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Modelling the invasion and emergence of forest pests and pathogens (PnPs) is necessary
to quantify the risk levels for forest health and provide key information for policy makers.
Here, we make a short review of the models used to quantify the invasion risk of exotic
species and the emergence risk of native species. Regarding the invasion process,
models tackle each invasion phase, e.g. pathway models to describe the risk of entry,
species distribution models to describe potential establishment, and dispersal models to
describe (human-assisted) spread. Concerning the emergence process, models tackle
each process: spread or outbreak. Only a few spread models describe jointly dispersal,
growth, and establishment capabilities of native species while some mechanistic models
describe the population temporal dynamics and inference models describe the probability
of outbreak. We also discuss the ways to quantify uncertainty and the role of machine
learning. Overall, promising directions are to increase the models’ genericity by param-
eterization based on meta-analysis techniques to combine the effect of species traits and
various environmental drivers. Further perspectives consist in considering the models’
interconnection, including the assessment of the economic impact and risk mitigation
options, as well as the possibility of having multi-risks and the reduction in uncertainty by
collecting larger fit-for-purpose datasets.

Introduction
Forests provide ecological, economic, social, and aesthetic services. In addition, they largely contribute
to carbon sequestration and they could thus represent an important means of climate change mitiga-
tion [1]. However, forest health is threatened by various pests and pathogens (PnPs). Global change,
including climate change but also other changes at global scale such as the intensification of inter-
national trade, has triggered the emergence of an increasing number of tree PnPs. The number of bio-
logical invasions of exotic species in new areas has been dramatically increasing [2,3], and climate
change has been promoting the range expansion or population outbreaks of many native species
(so-called emergent species; [4–7]). Both invasive exotic species and emerging native species thus rep-
resent important risks for forest health.
To quantify the current and projected risk levels, and to provide key information for decision-

support experts and policy makers, modelling the invasion and emergence dynamics of these forest
PnPs is necessary. Pest risk mapping is particularly useful to support strategic and tactical decisions
[8]. Improving methods contributing to risk mapping has thus become an important challenge during
the last few years [9]. Quantitative pest risk assessment allows for a higher transparency, the assess-
ment of uncertainty, and the exploration of various risk reduction options [10]. To assess the invasion
or emergence risk of a species, one may develop and parameterize a model for that species (so-called
‘species-specific models’). Such an approach requires a lot of information on the not-yet-introduced/
emerged species. On the contrary, ‘generic models’ utilize what is known about the invasion or emer-
gence process of other species by describing species by their traits and feeding those traits into the
model. This is an important advantage because the estimation of various parameters has been proven
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difficult for not-yet-introduced species, and for those that previously did not cause any damage. Generic
models can thus be applied more easily and more rapidly to a newly arriving or emerging species, but their pre-
dictive value should be proven across a range of forest PnPs.
In this short review, we make a synthesis of models developed to assess the invasion risk of exotic forest

PnPs, and the emergence risk of native forest PnPs. We also discuss the ways to quantify uncertainty and the
role of machine learning. For each part, we also identify promising directions.

Modelling the invasion risk of exotic forest pests and
pathogens
The invasion process can be described as a sequence of four phases: entry (transport from the country of
origin and arrival in the new area), establishment, spread, and impact [11]. The factors determining the
outcome of each phase can be grouped into three broad categories related to: (i) the vectors carrying the PnPs
(understood widely to include animal vectors, abiotic factors such as wind and weather, and human actors), (ii)
the environment the pest or pathogen interacts with during the first three phases, and (iii) the characteristics of
the pest or pathogen [12]. Modelling entails capturing only the relevant processes and factors to produce tract-
able and valuable insights for risk assessors and managers. To assess the risk posed to biosecurity, models are
needed that tackle each invasion phase [9] (Figure 1).

Modelling species entry
Different types of pathway models including epidemic networks and gravity models have been developed so far
[13]. They track the PnP from their source area to their destination area where transfer to a suitable host may
take place [13–15]. Such models help to identify locations where high propagule pressure (i.e. a set of PnP indi-
viduals) is expected (e.g. ports, trucks, ships, or factories) and to explore the effects of phytosanitary measures
to prevent entry. The drawback of pathway models is the parameterization. They request many parameters and
data for both the species and their vectors on for instance interception and transportation. This information is
often scarce, inconsistent, and variable in time. Sampling methodology, frequency, and reporting of intercepted
PnPs may actually differ per commodity, per country, and per year. In risk assessment, this issue is often
solved by simplifying the pathway models [10], and/or using expert knowledge elicitation (EKE) to derive sens-
ible parameter values [16].

Modelling species establishment
The risk of PnP establishment is often modelled using species distribution models (SDMs). These models are
generally based on a correlation between presence points (and if available absence points) of the species and
climate in the native or already invaded areas [17]. Models are generally purely correlative (e.g. MaxEnt [8])
but more process-based niche models can also be used (e.g. CLIMEX [19]). Caution is needed with such
methods, as the resulting potential distribution is a ‘worst case’ estimate, assuming that the PnP actually arrived
in that area. These methods require sufficient spatial data on the target species’ presence and eventually

Figure 1. Forward modelling and inverse modelling.

Two different approaches (forward modelling and inverse modelling) could be used to describe the risk of invasion from entry

to impact.
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absence at large scale. Note that even when a PnP may establish in an area, sufficient propagule pressure is
needed to overcome Allee and demographic stochasticity effects occurring at low densities [20].

Modelling species spread
Once arrived and established, PnPs can disperse in the new area. Spread involves population growth, individual
dispersal and population establishment further in the new area. Spread models can be used separately or as
part of a combined model with entry and establishment [21,22]. Generally, they focus on the dispersal compo-
nent only, and describe dispersal through kernels in case of natural (unassisted and assisted by natural vectors)
dispersal or with network/correlative models in case of human-assisted spread, or combinations of the above
[23]. Most spread models are pest-specific, requiring detailed information on population and dispersal
characteristics [24–26]. Even simpler models with few parameters may still be difficult to parameterize for new
biosecurity risks [27].

Promising approaches
Using models for assessing invasion risk is challenging because of information scarcity on not-yet-introduced
species. As a result, one has to rely on existing data of related species — if available, or EKEs, introducing
unquantifiable uncertainty in predictions. Because scientific studies in the field of invasion science often focus
on a single well-characterized pest species, invasion phase, area, or vector, it is unclear whether generalization
to species with similar traits, propagule pressure, and habitat characteristics is possible [12,25]. Some studies
have been performed on finding generalities in the establishment and spread characteristics of species [28–
30,31]. These studies do not focus on pest-specific drivers, but try to unveil general patterns by going beyond
species. For example, Fahrner and Aukema [31] reported in a meta-analysis across 147 studies a four-fold dif-
ference in spread rates of univoltine and multivoltine species. Meta-analyses, such as the one mentioned are
often static analyses, but they could be combined with dynamic models. A recent example is the generic spread
model by Hudgins et al. [28]. Hudgins et al. used a spread model with a negative exponential dispersal kernel
with its parameters being a function of covariates such as species traits and environmental traits. Optimal para-
meters for these covariates were obtained by running the model inversely (‘inverse modelling’ Table 1,
Figure 1). For each species, the spread was simulated by running the model from the moment of the establish-
ment to the final time of the observed distribution. They compared this final predicted distribution to the
observed one of all species to get the best fits for the model parameters and structure. Mech et al. [32] also
used this kind of approach to compare the impact of currently established pest insects with insect and host
traits and evolutionary relationships between native and novel hosts and insects to show that the evolutionary
history of a pest’s host species may be a good predictor for impact. Using meta-analysis approaches to general-
ize results across species invasions, by identifying the factors that drive invasions and exploring how these
factors interact with species traits, could be the way forward to build models that are fit for purpose. When
combined with model selection techniques [33], it is ensured that models do not become more complex than
warranted by available data.

Table 1. Overview of model types for each invasion phase from entry to spread

Model type Phase
Modelling
approach Limitations

Pathway Entry
Establishment

Forward Data on entry quite limited, this approach has high
uncertainty

Species distribution Establishment
Spread

Inverse (mostly) Result is worst-case scenario, no temporal
dynamics, limited by occurrence data quality

Mechanistic spread Spread Forward Often requires detailed PnPs information

Network model/
stochastic spread

Spread Inverse/Forward Limited by occurrence data quality

Meta-analysis Any Inverse Needs sufficient data on PnPs and predictor
variables for a meaningful model
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Modelling the emergence risk of native forest pests and
pathogens
Native species or species introduced a long time ago can also cause high damage. As these species are present
in the environment for a long time, they have reached an equilibrium (in population size and spatial distribu-
tion) and they are generally not subject to specific regulation or official control. Therefore, pest risk assessment
and generic approaches are not as well developed as for newly invasive species. However, a change in environ-
mental conditions can break this equilibrium and lead to an increase in the damage incurred by this species.
Recently some species, such as Thaumetopoea pityocampa [34] and Lymantria monacha [35] have expanded
their distribution, while others, such as Operophtera brumata [36], Biscogniauxia mediterranea [37], or
Dendrolimus pini [38] have made outbreaks. In the first case, spreading species invade territories that were pre-
viously not colonized (mainly involving dispersal and growth processes), while in the second case, outbreaking
species suddenly increase in population density in territories (either newly colonized or not) where they have
been previously present but at a lower density (mainly involving growth processes). Hereafter, we review
models that describe such spread and outbreak dynamics (Figure 2).

Modelling species spread
Many spread models have been developed [24] but very few of them jointly describe population growth, indi-
vidual dispersal and population establishment beyond the previous species distribution. Although dispersal is
the key process in the spread of invasive species, population growth, and establishment in new areas are also
very important processes in the spread of native species. We can distinguish three main approaches: (1) SDMs
or ecological niche models, (2) dispersal models, and (3) spread models in changing environment (Figure 2A).
SDMs are widely used to project the potential establishment area under climate change [39]. Although they do
not simulate spread explicitly, they predict the future potential distribution based on climate change scenarios
[19,40]. A drawback of these models is that they ignore dispersal capability and the population dynamics, ele-
ments that could limit the extent to which they can track the shift of the climate envelope. In turn, dispersal
models, such as reaction–diffusion models or dispersal kernels generally ignore changes in habitat and climate
conditions. Only a few spread models describing both population growth and dispersal in a changing

Figure 2. Models for emergence risk.

Models describing population spread (A) and outbreak (B) of emerging species. The dark grey area indicates the current species

distribution and light grey area the change in the species distribution with climate change. (A) The climate envelope extends

from the full black curve to the projected envelope (dotted black curve) due to climate change in the direction indicated by the

arrow. Three types of models could describe spread: they take into account climate suitability, dispersal capability, and

eventually both together. (B) Two kind of models could describe outbreak: they are either based on statistical correlations

(inference models — appropriate within the current range) or mechanistic processes (more robust in new conditions).
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environment have been developed [41]. These models could be seen as a mix of SDMs (or other models con-
sidering a change in climate conditions on species establishment or survival) and dispersal models (Figure 2A).
However, these models are generally tailor-made for a given species and require many parameters to estimate
[42]. They are thus not easily applicable to other species.

Modelling species outbreaks
The presence of forest PnPs does not necessarily imply damage on forest trees. Their population size should
exceed a given threshold to be considered as an outbreak [43]. Various categories of outbreaks can be distin-
guished [44]. Populations can suddenly increase in size due to a change in the environment. If the population
size is correlated with an environmental factor, the outbreak is called ‘gradient’, while if the population size
depends on a threshold of an environmental factor, the outbreak is called ‘eruptive’. Besides, some pests show
periodic outbreaks, which are then called ‘cyclic’. Whatever the outbreak category, two kinds of models can be
used to describe these outbreaks: models focusing on the PnPs’ dynamics (mechanistic models) and models
describing the probability that an outbreak occurs (inference models) (Figure 2B).
The first type of models focuses on the species traits. Using data on the biology and the phenology of the

species, these mechanistic models can predict population dynamics in a large set of conditions, even if these
conditions have not been observed yet. These models can describe the dynamics of the species alone for
instance with a logistic growth function [45], the effects of environmental factors such as predators or parasites
in prey–predator systems [46,47], or the effects of the host with an alike epidemiological susceptible–infected–
recovering–susceptible model [48]. Natural enemies or host plants are indeed often used to explain cyclic out-
breaks [49]. The complexity of these models can increase until it encompasses a precise description of the
species traits and microhabitat [50]. However, these models require data about the population size and good
knowledge on the species’ life cycle. The more complex a model is, the more realistic it could be, but it will
also require more data to infer the parameters and generate high uncertainties in the model output. These
models also require knowledge of the life-history traits, which are difficult to estimate, even for well-studied
species. Therefore, such models can fail to identify a less-known species that could outbreak.
The second type of models consist in inferring the probability of an outbreak based on previous outbreaks in

the same conditions. In these models, the description of the species is not required as they only use environmen-
tal data (e.g. temperature, precipitations, density of host or dead wood) related to the previous outbreak to identify
the drivers of the outbreak. These data are analyzed using inference methods such as a regression [51] or random
forest [52] to identify the correlation between past outbreaks and environmental factors and then to determine
the probability of a next outbreak. However, the probability model is calibrated on a set of observed conditions.
Extrapolating the probability beyond these conditions can lead to errors since the relationship between the
outbreak likelihood and the environmental conditions could be different outside the observed range.

Promising approaches
Most of spread and outbreak models for native species are not generic so far. The challenge for spread models
is to combine both dispersal capabilities and the effects of changing climate conditions in time and in space on
population survival and growth, as a function of the species traits. The challenge for outbreak models is to
determine the drivers in a way that the model could be easily applied to other conditions, as a function of the
species traits. Such outbreak models do not necessarily describe the temporal dynamics of the population
density (which would be data-demanding) but rather a probability of outbreaking as a function of environmen-
tal conditions. The development of generic spread and outbreak models needs to account for the process
drivers, the species traits and eventually the effect of their interaction on the simulated process.

Parameterizing the models and quantifying uncertainty
Parameterization
To generate predictions, invasion and emergence models need to be parameterized. Typically, three ways of par-
ameterization are used or combined thereof: (1) collecting information on a parameter by setting up experiments
or doing field measurements (e.g. by rearing the pest in the laboratory and running flight-mill experiments to
determine the average flight distance [53–54]; (2) using existing information from literature, sometimes on related
species or vectors (e.g. [15,28,32,55]); and (3) the use of EKE on plausible parameter values. Different EKE
methods can be used to estimate the most likely value for the parameters, such as fixed and variable interval, and
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the roulette method [16]. For example, in the variable interval method, the expert can be asked to determine the
parameter value at which the cumulative probability (quantile) is 0.05, 0.5, and 0.95.

Uncertainty
Each model output is associated with a given level of uncertainty or confidence level, which could rise from
various sources, and notably from: (1) model choice, (2) parametrization, and (3) stochastic processes. It is
thus crucial to communicate the uncertainty related to the model outputs, all the more when these results are
used for decision-making. In particular, in the frame of pest risk analyses, a large range of questions should be
answered regarding entry, establishment, spread, and impact. For each question, risk assessors have to provide
both a rating regarding the related likelihood and a score of uncertainty [56].
To cope with uncertainty about the model to choose, it is possible: (i) to run various models describing the

same mechanism (ensemble prediction; for instance various climate models are available to describe a single
climate change scenario), (ii) to consider various scenarios describing possible mechanisms (for instance,
various climate change scenarios are considered based on different greenhouse gas concentration trajectories
hypotheses), or (iii) to build a consensus model to combine all the tested models (e.g. [57–59]).
To cope with uncertainty in the parameters’ estimate for a given model, several approaches could be considered.

First, to assess the role of each parameter on the model output, sensitivity analyses are generally conducted.
Although it is possible to calculate sensitivity analytically (see [60] for local, and [61] for global analyses) especially
for not-too-complex models, the sensitivity is preferentially estimated numerically. These estimations are made by
using latin hypercube sampling on an arbitrary range of values (e.g. estimated value or bounds of uniform distribu-
tions ±10%) for each parameter and then identifying the parameters that have the greatest impact on the model
output using partial correlation (e.g. [62–63]). These parameters require a more precise estimate to reduce the
uncertainty of the model outputs. Second, uncertainty analyses could be done. These consist in assessing the range
of possible outputs when varying the parameter values within their confidence intervals. It could result in a confi-
dence interval for the model output (e.g. for a probability of outbreak or probability of introduction), or a series of
maps to highlight the best case, the likely case and the worst case (e.g. for potential spread; [27]).
To account for uncertainty arising from highly stochastic processes such as human-mediated dispersal in

species potential spread, it is possible to include this uncertainty into the final risk estimates using second-
degree stochastic dominance criteria [64].

Promising approaches
Since there is no common rule in the way to handle uncertainty in risk models, it is most important to at least
report the known uncertainty in one way or another [8]. Transparency about the main source of uncertainty and
the level of confidence of the model outputs is necessary for decision-making and for improving forest managers’
trust in modelling approaches. In addition, the combined effects of all uncertainties should be assessed [65].

Role of machine learning
In classical models in ecology, relationships between variables and parameters should be determined, and a
statistical algorithm only infers the values of the parameters. As the number of available data and the number
of measured variables increase, the number of possible relationships to test increases as well, and it becomes
more and more challenging to choose the most appropriate one(s). Machine learning, defined as ‘a set of
methods that computers use to make and improve predictions or behaviours based on data’ [66], allows over-
coming this problem. Algorithms can indeed infer the relevant relationships (e.g. the number of variables, the
number of parameters, or the shape of the functions), and thus improve or facilitate the development of
models describing invasion and emergence risks. The diversity of machine learning algorithms is too large to
be described here. However, the next paragraph provides a brief overview of these methods with a focus on
SDMs. More details on machine learning in SDMs can be found in [39,67–71].
Machine learning generally has two main components: (i) defining the structure of the model, and (ii) obtain-

ing realistic predictions with this structure. Many types of structures can be chosen, among the most common,
there are decision trees (as random forest, e.g. [52]), maps (SVM, e.g. [72]), or functions (as in neural networks,
e.g. [73] or GLM [51]). The algorithm will then build a huge amount of the chosen structures by testing many
different combinations of relationships. The second step is to obtain predictions from these structures. To do so,
the algorithm can either optimize, i.e. find the structure with the predictions which are the closest to the observed
data, or make a consensus of every available prediction (bagging). MaxEnt [18] is commonly used for SDMs. In
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this method, the structure is a distribution and MaxEnt optimizes this by maximizing the entropy. By doing so,
MaxEnt imposes a minimal number of constraints to fit the observed data. Another optimization method is the
evolutionary algorithm. Each structure has a score, based on the accuracy of the prediction compared with the
data. Different scores can be used for SDMs [74], but the most frequent are the ‘number of correctly classified
instances’ and the AUC (area under the ROC curve), which take into account false positives and false negatives.
The algorithm then mimics reproduction and natural selection in order to select the prediction with the highest
score [67]. On the contrary, random forest [75] is a bagging method. Many different decision trees are built, and
the prediction of the model is either the average prediction of every tree (for quantitative predictions) or the
result of a vote (for qualitative predictions). More information can be found in [39,67–71].

Promising approaches
A huge diversity of algorithms exists, with varying performance depending on the issue they have to address. The
differences between the different approaches are mainly linked to the extrapolation to non-observed cases. Each
model extrapolates differently and, as long as there is no data, all assumptions are equally true. Therefore, main-
taining a diversity of models can be useful, as global changes can lead to situations not observed yet. Another
issue is the interpretability of the model, which is not limited to machine learning in ecology [66,76]. Some
models are based on assumptions and structure which are easier to interpret, as a decision tree, while others are
based on complicated functions which are harder to interpret even if their predictions are accurate. A model easy
to interpret is simpler to share with ‘non-modellers’ and can easily be compared with expert knowledge.

General perspectives
This review points out the need of making a quantitative synthesis of literature and data to integrate species traits
and various drivers into models to allow the application to other species. Further model development, listed here-
after, could improve the risk assessment and the support to policy makers regarding forest biosecurity.
Models tackling biological invasions and emergence of native species are generally considered separately. The

two processes rely on different mechanisms: the invasive species are in a transient state, as they are arriving
and establishing in a new territory, while the native species are initially supposed to be in equilibrium with
their environment. Changes in native species are, therefore, generally triggered by a change in the environment,
while changes in invasive species are mostly associated with their own population traits (e.g. growth and disper-
sal capabilities) and human activities (for their entry and spread). However, some processes such as population
dispersal are common to both types of species. In addition, the factors involved in the emergence (spread or
outbreak) of native species, such as climate change, also apply to exotic species newly arrived in the territory.
As a result, it could be interesting to explore the extent to which both modelling approaches could eventually
be merged into a unified framework.
As previously explained, various models have already been developed to describe each phase of biological inva-

sions. However, for pest risk analyses and decision-support, decision-makers need to have a global estimate of the
risk for forest biosecurity. All these models need to be interconnected at the end. Since these models are often
very different, it is very challenging to combine them. Therefore, it is of upmost importance to design these
models so that they can be interconnected since the beginning of their development. Since pathway models are
data-demanding and should cope with different types of uncertainties, considering both entry and establishment
simultaneously could be a solution to determine the locations where invasive species could be first established.
These locations could then be used as starting points for spread models. The outputs of spread models should
then be appropriate inputs for models describing the economic impact of PnPs (not described here).
The assessment of the economic impact of forest PnPs is an extra layer that should be considered to have a

full risk analysis. It should include not only the direct impact of PnP on the yield reduction and the quality
loss, but the indirect impacts such as changes in prices, the demand and supply [77,78]. In addition, this eco-
nomic impact should also rely on the costs and effectiveness of the risk mitigation options. These final cost-
benefit analyses are useful for decision-makers to choose the best measure(s). However, this is the final step of
a long and complex modelling work, and the uncertainty accumulated along all these interconnected models
should be clearly highlighted. Furthermore, the economic impact is only one side of all possible impacts of
these forest PnPs. Social and environmental impacts are also of high importance but very difficult to estimate
so far, and the total cost is usually underestimated [79].
Lastly, decision-makers do not face a single threat. Modelling researches in forest biosecurity should consider

as far as possible multi-risks in forest stands, e.g. simultaneous attacks of several PnPs on the same forest stand,
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or attack of a given PnP combined with an extreme climate event impacting the tree health. Identifying the
cause of a tree decline is all the more difficult when different factors are impacting the tree. Modelling can help
to analyse threats with multiple factors and to explore the best risk reduction options. A huge amount of data
is, therefore, needed to continuously monitor all these risks and reduce the uncertainty of the model. The use
of large datasets coming from citizen science (e.g. for species occurrence points) could complement available
datasets and thus contribute to the refinement of model parameterization [80,81]. However, some specific data
can only be collected by specific specialists or official bodies (e.g. inspections at the country border), and stand-
ardization is actually needed even for this type of data collection [82].

Summary
• Developing generic models to describe the invasion of exotic forest pests and pathogens

(PnPs) and the emergence of native ones is necessary to aid rapid assessment of risks and
provide support to policy makers.

• Each invasion phase can be described by a set of models but data is often missing and
uncertainty is often very high. Meta-analysis could be used to identify the main drivers and
species traits to be considered in parsimonious generic models.

• Most spread and outbreak models for native species are tailor-made for given species.
Identifying the drivers, species traits and their interaction is also needed to develop generic
models.

• Collecting appropriate data to parameterize risk models is a big issue. Models should be
designed to be easily applicable, even when poor information is available on the PnP.

• Models should be interconnected, linked to economic impact models, and ideally consider
multi-risks to fully answer the decision-maker’s needs.
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