Vilfan et al., 
2016), into the soil-canopy observation of photosynthesis and energy balance (SCOPE) model 
(Van der Tol et al., 2009). 

Despite the seemingly different methodology, the underlying ‘ground truth’ remains the 
same: the leaves contain absorbing compounds that absorb photons with a specific energy, as 
illustrated in Figure 1. Some of these properties change in a matter of days, such as the 
photosynthetic pigments chlorophylls, and some in a matter of hours or even seconds, such 
as leaf water content or photosynthetic efficiency (Stylinski et al., 2002). Two particularly 
promising indicators of leaf photosynthesis and potential ‘stress’ are chlorophyll fluorescence 
and the photochemical reflectance index (PRI) (Garbulsky et al., 2011; Ač et al., 2015). Their 
potential has led to the selection of the FLuorescence Explorer (FLEX) satellite mission: a 
dedicated mission of the European Space Agency (ESA) that will launch in the next few years 
(Drusch et al., 2017). 

 

Figure 1. Specific absorption coefficients of various leaf compounds as used in the leaf 
radiative transfer model Fluspect. Left panel: absorption of pigments absorbing in 
the visible spectrum (VIS). Right panel: absorption of water and dry mater, shown 
over the VIS and near-infrared (NIR) spectrum. 

The field of precision agriculture is in step with these fast developments (Tremblay et 
al., 2012; Wieneke et al., 2016), where unmanned aerial vehicles (UAVs) and drones carrying 
cameras are becoming a standard for crop monitoring. From there only a small step is needed 
to apply the same knowledge into the greenhouses: the principles and the crop information 
remain the same, while the imaging level is downscaled to the leaves and canopies. 

In this paper, we present the leaf RT model Fluspect and test it on the images of 
greenhouse grown tomato leaves. We compare the results to conventional methods and 
further discuss the applicability, advantages and disadvantages of RT models. 

MATERIALS AND METHODS 

Hyperspectral images of tomato leaves 
For our analysis, we used hyperspectral images, taken on fully-developed leaves of 

greenhouse grown tomatoes at the end of May 2017 (plant date September 9, 2016; Dieleman 
et al., 2018). The tomato plants were grown in a greenhouse compartment of 144 m2. To get a 
range of differences in pigment and sugar contents of leaves, five cultivars were grown and 
later sampled: ‘Foundation’, ‘Extension’, ‘NUN 09204’, ‘NUN 09149’ (cocktail tomato) and 
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‘Competition’ (cherry tomato). 
Selected leaves measured with two hyperspectral cameras: a VNIR camera, measuring 

in the visible (VIS) and the near-infrared range (NIR) from 400 to 1000 nm, and a NIR camera, 
measuring from 900 to 1700 nm. After the images were taken, the samples were collected 
from the same leaves for destructive measurements of chlorophyll, carotenoid content, dry 
matter and sugar content. In this study, we used 100 leaf samples with both hyperspectral and 
destructive information of chlorophylls and carotenoid concentrations for each leaf. 

Estimation of pigment contents with Fluspect 
The hyperspectral image of each leaf was averaged to obtain one reflectance spectrum 

per leaf. This spectrum was used in the model inversion. A trust-region algorithm was applied 
to quantify a cost function. The algorithm provided optimised chlorophyll and carotenoid 
content once for each leaf by fitting the modelled reflectance spectrum to the measured 
spectrum. The stopping criteria were an insignificant change in parameter values and a 
minimum improvement in the cost function; iteration stopped when one of these criteria were 
met. We plot the estimated pigment contents against the destructively measured values and 
evaluate the goodness-of-fit by calculating the root mean-squared error (RMSE) and the 
coefficient of determination (R2). 

For a further evaluation and demonstration, we calculated the indices NDVI and PRI as 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅850− 𝑅𝑅680
𝑅𝑅850+ 𝑅𝑅680

 (Peñuelas et al., 1994) (1) 

𝑃𝑃𝑃𝑃𝑁𝑁 = 𝑅𝑅531− 𝑅𝑅570
𝑅𝑅531+ 𝑅𝑅570

 (Gamon, Peñuelas and Field, 1992) (2) 

and plotted them against the pigments captured by their equations: chlorophylls for NDVI and 
carotenoids for PRI. 

RESULTS AND DISCUSSION 
In Figure 2 we show a few representative reflectance spectra of tomato leaves, with 

typical low reflectance (high absorption) in the visible (VIS, 400-700 nm) part and a high 
reflectance in the NIR. 
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Figure 2. An example of the leaf spectra over the VIS and NIR range. Ten representative 
reflectance spectra of 10 different leaves are plotted. 
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Pigment concentrations, estimated with Fluspect, plotted against the destructively 
measured values are shown in Figure 3. Both pigments were estimated well, particularly 
chlorophyll concentration (R2=0.93). In the original report (Dieleman et al., 2018), the data 
were analysed using the partial least square regression (PLS). PLS analysis resulted in slightly 
higher estimates: R2>0.97 for chlorophylls and R2=0.90 for carotenoids. Nonetheless, one big 
advantage of radiative transfer models is their general applicability due to the physical 
description they are based on. PROSPECT and Fluspect have been thoroughly validated and 
were shown to generate similarly accurate pigment estimations over a range of species 
(Demarez, 1999; Féret et al., 2017). 

 

Figure 3. Optimised Fluspect parameters versus the measured (from destructive sampling) 
equivalents: (left) chlorophyll and (right) carotenoid concentrations (both in g 
cm-2). Parameters were optimised to best reproduce measured reflectance. 

Apart from carotenoids and chlorophylls, as indicated in Figure 1, Fluspect is also able 
to simulate leaf water content, dry matter, thickness, anthocyanins, xanthophyll cycle 
pigments and chlorophyll fluorescence efficiency. All these parameters were also estimated, 
however, due to a lack of destructive measurements for these features, we could not run a 
comparison. Because of the nature of the RT models, absorption features can always be added, 
for example, recently anthocyanins (Féret et al., 2017), chlorophyll fluorescence (Vilfan et al., 
2018) and xanthophyll cycle (Vilfan et al., 2018) pigments were added, and chlorophylls were 
separated into chlorophyll a and b (Zhang et al., 2017). Of particular interest to the greenhouse 
horticulture would be for example the addition of the sugar absorption spectrum and 
lycopene for tomatoes. 

In Figure 4 we plot PRI against carotenoids and NDVI against chlorophylls. Both indices 
seem to have a high correlation with the corresponding pigment, which is not surprising since 
NDVI uses the wavelength of 780 nm, which is the peak of chlorophyll absorption (Figure 1) 
and PRI the 531 nm, which highly corresponds to the carotenoid absorption. However, these 
chosen wavelengths also include absorption of other features, as shown in Figure 1. This 
illustrates the dependence of indices on their selected wavelengths, meaning that they might 
not perform well over a range of species, leaves with considerably different ratios of pigment 
concentrations, and also over different seasons (Karnieli et al., 2010; Garbulsky et al., 2011). 
We have shown that RT models can be applied to greenhouse crops. Their added value lies in 
non-destructive estimation of pigment concentrations, mechanistic description and 
estimation of leaf light absorption. 
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Figure 4. PRI (left) and NDVI (right) plotted against carotenoids and chlorophylls, 
respectively (both in g cm-2). PRI and NDVI were calculated following Equations 1 
and 2. 

CONCLUSIONS 
The following conclusions can be drawn from the study: 
- Traditional indices provide limited information on crop pigments; 
- Radiative transfer (RT) models provide an accurate method for non-destructive 

estimation of tomato leaf chlorophyll and carotenoid concentrations; 
- RT models can be extended to contain desired leaf absorption features of interest, such 

as sugars. 
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