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1.1	 Background

Yields of crops, the amount of production per area, is an important measure for topics 
ranging from food security to sustainable energy.  Recent increases in productivity, mainly 
through increased yields, has reduced stress on agricultural markets and led the OECD/
FAO (2020) to predict that stable prices will continue in the medium future as productivity 
outpaces increases in demand. Demand for agricultural products, mainly triggered by 
population growth and increases in the demand for meat and biofuels by developing 
countries, are expected to led to increases in the demand for agricultural products (Kuiper, 
2018; Hovhannisyan and Grigoryan, 2016; Madvar, 2019, Cardoso, 2019). While the 
supply of agricultural products is under increasing pressure from both climate changes 
and efforts to mitigate the effects of climate changes. Climate changes are expected to 
decrease the production of important food crops and lead to higher global food prices 
(von Lampe, et al., 2014, Wiebe, et al., 2015) all else equal. One consequence of The Paris 
Agreement was the wide-scale adoption of a framework for global action to address 
climate change (UNFCCC, 2015). Hasegawa et al., (2018), argues that stringent climate 
mitigation policy would have a greater negative impact on global food security than the 
impacts of climate change itself. Higher yield could mitigate these negative food security 
impacts; Doelman et al. (2019) showed that 9% crop productivity growth is needed to 
mitigate the food security effect of the climate mitigation options. Therefore, measuring 
and forecasting crop yields, the amount of production of a crop per area, has become an 
increasingly relevant topic for the topic of food security and agricultural prices.

Yields are also an important topic for assessing the economic and social viability of a 
bioeconomy, particularly in regards to first generation biomass products. Yield and 
yield gap are intensively studied from an agronomic perspective (Ittersum, et al., 2013, 
Schils et al. 2018, Van Dijk et al. 2020). These studies stress the large heterogeneity of the 
agricultural landscape, characterized by large differences in yields, intensities and farm 
structures combined with substantial differences in environmental conditions, inducing 
large differences in inputs and eventually outputs. A bioeconomy has been defined as 
an economy in which the basic economic building blocks, such as energy, material and 
chemical, are derived from renewable biological resources (McCormick and Kautto, 2013). 
It encompasses the production of renewable biological resources and the conversion 
of these resources, residues, by-products and side streams, into value added products, 
such as food, feed, biobased products, services and bioenergy (EU, 2018). A European 
bioeconomy will have wide and deep implications for sustainability, the environment, and 
society as a whole both within and beyond the continent (European Commission, 2012, 
2018a, 2018b; OECD, 2018).  First generation biomass products, the topic at hand, use 
crops that can alternatively be used for human consumption either directly or indirectly 
and their adoption might have profound implications for feeding the world (Farrell et al., 
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2006; Sims et al., 2008; Mouël and Forslund, 2017, van Meijl et al., 2018, Philippidis et al., 
2019). 

Crop yields are therefore a central element in discussions of food security and the 
consequences of climate change, and they are an important determinant of the feasibility 
of a bioeconomy. Regarding the latter, they are an important indicator of the economic 
potential of biobased products for several reasons. First, crops represent a significant 
proportion of the costs of producing biobased products. For example, estimated crop 
share costs for biofuels is about 70% of total production costs for corn-based ethanol 
and 85-90% for biodiesel (Carriquiry et al., 2014). Therefore, all else equal, higher costs for 
crops will reduce the economic attractiveness of biobased products, while an increase in 
crop yields may lead to a reduction in costs. Second, the use of crops for the production 
of biobased products is controversial to the degree that it reduces the amount of crops 
available for human consumption either directly or indirectly. Higher yields would help 
to mitigate that potential dilemma. Third, the crops involved are important economic 
resources which are traded and consumed globally, and so their use in one area has 
broad implications for consumption across the planet. In addition to their importance as 
a determinant of the viability of a bioeconomy, crop yields are important in determining 
whether the world can meet expected increases in demands for food and feed. Increasing 
population and purchasing power will increase the demand for food and feed in the 
coming decades (e.g. FAO, 2012; Lampe et al., 2014; van Meijl et al., 2020a, 2020b).

All of the research questions addressed in this manuscript concern yields at various 
levels of aggregation ranging from groups of countries to countries to farms within a 
specific country. Why study yields, and specifically, why not study crop production? Crop 
production is an explicit measure of the amount of a crop available for use, however, it is 
subject to the vagaries of the moment. Yield, in contrast, is a more robust measure of the 
potential production of a crop through time because it measures production per area, 
and thereby includes a measure of technical development and, in combination with the 
land price, it is closely related to the competitiveness of countries and the determination 
of international trade flows. A figure showing yields through time shows how production 
changes holding area stable, in short, it shows how technology, broadly defined, has been 
applied to alter production. If we can discern and measure a consistent pattern of change 
through time and can assume that the pattern will extend into the forecasted future, we 
can estimate future yields and production. Expected relative yield developments can be 
used to predict expected international trade developments (von Lampe et al., 2014). An 
exclusive focus on yields can be deceptive, for example, the intensive use of high yield 
varieties, chemical fertilizers, irrigation and weed and pest control on a small plot of land 
will give rise to high yields for that plot, but may not be sustainable, generally applicable to 
other plots or environmentally sustainable or, I would add, economically viable at greater 
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scales of production (Fan, et al., 2012; Grinsven et al, 2014). However, yields, based on 
farms producing for major, economically efficient and competitive markets taken through 
time, provide a good approximation of expected production. 

Variations in crop yields through time can be estimated reasonably well with a few 
weather features such as minimum and maximum temperatures and precipitation, along 
with a trend term to pick-up technological progress where technology is widely defined to 
include improvements such as farmer education, seeds, infrastructure, soil improvements 
and machinery and other inputs (Lobell et al., 2007). Polynomial and interaction terms for 
the weather features can increase accuracy given that there are enough years of data and 
enough degrees of freedom, and a polynomial trend term can be used to model decreasing 
or increasing rates of technological change. For large countries, the data to do these types 
of calculations is readily available, for instance, the USDA has high quality county and 
state yield data for major crops dating back over a 100 years which can easily be merged 
with weather data from The National Oceanic and Atmospheric Administration (USDA, 
2020; National Oceanic and Atmospheric Administration, 2020; National Agricultural 
Statistic Service,2020 ).  Similarly, at a global level, yield data from Food and Agriculture 
Organization (FAO) and weather data from the Hadley Centre/Climatic Research Unit 
Temperature can be combined to run time series analyses of yields (FAO, 2020; HadCRU, 
2020) . These data sources form the foundations for estimating yields in Chapters 2, 3, 4, 
and 6 of this manuscript.

Several methods have been applied to assess the impact of temperatures and other 
weather features on crop yields (Zhao, 2017). Process-based crop models take data and 
assumptions about soils, solar radiation, management practices and projected daily rainfall 
and temperatures, and feed these through process-based mathematical models of plant 
growth and seed formation (Roberts, 2017).  These models are used to run simulations 
using historical and projected future weather (e.g., Rosenzweig et al 1994). A second 
approach uses statistical regression models to link historical yield outcomes to historical 
weather aggregates and extrapolates from observed associations to make predictions 
about yields under simulated or forecasted climate conditions (Schlenker and Roberts 
2009). A third runs simulations based on the combinations of models of various types 
(Rosenzweig, 2014, Assen, 2015). Finally, a fourth method artificially warms crops under 
near-natural field conditions to directly measure the impact of increased temperatures 
(Ottman, 2012).

The models discussed in this manuscript are examples of the second approach in that 
they use historical data to estimate regression models which are then used to forecast 
future yields. In several papers in the manuscript, forecasted yields are used as input into 
a general equilibrium model in order to assess the impact of crop yields on production, 
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prices, value added and international trade flows, within a larger economic context 
(Nelson, et al., 2013; Robinson et al., 2014, van Meijl et al., 2018b). The econometric models 
employed make the assumption that patterns in the past will continue throughout the 
forecasted period. In many cases, this means that yields are projected to continue to 
increase into the future at approximately the same rate, although linear models can also 
pick-up decreasing and increasing rates of growth as well. 

The assumption that historical patterns can be estimated and will continue into the 
medium future can be wrong. Developments that might adversely disrupt yield forecasts 
include increases in extreme weather events (Beillouin et al., 2020, Tigchelaar et al., 2018, 
Mehrabi and Ramankutty, 2019). Chapter 5 in this manuscript estimates the number 
of extreme events that are expected to occur in the Netherlands and then attempts to 
estimate the effects of those events on wheat yields.

An important factor to consider when forecasting crop yields is climate change at various 
levels of geographic aggregation. The effects of climate change on yields have been 
previously investigated (Greenstone and Deschenes, 2006; Licker et al., 2010; Lobell et 
al., 2011; Schlenker and Roberts, 2009). For instance, statistically significant results of the 
effects of temperatures and precipitation on yields of major food crops have been studied, 
with Lobell and Field providing one of the first papers with results applicable on a global 
scale (Lobell and Field, 2007). In addition, a series of articles using computable general 
equilibrium models (CGE) models examined the effects of climate changes on global 
production and consumption (Nelson et al., 2013a,b; Valin et al., 2014, Wiebe et al., 2015, 
van Meijl et al., 2018b). Other studies have examined the effects of climate changes at 
lower levels of aggregation, for instance at regional and country levels of analysis (Erda 
et al., 2005; Prato et al., 2010). Finally, literature on the adaptation of farms to climate 
changes has addressed farm level adaptation to changing weather patterns (Bradshaw et 
al., 2004; Gebrehiwot and Veen, 2013; Luers et al., 2002; Pandey et al., 2007; van Wijk et al., 
2012, Mitter et al., 2019).

Despite this work multiple levels of analysis, many issues concerning the forecasting of 
crop yields and the consequences for production require additional research. In the next 
section I address four additions to the previous research which will form the basis of the 
topics addressed in this manuscript. 
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1.2	 Research questions

Will climate change have significant country and crop specific effects on crop production?
While climate changes will continue to affect crop yields, those effects will vary across 
space and type of crop. This variation in effect has not always been treated properly. For 
example, in an important, early, paper investigating the effects of climate change on 
crop yields, Lobell and Field (2007) use an econometric technique that aggregates away 
country specific differences and thereby they effectively assume that the consequences 
of global changes in maximum and minimum temperatures and precipitation will affect 
all crops and all countries in the same manner. However, it is to be expected that impacts 
will vary across crops and countries (Kukal and Suat, 2018). 

Are crops yields in Europe converging and if so, what will be the effects on the supply of crops 
used in the production of biomass products? 
Climate changes affecting yields do not occur in a vacuum. Other factors, including 
economic drivers, may work to mitigate or exacerbate those changes. In many places 
throughout the world potential yields are assumed to be higher than actual yields. These 
yield gaps can have several causes including the inefficient use of production inputs (see 
Ittersum and Cassmann, 2013, Schils et al., 2018). An important region where these yield 
gaps appear to be present is in the newer member states of the EU. It could therefore be 
argued that better use of inputs could raise yields and output despite climate changes or 
increases in consumption due to an expanding bioeconomy. The issue of convergence in 
this context is important because some advocates of an increasingly biobased economy 
argue that because crop yields from the newer states of the EU are far below those of 
more established states, we can expect that, as those yields in those countries increase 
and converge towards their more productive neighbors, the negative effects on human 
consumption of using more crops to produce biomass products or any negative effects 
on yields caused by climate change will be reduced (e.g. Edwards et al., 2010; de Wit et 
al., 2011). A closely associated issue is whether agricultural land use will change as yields 
change. For these arguments to work it is important to first establish whether crops yields 
in the EU are converging and if they are converging, whether convergence necessarily 
leads to increases in crops used in the biomass economy.

How will changing weather patterns due to climate changes affect the global trade of major 
food crops? What will be the effects on less developed countries?
If we accept that the effects of changing weather patterns caused by climate changes will 
have diverse effects on yields globally, then global trade patterns are likely to change as 
well (Josling et al., 2010 and Tamiotti et al., 2009, Wiebe et al., 2015). In fact, it has been 
argued that the economic effects of changing weather patterns on food consumption 
will depend as much on its role in trade as on it does on crop production directly (Reilly et 
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al., 1994; Sonka, 1991). Research in this area requires both the forecast of weather effects 
on yields and a modeling framework that is able to estimate the resulting effects on 
production and trade globally and at a country level. Effects on less developed countries 
are especially important given that they are likely to be more vulnerable to the negative 
consequences of changing weather patterns. 

What will be the implications of extreme weather events on yields?
The effects of changing weather patterns will likely have local as well as regional effects. 
This is especially true for extreme weather events when compared to the average effects 
of climate change over time (Bozzola, 2018). Extreme weather events are expected to 
increase worldwide, therefore, anticipating and calculating their effects on crop yields 
is important for topics ranging from food security to the economic viability of biomass 
products. The Intergovernmental Panel on Climate Change, confirming previous findings, 
attaches high confidence to the probability that extreme weather events will reduce 
food production (Pachauri and Reisinger, 2007, 2008; Field et al., 2012; Porter et al., 2014). 
Extreme events are expected to affect the volatility of yields and are seen as the principle 
immediate threat to global crop production (Meehl et al., 2000; Rosenzweig et al., 2001; 
Olesen et al., 2007; Urban et al., 2012; Min et al., 2011; Lobell et al., 2013, Rosenzweig, et 
al., 2014, Müller et al., 2017). A natural question that arises is how to precisely measure 
the effects of extreme weather on crop yields. The measurement requires analysis at a 
low level of spatial aggregation and ideally one that measures changes through time 
(Konrad et al., 2018; Holden and Quiggin, 2017). In addition, detailed farm level input data 
is required to isolate the effects of weather events on a crop. 

How do the various econometric techniques used to forecast yields affect predictions of 
country level yields?
An accurate forecast of crop yields is a critical piece of information used by policy makers 
to make informed decisions on topics ranging from food security to the economics of 
biomass products. An accessible and transparent framework is needed to allow them to 
assess the tradeoffs involved when forecasting yields and to assess the accuracy of those 
forecasts. 

1.3	 Modeling

It is common to use linear trend models to forecast crop yields, e.g. Tilman et al., (2011) 
and Grassini et al., (2013), use this approach. Tilman et al., (2011), as a part of their effort 
to forecast global food demand, include a time trend variable along with several other 
variables in their model. Specifically, they: “...used past yield relationships and trends 
to estimate yields that might be achievable by 2050”. They use aggregated yield data 
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composed of just nine time points, specifically mean yields for 1965, 1970, 1975, etc., 
combined with economic and biophysical data to forecast yields using a linear trend 
model. Grassini et al., (2013), claim that the mathematical form of the historical yield trend 
can be linear, exponential, parabolic, linear plateau or flat for the 36 countries and regions 
in their study. They claim that linear models, with or without a discontinuous break point, 
adequately describe all yield trends in their study. However, the standard use of simple 
linear trend models when more sophisticated more are readily available raises questions 
about the accuracy of resulting crop yield forecasts (Harri et al., 2009; Shen et al., 2018). 

Forecasting crop yields in isolation is of limited value. Crop production does not exist 
in an economic vacuum, farmers have to compete for resources with other producers 
and choose amongst the many crops they can sow. Given that crops are an important 
input in the production of biomass products and that there are global markets for these 
crops, a global analysis is a natural starting point for an economic analysis of crop yield 
changes. Crop markets are interconnected and there are strong economic links between 
those sectors and the other sectors in the economy. Therefore, a global multi-sector 
model is essential to analyze the total economic impacts of changes in crop yields. The 
obvious candidate for these types of analyses are computable general equilibrium (CGE) 
models with a focus on the agri-food sectors and bioeconomy. MAGNET, developed by 
Wageningen University and Research Centre in the Netherlands, is such a model with a 
strong focus on land use and the bioeconomy as it includes explicit land markets and 
many agricultural food processing, biofuel, bioenergy and biomateral sectors (Woltjer et 
al., 2014; van Meijl et al., 2006; van Meijl et al., 2018a).

MAGNET (Modular Applied General Equilibrium Toolbox), has been used extensively to 
study the impact of policy changes on international trade, production, and consumption 
in agricultural and food products (van Meijl et al., 2006, van Meijl et al., 2020a). It is an 
extension and significant reorganization of the GTAP model (e.g. Hertel, 1997), a widely 
used tool for global trade analyzes. Given that MAGNET is extensively used in this 
manuscript to analyze the economic effects of changes in crop yield, I provide here a brief 
description of the MAGNET model including the database which forms the foundation of 
the model, as well the method of modeling actor behavior and markets.

The data used in the forthcoming analyses was based primarily on versions 7 and 8 of 
the database collected and processed by GTAP at Purdue University. Version 7 uses 2004 
as a base year while version 8 uses 2007. The databases contain balanced economic data 
for regions and economic sectors, where balance means that, for instance, the value of a 
country’s reported export of a sector are forced to equal the value of imports recorded 
for that country by the receiving country. The regions (of which there are 129 in version 
8) and sectors (57 in version 8) are aggregated in accordance with specific research 
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questions addressed in the manuscript. Note that regions can be individual countries 
or collections of countries. For the purpose of this manuscript, the regional aggregation 
used in the analyses consisted of all primary crop producing countries and regions. The 
sectoral aggregation consisted of the primary agricultural sectors available in MAGNET, 
namely, paddy rice, wheat, grains, and oils. The agricultural sectors are well represented 
in the 57 sectors representing the entire global economy. The remaining sectors were 
aggregated into a general manufacturing sector and a service sector. A consequence of 
using MAGNET is that yield shocks due to changes in weather have to be estimated for 
all sectors and regions in the model. Accordingly, econometric analyses need to be run 
for all crop sectors, not only those sectors producing biomass inputs, and for all regions 
conceivably affected by the estimated changes even if the data appeared to be of poor 
quality. This due to the fact that MAGNET instantiates changes based on the interactions 
of across all sectors and regions so that leaving out significant crops or sectors would 
result in a misspecification error. 

The model used in the analyses retained the standard GTAP/MAGNET specification of five 
factors of production, specifically skilled and unskilled labor, capital, land, and natural 
resources. Aggregation in the model allows less important sectors to be bundled together 
and allows us to focus analyses on the specific regions and sectors under investigation. 
Aggregation also has the practical effect of reducing the negative impacts of missing, 
suspect or sparse data. For instance, large regions of Africa are often aggregated together 
in CGE analyses to circumvent the issue of poor or missing data. For instance, often during 
the balancing procedures used to develop a database a country’s reported exports do 
not match imports and “adjustments” to transform the data so that the exports balance 
with imports. Results of such adjustments can potentially be mitigated by aggregating 
countries and sectors not directly relevant to a given research question. That said, the GTAP 
database has widely been accepted as the best representation of the global economy 
and numerous articles based on that model have been published in top scientific journals 
and served as the basis of policy recommendations for governments around the world 
(Taheripour et al., 2010; Suttles et al., 2014; Frank et al., 2019; Leclere et al., 2020). 

MAGNET captures the behavior of three types of agents: households, firms and 
governments, for each region represented in the model. Household behavior is captured 
via a representative regional household that is assumed to maximize its utility, collect all 
income that is generated in the economy, and allocate that income over private households, 
government expenditures, and savings for investment goods. Income is derived from 
payments by firms to the regional household for the use of endowments of skilled and 
unskilled labor, land, capital, and natural resources. The regional household also receives 
income from taxes paid by the private household, firms, and the government expenditures. 
Firms, profit maximizers, produce commodities by employing the aforementioned 
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endowments and intermediate inputs from other firms based on constant returns to scale 
production technology and sell them to private households, the government, and other 
producers. Domestically produced goods can be either sold on the domestic market or 
exported. Similarly, intermediate, private household, and government demand for goods 
can be satisfied by domestic production or by imports.

Demand for and supply of commodities and endowments are traded in markets which 
are modeled as perfectly competitive and which clear via price adjustments. Because 
all markets are in equilibrium, firms earn zero economic profits, households are on their 
budget constraints, and global savings must equal global investments. Since the CGE 
model can only determine relative prices, the GDP deflator is set as the numéraire of the 
model against which all other prices are benchmarked. Changes in prices resulting from 
model simulations therefore constitute real price changes. 

For the analyses carried out in this manuscript, econometrically derived forecasts were 
used to “shock” the MAGNET model from the starting equilibrium of 2007, the most recent 
GTAP database when the analyses were run, to a year in the future, say 2025, at which 
point a new equilibrium can be meaningfully calculated and used to assess any changes 
in comparison to the data in 2007. Projections into the future are obtained by allowing the 
exogenous endowments of capital, land, natural resources, and labor, and the productivity 
of these factors, most notably crop yields, to grow according to standard forecast growth 
paths which are based on readily available economic data. Any additional changes to the 
model were caused by the yield shocks we implemented. 

In order to use MAGNET for dynamic analyses, model data needed to be updated from 
2007 (the most recent year for which GTAP data was available) to 2010, the most recent 
year then available in the FAO database, using readily available, macroeconomic data. 
This process of “priming” MAGNET with the most recent data allows CGE researchers 
to formulate a baseline upon which to compare the effects of shocks. The MAGNET 
model is used to project outcomes to a desired year in the future while incorporating 
the alternative crop productivity shocks based on our econometric forecasts. MAGNET 
output is used to determine the effects of changes in crop yields on the quantity of crops 
produced, real market prices for wheat, and the amount of land used to grow wheat and 
other crops, holding all else in the model constant. The shocks are implemented in two 
scenarios, namely, a low yield and high yield scenario, those results were then compared 
to a baseline or business as usual scenario. 

In CGE models like MAGNET, crop yield changes are typically modelled either as a linear 
trend or compound annual rates of yield increase without taking into account that yields, 
while generally increasing, are increasing at a decreasing rate. Next to the exogenous trend 



1

Introduction   |   19   

the yield in MAGNET depends endogenously on the substitution possibilities between 
land and other production factors. If lands get relatively more expensive than land will 
be substituted with more labor and or capital (van Meijl et al., 2006). In a recent study , 
Zeist et al., (2020) discussed projections of crop yields by global agricultural land-use and 
integrated assessment models. The study evaluated crop yield projections “by comparing 
them to empirical data on attainable yields by employing a linear and plateauing 
continuation of observed attainable yield trends”. The studies concluded that global 
projected yields by 2050 remain below the attainable yields, on average for all cereals 
on the global level. van Zeist et al. (2020) find that “this is also true for future pathways 
with high technological progress and mitigation efforts, indicating that projected yield 
increases are not overly optimistic, even under systemic transformations”.

1.4	 Research objective and questions

Research objective
Whether an economy based on first generation biomass products will be successful is 
largely dependent on the yields of crops used in their production. Crop yields also play 
an important role in future food security concerns. The objective of the research in this 
manuscript is to examine significant economic and climate factors influencing yields 
across several levels of aggregation. By using various levels of aggregation, research 
questions and tools of analysis are able to address issues specific to the scale and time 
under investigation. 

Research questions
In order to address the overall research objectives, five research questions have been 
formulated that will be addressed in the manuscript:
1.	 Will climate change have significant country and crop specific effects on crop 

production?
2.	 Are crops yields in Europe converging and if so, what will be the effects on the supply 

of crops used in the production of biomass products?
3.	 How will changing weather patterns due to climate change affect the global trade of 

major food crops? What will be the effects on less developed countries?
4.	 What will be the implications of extreme weather events on yields?
5.	 How do the various econometric models used to forecast yields affect predictions of 

country level yields?
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1.5	 Methodology

This section discusses the methodologies that will be used to answer the research 
questions outlined above.

Will climate change have significant country and crop specific effects on crop production?
This research question is motivated by the desire to extend an original paper by Lobell 
and Field (2007). It is argued that Lobell and Field missed an important chance to measure 
country and crop differences in their analysis of the effects of climate change on crop 
yields. We retain the same data sources and use the same methods to prepare the data, 
only adding an additional year of newly available data. The main technical difference 
with the original paper is the econometric method used in the regressions. While the 
original paper essentially aggregated away country and crop differences, thereby 
effectively assuming that the consequences of global changes in maximum and minimum 
temperatures and precipitation affect all crops and all countries in the same manner, I 
will apply a panel method that can account for country and crop specific differences. In 
addition, their underlying statistical assumptions are critiqued. 

This research will bring together analyzes of global weather variables and crop yields. 
Following Lobell and Field, the basis for the crop data used in the research is derived from 
the FAO (FAOSTAT). The FAO website contains data for major producers for over sixty years 
although specific data were occasionally missing or suspiciously large or small. Gridded 
time series climate data from such as the CRU TS 2.1 (CRU TS) and later the Berkeley Earth 
(Berkeley Earth) datasets will be used to forecast weather variables. Gridded data here 
means that important weather indicators are calculated per grid (say 1-degree latitude 
and 1-degree longitude for 360 * 720 grids partitioning the globe). Global spatial datasets 
such SAGE and Earthstat (EarthStat) will then be used to calculate the percentage of a grid 
dedicated to growing a crop (Leff, 2004). 

We, my coauthor and I, will develop and test several panel models with data aggregated 
at the country level across years for which we have data (generally 1961-2006), i.e., for 
each country and year we will collected data which we then regress using various panel 
techniques including “pooled”, “within” and “between” (see e.g. Baltagi, 2008; Frees, 2004; 
Hsiao, 2003). For model specification and diagnostics we will follow methods outlined in, 
i.e., Lütkepohl and Krätzig (2004).

Are crops yields in Europe converging and if so, what will be the effects on the supply of crops 
used in the production of biomass products?
The second research question will be answered in two steps. First, European yields of crops 
that are used for biofuel production are forecasted using the econometric tools outlined 
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above. Yearly FAO data measuring yields from 1961 to 2010 will be used to econometrically 
estimate and forecast changes in yields across Europe. From the outcomes we will then 
estimate whether yields converge. To estimate convergence and dynamic panel models 
will be used (Phillips and Donggyu, 2007 and 2009, Baltagi, 2008; Frees, 2004; Hsiao, 2003). 
Transitions in land use will be modeled using the approach described in van Meijl et al., 
(2006).

The second step in the analysis is to measure the economic consequences of changing 
crop yields. Scenarios will be run using estimated yields described above as input into 
MAGNET. The outcomes of the scenarios will provide insights into the overall economic 
consequences of convergence. MAGNET results, like all CGE models, provide a narrative 
framework through which the total economic impact of changes in yields can be analyzed. 
Together, the complementary approaches of econometrics and general equilibrium model 
will allow a more complete economic analysis of the consequences of yield changes and a 
more nuanced analysis of the potential impacts on crops of use to the bioeconomy. 

How will changing weather patterns due to climate changes affect the global trade of major 
food crops? What will be the effects on less developed countries?
This research will examine the economic effects of expected changes in temperatures and 
precipitation on the trade of ten major food crops. It will essentially bring together the 
estimation of the effects of climate change on crop yields and the MAGNET model. The 
relative effects on trade for developing versus developed countries will be emphasized. 

More specifically, in order to determine the effects of changes in precipitation and 
temperature on trade two methodologies will be applied, namely, econometric methods 
to forecast changes in yields resulting from changes in the weather variables, thereafter, 
the forecasts are used to simulate the effects of the altered yields on the exports and 
imports of food crops using MAGNET. A series of econometric models using panel data 
(see e.g. Baltagi, 2008; Frees, 2004; Hsiao, 2003) and autoregressive integrated moving 
average models (Hamilton, 1994), will be used to estimate and forecast relationships 
between yields and weather data, the results of which will be used as input into MAGNET 
to determine the effects on trade. 

What will be the implications of extreme weather events on yields?
To investigate the effects of extreme weather events on yields we will take the case of 
winter wheat yields in the Netherlands grown over a twelve year period. In contrast to the 
country level aggregations of the previous research questions, this research allows us to 
examine the effects of one consequence of climate change at a local, farm and crop level. 
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Answering this research question requires answering two sub-questions. The first is the 
need to establish what defines an extreme weather event. The answer to this question will 
vary across regions and time. Once we have established what an extreme event is, then we 
can estimate the effects that those events might have on crops controlling for the other 
significant inputs which affect yields on a particular farm. In short, we will need to ask 
what are the effects of extreme weather events after having removed the effects of other 
factors affecting yields through time. 

Data will be collected on historical weather patterns in the Netherlands dating back over a 
hundred years in the case of average, minimum and maximum temperatures, and certain 
regions such as the weather station De Bilt in the center of the country. This relatively 
long-term weather data will be used to establish a pattern of the number of extreme 
events which have occurred and thereby could be expected to occur in the future. Next 
panel data, which included production inputs and weather data over the period 2002-
2013, will be used to estimate the effects of extreme weather events such as rainfall and 
high temperatures on winter wheat over that period. In this manner, we will be able to 
predict the effect of extreme weather events on yields in the future. 

How do the various econometric models used to forecast yields affect predictions of country 
level yields? How far into the future should you trust forecasts?
The standard use of linear trend models to forecast crop yields appear to be overly 
simplistic. To the degree that these forecasts are used as input into CGE models, they 
might significantly affect predictions of the amount of crops available in the future. 
We will examine the effects of various time series forecasting techniques and measure 
their effects on county level crop yields. Yields of ten important global food crops will 
be forecasted for ten years and their accuracy reported. A comparison is made between 
the results of the standard linear models used to forecast yields, and auto-regressive, 
integrated, moving average (ARIMA) forecasts. We will outline the decisions needed to 
develop an ARIMA model and compare the accuracy of resulting forecasts to those of 
the standard linear model. Moreover, we will try to answer the question of whether it is 
meaningful to forecast decades into the future, as is common practice in CGE models, 
given the uncertainty involved in forecasting (Zeist et al., 2020).

Manuscript overview
The next five chapters of the manuscript will consist of further introducing and answering 
each of the research questions in the order discussed above. The final chapter will present 
the conclusions and provide critical reflection of the research. Finally, it will present some 
policy and research recommendations.
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Correct model specification and data aggregation are critical for properly assessing 

and predicting the implications of climate change. The data and analyses used 

in Lobell and Field (2007) are reexamined and alternative model specifications 

and approaches are considered. In contrast to a single, generic model, a more 

comprehensive use of standard econometric techniques suggests that models 

should be crop and country specific. We show that a deeper issue concerns the high 

level of aggregation employed in their paper. Lobell and Field’s decision to aggregate 

yields at the global rather than country level discards important information about 

the effects of climate change on yields and exaggerates the relationships they report.  

Country specific and panel data models using less aggregated data are introduced 

and the results are compared to those of Lobell and Field. Results show that the 

relationship between changes in yields and changes in climate variables are much 

weaker than those reported by Lobell and Field. 
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1. 	 Introduction

This paper critically reexamines the data and analyses used in Lobell and Field (2007), and 
suggests an alternative approach. Using an updated version of the same database and 
following the same data preparation and econometric techniques we were largely able to 
reproduce Lobell and Field’s results. However, we find some potential problems with their 
model specification which affect their conclusions. In contrast to a single generic model for 
all crops and all countries, a more comprehensive use of standard econometric techniques 
suggests that models should be crop and country specific. Results are presented of the 
adjusted models and compared to those of Lobell and Field. In addition, we show that a 
more fundamental issue concerns the high level of aggregation used in their paper. Lobell 
and Field’s decision to aggregate yields at the global level discards important information 
about the effects of climate change on yields and greatly inflates the explanatory power 
of their model. A panel data analysis with less aggregated data is introduced and the 
resulting benefits explored. Results show that the relationship between changes in yields 
and changes in climate variables are much weaker than those reported by Lobell and 
Field. 

In general, we confirm Lobell and Field’s claim that global temperatures have been increasing 
in the major crop growing regions over the forty-six years of available data. Figures clearly 
show that yields for most crops have increased, although barley yields appear to have 
stabilized or even fallen in recent decades (Figure 1). Average temperatures appear to be 
slightly increasing, while it is difficult to discern a dominant pattern for precipitation.  

Figure 1. Average yearly crop yields and yearly averages of climate data in grids which grow said 
crops. Climate data is weighted according to the area of a grid devoted to the production of a crop 
(figures updated from Lobell and Field, 2007).

Regressions of the climate variables on time confirm the observed trends (Table 1).  
Coefficients for all crop yields are increasing and significant. Minimum temperatures for 
all crops are increasing, and they too have significant t-values. Similarly, maximum daily 
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temperatures are increasing with the exception of soybeans, in which case the coefficient 
is not significant. A lack of significance means that it is not statistically meaningful to 
draw conclusions about the coefficient in question; a point to which we will later return.  
Regression results for precipitation reflect the ambiguity seen in the precipitation figure 
above; all coefficients are insignificant except for wheat growing regions, in which case 
the significance of the coefficient is only borderline significant. 	

Table 1. Trend regressions for yields, minimum, and maximum temperatures and precipitation for 
years 1961-2006.

Yields  
(hectogram/hectare) 

Minimum Temp.
  (C°)

  Maximum Temp. 
(C°)

Precipitation 
(mm)

Wheat:  411.9*** 0.2123 *** 0.1767*** 0.3721 .
Rice: 527.4*** 0.2137 *** 0.1248*** 0.7674
Maize:  632.3 *** 0.2063*** 0.1005* 0.0923
Soybean: 263.7*** 0.2021*** 0.04279 0.2318
Barley: 234.9*** 0.2079** 0.2080*** 0.4687
Sorghum: 84.43*** 0.1643*** 0.1578*** -1.628

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2. 	 Methods

For reasons of comparison, we initially follow Lobell and Field’s procedures for preparing 
and analyzing the data. Their basic methodology is outlined below, along with explanations 
of potential problems and descriptions of how our methodology differs to theirs.  

Lobell and Field wish to explain how global yields for six major crops as reported by the 
FAO have been affected by changes in temperatures and precipitation. We initially use the 
same data, but add the four additional years of reliable climate data which has become 
available since the original article was published. The FAO data we use spans a period from 
1961 to 2006 and measures hectograms of a crop per hectare (FAOSTAT). Lobell and Field 
chose to use global yield levels, in other words, for each year in their study, one global 
yield data point is used rather than yields per country per year. That choice, country level 
data is available from the same FAO source, turns out to have important implications for 
their results, and is a point which we will explore in some detail below. 

Lobell and Field use three independent variables to estimate changes in yields, namely, 
precipitation, minimum and maximum temperatures. Precipitation is the monthly average 
precipitation in a grid while the minimum and maximum temperatures are monthly 
average low and high temperatures in grids growing the six crops under consideration. 
Temperature and precipitation data was obtained from the East Anglia Climate Research 
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Unit (CRU TS) 2.1 database. The globe is divided into 720 * 360 equally sized grids according 
to a grid’s latitude and longitude. Temperatures and precipitation are reported for each 
grid. We use the updated East Anglia CRU TS 3.0 database, however, differences between 
the two databases appear to be minimal particularly at the aggregation level used. In any 
case, figures derived from the two sources are nearly identical for common years (Figure 1), 
suggesting that differences in results are not due to differences in the data used. Spatially 
weighted averages of the CRU data were computed for each crop, with weights defined by 
the spatial distribution of crop area based on Leff et al. (2004). The greater the percentage 
of a grid devoted to a particular crop, the greater the weight of any changes in climate the 
grid undergoes. Furthermore, we followed Lobell and Field’s method of defining global 
growing seasons for each crop. Their method allows the selection of months particularly 
important to the growth of a crop. For instance, the months from May to October are 
important months for the production of wheat, so only climate data from those months 
was selected and used in the analysis. Finally, both yield and climate data are analyzed 
after taking first differences. This means that yearly changes in yields, temperatures and 
precipitation are analyzed. First differencing minimizes the influences of slowly changing 
factors and removes individual effects (Baltagi, 2008). The result is a crop-specific monthly 
time series of selected global temperatures and precipitation for the years 1961-2006. 

The approach we apply differs to that of Lobell and Field in two important ways. While 
we initially use the same aggregation, weighting, and differencing procedures they used, 
we are more systematic in regards to reporting how we arrive at the model we ultimately 
use for each of the crops. This will allow other researchers the opportunity to challenge 
our results. The section immediately below explains how we derive our individual crop 
models based on the initial, general, model presented by Lobell and Field. The section 
thereafter presents two alternative approaches which are country and crop specific. The 
data and methodology we use in that section closely parallels that of Lobell and Field, 
but are collected and analyzed at a country as opposed to global level, allowing us to 
incorporate important country level variation into the models. The stated goal of Lobell 
and Field is to draw general, global, conclusions about climate change, we do the same 
using a more disaggregated level of data and draw very different conclusions about the 
impact of climate change on yields. 

3. 	 Results

3.1 	 Lobell and Field’s Approach
The unadjusted R-squareds we calculated, with the exception of sorghum, appear to 
be comparable to those reported in Lobell and Field (Table 2). Lobell and Field are 
presumably reporting unadjusted R-squareds, although it is more common to reported 



38   |   Chapter 2

adjusted R-squareds. Most of the differences in the R-squareds we find and those of Lobell 
and Field can perhaps be attributed to the four additional years of data we use. Given a 
lack of reported information in the original article, we cannot account for the difference in 
the results for sorghum, and will have to let the matter stand as it is. 

In addition, Lobell and Field did not report the significance of the variables they used as 
is common when reporting econometric results. Their Figure 3 does report temperature 
coefficients and significance, but it also raises several points. First, it reports results for 
only one of the temperature variables or an average of the temperature values. However, 
contrary to Lobell and Field, our results, presented in detail below, show that precipitation 
is significant for some of the crops and particularly rice. Second, because the values are 
reported by decade, it appears that they were estimated using only ten years of data. 
Third, the figure seems to show that for many decades temperature did not significantly 
influence yields and we are told that precipitation had only minor impacts on yields. If 
both these observations are true, it becomes difficult to understand the high R-squareds 
reported in their paper. The regressions we ran using their data show that many of the 
variables are insignificant, but that significance varies per crop and along with the other 
variables present in a regression. In general, a high R-squared in an equation with few or 
no significant t-statistics, such as in the results we found in Lobell and Field’s regressions, 
is an indication of multicollinearity among variables. The very high correlation between 
changes in maximum and minimum temperatures is presented in the last column of 
Table 2. This high degree of collinearity is an indication that one of the two variables can 
probably be dropped from the regression or that other regression techniques should be 
applied.

Table 2. Comparison of our results with those of Lobell and Field.

Crop R-Squared Adjusted R-squared Lobell and Field 
R-squareds

Correlations Max. 
and Min.

Wheat: 0.39 0.34 0.41 0.88
Rice: 0.27 0.21 0.29 0.75
Maize: 0.47 0.43 0.47 0.88
Soybean: 0.48 0.45 0.52 0.86
Barley: 0.65 0.62 0.65 0.93
Sorghum: 0.40 0.36 0.29 0.71

Table 3 shows the results of, presumably, the same regressions as those run by Lobell 
and Field, but with standard measures of significance for each coefficient (t-values) and 
the regression as a whole. The high F-statistics, all of which are significant, indicate that 
the models fit the data well. However, only in the case of wheat are all of the coefficients 
significant, while in the case of barley, none of the coefficients is significant. The results 
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raise some questions about the effects, if any, of many of the climate change variables on 
yield changes. 

Table 3. General regression model as alluded to in Lobell and Field.

Change in Yield Change in 
Precipitation

Change in Minimum Change in Maximum F-statistic

Wheat: 17.933** -443.146*** 254.877** 8.614
Rice: 2.941 41.050 . -85.198 4.933
Maize: 5.451 4.356 -346.651* 12.17
Soybean: 5.518* 54.334 -62.438 12.78
Barley: 5.326 -125.937 -62.478 25.33
Sorghum: 0.1861 -38.9504 -117.9836* 9.259

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Despite the results reported by Lobell and Field, it is statistically impossible to draw any 
general conclusions about the implications of climate changes from the results presented 
in Table 3. For example, although all of the precipitation coefficients are positive, only 
those of wheat and soybeans are significant. The effect of minimum temperatures on 
yields is mixed; an increase in minimum temperatures in wheat growing regions lowers 
yields and, if a t-value of 0.1 is accepted, raises yields in the rice growing areas. The exercise 
of removing either minimum or maximum temperatures, as would be suggested by the 
correlations reported in Table 2, produces more interesting results. For instance, once the 
maximum temperature variable is removed, increases in minimum temperatures reduce 
yields for wheat, maize, barley and sorghum and precipitation becomes significant for 
most crops (Table 4).  

Table 4. Dropping maximum temperature from the model.

Change in Yield Change in 
Precipitation

Change in Minimum F-statistic Adjusted R2

Wheat: 7.351 -135.603*** 7.782 0.2356
Rice: 4.186** -33.459 6.77 0.2078
Maize: 13.125** -379.179*** 14.49 0.3802
Soybean: 7.503*** -7.942 18.35 0.4409
Barley: 8.147** -200.597*** 38.55 0.6306
Sorghum: 1.5091* -154.9032*** 9.943 0.289

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the case of wheat, dropping maximum temperature implies that precipitation is no 
longer significant; and, although the minimum temperature remains significant, its 
impact on yield changes is diminished and the overall goodness of fit of the model falls.  
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Precipitation, for all crops except wheat, becomes significant, and dropping maximum 
temperature makes one of the two remaining variables significant for all crops. It is not 
entirely clear from the results presented in Tables 4, and a similar exercise that drops 
maximum temperature, which of the two temperatures should be dropped, however, it is 
apparent that one of the two should be dropped. Furthermore, the results indicate that it 
is inappropriate to use a single, generic model for all crops, different crops react differently 
to climate change variables. 

Picking a model is not only a matter of choosing the model with the highest R-squared. A 
parsimonious model may be preferred to a model with a higher R-squared. Unfortunately, 
Lobell and Field did not indicate whether they considered alternative models, for instance, 
whether they considered including order terms in their models. It is particularly important 
to consider the order of a model when analyzing time series data because the value of a 
time series variable is often highly dependent on its previous value. There are numerous, 
standard, tests which can help to specify and diagnose a model, some of which will be 
discussed below. 

3.2 	 Model Specification and Diagnostics 
Model specification involves decisions about which variables to include in a model 
and their order. It also includes the introduction of possible deterministic terms and 
distributional assumptions.The following section presents standard procedures for model 
specification and diagnostics (Lütkepohl and Krätzig, 2004). Using these criteria, a model 
for each crop is specified. 

Given the climate variables used by Lobell and Field, all reasonable models, including those 
with interaction effects were considered. In particular, model permutations including 
various combinations of the variables were modeled. Models for each crop without order 
terms were compared using AIC (Hirotugu, 1974), BIC (Schwarz, 1978), and HQ (Hannen 
& Quinn (1979) criteria. In essence, these types of criteria penalize models based on the 
number of variables included in a model; all else equal, a model with fewer variables is 
preferred to one with more. 

The first question to answer is whether there is evidence of autocorrelation in the models. 
Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) plots for each 
of the crops, before first differencing, indicate that autocorrelation is likely present in the 
basic, zero order, models (Figure 2). The figures for maize are nearly textbook examples of 
an autoregressive series of one lag AR(1), which can potentially be corrected with the first-
differencing procedures followed by Lobell and Field and adopted in our analysis. 
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Figure 2. ACF and PACF for Maize.  

Therefore, the next step was to specify more general models, those including autoregression 
(AR) and moving average (MA) terms. Using generalized least squares, ARMA models were 
systematically run with different AR and MA order terms. Matrices containing the resulting 
AIC and BIC criterion for each model were created for each crop. The matrices provided 
a systematic means to compare the criteria. Models with higher order, for instance the 
sorghum ARMA (1, 3) model did not solve, probably as a result of the small number of 
observations relative to the number of variables included in higher order ARMA models. 
The following table of sorghum is representative of the matrices produced:

Table 5. AICs for ARMA sorghum models.

MA 0 MA 1 MA 2 MA 3
AR0 735.63    728.91 727.39   727.06
AR1 729.41    729.85 732.00
AR2 728.06    729.28 729.50
AR3 727.94

     
Note that differences between models are often small, for sorghum the difference between 
ARIMA(0,2), ARMA(0,3) and ARMA(3,0) are negligible, implying that a case could be made for any of 
these models. However, the criteria do indicate that higher order models out-perform the models 
reported in Lobell and Field ARMA(0,0). Based on the criteria, the following models should be 
considered:

	 1.	 Maize: difference in yields with differences in precipitation and differences in  
		  maximum temperature with order ARMA(0,1).
	 2.	 Wheat: differences in yields with differences in differences in precipitation and  
		  differences in minimum and maximum temperatures with order ARMA(0,1).
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	 3.	 Soy: differences in yields with differences in differences in precipitation only with  
		  order ARMA(1,2).
	 4.	 Rice: differences in yields with differences in precipitation only and order  
		  ARMA(0,0).
	 5.	 Barley: differences in yields with differences in differences in precipitation and  
		  minimum temperature and order ARMA(0,3).
	 6.	 Sorghum: differences in yields with differences in differences in maximum  
		  temperature only. For sorghum and order ARMA(0,3).

Table 6. Choosing the “best” model.

Change in Yield Change in 
Precipitation

Change in 
Minimum Temp.

Change in 
Maximum Temp.

Adjusted 
R-squared

Wheat: 17.933** -443.146*** 254.877** 0.3417
Rice: 3.557*** -- -- 0.2115
Maize: 5.541 -- -342.243*** 0.4459
Soybean: 7.543*** -- -- 0.4518
Barley: 8.147** -200.597*** -- 0.6346
Sorghum: -- -- -141.71*** 0.3834

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Once a model is specified, it needs to be tested to determine whether basic econometric 
assumptions apply. The next few paragraphs present results from the standard forms of 
the Portmanteau, Breusch-Godfrey, Jarque-Bera, ARCH-LM and RESET tests. Using the 
basic specified model for each crop, i.e., models without order terms, we conducted a 
Portmanteau test to test whether there may be correlation in the residuals. No order 
terms were included in order to remain close to the original model of Lobell and Field. 
The results below were produced using the Box-Pierce (1970) version of the test statistic. 
Other versions of the Portmanteau tests were run, for instance with greater lags than the 
two reported below and the Ljung-Box (1978) test, and they all generally confirmed the 
results below. Recall that the null hypothesis of no residual autocorrelation is rejected for 
large values of the statistic. For crops except wheat and rice, autocorrelation, despite first 
differencing, appears to be present in the models, confirming the AIC, BIC and HQ tests 
presented above. 
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Table 7. Statistics and associated p-values in parentheses

Portmanteau     Breusch-Godfrey     Jarque-Bera     ARCH-LM         RESET        
Wheat: 1.855 (0.173) 2.003 (0.157) 2.875 (0.238)      0.203 (0.904)     0.291 (0.593)
Rice: 0.053 (0.819)     0.054 (0.816)        2.232 (0.328)      0.911 (0.634)      3.639 (0.063)         
Maize: 8.419 (0.004)     8.840 (0.003)        1.295 (0.523)      1.043 (0.594)      0.008 (0.930)            
Soybean: 8.173 (0.004)     8.914 (0.003)        1.874 (0.392)      3.879 (0.144)      0.317 (0.576)           
Barley: 4.158 (0.042)     4.162 (0.041)         1.879 (0.391)      2.897 (0.235)      0.238 (0.629)         
Sorghum: 6.048 (0.014) 6.305 (0.012)         1.272 (0.530)     0.234 (0.890)      0.605 (0.441)    

LM tests, such as the Breusch-Godfrey (Breusch, 1979), are another means to test for 
autocorrelation in AR models. The hypothesis is that an auxiliary regression which 
contains lagged error terms from the original regression will explain very little (i.e., that 
there is no autocorrelation). Once again, a null is commonly rejected if the p-value of the 
Breusch-Godfrey statistic is less than 0.05. In the case of rice and wheat, the null of no 
autocorrelation cannot be rejected. The Jarque-Bera (or Lomnicki-Jarque-Bera (LJB)) is 
a test for non-normality based on the third and fourth moments (Lomnicki (1961) and 
Jarque and Bera (1978)). The test statistic has a chi-squared distribution if the null is correct, 
and the null hypothesis is rejected if the LJB is large. If the null is rejected, the normal 
distribution is rejected. The test, along with other tests of non-normality, indicates that the 
data appear to have the same first four moments as the normal distribution. The ARCH-
LM tests for neglected conditional heteroskedasticity and is based on fitting an ARCH(q) 
model to the estimation residuals. It has an asymptotic chi-squared distribution if the null 
hypothesis of no conditional heteroskedasticity holds (Engle, 1982). Large values of the 
test statistic indicate that the null is false and, hence, there may be ARCH in the residuals. 
The low values indicate that it is not worthwhile to fit ARCH or ARCH-type models to the 
residuals. Finally, the regression specification error test (RESET) was proposed by Ramsey 
(1969). It is used to test a given model against general unspecified alternative models. A 
null hypothesis of no misspecification is rejected if the test value is large. It appears that 
we cannot reject the null, i.e., the models do not appear to be misspecified although the 
case of rice is borderline and would be rejected at the 95% significance level. 

One lesson to be drawn from the previous tests is that the effects of changes in climate on 
crop yields need to be considered on a crop specific basis. Regressing all of the variables 
leads to multicollinearity and inefficient models. In addition, ARMA structured models 
should be considered. 

3.3 	 Aggregation
It is usually possible to correct for multicollinearity and serial correlation, but the level 
of aggregation in Lobell and Field presents a more fundamental issue. Recall that the 
aggregation procedures used by the authors weight 0.5 degree by 0.5 degree grids 
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according to the fixed percentage of land devoted to a crop under consideration, i.e., grids 
for each crop are weighted based on the percentage of land in a grid devoted to that 
specific crop in the year 2004 (Leff, 2004). As a consequence, climate variables for grids 
with a greater percentage of a crop receive more weight. For instance, climate changes a 
effecting grids in Kansas, where great swaths of land are used to grow maize, will count 
for more in terms of the climate changes they experience than less densely planted grids. 
Lobell and Field also use yearly, global, yields of crops. The procedure implies, effectively, 
that land in all grids around the world is treated identically in regards to changes in yield. 
The result is that climate variables are, in a sense, forced through 41 years of yield data.  
Differences in productivity across grids or even countries, for which data is available, is not 
taken into account, in particular, variation in the effects of climate change variables in a 
particular country on yields in that country are not included in the analysis. A great deal of 
variation, important for econometric analysis, is thereby lost. 

Figures 3a and 3b. Regressions of change in yields and maximum temperatures at different levels 
of aggregation. The first figure aggregates at the global level while the second aggregates at the 
country level.

There are several figures which emphasize the importance of these issues. Figure 3a is 
similar to that found on page 3 of the article by Lobell and Field. It clearly shows a negative 
trend in the change of yields given a change in the maximum temperature for maize (the 
figure has been scaled as in the original article). The relationship is, fortunately, apparent 
in the robustness of the coefficient and significance of maximum temperature in all of the 
regressions in the above tables. However, given an aggregation at the country level (figure 
3b), that relationship becomes tenuous. Similar figures for each crop show virtually the 
same relationships. 
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In creating figure 3b, the same weighting procedures were used as those previously 
described, but instead of weighting at a global level, we weighted each crop at a country 
level and used country FAO yield data. Each point in the figure is the yield in a particular 
country and the corresponding average temperature in grids growing a particular crop in 
that country in a given year. Grids within countries are weighted in terms of the percentage 
of the grid’s production in a country’s total production. The greater the percentage of area 
devoted to a crop, the greater its climate changes count for the country as a whole. The 
blue line is a fitted line between change in yield and change in maximum temperature, 
it too is decreasing as in Figure 4a. But the relationship is precarious; small changes in 
values may cause large changes in slope. In fact, the figure shows that there is very little 
relationship between changes in yield and changes in temperature, in that the data 
are in a nearly circular pattern. All of the figures for all of the crops and variables have 
similar forms. Country level panel data analyses confirm the tenuous nature of the global 
relationship between yields and climate.
Critically, we are not claiming that climate changes have no impact on changes in yields. 
What we are claiming is that different countries and crops will face different climate 
change challenges, this is even apparent in the adjusted, highly aggregated, regressions 
run by Lobell and Field and analyzed in the preceding sections. 

Table 8 below further emphasizes the information that can be gleaned from disaggregating 
the data. Using only those countries for which there are complete datasets, i.e., those for 
which 45 years of data are available, we regressed changes in yields against changes of 
each of the climate variables taken individually. The results give only a rough indication of 
the relationships between climate variables and yields and are intended to demonstrate 
another possibility for calculating the effects of climate change by starting the analysis 
at a country level. Testing the regressions for each country and each possible model is 
manageable given modern software packages. However, interpreting the results and 
adjusting models for so many countries requires expertise and time. For instance, the null 
hypothesis of no residual correlation was not rejected for a large majority of the countries 
for each crop and each variable. However, in a few cases, less than 10 for all crops and all 
countries, it was rejected. Results for the RESET and Jarque-Bera tests were similar; they 
generally indicated normal, well-specified models, however, they occasionally pointed 
to poor specification which could probably be corrected by including a squared term 
and non-normality which could be corrected by the removal of one or two questionable 
outliers. An advantage of examining each country individually and the reason we have 
included it in this comment is to emphasize the apparent diversity of the effects of climate 
change across countries and crops.

The column in Table 8 entitled “Total No. of Countries”, reports the number of countries 
in each crop analysis. The analysis of wheat, for example, consists of 57 countries each 
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with 45 years of data. Given the qualifications listed in the previous paragraph, we 
found that of those 57 countries, only 10 had statistically significant results for changes 
in yield against changes in precipitation, 9 countries had significant results for changes 
in yield against changes in minimum temperature, and 11 had significant changes in 
yield against changes in maximum temperature. By statistically significant we mean that 
the coefficient has a significant t-value. Of the 10 wheat growing countries, 4 showed 
a positive relationship between changes in precipitation and changes in yields and 6 
showed a negative relationship for the same regression. In other words, some countries 
will experience decreases in yields while others will experience increases as a result of 
increases in precipitation. The point of the table is to show the diversity of responses 
to climate changes. For instance, a majority of rice and maize growing countries have 
benefited from changes in precipitation. However, in general, a majority of countries will 
suffer from an increase in temperature, and to the degree that these crops are grown for 
local consumption, this is an important outcome.

Table 8. Country level effects of climate change variables on changes in yield.
Precipitation Minimum Temperature Maximum Temperature

Total No. 
Countries

Signf. 
Results

Positive Negative Signf.
Results

Positive Negative Signf. 
Results

Positive Negative

Wheat: 57 10 4 6 9 0 9 11 0 11
Rice: 66 18 13 5 6 5 1 13 10 3

Maize: 67 19 17 2 8 2 6 14 2 12
Soybean: 18 10 5 5 5 2 3 7 2 5

Barley: 50 14 7 7 18 2 16 19 1 18
Sorghum: 26 3 3 0 5 0 5 5 0 5

Another alternative to aggregation, and one that directly addresses the question posed 
by Lobell and Field, is to use a panel data model. A series of panel data analyses were 
run using only those countries for which there are complete data sets. In the interest of 
parsimony, we chose to compare the pooled panel data analyses for each crop to the 
findings of Lobell and Field. Recall that a pooled panel ignores the panel structure of the 
data and reflects the assumption that all countries have the same intercepts and slopes. 
A complete panel study would involve running a nonstationary panel model to account 
for the long time element, but given the low explanatory power of the model, and all of 
the models we tested, the basic conclusions of the pooled model remain. A comparison 
of the results from pooled panel data analyses with the “best” models presented in Table 
6 yields striking results (Table 9). 
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Table 9. Panel Models, pooled models reported.

Change in 
Precipitation

Change in 
Minimum Temp.

Change in 
Maximum Temp.

Adjusted R-squared

Wheat: -1.073* -31.100 -75.098*** 0.0232
Rice: -0.00378 -- -- 0.0000
Maize: 0.741*** -- -68.065*** 0.0342
Soybean: 0.3121 -- -- 0.002
Barley: -0.7296* -120.157*** -- 0.0427
Sorghum: -- -- -25.1226** 0.0025

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For wheat, precipitation has gone from significant to only marginally significant, while 
the minimum temperature has become insignificant. Maximum temperature remains 
significant, although it only has a quarter of the impact that it had in the highly aggregated 
model. The high correlation between minimum and maximum temperatures is still an 
issue. For instance, dropping minimum temperature makes precipitation significant 
although the explanatory power of the model remains low and homogeneity cannot be 
rejected. 

In comparison to the aggregated model for rice, precipitation in the disaggregated model 
becomes insignificant; however, running the pooled regression with either maximum or 
minimum temperatures (without precipitation) yields significant results. In the case of 
maize, both precipitation and maximum temperatures are significant in the pooled model. 
The results for soybeans closely parallels those of rice, precipitation is now insignificant 
but including only maximum temperature makes that variable significant. For barley, both 
precipitation and minimum temperature remain significant, but their impact on yields 
is greatly diminished. Finally, the effect of a change in the maximum temperature on 
sorghum yields is also much smaller in the pooled panel data model than it was in the 
aggregated model. 

One of the general messages that can be drawn from these results is that only one 
temperature is needed in the model and precipitation can have either positive or negative 
effects for some crops. Another conclusion is that increases in temperatures have negative 
effects for all crops in the pooled model. However, the most striking result is the small 
R-squareds in the pooled model when compared to the highly aggregated model of Lobell 
and Field. Tests for unobserved effects (Wooldridge, 2002) indicate that there is evidence 
of unobserved effects in the residuals. In other words, changes in yields are only partially 
explained by the regressed climate change variables. For example, whereas Lobell and 
Frank found an R-squared of 0.6346 for barley, our model yields an R-squared of 0.0427.  



48   |   Chapter 2

Although many permutations of the pooled models remain statistically significant, they 
all explain much less of changes in yields than the aggregated models. 

4. 	 Conclusions

Lobell and Field provide a very general model purporting to show that a large amount 
of changes in crop yields can be largely explained by changes in three climate variables.  
We show that such a general model, although parsimonious, cannot adequately account 
for the diversity of changes in yields that occur across different crops and countries. In 
addition, issues of collinearity and autocorrelation are clearly a problem in their reported 
model and should have been addressed by the authors. At a minimum, basic statistical 
tests should have been conducted and reported. We suspect that many of these tests 
were conducted by Lobell and Field, but reproducibility requires that they be reported 
as well. Other works by the authors indicate that they are aware of many of the issues we 
have noted. For instance, in Lobell (2007), a number of issues highlighted in this comment 
are considered. Models used in that paper are based on country-crop pairings, thereby 
allowing for country specific relationships, rather than global relationships. In Schlenker 
& Lobell (2010), the authors consider a panel based model for Sub-Saharan Africa with a 
quadratic trend and no differencing. They do suggest that the measurement error might 
be increased by using this approach and hence use two different datasets for the weather, 
though they suggest that the fixed effects used in such an analysis will capture the biases 
introduced by omitted variables. However, the point remains that in the paper under 
consideration Lobell and Fields claim to have found a model that shows that climate 
changes have significantly reduced crop yields, but that model appears to be suspect.  

We demonstrate that the high explanatory power of their model is questionable. We have 
presented a case that their basic model is misspecified and includes highly correlated 
and insignificant variables. The aggregation level used by authors also raises important 
questions. Global aggregation effectively means that observed global changes in yields 
are applied equally across all grids based on the fixed weight each grid has in regards 
to its contribution to the total global yield. In short, all grids growing a specific crop are 
treated equally in regards to their contributions to changes in yields, regardless of their 
location. The methodology means that Lobell and Field regress 41 years of yield data (42 
less one year used for differencing) on 41 years of climate change data. By using only one 
global yield point per year, important variation is lost. In contrast, we use country level 
yield data so that yield variations reflect changes in climate variables at a country rather 
than global level. The approach increases the number of observations into the thousands 
and, accordingly, increases the observed variation.  
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As direct result of their methodology, we believe that Lobell and Field (2007) are able to 
report very high R-squared relationships between changes in yields of six major crops 
and changes in minimum and maximum temperatures and precipitation. In other words, 
Lobell and Field’s study seems to indicate that a large proportion of changes in yields can 
be explained by climate change variables. If true, and the effects of climate changes are 
indeed negative as the authors claim, policies aimed at mitigating climate changes at the 
world level would be strongly reinforced. Using updated versions of the same data sets 
we were essentially able to reproduce the reported results, including the high R-squareds. 
However, by employing a basic panel data model we arrive at very different conclusions 
about the effects of climate change on changes in yields. By disaggregating the data we 
show that climate changes by themselves explain only a very small part of changes in 
yields. Although yields of some crops in some countries have been adversely affected by 
increases in temperatures and change in precipitation, some crops in some countries have 
benefited. In short, models should be crop and country specific. 
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3CHAPTER 3



Convergence of European wheat 
yields

J.P. Powell, M. Rutten



The paper makes several contributions to the study of wheat yield changes in Europe 

and the resulting economic consequences in the near to medium term future. In 

particular, it addresses the issue of the effects of yield changes on land use. The 

transition and growth of yields are estimated using a combination of convergence, 

time series and dynamic panel models. Scenarios are then run using estimated 

yields as input into a computable general equilibrium (CGE) model. The CGE model 

provides a narrative framework through which the total economic impact of changes 

in yields can be analyzed. Together, the complementary approaches of econometrics 

and general equilibrium models allow a more complete economic analysis of the 

consequences of yield changes for this important biofuels crop to emerge. Although 

there is no evidence of a common rate of yield convergence across Europe, there 

is evidence of absolute convergence. Standard time series and panel forecasting 

methods indicate the potential for only very modest yearly yield increases across 

most of Europe given optimistic assumptions; although potential yearly increases 

in newer European states could, in some cases, be substantially higher. However, 

the total amount of land released as a result of potential yield increases in the 

wheat sector is only modest because of an increase in demand for land by sectors 

other than wheat. The overall question of whether significant yield increases will 

necessarily lead to large increases in land available to produce bioenergy crops is 

rejected. Land freed by wheat yield increases will go to the production of a wide 

range of agricultural products that value it as an input. The same reasoning which 

links yields and land use applies to all agricultural products when there are well 

functioning markets.Ab
st
ra
ct
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1.	 Introduction

1.1.	 Issue
The paper addresses the effects of forecasted yield increases on land use in the European 
agricultural sector. The argument linking yields and land use is that technological advances 
which lead to increased yields will provide a means to circumvent the difficult tradeoffs 
required to meet the various demands for biomass products [13,53,55]. The claim is that 
an increase in yields will mean that less land will have to be used to produce the same 
amount of crops, thereby avoiding or at least mitigating a part of the land use effects 
incurred when converting agricultural and nonagricultural lands into bioenergy crop 
production. Furthermore, given that a large component of the total costs of producing 
bioenergy products is the cost of the crop used, technological improvements that increase 
yields are expected to have positive economic consequences for bioenergy products in 
terms of prices and quantities produced [22]. This follows because crops are the principle 
cost of producing first generation biofuels; estimated biofuel share costs in Europe are 
approximately 70% for sugar beet, 75% for wheat, rye and maize, and 80% for rapeseed 
oil [37].

A review by de Wit et al. (2011) summarizes the findings of four reports that calculated the 
amount of additional land made available from yield increases [55]. The main argument in 
those reports is that yield increases will release land which is currently being used to grow 
crops to grow bioenergy crops and, particularly, crops to produce biofuels [14,16,17,19]. 
The calculated amount of land released for the production of biofuels in those studies is 
the hypothetical maximum in that each of the studies assumes that any land that is freed 
(in the case of the REFUEL study, 60 million hectares) will go to bioenergy production 
rather than the production of food, feed or fiber. Furthermore, it has been argued that a 
large potential source of production gains might come from expected yield increases in 
the newer states of Europe. Current yields for those countries are far below the European 
mean, suggesting that yields there are due for an increase. It follows that the question of 
whether yields in Central and Eastern Europe will converge to those in Western Europe will 
largely determine whether yields in Europe as a whole will increase.

It is self-evident that yield increases reduce the amount of land required to grow crops, 
all else equal, but how the freed land will be used depends on wider economic and social 
considerations. The argument underlying the conclusions of the studies mentioned 
rests on two assumptions. The first is that the land made available from increased yields 
will go to produce bioenergy crops rather than for some other use. Secondly, and more 
fundamentally, it assumes that there will be a demand, at a competitive price, for products 
which use bioenergy crops. Demand for such products is a necessary condition, but by no 
means a sufficient condition for increasing the production of bioenergy crops. This paper 
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addresses the first issue, in short, it asks what will be produced on freed land resulting from 
yield increases. The answer to the second issue, not addressed here, is largely dependent 
on government policies and the prices of petroleum and other bioenergy crop substitutes 
[49].

Land use has been an important consideration in assessing the economic viability and 
environmental impacts of biofuels and other biomass products since Searchinger et al. ‘s 
[44] paper first raised the issue. Searchinger et al.’s paper and many others which followed, 
have put land use on the political agenda as well, indeed, mitigating the negative effects 
of land used to produce biofuels is an important part of the European Biofuels Directive 
(2009/28/EC) [15]. While other researchers have used computable general equilibrium 
(CGE) models to address the issue of the effects of bioenergy crops on land use 
[25,26,41,33], our modeling framework differs to previous studies by introducing explicit 
econometric models to forecast yields as opposed to using standard yield assumptions of 
CGE models which are often difficult to reconstruct and reproduce. In addition, land use 
in MAGNET, the CGE model we use, has a sophisticated land supply module allowing us to 
better model the effects of yield changes on land use. It is the combination of econometric 
forecasting methods and the improved CGE framework which distinguishes our work and 
allows us to more fully address the research question.

The structure of the remainder of the paper follows directly from the main research 
question. In order to answer that question, we first need to determine the extent to which 
yields will increase in the future. We briefly discuss the data used in the analyses and then 
apply various techniques to understand the trajectory in which wheat yields have been 
following. We then build an econometric model in order to forecast yields. The forecasted 
yields are then used as input into MAGNET in order to assess their impact on land use.

2.	 Data and methodology

2.1.	 Data
2.1.1.	 FAO data
The study consists of two main parts. The first attempts to forecast European crop 
yields and the second calculates the economic consequences of those increases. All 
of the data used in the econometric analyses are publicly available and an effort has 
been made to be as explicit as is practicable about the techniques used with the aim 
to ensure reproducibility. The FAO data spans a period from 1961 to 2010 and measures 
hectograms of wheat produced per hectare [18]. In some instances, particularly in the 
panel econometric analyses, only the years between 2001 and 2009 are used. The year 
2001 was chosen because it appears to be the first stable year for yields following the 
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economic changes resulting from political events in Central and Eastern Europe which 
form the bulk of the newer countries in the study. The year 2009 was chosen because it is 
the latest year for which Penn World Trade data is available. Whenever possible, country 
level data is used, in other words, FAO yields per country are used in the analyses rather 
than, say, aggregated group data. Aggregated data have well documented limits when 
used in econometric analyses [4].

2.1.2.	 Penn world trade data
GDP data from the Penn World Trade version 7.0 is used in the analyses [28]. In particular, 
the variable constant price GDP per capita and expenditure shares is used as an exogenous 
variable to explain changes in yields. The GDP data is meant to provide a rough estimate 
of the wealth and technological development of a country. The assumption is that rather 
than a particular legislative policy such as in de Wit et al. (2011), a good general variable 
associated with yields is a country’s GDP per person. This variable has been widely 
used throughout the convergence literature as a measure of economic development 
at least since the Solow Swan and Ramsey economic growth models [46,42]. Whereas 
those models use macro-variables such as capital, labor, and technology to explain 
differences in real GDP rates across countries, we use real GDP per person as a proxy for 
those other variables. In short, we are not trying to explain the causes of yield increases, 
such an exercise would involve using data that does not exist at the macro level or is 
of poor quality for many of the newer European countries (it does exist for established 
European countries). Rather, we are using real GDP per person to test whether changes 
in that variable result in econometrically significant changes in yields. Other explanatory 
variables such as land supply, labor, and fertilizer use were considered as exogenous 
variables, but their availability and quality, particularly for Central and Eastern European 
countries, led us to the conclusion that more countries could be included in the analyses 
by using real GDP per person as a catchall for economic development and as a measure 
of the capabilities of countries to increase their yields. We are not the first to observe the 
strong correlation between real per person GDP and yields (for example, see Hafner [23]). 
Finally, in a few cases, less than 1% of the total number of data points used, a year of yield 
or GDP data was missing from the FAO or Penn World Trade databases. This is particularly 
true in the first years of the analysis of the newer European countries. If a country was 
missing data, then a simple linear prediction method was used to estimate the missing 
year. Essentially, a linear regression was run and the resulting relationship was used to 
estimate the missing point.

2.1.3.	 MAGNET data and behavior
The global economic simulation model used in the analysis is the Modular Applied 
GeNeral Equilibrium Toolbox (MAGNET), a CGE model developed at LEI which is a part of 
Wageningen University and Research Centre in the Netherlands [52]. MAGNET has been 
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extensively used to study the impact of policy changes on international trade, production, 
consumption, prices and the use of production factors such as land, capital and labor 
[47,50,51]. It is an extension and significant reorganization of the Global Trade Analysis 
Project (GTAP) model, a widely used tool for global trade analyses [27]. Extensions include 
more refined production and consumption structures, and, of particular importance to 
the current study, MAGNET has a more sophisticated land market module which makes 
it particularly suitable for land use analyses. Below follows an intuitive description of the 
model, including the database which forms the heart of the model, the modeling of actor 
behavior and markets, and a description of the land supply module.

The data used in the analysis is based primarily on version 8 of the database collected 
and processed by Global Trade Analysis Project (GTAP). Version 8 uses 2007 as its base 
year and contains balanced economic data for 129 regions and 57 economic sectors. For 
the purpose of this analysis, the 129 regions and 57 sectors have been aggregated into 
more meaningful categories. In a CGE model, the data for all regions and sectors must be 
included in the analysis in one form or another. Aggregation allows less important data 
to be bundled together and the focus to be directed on specific regions and sectors. A 
practical reason for aggregating is that it allows a model to solve in a reasonable period of 
time. The regional aggregation used in the analysis consists of twelve large European wheat 
producing countries as reported by the FAO in 2010. All other regions in the world have 
been aggregated into a category labeled ‘Rest of World’ (ROW). The sectoral aggregation 
consists of 12 primary agricultural sectors, including wheat, available in MAGNET. The 
remaining sectors have been aggregated into a manufacturing and a service sector. The 
model retains the standard MAGNET specification of five factors of production, including 
skilled and unskilled labor, capital, land and natural resources. The land use data used 
in MAGNET were obtained from data compiled by GTAP in a two step process [21]. First, 
SAGE (Center for Sustainability and the Global Environment) land cover data for 2004 are 
corrected for the percentage change over 2004– 2007 as reported by FAO [48]. In a second 
step, the data are distributed over crops in proportion to harvested area using data from 
SAGE/FAO, and over livestock sectors using data on value add of land in those sectors.

MAGNET captures the behavior of three types of agents: households, firms, and 
government, for each of the regions in the model. Household behavior is captured via a 
representative regional household which aims to maximize its utility, collects all income 
that is generated in the economy, and allocates that income over private households, 
government expenditures, and savings for investment goods. Income is derived from 
payments by firms to the regional household for the use of endowments of skilled and 
unskilled labor, land, capital and natural resources. The regional household also receives 
income from taxes paid by the private household, firms, and government expenditures. 
Firms, profit maximizers, produce commodities by employing the aforementioned 
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endowments and intermediate inputs from other firms using constant returns to scale 
production technology and sell them to private households, the government, and other 
producers. Domestically produced goods can be either sold on the domestic market or 
exported. Similarly, intermediate, private household, and government demand for goods 
can be satisfied by domestic production or by imports.

Demand for and supply of commodities and endowments are traded in markets which 
are perfectly competitive and clear via price adjustments. Because all markets are in 
equilibrium, firms earn zero economic profit, households are on their budget constraints, 
and global savings must equal global investments. Since the CGE model can only 
determine relative prices, the GDP deflator is set as the numéraire of the model against 
which all other prices are benchmarked. Changes in prices resulting from the model 
simulations therefore constitute real price changes. For the current study, we are using the 
model to carry out dynamic analyses over time, specifically for 2007 (the base year) until 
2020. Projections into the future are obtained by allowing the exogenous endowments 
of capital, land, natural resources, and labor, and the productivity of these factors, most 
notably yields, to grow according to specified growth paths which are based on readily 
available economic data.

2.1.4.	 MAGNET’s land supply curve
Land supply is modeled in MAGNET using a land supply curve which specifies the 
relationship between land supply and a land rental rate [29]. The general idea underlying 
the land supply curve specification is that the most productive land is the first to be put 
into production. However, the potential land available for use in agriculture production is 
limited. If there is a relatively large amount of land available to meet an increase in land 
demand, then rental rate increases will be modest (see Fig. 1). That situation is depicted by 
points situated on the left, flat, part of the land supply curve. However, when agricultural 
land is scarce, an increase in demand for agricultural land will lead to large increases of 
land rental rates as the available land supply approaches the asymptote in Fig. 1.

Fig. 1. Land supply curve.
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2.2.	 Econometric methodology
An important first step to test our main research question is to forecast yield increases in 
Europe. Several complementary methodological approaches are employed to conduct this 
step of the analysis. In the first step, the current state of wheat yield increases is presented 
and analyzed using univariate and standard time series econometric techniques. Analyses 
are, whenever possible, presented via figures. The objective of this step is to determine the 
general shape of the data and to identify differences across Europe and between Europe 
and the world. Thereafter, a model of convergence is presented in order to test whether 
yields in Europe are converging to a common level, and, if so, at what rate. If the yields of 
European countries are converging, then forecasting future yields is a relatively simple 
matter as yields in newer European states can be expected to be more or less similar to 
those in established Europe at some calculable point in the future. 

Once this first step has given us an overview of yield trends, we can begin the process 
of specifying a model to forecast yields. Two approaches are considered, a country level, 
time series approach and models based on panel data. There are clear trade-offs between 
the two approaches. The time series approach uses well established methods to forecast 
yields per country. This approach benefits from long data series, unfortunately, several 
Central and Eastern European have only very short series. The panel approach can be used 
with shorter series because it, essentially, combines data across countries so that many 
short series amount to one long series. The problem is that panel models are only helpful 
if the underlying data generating mechanisms of countries are reasonably comparable. 
The matter of choosing between the two econometric methods or combining their results 
occupies an important part of the discussion to follow. Once a decision has been made, 
the chosen forecasting method will be used to provide input into MAGNET in order to 
assess the effects of yield changes on land use and other economic indicators.

2.3.	 MAGNET methodology
In order to use MAGNET for dynamic analyses the model must be updated from 2007 
(the most recent year for which GTAP data is available) to 2010, using readily available 
economic data. The model projects forward until 2020 while incorporating alternative 
wheat productivity shocks based on econometric forecasts. MAGNET results show 
the effects of changes in wheat yields on the quantity of wheat produced, real market 
prices for wheat, and land used to grow wheat and other crops, holding all else in the 
model constant. The shocks are implemented in two scenarios, namely, a low yield and 
high yield scenario, and results are compared to a baseline or business as usual scenario. 
Development of the business as usual scenario is the starting point of a dynamic CGE 
analysis. In a sense, it forms the backdrop to which other scenarios are compared. The 
baseline models a future in which socioeconomic drivers continue to follow current trends 
assuming that no policy changes. For the current study, the mean of projected yields is 
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incorporated into the baseline and forms the point of comparison for the low and high 
yield scenarios. Data for running the baseline, low, and high scenarios are taken primarily 
from the last three columns of Table 5. For reasons which will be explained, some of the 
data used in the MAGNET scenarios are adjusted to reflect additional econometric results.

3.	 Results and discussion

3.1.	 Current state of European yields
Crop yields in Europe are expected to increase, however, they are expected to do so at a 
decreasing rate [32,34,45]. The intent of the analysis in this section is to present the broad 
path that yields have followed over the last 50 years in order to identify general trends 
and to compare world and European yield rates. If yields in Europe are increasing at a 
decreasing rate, then the argument that less land will be needed to grow the same amount 
of wheat diminishes in importance accordingly. Finally, note that yields are rates, they 
measure an amount of output per area and are not the amount of wheat produced. The 
difference is fundamental, for instance, several smaller countries, such as the Netherlands, 
have very high yields but are not large producers. Therefore, an increase in yields in the 
Netherlands has less of an impact on land use than an increase in, say, the Ukraine.

3.1.1.	 European trends
Fig. 2a and b presents yields through time for the 43 European countries for which data 
is available. The Whittaker–Hodrick–Prescott (WHP) smoothing filter was used to derive a 
smooth curve representation of yields which is more sensitive to longer term fluctuations 
[30]. There are several trends to note in Fig. 2a. The figure clearly shows a general leveling 
of yield rates beginning in the 1990s and continuing unabated until the present. The 
trend is particularly evident in the higher yield countries; econometric analyses to follow 
confirm that trend. Another outstanding feature is the sharp drop and then recovering 
of yields for many countries beginning in the mid-1990s, these are Central and Eastern 
European countries undergoing market rationalization in which less efficient farmers 
and techniques were forced out of the market to the benefit of more efficient farming 
techniques [36]. How yields in these newer countries develop is really at the core of the 
matter, if their yields eventually reach the same levels as those in Western Europe, then 
wheat output can be significantly expanded without using more land. Finally, there 
appears to be greater variance or volatility in yields of many of the newer countries. 
Yields for high yield countries such as the Netherlands, Germany and France appear to 
be relatively immune to major fluctuations, while those countries with lower yields have 
experienced large fluctuations. Large fluctuations and short time series make forecasting 
difficult as will become apparent in later discussions.
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3.1.2.	 Histogram world
A histogram of changes in world wheat yields is presented as a point of contrast to 
European yield changes. In effect, the next two sections are meant to give an impression 
of historical yield increases. 3a and b show logged wheat yields in 1961 and 2010 for 
both world and European aggregations for countries with data in both 1961 and 2010. 
In both figures, the darker histogram represents yield data in 1961 and the lighter 2010, 
while the gray area in the middle represents the intersection of the two periods. Fig. 3a 
shows that the world’s entire distribution has shifted to the right and the mean of the 
data has increased from 13,439 to 30,881. However, in 2010, there was still a group of 
countries with low yields including Venezuela, Honduras, Burundi, Libya and Ecuador. The 
average growth rate over the entire period was 1.7% and the standard deviation increased 
from 8940 in 1961 to 20,030 in 2010. Table 1 shows that developed countries continue 
to dominate the top yield positions. Most importantly for the current analysis, European 
countries are well represented in the list of the world’s most productive wheat producers. 
This, along with the results in Fig. 2b, suggest that non-European countries might view 
European yields as a benchmark with the proviso that once the benchmark has been 
achieved, increases in yields slow.

Fig 2. European wheat yields, European wheat producers relative transition
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Fig. 3. Wheat yields. (a) World wheat yields and (b) European wheat yields.

Table 1. World top 20 wheat yields in 1961 and 2010.
Countrya Yield (1961) Country Yield (2010)
DNK 41,205 NLD 89,092
NLD 39,251 IRL 85,990
GBR 35,372 NZL 81,241
IRL 33,676 GBR 76,810
NZL 33,517 DEU 73,102
SWE 32,627 FRA 70,415
DEU 28,607 DNK 66,264
NOR 28,300 NAM 65,789
JPN 27,455 SAU 65,000
CHE 27,134 ZMB 63,118
AUT 25,802 CHL 57,658
NCL 25,000 CHE 57,377
EGY 24,697 EGY 55,741
FRA 23,950 MEX 54,185
KOR 22,657 SWE 54,029
POL 19,929 AUT 50,117
FIN 19,436 MLT 48,519
ITA 19,103 CHN 47,485
HUN 19,095 NOR 40,648
NGA 17,778 ALB 39,905

a Complete list of ISO 3 country codes used in this paper: Albania (ALB), Armenia (ARM), Austria (AUT), Belarus 
(BLR), Belgium (BEL), Bulgaria (BGR), Chile (CHL), China (CHN), Croatia (HRV), Cyprus (CYP), Czech Republic 
(CZE), Denmark (DNK), Egypt (EGY), Estonia (EST), Finland (FIN), France (FRA), Georgia (GEO), Germany (DEU), 
Great Britain (GBR), Greece (GRC), Hungary (HUN), Ireland (IRE), Italy (ITA), Japan (JPN), Kazakhstan (KAZ), Korea 
(KOR), Kyrgyzstan (KGZ), Lithuania (LTU), Luxembourg (LUX), Macedonia (MKD), Malta (MLT), Namibia (NAM), 
Netherlands (NLD), New Caledonia (NCL), New Zealand (NZL), Nigeria (NGA), Norway (NOR), Poland (POL), 
Portugal (PRT), Romanian (ROU), Saudi Arabia (SAU), Slovakia (SVK), Slovenia (SVN), Spain (ESP), Sweden (SWE), 
Switzerland (CHE), Tajikistan (TJK), Turkey (TUR), Turkmenistan (TKM), Ukraine (UKR), Zambia (ZMB).
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Table 2. European wheat yields in 1961 and 2010.
Country Yield (1961) Country Yield (2010)
DNK 41,205 NLD 89,092
NLD 39,251 IRL 85,990
GBR 35,372 GBR 76,810
IRL 33,676 DEU 73,102
SWE 32,627 FRA 70,415
DEU 28,607 DNK 66,264
NOR 28,300 CHE 57,377
CHE 27,134 SWE 54,029
AUT 25,802 AUT 50,117
FRA 23,950 MLT 48,519
POL 19,929 NOR 40,648
FIN 19,436 ALB 39,905
ITA 19,103 POL 39,432
HUN 19,095 HUN 37,221
BGR 15,416 ITA 36,997
MLT 13,746 BGR 36,032
ROU 13,438 FIN 34,299
GRC 13,026 GRC 31,373
TUR 9093 ESP 29,417
ESP 8837 ROU 27,000
ALB 7731 TUR 24,411
PRT 6515 CYP 19,956
CYP 5793 PRT 18,493

3.1.3.	 Histogram Europe
Data for Fig. 3b was constructed using only those European countries for which data was 
available in 1961 and 2010. As a result, there are 23 countries represented in the figure. 
The mean in 1961 was 21,178 and 47,256 in 2010, both are around one-and-a-half times 
greater than their world average equivalents. The average growth rate over the entire 
period was 1.6% compared to a world average of 1.7. The data for 2010 appears to be 
less widely distributed, but this is due to the log scale, in fact, the standard deviation has 
increased from 10,757 in 1961 to 20,869 in 2010. In 1961, Denmark, the country with the 
highest country with the lowest yield. While in 2010, the Netherlands, the country with 
the highest yield in that year, had a yield of 89,092 compared to Portugal with a yield of 
18,493. The significance of which is that  in 1961 the highest yield was 7.11 times greater 
than the lowest yield, while that number was 4.81 in 2010. Great deviations in yields, even 
among the 23 established European countries, persist, but differences between top and 
bottom producers appear to be diminishing. This topic will be revisited below using two 
models of convergence. Table 2 confirms the observation that countries with top yields 
tend to stay on top. Denmark, the Netherlands, the United Kingdom and Ireland have the 
top spots in both years; while Cyprus, Portugal, Spain and Turkey occupy the bottom of 
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the table in both years. The relative positions remain fairly stable, suggesting that general 
technological improvements affect country yields more or less equally. The histograms 
show that yields in Europe are high relative to the rest of the world, but the decreasing 
rate of European increases suggests that there are limits to the rate at which yields can 
economically increase. However, they also suggest that there are potential increases 
available both globally and within Europe. The next section asks if there is any evidence 
that European yields are converging to common levels. In short, we can presume from the 
figures that increases in yields are possible, but is there any evidence that those potential 
increases can be realized?

3.1.4.	 Growth rates
Table 3 provides a breakdown of yield growth rates for 5, 10-year periods for several 
aggregations. The table is meant to show how yield growth rates vary among regions and 
across time. The methodology used to construct the table was, for each aggregation, to 
split the data by decade and calculate the corresponding average. Percentage increases 
were then calculated using the standard methodology. Again, only countries with 
complete data sets were used in the study.

Yield growth rates appear consistently strong for the first three decades in each 
aggregation. Values range from around 1.5% to over 3% over these three decades. The 
difference between 1.5 and 3.0 is enormous; a growth rate of 1.5 implies a doubling of 
yields every 47 years while a rate of 3.0 implies a doubling every 23 years. All regions 
experienced slower growth in the 1991–2000 decade. While the yields of major wheat 
producers (second column) continued to top the other aggregations at a rate of 1.3%, that 
rate was well below the average for the same aggregation in the previous three decades. 
The contraction in yield rates for European countries with low yields can be seen in the 
obvious dip that occurs in this period, see Figs. 2a and b. However, yields in all regions 
were relatively anemic in that decade. The last decade in the analysis, 2001–2010, saw a 
slight recovery in the growth of yields for the world, the OECD, and Europe as a whole, 
where Europe’s growth was primarily due to the recovery of the yields of countries in 
the lower half of the European yield table. Europe’s top wheat producing countries are at 
the bottom of the table with a growth rate of just 0.32%, corresponding to a doubling of 
yields every 217 years!

3.2.	 Convergence and relative transition
Previous sections have given an overview of yield changes across various aggregations. 
In this section the focus is on whether the yields of individual countries are converging; 
in other words, whether yields are approaching some common rate. If the countries in 
Europe are approaching a common rate, then we can conclude that, all else equal, the 
yields of Central and Eastern European countries will eventually reach Western European 
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rates. Two types of convergence are discussed. The underlying assumption of first type, 
known as log t convergence, is that if there is a common source of sustained yield 
increase, then with the diffusion of technology and learning across countries, learning 
through formal education, and on the job learning, it can reasonably be supposed that all 
countries ultimately come to share in the growth of yields [35]. Note that log t does not 
test whether countries are approaching a common, absolute, yield level, only whether 
countries share a common rate of increase. In contrast, the second type of convergence, 
absolute convergence, tests whether countries are approaching a common yield level.

3.2.1.	 Transition coefficients
The first step towards understanding the concept of log t is the calculation of the relative 
transition coefficient. The basic concept behind the procedure to calculate log t is to 
eliminate the common growth component among countries in the analysis by scaling the 
data [38,39]. The transformation eases comparison of the relative changes in yields across 
countries. Changes in yields for each country are then measured relative to the average 
growth rate of the entire cross-section. This simple comparative method allows a wide 
range of time paths and heterogeneity to be modeled while maintaining the commonality 
of the panel. Furthermore, it allows convergence to be analyzed over different time periods 
and over different geographic areas. In our specific case, the transition path is measured 
by considering the relative share of wheat yields of country i in total wheat yields in a 
specific year, where log yt denotes the cross-section average of yields in the entire panel or 
a subset thereof (see Eq. (1)). The quantity hit eliminates the common growth component 
and provides a measure of each country’s share in common growth and technological 
progress. Because hit is time dependent, it describes how a country’s share evolves over 
time. In effect, hit is a time parameter that traces a transition curve for a country, indicating 
that country’s share of total yields in period t:

3.2.2.	 Transition figures
Fig. 2a, at the beginning of the paper, traces individual European country trajectories 
relative to their cross-section average. The data has once again been filtered using the 
WHP method to reduce short-term fluctuations and then logged for convenience. If 
there was convergence, then the figure would have a funnel-like shape with the stem of 
the funnel on the right hand side of the figure (see [38,39] for an example). However, in 
Fig. 2a the spread remains relatively stable. In short, there is no visual evidence of either 
convergence or divergence for yields across Europe.

Fig. 4a and b shows transition paths for yields of the top world and European wheat 
producers. In Fig. 4a Germany and France lead the pack, far outpacing other world wheat 

t is the

log yt

total yields in period t:

hit ¼ log yi;t= log yt ð1Þ

3.2.2. Transition figures
Fig. 2a, at the beginning of the paper, traces individual

European country trajectories relative to their cross-section aver-
age. The data has once again been filtered using the WHP method
to reduce short-term fluctuations and then logged for conveni-
ence. If there was convergence, then the figure would have a
funnel-like shape with the stem of the funnel on the right hand
side of the figure (see [38,39] for an example). However, in Fig. 2a
the spread remains relatively stable. In short, there is no visual
evidence of either convergence or divergence for yields across
Europe.

Fig. 4a and b shows transition paths for yields of the top world
and European wheat producers. In Fig. 4a Germany and France
lead the pack, far outpacing other world wheat producers. In
addition to the initial drop and subsequent recovery of yields as
seen in the European figure as well, the outstanding feature in
Fig. 4a is the steady progression of China to the extent that it has
moved onto a higher trajectory surpassing major producers such
as the United States, Canada and Pakistan. It is also possible to
discern what appears to be convergence among countries other
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producers. In addition to the initial drop and subsequent recovery of yields as seen in the 
European figure as well, the outstanding feature in Fig. 4a is the steady progression of 
China to the extent that it has moved onto a higher trajectory surpassing major producers 
such as the United States, Canada and Pakistan. It is also possible to discern what appears 
to be convergence among countries other than China, Germany and France. For instance, 
the spread between the US, Canada, Turkey, Pakistan, Iran, and perhaps Ukraine and 
the Russian Federation appears to be less in 2010 than it was in 1960, an indication of 
convergence. Australia fell out of the group in the late 1990s, but may be bouncing back 
in recent years so perhaps it will rejoin the others. Fig. 4b shows what again appears to 
be a remarkable degree of convergence among top European producers. Germany and 
France joined with the United Kingdom and Denmark to form a tightly knit group, while 
Spain joined Italy, Poland and Romania to form another group. Trends among the newer 
members of the top European producers vary, Uzbekistan has seen remarkable increases 
in yields relative to the others, while yields in the Czech Republic, Ukraine and the Russian 
Federation have stabilized since early 2000.

The essential conclusion of these figures is that with few exceptions, there is little visual 
evidence that the yields of wheat producing countries in Europe or the rest of the world 
are converging to one common growth rate. No evidence, in short, that the yields of 
Central and Eastern European countries will converge to a common source of sustained 
yield increase. The log t regression test provides a more systematic test of these findings.

Table 3. Yield growth rates in five periods.

Period World 
(85)

Major 
world 
producers 
(10)

OECD 
(26)

Europe 
(23)

Top Europe 
(17)

Bottom 
Europe (6)

Europe’s 
top 
producers 
(8)

1961–1970 1.70 3.41 1.71 2.08 1.83 3.20 1.91
1971–1980 1.83 1.45 1.54 1.91 1.74 2.50 1.53
1981–1990 2.12 2.33 2.28 2.18 2.25 1.93 2.57
1991–2000 0.36 1.30 0.39 0.17 0.47 1.20 0.40
2001–2010 0.87 0.80 0.48 0.50 0.42 0.84 0.32

Note: The numbers in brackets are the number of observations, only those countries with complete datasets 
over the entire period are included in the analysis. Top producing countries are distinguished from countries with 
high yields. Top and bottom Europe are those countries in the top half and lower half of an ordered European 
yield table.
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Fig. 4. Wheat yields. (a) Yields of major world wheat producers and (b) yields of major European 
wheat producers.

3.2.3.	 Log t regression test
The corresponding regression test of convergence is called the log t test because it is 
based on a time series linear regression of a cross section variance ratio of the transition 
parameter on log t (time). Simply put, the test asks whether sample countries are 
converging to a common source of sustained yield increase.
Formally, the ‘log t’ regression model is defined as

The convergence test for top world wheat producers from 1961 to 2010 gives a point 
estimate of 0.74 with a standard error of 0.19, where standard errors are calculated using 
an automated heteroskedasticity autocorrelation consistent (HAC) procedure, and is 
therefore highly significant. A significant negative number such as this implies divergence 
of yields. In other words, there is a strong statistical evidence that yield rates among the 
top world producers are diverging from one another. Similarly, tests of top European 
wheat producers return an estimate of 0.90 and a standard error of 0.27. For all European 
wheat producers the estimate is 0.84 with a standard error of 0.15. In both cases then, 
despite hints to the contrary in the figures, there is a strong evidence of divergence among 
these countries. Results for subsets consisting of only, for instance, Denmark, the United 
Kingdom, Germany and France were not significant. The results confirm the impression 
that there is no evidence of a convergence of yield rates within Europe, a result which 
implies that yield rates will vary across Europe.
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1981–1990 2.12 2.33 2.28 2.18 2.25 1.93 2.57
1991–2000 0.36 1.30 0.39 0.17 0.47 �1.20 0.40
2001–2010 0.87 0.80 0.48 0.50 0.42 0.84 0.32

Note: The numbers in brackets are the number of observations, only those countries with complete data sets over the entire period are included in the analysis. Top producing
countries are distinguished from countries with high yields. Top and bottom Europe are those countries in the top half and lower half of an ordered European yield table.

perhaps it will rejoin the others. Fig. 4b shows what again appears
to be a remarkable degree of convergence among top European
producers. Germany and France joined with the United Kingdom
and Denmark to form a tightly knit group, while Spain joined Italy,
Poland and Romania to form another group. Trends among the
newer members of the top European producers vary, Uzbekistan
has seen remarkable increases in yields relative to the others,
while yields in the Czech Republic, Ukraine and the Russian
Federation have stabilized since early 2000.

The essential conclusion of these figures is that with few
exceptions, there is little visual evidence that the yields of wheat
producing countries in Europe or the rest of the world are
converging to one common growth rate. No evidence, in short,
that the yields of Central and Eastern European countries will
converge to a common source of sustained yield increase. The log t
regression test provides a more systematic test of these findings.

3.2.3. Log t regression test
The corresponding regression test of convergence is called the

log t test because it is based on a time series linear regression of a
cross section variance ratio of the transition parameter on log t
(time). Simply put, the test asks whether sample countries are
converging to a common source of sustained yield increase.

Formally, the ‘log t’ regression model is defined as

ð log H1=HtÞ�2 log ð log tÞ ¼ αþ γ log t þ ut for t ¼ T0;…; T ð2Þ
where Ht ¼N�1∑N

i ¼ 1ðhit�1Þ2 and hit ¼ log yit=N
�1∑N

i ¼ 1 log yit as
before.

The convergence test for top world wheat producers from 1961
to 2010 gives a point estimate of �0.74 with a standard error of
0.19, where standard errors are calculated using an automated
heteroscedasticity autocorrelation-consistent (HAC) procedure,
and is therefore highly significant. A significant negative number
such as this implies divergence of yields. In other words, there is a
strong statistical evidence that yield rates among the top world
producers are diverging from one another. Similarly, tests of top
European wheat producers return an estimate of �0.90 and a
standard error of 0.27. For all European wheat producers the
estimate is �0.84 with a standard error of 0.15. In both cases
then, despite hints to the contrary in the figures, there is a strong
evidence of divergence among these countries. Results for subsets
consisting of only, for instance, Denmark, the United Kingdom,
Germany and France were not significant. The results confirm the
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3.2.4.	 Absolute convergence
Absolute convergence is the more obvious type of convergence, it tells us whether 
yields are converging towards a common level [7]. Fig. 5a and b illustrates this type of 
convergence. The figures show growth rates versus initial yield levels. There are 85 
countries represented in the world figure and 23 in the European figure. The working 
hypothesis is that countries with lower initial yield rates will increase their yields at a faster 
rate than countries with higher initial rates. The reasoning behind absolute convergence 
is that countries with lower initial rates will be readily able to adapt and implement extant 
technologies. The hypothesis is supported by the data, Fig. 5a shows a downward trend 
which is statistically significant. In other words, lower initial yield rates are correlated 
with higher growth rates over the period 1961–2010. Data for Europe also show a highly 
significant negative trend. The importance of this finding for the current study is that we 
can expect, on average, that new European countries with lower initial yields will increase 
their yields at higher rates than established European countries. In short, although there 
is not a common yield rate among countries, we can expect, on an average, that countries 
with lower yields will catch up to world and European averages.

3.3.	 Real per person GDP
Results of previous sections have been mixed. We have seen that, on an average, European 
yield growth rates have slowed over the last decades, but that they continue to increase. 
Although we have to reject a common source of convergence among European countries, 
we can expect, on an average, that countries with lower yields will increase their yields 
at a faster rate than countries with higher yields. In this section we begin the process of 
developing a model to forecast yields. The argument, as outlined in Section 2.1.2, is that 
as Central and Eastern European countries develop economically, driven by increases in 
increases in the productivity of capital, labor and land, so will their yields. Yields, after 
all, are a measure of partial productivity, namely, the productivity of land. Land is only 
one input in the agricultural production process, labor is of course another important 
input. At this point we may be accused of including an endogenous variable on the right 
hand side of the equation since GDP per person is driven in part by yields. However, 
agricultural production, as has just been argued, is only partially driven by yields, and 
given that agricultural production makes up only a small percentage of GDP for European 
countries, we argue that yields have only a small impact on the real GDP per person of 
most European countries [9]. For instance, the agricultural sector represents only 1.8% 
of the GDP of countries in the European Union, although it constitutes a larger percent 
of Eastern European countries such as Kazakhstan (5.2%), Turkmenistan (7.6%), and 
Macedonia (9.6%), and especially Uzbekistan (18.5%), Kyrgyzstan (20.2%) and Tajikistan 
(23.3%). However, if the general argument is accepted for the 43 countries in the following 
analyses, then it follows that real GDP per person can be used as an exogenous variable 
to explain yields.
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Fig. 5. Yield convergence. (a) Convergence world and, (b) Convergence Europe

3.3.1.	 LOESS regression
In the following sections we begin to examine the relationship between yields and real 
GDP per person. Locally weighted or LOESS regressions are a method of regression which 
use a smoothing procedure to average independent variables in a moving fashion [10–
12]. Rather than giving all points equal weight in determining the shape of the fitted line 
as with linear regression, the weights of points close in time receive greater weight than 
points further away. In a sense, the figures give insight into local relationships within a 
wider time frame. Fig. 6a and b plot logged yields against logged real GDP per person. The 
data set consists of 64 countries for which there is yield and GDP data for years common 
to the two data sets in the period from 1961 to 2009. The data for each country is then 
split across six periods. In other words, there are 64 country observations for 1961, 64 for 
1971, and so on.

The striking feature of Fig. 6 is that the relationship between yields and GDP is flat until 
logged GDP per person reaches a level of between around 3000 and 8000 dollars per 
person, after which yields rise steadily with the GDP variable. The implications for the 
current study are that steady yield increases can be expected for countries which reach 
that threshold. Fig. 6b implies an even more striking relationship between yields and GDP. 
The data is split as in the previous analysis and consists of 17 European countries. The 
European case appears to be similar to the world case, yields seem fairly stable in relation 
to real GDP per person and then rise after a GDP threshold is met. However, after a given 
GDP level is reached, yields fall again. The figure confirms that yields for each decade have 
increased, although the increase from 2001 to 2009 is small as previously observed in 
Fig. 4b. Furthermore, it is also possible to see increases in real GDP per person over the 

estimate is �0.84 with a standard error of 0.15. In both cases
then, despite hints to the contrary in the figures, there is a strong
evidence of divergence among these countries. Results for subsets
consisting of only, for instance, Denmark, the United Kingdom,
Germany and France were not significant. The results confirm the
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Land is only one input in the agricultural production process, labor
is of course another important input. At this point we may be
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decades as the curves shift to the right. In most years, for a given real GDP per person, 
yields have increased. However, those European countries with the highest yields continue 
to achieve higher yields and GDP in every decade, but higher yields across that group 
are negatively correlated with GDP in any given decade. The odd relationship pictured is 
almost entirely due to Switzerland and Norway, both of whom have high real per person 
GDPs and high yields, but their very high GDP in a sense ‘outweighs’ their high yields. 
Removing these two countries reestablishes the positive correlation between yields and 
GDP. The implication is that there are countries with characteristics which exclude them 
from the general correlation relationship, data for these exceptional countries should be 
considered for removal or modification from econometric analyses intended to detect 
common relationships between yields and GDP. As a consequence, the econometric 
models to follow were run both with and without Switzerland and Norway included in 
the models. However, removing either or both countries did not significantly alter the 
statistical significance of the basic underlying relationships.

Fig. 6. Wheat YieldsversusGDP.(a)WorldyieldsversusGDPand(b)EuropeanyieldversusGDP.
Figures 6 and 7

3.3.2.	 GDP transition
Fig. 7a and b is important for further establishing and reinforcing the apparent relationship 
between yields and GDP. Fig. 7a shows the relative transition of real GDP per person for 
all European countries in the study. Once again, there is significant statistical support for 
divergence among these economies due to the large divergence that occurred in the 
1990s as Central and Eastern European economies joined Europe. Just as for yields, the 
convergence tests for the PWT data show strong evidence of divergence with an estimate 

3.3.1. LOESS regression
In the following sections we begin to examine the relationship

between yields and real GDP per person. Locally weighted or
LOESS regressions are a method of regression which use a
smoothing procedure to average independent variables in a mov-
ing fashion [10–12]. Rather than giving all points equal weight in
determining the shape of the fitted line as with linear regression,
the weights of points close in time receive greater weight than
points further away. In a sense, the figures give insight into local
relationships within a wider time frame. Fig. 6a and b plot logged
yields against logged real GDP per person. The data set consists of
64 countries for which there is yield and GDP data for years
common to the two data sets in the period from 1961 to 2009. The
data for each country is then split across six periods. In other
words, there are 64 country observations for 1961, 64 for 1971,
and so on.

The striking feature of Fig. 6 is that the relationship between
yields and GDP is flat until logged GDP per person reaches a level
of between around 3000 and 8000 dollars per person, after which
yields rise steadily with the GDP variable. The implications for the
current study are that steady yield increases can be expected for
countries which reach that threshold. Fig. 6b implies an even more
striking relationship between yields and GDP. The data is split as in
the previous analysis and consists of 17 European countries. The
European case appears to be similar to the world case, yields seem
fairly stable in relationship to real GDP per person and then rise

general correlation relationship, data for these exceptional coun-
tries should be considered for removal or modification from
econometric analyses intended to detect common relationships
between yields and GDP. As a consequence, the econometric
models to follow were run both with and without Switzerland
and Norway included in the models. However, removing either or
both countries did not significantly alter the statistical significance
of the basic underlying relationships.

3.3.2. GDP transition
Fig. 7a and b is important for further establishing and reinfor-

cing the apparent relationship between yields and GDP. Fig. 7a
shows the relative transition of real GDP per person for all
European countries in the study. Once again, there is a significant
statistical support for divergence among these economies due to
the large divergence that occurred in the 1990s as Central and
Eastern European economies joined Europe. Just as for yields, the
convergence tests for the PWT data show strong evidence of
divergence with an estimate of �1.27 and a HAC standard error
of 0.27. Subsets of the data, for instance using only data for
countries with 60 years or more of data, also show divergence.
There does not appear to be a common source of European
economic GDP per person growth, and it is therefore difficult to
presume that all European countries will ultimately come to share
in equal economic development rates. However, the strong corre-
lation between yields and real GDP per person implies a causal
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of 1.27 and a HAC standard error of 0.27. Subsets of the data, for instance using only 
data for countries with 60 years or more of data, also show divergence. There does not 
appear to be a common source of European economic GDP per person growth, and it is 
therefore difficult to presume that all European countries will ultimately come to share in 
equal economic development rates. However, the strong correlation between yields and 
real GDP per person implies a causal relationship in the sense that increases in real GDP 
are highly correlated with positive changes in yields – a relationship explored in greater 
detail below. Incidentally, the divergence of Europe’s real GDP per person result contrasts 
sharply with results reported by Sul and Phillips for US states [39]. There does not appear 
to be a common source of sustained real GDP per person growth in Europe as there is 
across US states.

Fig. 7. European convergence of real GDP per person. (a) Real GDP per person European transition 
parameters and (b) real GDP per person convergence Europe.

3.3.3. 	 GDP absolute convergence
Fig. 7b illustrates the idea of absolute economic convergence for 25 European countries 
for the period from 1970 to 2009. Along the x-axis is logged real GDP per person for each 
country in 1970. Along the y-axis is the average growth rate for each country in the study 
over the entire period. Just as with yields, there appears to be absolute convergence in 
Europe in that countries with lower initial levels of real GDP per person, on an average, 
have higher growth rates than countries with higher initial GDP per person levels. Fig. 8 
shows the distribution of real GDP per person for 43 countries in Europe. If  the  argument  
made in relationship to Fig. 6a and b is accepted, then the countries at the bottom of the 
distribution such as Tajikistan, Kyrgyzstan, Georgia, Armenia, and Ukraine can expect, on 
an average, large increases in yields as their economies grow beyond the log GDP per 

relationship in the sense that increases in real GDP are highly
correlated with positive changes in yields – a relationship explored
in greater detail below. Incidentally, the divergence of Europe's
real GDP per person result contrasts sharply with results reported
by Sul and Phillips for US states [39]. There does not appear to be a
common source of sustained real GDP per person growth in
Europe as there is across US states.

3.3.3. GDP absolute convergence
Fig. 7b illustrates the idea of absolute economic convergence

for 25 European countries for the period from 1970 to 2009. Along
the x-axis is logged real GDP per person for each country in 1970.
Along the y-axis is the average growth rate for each country in the
study over the entire period. Just as with yields, there appears to
be absolute convergence in Europe in that countries with lower
initial levels of real GDP per person, on an average, have higher
growth rates than countries with higher initial GDP per person
levels. Fig. 8 shows the distribution of real GDP per person for 43
countries in Europe. If the argument made in relationship to
Fig. 6a and b is accepted, then the countries at the bottom of the
distribution such as Tajikistan, Kyrgyzstan, Georgia, Armenia, and
Ukraine can expect, on an average, large increases in yields as their
economies grow beyond the log GDP per person ‘activation’ rate.
While the yields of more established counties will continue to
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person ‘activation’ rate. While the yields of more established counties will continue to 
grow at rates similar to those they have experienced in the recent past.

3.4.	 Econometric model
In previous sections we have examined yield and real GDP per person developments 
through time and sought relationships between those two variables. In this section we use 
econometric models to attempt to quantify the influence of real GDP per person on yields. 
If that relationship is statistically significant, it can then be used to forecast future yields. 
The data used in the analysis has a panel format, meaning that it is composed of sets of 
countries observed over consecutive years. The panels used in the study were complete in 
that data was available for all countries in all periods. The panel structure allows economic 
effects that cannot be distinguished with the use of either cross-section or time series 
data alone to be identified, in short, it allows patterns across time and observations to be 
discerned and untangled [5,40,56].

Fig. 8. Real GDP per person, Europe.

Panel data is commonly used to estimate dynamic econometric models because of its 
many advantages over other forms of data [8]. For example, even in cases when the 
coefficient on the lagged dependent variable is not of direct interest, including that it may 
be crucial for recovering consistent estimates of the exogenous variables. Improvements 
in agricultural yields are a dynamic process, and one of the advantages of panel data is that 
it allows insight into the dynamics of adjustment, in other words, it shows how yields have 
changed through time. Finally, at a practical level, the use of stochastic dynamic models 
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Panel data is commonly used to estimate dynamic econometric
models because of its many advantages over other forms of data
[8]. For example, even in cases when the coefficient on the lagged
dependent variable is not of direct interest, including that it may
be crucial for recovering consistent estimates of the exogenous
variables. Improvements in agricultural yields are a dynamic
process, and one of the advantages of panel data is that it allows
insight into the dynamics of adjustment, in other words, it shows
how yields have changed through time. Finally, at a practical level,
the use of stochastic dynamic models is an appropriate econo-
metric technique for the case at hand given the small number of
years and the large number of countries available in the study.
These estimation methods do not require the time dimension to
become large in order to obtain consistent estimates. This advan-
tage allows us to make estimates despite the small number of
observations available for Central and Eastern Europe.
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is an appropriate econometric technique for the case at hand given the small number of 
years and the large number of countries available in the study. These estimation methods 
do not require the time dimension to become large in order to obtain consistent estimates. 
This advantage allows us to make estimates despite the small number of observations 
available for Central and Eastern Europe.

3.4.1.	 Dynamic panel model
This section outlines the rationale underlying our choice of which dynamic panel model to 
use. Only the essential features of the chosen model are described, the interested reader is 
directed to accompanying references for details. Dynamic relationships are characterized 
by the introduction of a lagged dependent variable among the regressors, i.e.:

where, in the case at hand, yi,t is the yield for country i in year t, and yi,t-1 is a yield 
observation for the same country in the previous year, ηi is an unobserved country specific 
time invariant effect that allows for heterogeneity in the means of the yit series across 
individuals, and υit is a disturbance term. Individual effects ηi are treated as stochastic, 
which implies that they are necessarily correlated with the lagged dependent variable yi,t-1 
unless the distribution of the ηi is degenerate. The disturbances υit are initially assumed to 
be serially uncorrelated. These assumptions jointly imply that the Ordinary Least Squares 
(OLS) estimator of α in Eq. (4) is inconsistent since the explanatory variable yi,t-1 is positively 
correlated with the error term ηi + υit due to the presence of individual effects (see [8] for 
details).

In short, the presence of the yi,t-1 term on the right hand side of the equation means that 
there is an endogeneity problem, in essence, we are trying to explain yield changes with a 
highly correlated version of the same variable! The techniques outlined below are simply 
a means to overcome the endogeneity issue. The basic first differenced Two Stage Least 
Squares (2SLS) estimator for the AR 1 panel model was proposed by Anderson and Hsiao 
[1,2] to address the problem. The data is first differenced in order to remove ηi from the 
error term and any other time invariant characteristics of the data [8]:

where Δyit = yit - yi,t-1. The dependence of Δυit on υi;t-1 implies that OLS estimates of α in 
the first differenced model are inconsistent. However, consistent estimates of α can be 
obtained using 2SLS with instrumental variables that are both correlated with with Δyit-1 
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which dynamic panel model to use. Only the essential features of
the chosen model are described, the interested reader is directed
to accompanying references for details. Dynamic relationships are
characterized by the introduction of a lagged dependent variable
among the regressors, i.e.:
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ð3Þ

where, in the case at hand, yit is the yield for country i in year t,
and yi;t�1 is a yield observation for the same country in the
previous year, ηi is an unobserved country-specific time-invariant
effect that allows for heterogeneity in the means of the yit series
across individuals, and υit is a disturbance term. Individual effects
ηi are treated as stochastic, which implies that they are necessarily
correlated with the lagged dependent variable yi;t�1 unless the
distribution of the ηi is degenerate. The disturbances υit are
initially assumed to be serially uncorrelated. These assumptions
jointly imply that the Ordinary Least Squares (OLS) estimator of α
in Eq. (4) is inconsistent since the explanatory variable yi;t�1 is
positively correlated with the error term ηi þ υit due to the
presence of individual effects (see [8] for details).

In short, the presence of the yi;t�1 term on the right-hand side
of the equation means that there is an endogeneity problem, in
essence, we are trying to explain yield changes with a highly
correlated version of the same variable! The techniques outlined
below are simply a means to overcome the endogeneity issue. The
basic first-differenced Two Stage Least Squares (2SLS) estimator
for the ARð1Þ panel model was proposed by Anderson and Hsiao
[1,2] to address the problem. The data is first differenced in order
to remove ηi from the error term and any other time invariant
characteristics of the data [8]:

Δyit ¼ αΔyi;t�1 þ β′Δxit þ Δυit ; jαjo1; i¼ 1;2;…;N; t ¼ 2;3…T

ð4Þ

where Δyit ¼ yit�yi;t�1. The dependence of Δυit on υi;t�1 implies
that OLS estimates of α in the first-differenced model are incon-
sistent. However, consistent estimates of α can be obtained using
2SLS with instrumental variables that are both correlated with
Δyi;t�1 and orthogonal to Δυit. The resulting 2SLS estimator is
consistent in large N, fixed T panels, and identifies the autore-
gressive parameter α provided that at least three time series
observations are available [8]. Additional instruments are available
when the panel has more than three time series observations.
Hansen [24] provides a convenient framework for obtaining
asymptotically efficient estimators when T43, while first-
differenced GMM estimators for the ARð1Þ panel model were
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Δyi;t�1 and orthogonal to Δυit. The resulting 2SLS estimator is
consistent in large N, fixed T panels, and identifies the autore-
gressive parameter α provided that at least three time series
observations are available [8]. Additional instruments are available
when the panel has more than three time series observations.
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and orthogonal to Δυi,t. The resulting 2SLS estimator is consistent in large N, fixed T panels, 
and identifies the autoregressive parameter α provided that at least three time series 
observations are available [8]. Additional instruments are available when the panel has 
more than three time series observations. Hansen [24] provides a convenient framework 
for obtaining asymptotically efficient estimators when T>3, while first-differenced GMM 
estimators for the AR(1) panel model were developed by Holtz-Eain et al. [31] and Arellano 
and Bond [3]. 

Rather than the level values, lagged values of y can be used. In this way the endogeneity 
issue is addressed by noting that all values of yi,t-k, with k>1 can be used as instruments 
for Δyi,t-k. In the language of general method of moments (GMM), an orthogonality 
condition. In turn, auto-correlation is addressed by noting that if Δυit is white noise, then 
the covariance matrix of the vector whose typical element is Δυit is proportional to matrix 
Hthat has 2 on the main diagonal, 1 on the first sub-diagonals, and 0 elsewhere. 

In practice, the one-step GMM estimation of equation amounts to computing
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where Δyit ¼ yit�yi;t�1. The dependence of Δυit on υi;t�1 implies
that OLS estimates of α in the first-differenced model are incon-
sistent. However, consistent estimates of α can be obtained using
2SLS with instrumental variables that are both correlated with
Δyi;t�1 and orthogonal to Δυit. The resulting 2SLS estimator is
consistent in large N, fixed T panels, and identifies the autore-
gressive parameter α provided that at least three time series
observations are available [8]. Additional instruments are available
when the panel has more than three time series observations.
Hansen [24] provides a convenient framework for obtaining
asymptotically efficient estimators when T43, while first-
differenced GMM estimators for the ARð1Þ panel model were
developed by Holtz-Eain et al. [31] and Arellano and Bond [3].
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where

Δyi ¼ ½Δyi3⋯ΔyiT �′ ð6Þ
and Zi is defined as in [5]. In essence, the additional differenced
exogenous variables are available as instruments. Once the one-
step estimator is computed, the sample covariance matrix of the
estimated residuals can be used instead of H to obtain two-step
estimates which are both consistent and asymptotically efficient.
Standard GMM theory applies, except that Windmeijer [54] has
computed finite-sample corrections to the asymptotic covariance
matrix of the parameters.

3.4.2. Panel results
The results in Table 4 are calculated using the one- and two-

step Arellano-Bover version of the GMM model [5] described
above. Three aggregations are shown in the table, Europe as a
whole, and the partition of that data into rich and poor Europe.
Rich and poor sets were obtained by ordering all European
countries by real GDP per person and then splitting the result
into two more or less equal groups. The Europe data consists of 43
countries, with rich and poor consisting of 22 and 21 countries
respectively. Results confirm the story presented so far. In both
models and in all aggregations estimates on lagged yields are
significant at the 5% level. This confirms the observation in Fig. 2b
that, on an average and after accounting for the effects of real GDP
per person, increases in yields are declining for rich Europe.
Additionally, and perhaps surprisingly, results also suggest that
yields in Central and Eastern Europe are declining at approxi-
mately the same amount.

Results for the effects of changes in real GDP per person are
mixed across the different aggregations. For rich Europe, increases
in real GDP per person are positive but insignificant, meaning that
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and Zi is defined as in [5]. In essence, the additional differenced exogenous variables are 
available as instruments. Once the one step estimator is computed, the sample covariance 
matrix of the estimated residuals can be used instead of H to obtain two step estimates 
which are both consistent and asymptotically efficient. Standard GMM theory applies, 
except that Windmeijer [54] has computed finite sample corrections to the asymptotic 
covariance matrix of the parameters.

3.4.2.	 Panel results
The results in Table 4 are calculated using the one and two step Arellano Bover version of 
the GMM model [5] described above. Three aggregations are shown in the table, Europe as 
a whole, and the partition of that data into rich and poor Europe. Rich and poor sets were 
obtained by ordering all European countries by real GDP per person and then splitting 
the result into two more or less equal groups. The Europe data consists of 43 countries, 
with rich and poor consisting of 22 and 21 countries respectively. Results confirm the story 
presented so far. In both models and in all aggregations estimates on lagged yields are 
significant at the 5% level. This confirms the observation in Fig. 2b that, on an average and 
after accounting for the effects of real GDP per person, increases in yields are declining 
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for rich Europe. Additionally, and perhaps surprisingly, results also suggest that yields in 
Central and Eastern Europe are declining at approximately the same amount.

Results for the effects of changes in real GDP per person are mixed across the different 
aggregations. For rich Europe, increases in real GDP per person are positive but 
insignificant, meaning that no statistical relationship can be drawn between the two 
variables at generally accepted levels of significance. This result confirms what can be 
observed in Fig. 6b, recalling that data used in the regressions only runs from 2001 to 
2009. The richer countries are at the relatively flat section of the relationship near the top 
of the figures. In contrast to rich Europe, for poor Europe there is a significant positive 
relationship between increases in real GDP per person and yields. This too can be observed 
in Fig. 6b, where the generally poorer Central and Eastern European countries are at the 
beginning of the positive effects of GDP on yields. Each one U.S. Dollar increase in real 
GDP per person leads to an increase of 2.03 hg of wheat produced per hectare (or 0.203 
kg per hectare). The European aggregation as a whole appears to be primarily driven by 
the relationship in poorer Europe. Observations in those countries mean that higher real 
GDP per country for European countries taken as a whole are positive and significant, 
although, unsurprisingly, the effect of an increase in GDP is smaller for Europe (0.611) then 
it is for exclusively poor countries. The implication for the analysis in its entirety is that real 
GDP per person can be used as a positive predictor of future yields for poor European 
countries and as a roughly positive indicator for the entire European aggregation.

3.5.	 Forecasting
3.5.1.	 Time series forecasting
Previous sections have used historical data to define relationships between yields, lagged 
yields, and real GDP per person. We now turn to the issue of forecasting yields based on 
those historical relationships.

Table 4. Dynamic estimates of European wheat yield data for 2001–2009.
Model Europe Rich Europe Poor Europe

Estimate Std. 
error

Estimate Std.
error

Estimate Std. error

Arellano-Bover
Yield - 0.1426 0.0596* - 0.1685 0.0847* - 0.1892 0.0763*

GDP per person 0.6516 0.2926* 0.2167 0.1909 2.0653 0.3809**

Dynamic two-stage
Yield - 0.1654 0.0673* - 0.1680 0.0855* - 0.1837 0.0789*

GDP per person 0.6112 0.3006* 0.1897 0.1810 2.0310 0.4141**

Note: Estimators for wheat yields across several aggregations.
* Significance at the 5% level.
** Significance at the 1% level.
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Forecasting yields for individual countries, as opposed to aggregations of countries, 
is a straightforward process using standard time series techniques. Given that the data 
that we are using is reported on a yearly basis, there is no need to correct forecasts 
for seasonality, although there is clearly a trend which recommends against simple 
exponential smoothing. As in the aggregate European, poor, and rich country models 
described directly above (see Eq. (3), the model used to forecast individual country yields 
is based on an autoregressive model (a lagged value of yields is included on the right 
hand side of the equation) and includes real GDP per person. Standard tests confirm the 
use of an AR(1) specification. The technique used to forecast yields was to use historical 
relationships to formulate a model and then project that relationship into the future. In 
general, the further one forecasts into the future, the less one is sure that the relationship 
holds. The amount of uncertainty is generally measured by the standard error of the 
residuals which is calculated in the following equation:

A forecast interval indicates uncertainty through time. It is calculated using the following 
equation:

where N is the total number of observations, x is the mean of the observed x values, sx is 
the standard deviation of the observed x values and se is calculated as in Eq. (7).

For those countries in the sample with a complete data set, N is equal to 50. However, 
for newer countries, data is generally only available from the 1990s onwards. Some other 
exceptions include Germany, for which PWT data begins in 1970, and Belgium for which 
the FAO began keeping separate records only in 2000. For Central and Eastern European 
countries in particular, large variations in yields in the initial decade of their independence 
make time series forecasting problematic. The large standard error of the residuals, see Eq. 
(7), means that forecast intervals (8) are at times too broad to make meaningful forecasts 
far into the future. For this reason, we kept the forecast period to a relatively short 10 
year period. Fig. 9 shows time series forecasts for Germany and Poland. The large gray 
areas represent the amount of uncertainty associated with the forecasts. For Germany 
the standard error is, relative to that of Poland, small, so that the size of the gray area 
remains fairly stable though time, while that of Poland increases to reflect the increase in 
uncertainty through time.

Forecasting yields for individual countries, as opposed to
aggregations of countries, is a straightforward process using
standard time series techniques. Given that the data that we are
using is reported on a yearly basis, there is no need to correct
forecasts for seasonality, although there is clearly a trend which
recommends against simple exponential smoothing. As in the
aggregate European, poor, and rich country models described
directly above (see Eq. (3), the model used to forecast individual
country yields is based on an auto-regressive model (a lagged
value of yields is included on the right hand side of the equation)
and includes real GDP per person. Standard tests confirm the use
of an AR(1) specification. The technique used to forecast yields was
to use historical relationships to formulate a model and then
project that relationship into the future. In general, the further one
forecasts into the future, the less one is sure that the relationship
holds. The amount of uncertainty is generally measured by the
standard error of the residuals which is calculated in the following
equation:
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where N is the total number of observations, x is the mean of the
observed x values, sx is the standard deviation of the observed x
values and se is calculated as in Eq. (7).

For those countries in the sample with a complete data set, N is
equal to 50. However, for newer countries, data is generally only
available from the 1990s onwards. Some other exceptions include
Germany, for which PWT data begins in 1970, and Belgium for
which the FAO began keeping separate records only in 2000. For
Central and Eastern European countries in particular, large varia-
tions in yields in the initial decade of their independence make
time series forecasting problematic. The large standard error of the
residuals, see Eq. (7), means that forecast intervals (8) are at times
too broad to make meaningful forecasts far into the future. For this
reason, we kept the forecast period to a relatively short 10 year
period. Fig. 9 shows time series forecasts for Germany and Poland.
The large gray areas represent the amount of uncertainty asso-
ciated with the forecasts. For Germany the standard error is,
relative to that of Poland, small, so that the size of the gray area
remains fairly stable though time, while that of Poland increases to
reflect the increase in uncertainty through time.

Table 5 contains forecasts for each country within Europe using
the methodology described above. An 80% interval is presented in
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Note: Estimators for wheat yields across several aggregations.
n Significance at the 5% level.
nn Significance at the 1% level.
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observed x values, sx is the standard deviation of the observed x
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ciated with the forecasts. For Germany the standard error is,
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Dynamic two-stage
Yield �0.1654 0.0673n �0.1680 0.0855n �
GDP per person 0.6112 0.3006n 0.1897 0.1810

Note: Estimators for wheat yields across several aggregations.
n Significance at the 5% level.
nn Significance at the 1% level.
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Table 5 contains forecasts for each country within Europe using the methodology 
described above. An 80% interval is presented in the table meaning, loosely, that we can 
be 80% confident that the true yield value will lie within the interval. The 80% interval 
can be constructed by simply replacing 1.96 with 1.282 in Eq. (8). The values in Table 5 are 
used to calculate the likelihood that yields will reach a particular level in the future from 
which a rate can then be calculated. The first column in the table is realized yields in 2009; 
the second contains the predicted mean in 2020. The smallest and greatest 80% columns 
in the tables are the smallest and greatest yields that can be expected within the 80% 
interval. The last three columns of the table show how much yields, in percentage terms, 
would have to improve yearly in order to achieve the mean, smallest and greatest levels 
of the interval in 2020 using the starting, realized, values in 2009. The negative numbers 
in the last column for Belgium, Bosnia and Herzegovina, and Kyrgyzstan are a result of the 
high standard errors for these countries which make forecasting values for those countries 
dubious. For the remaining countries in that column, the values range from less than 1% 
for Luxembourg to over 7% for Georgia.

Given the average of around 2.79% for countries with nonnegative values is at the upper 
end of the historical values as shown in Table 3, the implication is that a such a large 
increase over a sustained period is optimistic for the group as a whole, but possible. The 
large increases required of countries such as Belarus, Turkmenistan, Bulgaria and Georgia 
would imply particularly impressive, sustained, yield increases.

3.5.2.	 Panel forecasting using the best linear unbiased predictor
As shown above, the large standard errors caused by the small number of observations 
for some countries in the data set make time series forecasting for those countries 
difficult. Fortunately, panel forecasting methods allow forecasts to be estimated for the 
individual members of a panel data set (see [5] for complete argument). The advantage 
of this approach is that a panel data set can be used to estimate a single, general, model 
based on a relatively small number of observations and the results can then be applied to 
the disaggregated members of the set. The disadvantage is that a panel model estimates 
one model for all countries. Therefore, if there is a great deal of heterogeneity within the 
data, in the sense that underlying relationships vary greatly across countries, then a panel 
model will be less appropriate.

The methodology used to forecast panel models is intuitive. Suppose that we want to 
predict S periods ahead for the ith individual of a panel. For the generalized least squares 
(GLS) model, when the variance–covariance structure of the disturbances is known, 
Goldberger [43] showed that the best linear unbiased predictor (BLUP) of yiT+S is
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and greatest yields that can be expected within the 80% interval.
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and Kyrgyzstan are a result of the high standard errors for these
countries which make forecasting values for those countries
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range from less than 1% for Luxembourg to over 7% for Georgia.
Given the average of around 2.79% for countries with non-negative
values is at the upper end of the historical values as shown in
Table 3, the implication is that a such a large increase over a
sustained period is optimistic for the group as a whole, but
possible. The large increases required of countries such as Belarus,
Turkmenistan, Bulgaria and Georgia would imply particularly
impressive, sustained, yield increases.

3.5.2. Panel forecasting using the best linear unbiased predictor
As shown above, the large standard errors caused by the small

number of observations for some countries in the data set make
time series forecasting for those countries difficult. Fortunately,
panel forecasting methods allow forecasts to be estimated for the
individual members of a panel data set (see [5] for complete
argument). The advantage of this approach is that a panel data set
can be used to estimate a single, general, model based on a
relatively small number of observations and the results can then
be applied to the disaggregated members of the set. The disadvan-
tage is that a panel model estimates one model for all countries.
Therefore, if there is a great deal of heterogeneity within the data, in
the sense that underlying relationships vary greatly across coun-
tries, then a panel model will be less appropriate.

The methodology used to forecast panel models is intuitive.
Suppose that we want to predict S periods ahead for the ith
individual of a panel. For the generalized least squares (GLS)
model, when the variance–covariance structure of the distur-
bances is known, Goldberger [43] showed that the best linear
unbiased predictor (BLUP) of yi;TþS is
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where where ûGLS ¼ y�Zδ̂GLS and w¼ Eðui;TþsuÞ. Note that for period T + S
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and w¼ s2μ ðli⊗lT Þ, where li is the ith column of IN .

In this case

w′Ω�1 ¼ s2μ l′i⊗l′Tð Þ 1
s21

P þ 1
s2v

Q

" #
¼ s2μ

s21
l′i⊗l′Tð Þ ð11Þ

A typical element of w′Ω�1ûGLS becomes ððTs2μ=s21Þû i:;GLSÞ, where
û i:;GLS ¼∑T

t ¼ 1ûit;GLS=T . Therefore, the BLUP for yi;TþS corrects the GLS
prediction by a fraction of the mean of the GLS residuals correspond-
ing to that ith individual. In practice, the optimal variance components
are replaced with their estimated values.

The best quadratic unbiased (BQU) estimators of the variance
components arise from the spectral decomposition of Ω [6]. The
estimated variance terms can be calculated using the following
equations:
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
when forecasting, a single aggregated model based on data from
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
when forecasting, a single aggregated model based on data from
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A typical element of w′Ω�1ûGLS becomes ððTs2μ=s21Þû i:;GLSÞ, where
û i:;GLS ¼∑T

t ¼ 1ûit;GLS=T . Therefore, the BLUP for yi;TþS corrects the GLS
prediction by a fraction of the mean of the GLS residuals correspond-
ing to that ith individual. In practice, the optimal variance components
are replaced with their estimated values.

The best quadratic unbiased (BQU) estimators of the variance
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
when forecasting, a single aggregated model based on data from
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
when forecasting, a single aggregated model based on data from
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A typical element of w′Ω�1ûGLS becomes ððTs2μ=s21Þû i:;GLSÞ, where
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t ¼ 1ûit;GLS=T . Therefore, the BLUP for yi;TþS corrects the GLS
prediction by a fraction of the mean of the GLS residuals correspond-
ing to that ith individual. In practice, the optimal variance components
are replaced with their estimated values.

The best quadratic unbiased (BQU) estimators of the variance
components arise from the spectral decomposition of Ω [6]. The
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
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where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
tories. In fact, standard F-statistics soundly reject the null hypoth-
esis that the countries have one common intercept, in other words,
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the BLUP for yi,T+S corrects the GLS prediction by a fraction of the mean of the GLS residuals 
corresponding to that ith individual. In practice, the optimal variance components are 
replaced with their estimated values.

The best quadratic unbiased (BQU) estimators of the variance components arise from the 
spectral decomposition of Ω [6]. The estimated variance terms can be calculated using the 
following equations:

where the sigmas are calculated in the usual manner from the Within and Random effects 
models.

Fig. 9. Yield time series forecasts for Germany and Poland (95% confidence interval). (a) German 
time series and (b) Polish time series.
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trðPÞ ¼ T ∑

N

i ¼ 1
u2
i:=N ð12Þ

ŝ2
v ¼

u′Qu
trðQ Þ ¼

∑N
i ¼ 1∑

T
t ¼ 1ðuit�ui:Þ2

NðT�1Þ ð13Þ

where the sigmas are calculated in the usual manner from the
Within and Random effects models.

Fig. 10 presents realized yields versus predicted yields per
country. All 43 countries are represented in the figure. Each
symbol represents the realized and predicted values of wheat
yields for a country in a particular year (2001–2009), so there
should be nine symbols for each country. The intention of the
figure is not to identify specific points, the figure contains far too
much data to do that, rather, it is intended to show general
patterns for countries. In general it appears that countries con-
sistently out or under-perform their predicted values. For instance,
Germany, Denmark, France, the Netherlands, the United Kingdom
and Ireland, countries above the bisector, consistently outperform
expectations. In other words, their realized wheat yields out-
perform what the panel model forecasts they should be. While
Spain, Finland, Greece, Italy, Norway and Portugal, those countries
below the bisector, consistently under-perform expectations. This
suggests that there may be country specific structural effects at
work which determine how wheat yields correlate with real GDP
per person.

Table 5 presents similar data to that used immediately in
Fig. 10. In particular, it shows realized 2009 yields versus predicted
yields for the same year. In other words, panel results using lagged
yields and real GDP per person are used to forecast 2009 yields
which are then compared to realized yields. For instance, Albania,
the first country in the table, is performing well above what the
model predicts for that year, while Austria, the second country in
the table, is performing well under expectation.

Results of the panel forecasting model are disappointing.
Unsurprisingly perhaps given the great diversity among countries
within the panel under consideration. The Western, Central, and
Eastern European countries are on very different economic trajec-
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Table 5
Forecasts of wheat yields in 2020.

Country Yield Mean Smallest 80% Greatest 80% Mean Smallest 80% Greatest 80%
2009 2020 2020 forecast forecast forecast forecast

ALB 40,229.47 45,027.35 37,580.50 52,474.19 1.13 �0.68 2.69
ARM 22,010.77 21,247.56 17,061.11 25,434.01 �0.35 �2.52 1.46
AUT 49,294.58 58,262.84 51,644.12 64,881.56 1.69 0.47 2.79
BEL 94,651.78 84,444.79 78,326.69 90,562.89 �1.13 �1.88 �0.44
BGR 31,872.94 35,500.23 19,629.24 51,371.21 1.08 �4.73 4.89
BIH 37,751.28 31,855.22 26,690.83 37,019.60 �1.68 �3.41 �0.20
BLR 35,427.60 35,427.60 17,999.37 52,855.83 0.00 �6.55 4.08
CHE 60,232.74 66,835.06 58,544.49 75,125.63 1.05 �0.28 2.23
CYP 25,499.05 17,507.32 7956.98 27,057.66 �3.69 �10.99 0.60
CZE 52,424.76 52,715.43 42,613.14 62,817.72 0.06 �2.05 1.83
DEU 78,090.79 88,447.02 82,038.78 94,855.26 1.25 0.49 1.96
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Fig. 9. Yield time series forecasts for Germany and Poland (95% confidence interval). (a) German time series and (b) Polish time series.
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Fig. 10 presents realized yields versus predicted yields per country. All 43 countries are 
represented in the figure. Each symbol represents the realized and predicted values 
of wheat yields for a country in a particular year (2001–2009), so there should be nine 
symbols for each country. The intention of the figure is not to identify specific points, the 
figure contains far too much data to do that, rather, it is intended to show general patterns 
for countries. In general it appears that countries consistently out or underperform their 
predicted values. For instance, Germany, Denmark, France, the Netherlands, the United 
Kingdom and Ireland, countries above the bisector, consistently outperform expectations. 
In other words, their realized wheat yields out perform what the panel model forecasts 
they should be. While Spain, Finland, Greece, Italy, Norway and Portugal, those countries 
below the bisector, consistently underperform expectations. This suggests that there may 
be country specific structural effects at work which determine how wheat yields correlate 
with real GDP per person.

Table 5 presents similar data to that used immediately in Fig. 10. In particular, it shows 
realized 2009 yields versus predicted yields for the same year. In other words, panel results 
using lagged yields and real GDP per person are used to forecast 2009 yields which are 
then compared to realized yields. For instance, Albania, the first country in the table, is 
performing well above what the model predicts for that year, while Austria, the second 
country in the table, is performing well under expectation.

Results of the panel forecasting model are disappointing. Unsurprisingly perhaps given 
the great diversity among countries within the panel under consideration. The Western, 
Central, and Eastern European countries are on very different economic trajectories. In fact, 
standard F-statistics soundly reject the null hypothesis that the countries have one common 
intercept, in other words, when forecasting, a single aggregated model based on data from 
the entire panel should be rejected in favor of country specific models. Therefore, we shall 
use forecasts from our time series models Section 3.5.1, as input into MAGNET.
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events. Rather, CGEs are uniquely suited as a means to guide us
through the significant effects of a shock to an economy. In the
case at hand, MAGNET results give an indication of the economic
impacts of changes in yields as they ripple through the European
and world economies. In addition, MAGNET, and other CGE
models, are deterministic models which show that the changes
needed to move from one equilibrium to another [20]. With these
qualifications in mind, the MAGNET model can help us to under-
stand the economic implications of yield changes on the amount
and price of wheat and land use.

Recall that three MAGNET scenarios were run using top wheat
producing regions in Europe. The scenarios consisted of a base
scenario which uses the mean of predicted yields, and low and
high yield scenarios, all of which were based initially on data
found in the last three columns of Table 5. Results from Table 5
were only used when they could be accurately calculated. In some
cases, given the small number of observations available, standard
errors were too large to make meaningful predictions using
standard time series methods. In such cases, yield predictions
were made in consideration of the figures, tables and panel
forecasts described in the previous sections.

The mean, low and high scenarios for all countries were
formulated with regard to the additional information based on
the above-described analyses. Twelve top producing European
countries, with an equal number of established and newer
countries, were chosen for the analysis. Expected yields across
all countries show a great deal of variation, from possible negative
changes in yields to very positive changes. The main point of
running the analyses is to show how changes in yields may affect
important economic variables including land use. In the case of the
yearly mean shocks, most values appear reasonable in the given
data. For established European countries they range from around a
tenth of a percent growth in yields for Italy to 3% for Spain. For
newer European countries, the range of values is large and never
above 1%. In the case of Ukraine, the mean yield change is negative
1%. However, that number is suspect for previously stated reasons
so that value was changed to zero in the base or mean scenario.
Admittedly, this is a somewhat arbitrary change, another value
could have been chosen, but a growth rate of 0% over a 10 year
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Fig. 10. Relative yield performance.

–70

Fig. 10. Relative yield performance.

3.5.3.	 MAGNET results
As is true for any CGE analysis, the results presented here should not be used to make 
precise predictions about economic events. Rather, CGEs are uniquely suited as a means 
to guide us through the significant effects of a shock to an economy. In the case at hand, 
MAGNET results give an indication of the economic impacts of changes in yields as they 
ripple through the European and world economies. In addition, MAGNET, and other CGE 
models, are deterministic models which show that the changes needed to move from one 
equilibrium to another [20]. With these qualifications in mind, the MAGNET model can 
help us to understand the economic implications of yield changes on the amount and 
price of wheat and land use.

Recall that three MAGNET scenarios were run using top wheat producing regions in 
Europe. The scenarios consisted of a base scenario which uses the mean of predicted 
yields, and low and high yield scenarios, all of which were based initially on data found in 
the last three columns of Table 5. Results from Table 5 were only used when they could be 
accurately calculated. In some cases, given the small number of observations available, 
standard errors were too large to make meaningful predictions using standard time series 
methods. In such cases, yield predictions were made in consideration of the figures, tables 
and panel forecasts described in the previous sections.
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The mean, low and high scenarios for all countries were formulated with regard to the 
additional information based on the above described analyses. Twelve top producing 
European countries, with an equal number of established and newer countries, were 
chosen for the analysis. Expected yields across all countries show a great deal of variation, 
from possible negative changes in yields to very positive changes. The main point of 
running the analyses is to show how changes in yields may affect important economic 
variables including land use. In the case of the yearly mean shocks, most values appear 
reasonable in the given data. For established European countries they range from 
around a tenth of a percent growth in yields for Italy to 3% for Spain. For newer European 
countries, the range of values is large and never above 1%. In the case of Ukraine, the 
mean yield change is negative 1%. However, that number is suspect for previously stated 
reasons so that value was changed to zero in the base or mean scenario. Admittedly, this 
is a somewhat arbitrary change, another value could have been chosen, but a growth 
rate of 0% over a 10 year period is conservative given historical trends. For the lower yield 
scenarios, values for established Europe range from negative three for Italy to positive 
1% for Spain. Given the length of the time series available for these countries, a negative 
growth rate is probabilistically possible so these numbers were used in the analysis. In the 
case of newer European countries, the negative numbers were again set to zero. Again, 
the small number of historical values available makes precise forecasts impossible and 
zero seems a conservative value. The high forecast values for established Europe range 
from just about one and half percent for Denmark to nearly 5% for Spain. Values for new 
Europe range from around 1% for Ukraine to nearly 4% for Romania and the Russian 
Federation. Sustained growth rates of 3% and higher have not been experienced since 
the 1960s, but recall that the high yield scenario is intended to measure effects of yield 
increases which are high, but probabilistically possible. which are probabilistically unlikely 
to occur and so these values are used in the analysis. In short, the scenarios are designed 
to provide pessimistic and optimistic extremes. It is most likely that actual values will occur 
somewhere between these two extremes – with the mean forecast being the most likely. 
The scenarios offer an experiment that tests yield ranges from negative to very positive 
percentage changes in yields (Table 6).

MAGNET scenario results, given that the model assumes perfect competition, should not 
deviate significantly from what standard economic theory tells us should happen in the 
event of a shock. The basic idea of a shock is to run an experiment in which one or a few 
aspects of an economy are changed and then to examine how the rest of the economy 
adjusts to the shock once the economy has reached a new equilibrium. Standard theory 
can best be described using a simple supply and demand diagram. For example, in the 
event of an improvement in the technology used to produce wheat, we would expect 
the supply curve to shift out from S1 to S2 in Fig. 11. The initial increase in the quantity 
of wheat produced is the distance EC . However, at that price supply exceeds demand so 
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firms will reduce their supply while demand will increase as buyers switch from wheat 
substitutes to the now cheaper wheat F. At the new equilibrium equation (2), standard 
theory says that prices should be lower and the quantity of wheat sold higher than it was 
in the original equilibrium. In the case of a reduction in the technology used to produce 
wheat, theory says that wheat prices will rise and the quantity produced will fall.

MAGNET results largely conform to theory as can be seen in Table 7. The first two columns 
show production quantity and production price for wheat production in Europe and the 
rest of the world (ROW). In the low yield improvement case, wheat production is less 
efficient than in the base, mean case and, as a consequence, the quantity produced in 
European countries falls except the Czech Republic, the Russian Federation and Ukraine, 
all of whom experience slight increases in production quantity. However, in all three 
cases, yields in both the mean and the low yield scenarios were set to zero. In other words, 
there was no change in wheat yields for these countries. In fact, they are relatively more 
efficient in the production of wheat given that other countries in the scenarios have seen 
reductions in their ability to produce wheat; therefore, they will produce more wheat for 
consumption and export. The other countries all experience a reduction in their ability 
to produce wheat relative to the base case, and in all cases the quantity produced falls. 
Since the rest of the world received no shock it is relatively more efficient than Europe in 
the production of wheat following the low yield shock, and therefore produces more for 
their own consumption and export to Europe. The price of production in the low yield 
scenario increases for all countries in the world. This is because the production of wheat 
has become less efficient so that it is more expensive to meet wheat demand.

Fig. 11. Supply and demand in the case of technological improvement.

with the mean forecast

MAGNET results largely conform to theory as can be seen in
Table 7. The first two columns show production quantity and
production price for wheat production in Europe and the rest of

Fig. 11. Supply and demand in the case of technological improvement.

Table 7
MAGNET wheat results land demand, production quantity, production price, and
land price.

Country Prod. quantity Prod. price Land use Land price

Low High Low High Low High Low High

ROW 0.50 �3.36 0.05 �0.34 0.42 �2.83 0.04 �0.17

–70 67
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Table 6. Forecast of wheat yields in 2020.

Country GDP2009 Realized 
yields

Predicted 
yields

Country GDP 2009 Realized 
yields

Predicted 
yields

ALB 6641.8 40,229 27,626 ITA 27,710 35,316 46,875
ARM 5375.1 22,011 26,468 KAZ 11,734 11,900 32,279
AUT 37,415 49,295 55,743 KGZ 2300 26,285 23,659
BEL 34,630 94,652 53,198 LTU 14,187 42,004 34,520
BGR 10,923 31,873 31,537 LUX 84,585 65,677 98,842
BIH 7116,2 37,751 28,059 LVA 12,776 36,276 33,231
BLR 12,782 35,428 33,236 MKD 7681.5 30,756 28,576
CHE 39,634 60,233 57,770 MLT 21,666 50,000 41,353
CYP 18,997 25,499 38,915 NLD 37,052 92,912 55,411
CZE 21,972 52,425 41,633 NOR 49,980 34,069 67,223
DEU 32,494 78,091 51,246 POL 16,376 41,725 36,520
DNK 33,932 80,373 52,560 PRT 19,904 18,552 39,743
ESP 27,649 26,722 46,820 ROU 9741,4 24,305 30,458
EST 16,295 30,146 36,445 RUS 14,645 23,182 34,938
FIN 32,187 41,027 50,966 SVK 19,145 40,557 39,050
FRA 30,837 74,469 49,733 SVN 24,958 39,643 44,361
GBR 33,407 70,663 52,081 SWE 35,246 60,939 53,761
GEO 5062.6 10,737 26,183 TJK 1872.9 26,157 53,761
GRC 27,304 26,218 46,505 TKM 6934.9 34,395 27,894
HRV 15,085 51,896 35,340 TUR 9919.4 25,664 30,621
HUN 16,521 38,546 36,653 UKR 6413.9 30,930 27,418
IRL 33,406 81,657 52,080

Table 7. MAGNET wheat results land demand, production quantity, production price, and 

land price.
Country Prod. quantity Prod. price Land use Land price

Low High Low High Low High Low High
ROW 0.50 - 3.36 0.05 - 0.34 0.42 - 2.83 0.04 - 0.17
DNK - 0.48 - 0.78 0.89 - 0.73 7.38 - 7.23 2.96 - 2.61
FRA - 1.21 - 1.25 0.87 - 0.74 6.81 - 7.59 4.81 - 4.69
DEU - 0.61 - 1.76 0.74 - 0.71 4.99 - 6.20 1.16 - 1.21
ITA - 9.52 2.92 4.33 - 2.32 16.11 - 14.39 6.04 - 4.56
ESP - 3.37 0.10 1.65 - 1.05 11.68 - 10.29 4.33 - 3.30
GBR - 0.82 - 0.79 0.82 - 0.59 8.11 - 7.66 5.03 - 4.23
CZE 0.87 8.94 0.45 - 4.41 1.27 - 6.89 0.80 - 3.64
POL - 1.80 2.88 1.80 - 3.35 3.66 - 7.92 1.45 - 2.95
ROU - 4.18 14.73 2.61 - 7.27 2.59 - 9.4 1.25 - 4.05
RUS 0.35 27.25 0.08 - 7.89 0.33 - 6.88 0.01 - 0.02
UKR 0.24 3.31 0.03 - 2.95 0.22 - 7.28 0.07 - 2.96
XSU - 0.09 19.20 0.10 - 10.76 - 0.06 - 14.11 0.78 - 5.49

Note: XSU is an aggregated region which includes Uzbekistan.
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For the high yield case, in which wheat yields improve, the quantity of wheat produced 
increases for Italy, Poland, Ukraine and slightly for Spain, but is especially high for the Czech 
Republic, Romania, Uzbekistan (XSU) and the Russian Federation. The last four countries 
are driving what is happening in this scenario. The large yield increase they experience, 
especially when compared to the relatively anemic increases in the rest of Europe, means 
that their production increases dramatically and it becomes more efficient for many other 
European and countries in the rest of the world to import wheat from those four countries. 
The result is a decrease in production quantity for most other countries and a decrease in 
the price of production for all countries.

3.5.4.	 Land use
We are now in a position to ask what happens to land use in relationship to exogenous 
changes in yields. The basic economic mechanisms are the same as those in the previous 
analysis. However, instead of a shift in the supply curve of wheat, now the demand curve 
for land shifts as more or less land is needed to grow the same amount of wheat. For 
example, a technological improvement in the production of wheat shifts the demand 
curve for land to the left reducing the demand for land and lowering its price at the new 
equilibrium. This shift is directly modeled in both the low and high scenarios. The low 
yield scenario models the case that land is less efficient than the predicted mean and, 
as a result, land use increases in all countries except Uzbekistan, which realizes a slight 
decrease as a result of the narrow difference between the mean and low scenarios for 
that country. The high yield scenario leads to a reduction in land used to grow wheat for 
all countries. Again, the high yield case means that the same amount of land can be used 
to grow more wheat so less land is needed to meet the demand for wheat. Changes in 
the price of land follow along the same reasoning; less efficient land used to grow wheat 
means that more land is needed to grow the same amount of wheat. The additional land 
must be bought in the perfectly functioning land market, thereby raising the price of 
land. In the case of more efficient production, the price of land falls because less land 
is needed to grow the same amount of wheat so the excess land is sold in the market 
thereby lowering the price of land.

The land ‘freed’ by the increase in wheat yields is not exclusively available for the 
production of wheat. Other crops, and any other MAGNET sector using land, compete 
with wheat for land as an input and market prices for intermediate and final products will 
determine to which use the freed land is eventually allocated. Indeed, MAGNET results 
show that land use for non-wheat crops and other sectors using land decreases as a result 
of reduced wheat yields while wheat yields improve. These other sectors are harmed 
by or benefit from decreases or increases in wheat yields. Therefore, the argument that 
yield creases release land which is currently being used to grow wheat or other crops to 
grow bioenergy crops should be tempered by the fact that other crops and sectors using 
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land, besides bioenergy crops, compete in the marketplace for the same land. The market 
value of intermediate and final products will determine to which sector the freed land is 
allocated.

4.	 Conclusions

Two complementary methodologies have been used in the foregoing analysis, the first 
to estimate and forecast yields, and the second to calculate the resulting effects on land 
use. A wide variety of tools were used to analyze the historical and possible future growth 
patterns of wheat yields.

We found that yields for the world and Europe have significantly increased in the period 
from 1961 to 2010. For instance, yields for European countries with the highest yields have 
more than doubled in that period, while those with the lowest yields have more than 
tripled in some cases. However, there is strong evidence of a general leveling of yields 
since the 1990s, a trend which is particularly evident for countries with higher yields, 
but also extending to Central and Eastern European countries as well. Fig. 2b reaffirms 
previous observations that growth rates have been decreasing across most of Europe as 
do panel analyses in Table 4. That table provides strong statistical evidence that yields are 
increasing at a decreasing rate for both rich (Western) and poor (generally Central and 
Eastern) European countries alike. However, the table also shows that poorer countries 
can expect to realize large increases in yields as their levels of real GDP per person increase.

In the last two decades all growth rates except the world’s 10 most productive wheat 
producers have been well below one-and-a-half percent and, in most cases, well 
below one percent. This trend is the most dramatic in the case of Europe’s top wheat 
producing countries, which have seen yield growth rates of just 0.32% in the last decade, 
corresponding to a doubling of yields every 217 years. In addition, large differences 
in yield rates persist within Europe, with high yield countries producing four times 
the amount of wheat for a given area when compared to European countries with the 
lowest yields. Our study has found evidence of log t divergence, meaning that there is no 
evidence of a common underlying growth rate for yields across Europe. However, there is 
strong evidence of absolute convergence which indicates that, on an average, countries 
with lower initial yields will grow faster than countries with higher initial yields. In short, 
although European countries have been growing at a variety of rates, those countries with 
lower initial rates will grow, on an average, at higher rates than countries with high initial 
growth rates.
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The short and erratic time series of many Central and Eastern European countries 
complicated the forecasting process. For instance, the sharp drop and then recovering of 
yields for many Central and Eastern European countries undergoing market rationalization 
increased yield variation, thereby reducing the effectiveness of standard time series 
techniques for those countries. To address the problem of short series, dynamic panel 
methods, which require short time series relative to the number of observations, were 
employed to estimate yield developments and included lagged yields and real GDP per 
person as exogenous variables. Results were consistent with observations based on the 
previous figures. Table 4 shows that there is a positive relationship for poorer countries 
between increases in real GDP per person and yield increases. While estimates for the 
variable changes in yields are all significantly negative, indicating that yields are increasing, 
but at a decreasing rate. Finally, Fig. 10 shows that countries are fairly consistent in either 
under or over performing in regard to estimated yields. However, forecasts using the 
panel model were rejected in favor of time series techniques because the diversity  of 
countries within the data set raised concerns about the results. A final, perhaps surprising 
outcome, is the result that some European countries may experience decreases in yields in 
the coming years relative to their current levels. Although unlikely, the negative values are 
at the low end of the 80% confidence interval, a contraction in yields is possible.

The technique used to estimate yields resulted in a diverse range of forecast values (see 
Table 5) that were then used as input into the MAGNET model. The values give a rough 
indication of what might happen to yields in the future given historical developments 
in yields and real GDP per person. They indicate a diverse range of growth rates across 
Europe. In summary, there is evidence that Central and Eastern Europe have at least 
the potential for growth, although recent evidence indicates that their growth rates are 
slowing as well. As discussed in the text, forecasts are not perfect indicators given the 
small number of available years for some Central and Eastern European countries. With 
that qualification in mind, MAGNET used the calculated growth rates as input and has 
given us insight into the wider economic adjustments which occur when yields change.

MAGNET results, for the most part, followed what standard economic theory predicts 
would happen when yields either decrease or increase relative to the business as usual 
case, although there are a few interesting outcomes which require explanation. The 
effects of the case in which yields achieve the lower end of the 80% confidence interval 
are discussed first, followed by the case in which they achieve the highest values of the 
same interval.

When yields achieved the lower end of their forecasted values, land demand for wheat 
production increased across the vast majority of regions. The increase implies that the 
demand for wheat, in a sense, outweighs the higher cost of producing wheat. Recall that 
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yields, which are output per land area, are a part of the cost of producing wheat, a decrease 
in wheat yields means that more land is required to produce the same amount of wheat. 
Since the demand for wheat is not perfectly elastic, in other words, demand for wheat 
does not fall as much as its price rises, more land was required to supply wheat demand. 
An increase in the demand for land to produce wheat means that, in general, there is less 
land to produce crops other than wheat. Land has become relatively scarce and therefore 
more expensive, leading to a decrease in land demand and an increase for other inputs 
into the production process. The net result is that land demand for agricultural sectors 
other than wheat fell. The total land demand and supply from all sectors including wheat 
increased slightly, meaning that the decrease in wheat yields caused additional land to 
become available for agricultural production.

It is perhaps surprising that the production of wheat decreased in regions in Western 
Europe, but increased in Central and Eastern Europe. However, this discrepancy is caused 
by the fact that it becomes relatively cheaper for Western European countries to import 
wheat from Central and Eastern Europe. Although the price of production increased in 
all European regions, increases in Western Europe were relatively higher. This difference 
between Western Europe and Central and Eastern Europe is clearly evident in the effects 
of a decrease in yields on land prices between the  two regions. Land prices for wheat 
production in Western Europe saw a large increase compared to much smaller increases 
in Central and Eastern Europe.

When yields achieved the upper end of their forecasted values in Europe, land demand for 
wheat production fell across all countries, both in Europe and the rest of the world. This is 
essentially the story that is told in the models mentioned in the introduction of this paper. 
Higher yields mean more land available to grow wheat or some other bioenergy products. 
It is self-evident, less land is needed to grow the same amount of wheat. However, MAGNET, 
and standard economic theory, tell us that land demand from all other sectors, excluding 
wheat, rose for most regions as a result of the increase in wheat yields. The land freed 
from the production of wheat went to the production of other agricultural products, and 
not only the production of bio energy products. For instance, land used to raise livestock 
increased as well. Total land demand from all sectors including wheat decreased slightly 
for all regions of the world. In short, some of the land freed on account of wheat yield 
increases either went to the production of nonagricultural products or was idled. 

Again, at first glance it may be surprising that wheat production increased by a large 
percent in Central and Eastern Europe, but fell in many regions in Western Europe. This 
shifting of production from Western Europe to Central and Eastern was a result of greater 
production price reductions in Central and East ern Europe when compared to Western 
Europe. The price of land used to grow wheat, generally a large percentage of the price of 
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production, fell across all countries because land for wheat production, and the production 
of all other agricultural products, is now more plentiful.

The principle message, from either a decrease or increase in wheat yields, is that the 
economic effects of yield changes or any other significant change need to be analyzed 
with regard to their substitutes and complements, and the marketplace in which they 
operate. The analysis shows that land released by an increase in wheat yields will not 
necessarily go to produce bioenergy crops. Rather, it will go to the sector that values 
additional land the most. To complicate the matter still further, yield changes in wheat 
need to be analyzed with regard to yield changes in other crops as well, in our analysis we 
have assumed that the yields of other crops continue along their forecasted paths. Our 
analysis shows that wheat yields are likely, on an average, to increase, but at a decreasing 
rate. The effects of those wheat yield increases on the production of wheat is positive, 
but that increase is mitigated by the demand for other products for land which made 
relatively cheaper input. A more direct, but economically distorting, manner to increase 
wheat supply would be to make it more profitable to produce through, for instance, direct 
subsidies or subsidies to the bioenergy products that use it as an input.
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The paper examines the economic effects of expected changes in temperatures 

and precipitation on the trade of ten major food crops. The relative effects for 

developing versus developed countries are emphasized. A series of econometric 

models using panel data and autoregressive integrated moving average models 

are used to estimate and forecast relationships between yields and weather 

data, the results of which are used as input into MAGNET, a global computerized 

general equilibrium modeling framework. Econometric results show that average 

temperatures have increased across all areas growing major food crops. Results for 

precipitation are ambiguous, however, there is statistical evidence of two distinct 

periods, a first in which, on average, precipitation fell, followed by a second in 

which it increased. Results for crops with statistically significant estimates show that 

increasing temperatures have negatively affected yields. These results hold for both 

poor and rich countries, however, the degree to which yields are reduced is crop 

specific and sensitive to a country’s level of wealth. Results show that changes in 

weather will have significant effects on the production, trade, and, in some cases, the 

consumption of major food crops.Ab
st
ra
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1.	 Introduction

1.1	 The problem
The effects of climate change on trade have been identified as an important, neglected, 
research topic (Josling et al., 2010; Tamiotti et al., 2009). This paper addresses the subject 
by examining the global consequences for trade of expected changes in temperatures and 
precipitation. In particular, it asks what will be the effects of changes in those variables on 
the trade of major food crops. Long-term changes in those important weather variables 
are expected to affect yields, and thereby the ability and willingness of countries to trade 
agricultural products and, ultimately, worldwide consumption patterns.

It has been argued that the economic effects of changing weather patterns on food 
consumption will depend as much on its role in trade as on it does on crop production 
directly (Reilly et al., 1994; Sonka, 1991). Trade of agricultural products is particularly 
important for the well-being of developing countries, and is widely considered to be a 
major potential contributor to their prospects for growth, food security, and efforts to 
reduce poverty (Moïsé et al., 2013). Although agricultural trade has fallen as a percentage 
of the value of total world trade of goods and services, it has been increasing at a faster 
rate than world agricultural production and remains an important component of the 
economies of both developing and developed countries (Josling et al., 2010). In particular, 
FAOSTAT data can be used to show that the share of developing countries in total world 
exports and imports of agricultural products has been steadily increasing since 1990, and 
that they have become net agricultural product importers (FAOSTAT, 2013). For these 
reasons, it is important that the potential impacts of changes in weather patterns on trade 
are assessed. Trade, in turn, directly affects domestic prices, quantities produced, and 
ultimately consumption.

Arvis et al. (2013) show that the relative costs of trading are higher for developing 
countries, placing them at a competitive disadvantage when compared to developed 
countries. There are many reasons cited for this disadvantage, including traditional and 
non-tariff trade barriers and regional integration agreements. Changing weather patterns 
represent a potentially significant additional cost for developing countries in that they 
may be less able than wealthier countries to adapt to changing weather patterns. We 
know, for instance, that farmers in developed countries are able to adapt to changes 
in weather patterns by changing when they plant, but also by changing in production 
inputs such as applications of fertilizers and pesticides and, in general, their use of inputs 
requiring energy (Powell, 2014). We hypothesize that developing countries are less able 
to substitute inputs, particularly high energy inputs, to meet changing climate conditions 
and are thereby at a competitive disadvantage when weather patterns change. This 
paper examines whether that hypothesis is supported by testing if there are significant 
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differences between the effects of changing weather patterns on developing versus 
developed countries. Please note that the paper is concerned with the chronic hazards of 
changes in weather as opposed to what are known as sudden onset hazards or extreme 
weather events (Cutter et al., 2009).

1.2	 Methodology
In order to determine the effects of precipitation and temperature changes on trade two 
methodologies are needed, namely, econometric methods are used to forecast changes 
in yields resulting from changes in the weather variables, thereafter, the forecasts are used 
to simulate the effects of the altered yields on the exports and imports of food crops. Our 
approach differs from previous studies by employing a combination of economic tools to 
address each point of this complex issue.

Pieces of the general topic of the effects of climate change on yields have been previously 
investigated (Greenstone and Deschenes, 2006; Licker et al., 2010; Lobell et al., 2011; 
Schlenker and Roberts, 2009) . For instance, statistically significant results on the effects 
of temperatures and precipitation on yields of major food crops have been reported, 
with Lobell and Field providing one of the first papers with results applicable at a global 
scale (Lobell and Field, 2007). In addition, a series of recent articles using prominent CGE 
models examined the effects of climate changes on global production and consumption, 
emphasizing the differences found among model results (Nelson et al., 2013a,b; Valin 
et al., 2014). Other studies have examined the effects of climate changes at lower levels 
of aggregation, for instance at regional and country levels of analysis (Erda et al., 2005; 
Powell, 2014; Prato et al., 2010). For instance, the literature on the adaptation of farms 
to climate changes is meant to address farm adaptation to changing weather patterns 
(Bradshaw et al., 2004; Gebrehiwot and Veen, 2013; Luers et al., 2002; Pandey et al., 2007; 
van Wijk et al., 2012).

Our approach combines country level data analysis with a global CGE model. It builds-on 
and refines previous econometric yield models by providing a more nuanced methodology 
for examining the effects of changes in weather on yields. In particular, it tests whether 
country specific heterogeneity is a statistically significant factor in the estimation of the 
relationship. Estimates are calculated using various panel data models including dynamic 
models (Baltagi, 2008; Frees, 2004; Hsiao, 2003). Panel models are the preferred method 
given the global scale of the issue under investigation. They provide, in a sense, insight into 
general econometric relationships across all countries, and are a means of disentangling 
the effects of general versus country specific data differences. In addition, the wide range 
of crops considered allows us to test whether there is variation in how crops react to 
changes in the weather. However, panel analyzes provide just one global relationship per 
crop. Although, country specific forecasts can be retrieved from such a global relationship 
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(Frees and Miller, 2004), a more natural approach given the amount and completeness of 
the data available is to estimate country specific relationships directly from the data based 
on variables identified with the general model. Specifically, when data allows, country 
specific autoregressive, integrated, moving average (ARIMA) models are used to estimate 
and forecast the effects of weather variables on yields (Hamilton, 1994).

Those forecasts are then used as input to run a series of simulations using the computerized 
general equilibrium model (CGE) model MAGNET which is a significant extension of the 
Global Trade Analysis Project (GTAP) model (Hertel, 1997; Hertel et al., 2010). Two general 
types of simulations are implemented, one in which the calculated effects of weather are 
included in the model, and the other, a base case, in which the effects of weather are 
excluded from the model. Results for the separate models are then compared to determine 
the impacts of changing weather on trade. CGE models have been used extensively to 
simulate trade related issues (Dixon et al., 1977; Robinson, 1990; Robinson et al., 1990; 
Rutten et al., 2011). Indeed, as its name implies, analyzing trade was an important 
motivating factor behind the development of GTAP. The MAGNET modeling framework 
is an extension of the GTAP model in that it uses both the behavioral relationships and 
database of GTAP as a starting point for analyzes. By applying simple shocks to yields 
while retaining default GTAP relationships, MAGNET output will allow us to determine the 
effects of weather changes on trade at both country and global levels.

Together, the econometric techniques and CGE model provide a comprehensive 
analytical framework which allows the effects of weather events to be linked to a model 
with a global scope, the result is a unique perspective on the impacts of changing 
weather patterns on global trade. The proposed approach is admittedly complex in that 
it involves using descriptive, panel, time-series (ARIMA), and CGE techniques to address 
the research questions. The first section provides a description of the data and its primary 
characteristics. Thereafter follows a section describing the panel model and results. The 
ARIMA section then describes the procedure used to forecast changes in yields while 
emphasizing the uncertainty of those forecasts. The results of MAGNET simulations are 
then presented and, finally, general conclusions are drawn.

2.	 Characteristics of the data

This section examines the sources of the data used in the text and their important 
characteristics, in particular, weather trends are identifiable. Econometric techniques 
will give an indication of how confident we can be that observed trends will continue. 
The weather variables are presented first, thereafter, yield developments over the 
last 50 years for the crops in the study are examined. Results in the following sections 
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provide fundamental information on the relationships between variables that need to be 
addressed in the econometric models.

2.1	 Temperatures and Precipitation
Initially, three independent weather variables were used to estimate changes in yields, 
namely, precipitation, minimum, and maximum temperatures (Lobell and Field, 2007). 
In the data set developed, the globe is divided into 720 * 360 grids according to an 
area’s latitude and longitude. Temperatures and precipitation are reported for each grid 
on a monthly basis for each year in the analysis. Precipitation is the monthly average 
of precipitation in a grid measured in millimeters, while minimum and maximum 
temperatures are the monthly average low and high temperatures reported in Celsius. 
Temperature data were obtained from the East Anglia Climate Research Unit (CRU TS) 3.10 
(Jones and Harris, 2008). Precipitation data were derived from a revised version of the 3.10 
database upon recommendation of East Anglia. Spatially weighted averages of the CRU 
data were then computed for each crop, with weights defined by the spatial distribution 
of crop area based on the method by Leff et al. (Leff et al., 2004). The essence of the 
method used is that the greater the percentage that a grid provides to a country’s total 
production of a crop, the greater the weight the weather variables in that grid receive in 
the calculation of a country’s average yearly temperature and precipitation levels.

Figure 1. Average monthly high temperatures and precipitation during growing seasons for ten 
major food crops.

We initially follow the basic methodology as described in Lobell and Field of defining 
global growing seasons for each crop. The approach selects weather data only for the 
months important to the growth of a crop. However, in contrast to Lobell and Field, 
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Figure 1: Average monthly high temperatures and precipitation during growing seasons for ten major food crops.

We initially follow the basic methodology as described in Lobell and Field of defining global growing seasons for each crop.
The approach selects weather data only for the months important to the growth of a crop. However, in contrast to Lobell and
Field, whenever the data allowed, we selected growing months per country rather than using a single growing periods for
all countries. For instance, say that the months from May to October are important months for the production of wheat in
country ’A’, then only weather data from those months was selected and used in the analysis (Sacks et al., 2010). Data on
months important for growing certain crops was not always available, in which case a yearly average of the weather variables
was used. This use of country specific growing season data seems reasonable given that countries in Northern and Southern
hemispheres are likely to grow the same crop during very different months. The resulting database contains crop-specific
monthly time series data of selected global temperatures and precipitation for the years 1961-2009.

Figure 1a shows monthly average maximum temperatures during growing seasons in grids in which important food crops were
grown from 1961 to 2009. An identical plot was made for minimum temperatures, however only the figure for maximum
temperatures is included because of the high correlations between the two variables. The average trend line, the solid smooth
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whenever the data allowed, we selected growing months per country rather than using 
a single growing period for all countries. For instance, say that the months from May 
to October are important months for the production of wheat in country ’A’, then only 
weather data from those months was selected and used in the analysis (Sacks et al., 2010). 
Data on months important for growing certain crops was not always available, in which 
case a yearly average of the weather variables was used. This use of country specific 
growing season data seems reasonable given that countries in Northern and Southern 
hemispheres are likely to grow the same crop during very different months. The resulting 
database contains crop-specific monthly time series data of selected global temperatures 
and precipitation for the years 1961-2009.

Figure 1a shows monthly average maximum temperatures during growing seasons in 
grids in which important food crops were grown from 1961 to 2009. An identical plot was 
made for minimum temperatures, however only the figure for maximum temperatures is 
included because of the high correlations between the two variables. The average trend 
line, the solid smooth gray line in the figure, is positive and statistically significant, as are 
the trends lines for each crop taken separately. Average results across all crops show that 
maximum average temperatures have increased by 0.017 ◦C per year in crop growing 
grids, while average minimum temperatures for all crops have increased by 0.020 ◦C per 
year. The figure emphasizes the extent to which worldwide temperatures are synchronized 
across grids despite the wide variety of crops grown, the range of growing seasons, and 
the various environments over which crops are grown.

Global temperatures, whether maximum or minimum, appear to react to the same short-
term temperature fluctuations and to be following the same long-term trends. At the 
individual crop level, cassavas appear to be grown in grids when they are relatively warm, 
while sugar beets are grown in grids when they have lower temperatures; wheat and 
barley are grown in grids with nearly the same temperatures. Because temperatures of 
grids were calculated based on the months in which a crop was grown, it is not possible 
to directly determine from the figures whether the extent to which the temperature of a 
grid is determined by its location or by the months in which it was grown. However, the 
figures do appear to conform to the common knowledge that cassavas, rice and sorghum 
are grown in warmer regions, sugar beets and rapeseed are grown in cooler climates, and 
the remaining crops are grown in milder regions.

The data in this subsection suggests that if underlying data generating processes behind 
the rise in temperatures persists, as it has throughout the period studied, then we can 
expect temperatures in the future to rise as well. Note that the intention of this section 
is not to predict changes in weather; other than time, no other explanatory variable is 
included in the model. In the current analysis it is only possible to deduce that if the 
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effects of unidentified underlying variables continue to cause temperatures to increase 
and nothing of significance changes, then we can be fairly confident that temperatures 
will increase in the future. These are heavy qualifications, but they need to be explicitly 
stated in order to understand the limits of the analysis to follow and, at a minimum, they 
suggest that only short or medium term predictions should be attempted in order to 
mitigate the issue of potentially changing underlying data generating processes.

In contrast to temperatures, results for precipitation across all crops are, with the 
exception of sugar beets, insignificant, implying that there is no statistical evidence 
that precipitation in crop growing grids has significantly changed over the entire period 
under review. Precipitation in grids growing sugar beets has increased by around 0.075 
millimeters per year. However, the trend line in figure 1b suggests two distinct periods, 
one from 1961 to around 1987, and the other continuing thereafter until 2010. Running 
separate regressions for the two periods leads to statistically significant results for crop 
averages in both periods with an estimate of -1.42 and t-value of -2.2 in the first period, 
and an estimate of 2.34 with a t-value of 3.0 in the second period. Chow tests confirm 
the observed structural break, and results from regressions are significant for each period 
reported.

Figure 2. Yields of ten major crops.

In general, precipitation in crop growing areas has been increasing since 1988. The figure 
and tests suggest including a non-linear form of the precipitation variable in the model. 
They also suggest that, in contrast to temperatures, there has been a large amount of 
variation in the amount of precipitation falling in different crop growing grids. The 
ambiguous nature of the effects of precipitation reappear in the econometric results to 
follow.
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Figure 2: Yields of ten major crops.

period under review. Precipitation in grids growing sugar beets has increased by around 0.075 millimeters per year. However,
the trend line in figure 1b suggests two distinct periods, one from 1961 to around 1987, and the other continuing thereafter
until 2010. Running separate regressions for the two periods leads to statistically significant results for crop averages in both
periods with an estimate of -1.42 and t-value of -2.2 in the first period, and an estimate of 2.34 with a t-value of 3.0 in the
second period. Chow tests confirm the observed structural break, and results from regressions are significant for each period
reported.

In general, precipitation in crop growing areas has been increasing since 1988. The figure and tests suggest including a
non-linear form of the precipitation variable in the model. They also suggest that, in contrast to temperatures, there has been
a large amount of variation in the amount of precipitation falling in different crop growing grids. The ambiguous nature of
the effects of precipitation reappear in the econometric results to follow.

2.2 Yields

The FAO data used in the analysis spans a period from 1961 to 2010 and measures hectograms of a crop produced per
hectare (FAOSTAT, 2013). However, only the years from 1961 to 2009 were used in the econometric analyzes to follow
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2.2	 Yields
The FAO data used in the analysis spans a period from 1961 to 2010 and measures 
hectograms of a crop produced per hectare (FAOSTAT, 2013). However, only the years from 
1961 to 2009 were used in the econometric analyses to follow because that is the range 
over which the CRU data extends. The intent of the analysis in this section is to present the 
general path that yields have followed over the last fifty years in order to identify possible 
trends which we would expect to reappear in the econometric analyses. Note that yields 
are rates in that they measure an amount of output per area and should not be confused 
with the amount of a crop produced. Yields are a measure of partial productivity in the 
sense that they inform us about one important aspect of the crop production process, 
other productivity measures, including labor and capital productivity, are not included in 
this study. We focus the analysis on yields because we expect that weather will have the 
greatest effect on that factor and because, frankly, that data are readily available in large 
quantities.

Figures 2a and 2b show that, on average, crop yields have increased over the period under 
investigation, however they have in many cases, as has been previously noted, increasing 
at a decreasing rate (IFPRI, 2009; Sims et al., 2008). Figure 2a shows the general tendency 
of yield increases over the last 50 years. There have been noticeable differences in the 
growth rates of crops over the period. Yields of cassavas, at 31%, have increased the least 
over the period, while percentage increases of sorghum (120%), wheat (133%) and maize 
(180%) have been well over 100%; while rapeseed (65%), paddy rice (75%), sugar beet 
(81%), barley (86%), potatoes (89%) and soybeans (100%) round out the field.

Figure 2b provides a more detailed view of wheat yield developments. It shows the 
gradual decrease in the rate of yield increases which has occurred for ten countries with 
the highest wheat yields in 2009. The thick gray line near the middle of the figure was 
produced using a non-linear regression technique and shows the average path of yield 
increases. Please note that the y-axis in figure 2b does not have a zero origin, this was 
done in order to direct focus to the marginal changes that have occurred over the period. 
Although the figure is only for wheat, the observed phenomenon extends to several 
crops in the study including barley, rapeseed, potatoes and rice, but less so for maize. A 
reduction in the rate of yield increases is less clear for soybeans and sugar beets, while 
yield growth appears flat for countries with the highest yields of cassava and sorghum. 
In any case, results from this section recommend adding a non-linear time trend to the 
model in order to try to capture potential effects of observed decreases in yield increases.

2.3	 MAGNET model
The global economic simulation model used in the analysis is the Modular Applied 
General Equilibrium Toolbox (MAGNET) model, a CGE modeling framework developed 
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at LEI, an institute which is a part of the Wageningen University and Research Centre in 
the Netherlands (WageningenUR, 2012). MAGNET has been used extensively to study 
the impact of policy changes on international trade, production, and consumption, and 
it took part in the comparison of CGE models mentioned above (Nelson et al., 2013a; 
Tabeau and Woltjer, 2010; van Meijl et al., 2006; Verburg et al., 2008). It is an extension 
and significant reorganization of the GTAP model, a widely used tool for global trade 
analyzes (Hertel, 1997). The following subsection provides a brief description of the model 
including the database, which forms the heart of the model, and the method of modeling 
actor behavior and markets.

The data used in the analysis is based primarily on version 8 of the database collected 
and processed by GTAP at Purdue University (Hertel, 1997). Version 8 uses 2007 as its 
base year and contains balanced economic data for 129 regions and 57 economic sectors 
(GTAP, 2012). For the purpose of this analysis, the 129 regions and 57 sectors have been 
aggregated in accordance with the research question. Aggregation allows less important 
data to be bundled together and the focus to be directed at the specific regions and sectors 
under investigation. The regional aggregation used in the current analysis consists of all 
primary crop producing countries and regions. The sectoral aggregation consists of the 
primary agricultural sectors available in MAGNET, namely, paddy rice, wheat, grains, and 
oils. The remaining sectors have been aggregated into a general manufacturing sector 
and a service sector. The model retains the standard MAGNET specification of five factors 
of production, including skilled and unskilled labor, capital, land, and natural resources.

MAGNET captures the behavior of three types of agents: households, firms and government, 
for each region of the model. Household behavior is captured via a representative regional 
household which is assumed to maximize its utility, collect all income that is generated 
in the economy, and allocate that income over private households, government 
expenditures, and savings for investment goods. Income is derived from payments by 
firms to the regional household for the use of endowments of skilled and unskilled labor, 
land, capital, and natural resources. The regional household also receives income from 
taxes paid by the private household, firms, and the government expenditures. Firms, 
profit maximizers, produce commodities by employing the aforementioned endowments 
and intermediate inputs from other firms based on constant returns to scale production 
technology and sell them to private households, the government, and other producers. 
Domestically produced goods can be either sold on the domestic market or exported. 
Similarly, intermediate, private household, and government demand for goods can be 
satisfied by domestic production or by imports.

Demand for and supply of commodities and endowments are traded in markets which 
are modeled as perfectly competitive and clear via price adjustments. Because all markets 
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are in equilibrium, firms earn zero economic profits, households are on their budget 
constraints, and global savings must equal global investments. Since the CGE model 
can only determine relative prices, the GDP deflator is set as the numéraire of the model 
against which all other prices are benchmarked. Changes in prices resulting from the 
model simulations therefore constitute real price changes. For the current study we are 
using the model to carry out dynamic analyzes over time, specifically for 2007 (the base 
year) until 2020. Projections into the future are obtained by allowing the exogenous 
endowments of capital, land, natural resources, and labor, and the productivity of these 
factors, most notably yields, to grow according to standard forecast growth paths which 
are based on readily available economic data.

2.3.1 Data used to shock MAGNET
A shock in the current context means to change crop yield data in MAGNET from what it 
would be under the standard assumptions mentioned above, to what they are expected 
to be given forecasted changes in climate. The changes push the model from a starting 
equilibrium to an equilibrium which accounts for the changes in yields. Essentially, all 
countries are represented in the MAGNET model either as individual countries or as part 
of a region. Unfortunately for current purposes, many poorer countries, particularly in 
Africa, are not directly represented in the GTAP database. This is due primarily to data 
quality issues. Data for those countries are approximated at Purdue and then aggregated 
into regions. The aggregation of countries into regions in MAGNET means that our 
forecasted changes in yields need to be aggregated as well. The procedure used was to 
weight the ARIMA forecasts (explained below) according to the area that a country uses to 
grow a particular crop. For instance, if the total area of an aggregated region is 100 units, 
and the area of a particular country in that region is 20 units, then the forecasted yield 
change for that country is multiplied by 20/100 and so forth for all countries in the region. 
Similarly, the number of agricultural sectors represented in MAGNET are aggregates, 
recall that standard GTAP has fifty- seven sectors to represent the entire global economy. 
Agricultural sectors, although well represented given their relatively small contribution 
to the world’s economy, are few. For instance, grains is a sector in GTAP, and therefore 
MAGNET, which includes maize, but many other grains as well. We do not have data for all 
grains, consequently, we make the simplifying assumption that the sector grains follows 
our weighted estimates for maize, barley, and rye–the crops for which we do have data. 
Weighing the ARIMA forecasts was done according to the area used to grow each of 
the grain crops in MAGNET countries or regions; for instance, if a region primarily grows 
wheat, then wheat dominates the calculated shock. Similarly, the category oils in MAGNET 
was approximated based on the data we have for soybeans and rapeseed. Wheat and rice 
are separate sectors in MAGNET so no weighing was required. The resulting percentage 
change for each crop and each region and each of the five scenarios (see below) were 
used to shock MAGNET.
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3.	 Models

3.1	 Econometric Model
3.1.1	 Introduction
This section introduces the econometric models used to analyze relationships between 
yields and weather. It builds on the results of previous sections by incorporating observed 
relationships into the models and testing whether those relationships hold statistically. 
Econometric models are introduced according to their underlying assumptions, with 
particular attention paid to how the various models account for country heterogeneity. 
The purpose of this section is to develop a general model, applicable across all countries. 
The model is, by necessity, rough, and meant to give an overview of the relationship 
between yields and weather variables on a global scale. The model is then applied to 
the same data, but partitioned into poor and rich countries to determine whether there 
are statistical differences between the two groups. Finally, in the section thereafter, the 
data is further partitioned into country level data and run using the same model with the 
addition of autoregressive and moving average terms. This partitioning exercise allows us 
to examine differences between global and country level analyzes.

3.1.2	 Model descriptions
Given the high level of correlation between maximum and minimum temperatures as 
observed in figures and confirmed statistically, minimum temperature was removed as an 
explanatory variable to avoid the problem of multicollinearity; although multicollinearity 
does not affect the consistency of estimates, it does adversely affect their efficiency. The 
choice to remove minimum rather than maximum temperature was somewhat arbitrary 
and, unsurprisingly given their high correlation, results were similar regardless of which 
temperature variable was included in the model. Model estimates for wheat, maize, rice, 
barley and soybeans are reported in table 1. The first three crops in the table were chosen, 
out of the ten crops in the study, because they are the world’s top three food crops, while 
barley and soybeans were included because of the diversity they add in terms of model 
results. The range of significant outcomes runs the gamut, from cases in which both 
precipitation and maximum temperatures are statistically significant for a crop model, to 
cases in which neither variable is significant. Whenever results for the excluded five crops 
vary greatly from the five included in the table, those results are reported. Finally, this 
subsection concerns the specification or selection of a general model which is then to 
be applied to all crops, the results of which are reported in table 2 in subsection Model 
Estimates.
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Table 1. Estimates of yield data for 1990-2009

Model Wheat Maize Rice Barley Soybeans
Estimator Precip. Tmp. Precip. Tmp. Precip. Tmp. Precip. Tmp. Precip. Tmp.
Aggregated 13.77 - 35.74 4.41 - 131.39 - 0.10 - 44.44 2.99 - 109.92 - 10.55 - 709.05

2.29 - 0.38 0.61 - 0.90 - 0.03 - 0.55 0.60 - 1.45 - 2.11 - 5.36
First Diff. 0.74 - 152.25 0.79 - 262.04 0.20 36.30 - 1.44 - 158.95 - 2.58 - 143.73

1.16 - 9.41 1.16 - 9.23 0.41 1.48 - 1.92 - 8.75 - 1.83 - 1.38
Pooled - 3.34 - 142.52 - 11.92 - 196.87 - 2.54 - 154.94 - 0.60 - 140.02 16.48 - 28.90

- 4.61 - 21.53 - 14.99 - 17.50 - 4.80 - 16.81 - 0.74 - 19.20 7.80 - 0.67
Within 0.20 - 163.31 0.65 - 275.47 0.22 46.43 - 1.75 - 167.35 - 2.26 39.11

0.31 - 9.71 0.95 - 9.28 0.44 1.78 - 2.29 - 8.63 - 1.58 0.32
Between - 10.95 - 318.75 1.26 66.51 - 2.88 574.01 - 8.89 - 345.38 - 24.88 - 116.64

- 1.87 - 2.42 0.18 0.23 - 0.54 2.49 - 1.62 - 3.20 - 1.57 - 0.11
Random 0.37 - 159.76 0.71 - 269.68 0.20 37.30 - 1.62 - 163.64 - 2.43 - 64.88

0.57 - 9.64 1.04 - 9.27 0.41 1.51 - 2.15 - 8.71 - 1.71 - 0.58
Random Sqr. 2.94 - 149.30 5.09 - 250.40 - 1.70 29.59 2.96 - 148.00 - 1.14 - 61.05

2.12 - 8.62 2.92 - 8.43 - 1.13 1.16 1.77 - 7.61 - 0.25 - 0.54
Dynamic 0.57 - 161.25 0.47 - 267.92 0.33 24.03 - 2.20 - 176.70 1.13 - 119.42

0.70 - 7.18 1.02 - 3.94 0.35 0.53 - 1.64 - 7.53 1.68 - 5.10

Note: Estimators and estimates for wheat, maize, rice, barley and soybeans; t-values are reported 
underneath each estimate. An absolute value t-value of 1.96 or greater is generally considered 
to be statistically significant. Data for the pooled model are expressed in levels form, all other 
models use first-differenced data. Year dummies are included in all models, except the between 
models where it is not appropriate, in order to capture time effects. Tests for first and second-order 
serial correlation and Sargan tests provide no strong evidence that the dynamic AR(1) model is 
misspecified. The method by Swamy and Arora (Swamy and Arora, 1972) was used to calculate the 
variance components in the random effects model except when year correlations were negative, in 
which case the Nerlove method (Nerlove, 1971) was used. Asymptotic assumptions were not used 
when calculating standard errors because sample sizes do not justify the assumption of an N close 
to infinity for several of the crops examined. Asymptotic standard assumptions increase the t-value 
of a coefficient, not the value of the coefficient.

The number of countries used in the analyzes ranges from 145 for maize to 40 for sugar 
beets. A balance had to be struck between the number of countries included in a particular 
crop analysis and the number of years of available data. Although many countries have 
complete data sets for the entire period from 1961 to 2009, several important developing 
countries do not. Therefore, the decision was made to reduce the number of periods in 
the analysis from a potential of 50 to 20 years. This allowed more countries, and therefore 
more diversity, to be included in a particular crop analysis, and has the practical advantage 
of providing for data sets that meet the requirement of a large number of observations 
relative to the number of time periods (Bond, 2002).

yit = x′itβ + z′iα + εit, where i = 1, ...,N; t = 1, ...,T (1)

K regressors in xit. The emphasis in panel models
z′iα , where zi contains a constant term and individual or group variables which

z′iα should be modeled are reflected in the assumptions made regarding
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Equation 1 represents the basic panel framework (Greene, 2007). There are K regressors in 
xit. The emphasis in panel models is on the second, individual effects, term ztiα, where zi 
contains a constant term and individual or group variables which may not be observable. 
Decisions regarding how ztiα should be modeled are reflected in the assumptions made 
regarding heterogeneity.

The first model presented in table 1 is based on Lobell and Field’s model as described in 
(Lobell and Field, 2007). Their model, identified here as the aggregated model, is included 
because of its influence and as a point of departure for discussing more standard panel 
models. Their methodology takes differences of the averages of each of the dependent 
and independent variables for each year in their analysis (41 years after first-differencing) 
and performs least squares on the aggregated differences. Their approach is labeled the 
aggregated model because it averages the hundreds and sometimes thousands of points 
of country level data available in the data set to one point for each year in the analysis 
without regard to heterogeneity.

A systematic, if not foolproof, means of interpreting the results for the aggregated model, 
and all of the other models in the table, is to find those variables in the table with absolute 
t-values of around 1.96 or greater and determine how the variable in question changes 
yields. For instance, using the aggregated model and wheat, we can see that precipitation 
has an absolute t-value of 2.29 and so can be considered statistically significant. An 
estimator in a first-differenced model, including all models in the table with the exception 
of the pooled model, shows how a change in, for example, precipitation, affects changes in 
yields. Consider once again the precipitation aggregated model for wheat. The significant 
coefficient of 13.77 tells us that for every 1mm increase in precipitation, we expect wheat 
yields to increase by 13.77 hectograms per hectare or 1.377 kilograms per hectare. Similarly, 
the value of -709.05 for soybeans and temperature tells us that for every increase of 0.1 ◦C, 
the change in yields decreases by 709.05 hectograms per hectare or 70.91 kilograms per 
hectare. A negative estimate does not necessarily imply that yield levels are decreasing, 
only that yields are, on average, increasing at a decreasing rate (we know from figures 
above that soybean yields are increasing on average). Note that in the cases of wheat, 
maize, rice and barley, none of the temperature variables are significant, meaning that 
no statistical conclusions can be drawn in regards to relationships between yields and 
temperatures for those crops in the aggregated model. In regards to precipitation, the 
estimates for wheat and soybeans are significant.  The high level of aggregation used in 
Lobell and Field’s model comes at the cost of reducing  the amount of information used to 
compute the estimates. More concretely, in this model and the two models to follow,  no 
account is taken of individual country characteristics. These models assume, in short, that 
relations between yields and weather data are homogeneous across all countries.
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The second and third models in table 1 are the first-differenced and pooled (least squares) 
models. In terms of equation 3, these models, like the aggregated model, force all data to 
go through one common intercept term. As in the aggregate  model, the first-difference 
model subtracts, per country, for all variables, the observation in period t from observation 
in t + 1. Differences are then pooled together across all countries and run together 
using least squares. The result is a matrix with 19 (20 years minus the first observation) 
observations per country for each country per crop. This method has the advantage over 
the aggregated model of using much more of the available data. Comparing estimates 
from the first-differenced and aggregated models shows that maximum temperature 
is now significant for wheat, maize and barley. Precipitation is no longer significant for 
wheat, and just significant for barley and soybeans, and the effects of an increase in 
precipitation are negative for yields. In addition, the very high R-squared terms reported 
in Lobell and Field and replicated above for many of the crops, falls to nearly zero. By not 
averaging the data, the correlation between the dependent and independent variables 
decreases remarkably, implying that the act of aggregating imposes a structure on the 
data that disappears when the data is left in its disaggregated form.

Whereas the aggregated model averages all of the data by year, the other two models 
keep the data in their original, disaggregated, form and thereby retains the available 
variation in the data. In the pooled model, the 20 years of data for each country are stacked 
upon one another and run together using least squares. Panel data used in the pooled 
model was kept in levels form for statistical test purposes discussed below. Temperatures 
were significant for wheat, maize, rice and barley, and, all increases in temperatures had 
negative effects on yields. Precipitation is significant and negative for wheat, maize, rice 
and soybeans, but in the case of soybeans, an increase in precipitation has a positive effect 
on yields. Precipitation becomes significant for several crops and the variables for cassava, 
for the first time, become significant. Again, in this model, as in the previous two models, 
no account is made of individual country heterogeneity, thereby effectively circumventing 
an important advantage of panel data.

And the individual country effects are significant. A standard pooling test was performed 
using the sum of squared errors from the pooled and the within models. In the case of 
wheat, an F-ratio of 201 with a degree of freedom in the numerator of 2237 and a degree 
of freedom in the denominator equal to 2107 has an associated p-value of less than 
0.0001, providing strong evidence that country specific parameters should be included in 
models. Other crops showed similar results; in short, models that do not include country 
specific characteristics, such as those discussed above, should be avoided because they 
incorrectly assume that an important explanatory variable, namely country heterogeneity, 
has no influence on yields when it clearly does.
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The first model discussed to actually use information contained in the panel data format 
is the within model, a model which is numerically equivalent to the least-squares dummy 
variable model. The within model allows the unobserved country heterogeneity to be 
correlated with the observed variables.  Essentially, country specific intercept terms are 
included in  the model to capture time-invariant, country level effects. The within model 
is designed to capture and incorporate the individual country variation within the data. 
In this manner, those effects which are time invariant are removed from the data. For 
instance, a country’s location does not, under normal circumstances, change significantly 
through time, the within methodology removes country location from the data and all 
other static information because subtracting the mean of a static variable from a static 
variable produces zero. In this manner, the effects of such variables, even those not 
explicitly in the model, drop out of the analysis. Results from the within model are similar 
to those from the first-difference model, a model which also removes time-invariant data. 
Temperature effects for both models for wheat, maize and barley are nearly identical; while 
the estimate for soybeans remains insignificant, the estimate for rice is nearly significant 
and positive. As for precipitation, only barley is significant and similar in magnitude to the 
first-difference estimate.

Whereas the intercept terms in the within model are assumed to be fixed and estimable, 
in the random effects model they are considered to be random drawings from a given 
probability distribution. In short, unobserved individual variables are assumed to be 
uncorrelated with the error term in the model (Baltagi, 2008; Greene, 2007, for discussion)). 
The estimator is calculated using generalized least squares, a method which transforms a 
least squares regression by a weighted average of the residuals of the within and between 
models. Standard errors for the between model are very small when compared to the 
within model which means, in short, the variation within a country dominates variation 
between countries. Finally, in order to capture the effects seen in 1b, a non-linear 
precipitation variable was added to the random effects model. This model is labeled as 
the random effects, squared, model. Estimates for the squared term are not included in 
the table, but were significant yet small for most crops. The random effects squared model 
is the most inclusive of the non-dynamic models examined in that it uses both within 
and between variations to estimate coefficients. Results indicate that temperatures for 
wheat, maize and barley are significant and, in all cases, lead to lower yields for higher 
temperatures, while increases in precipitation lead to increases in the yields of wheat, 
maize, and perhaps barley. Estimates for rice and soybeans remain insignificant. A Breusch-
Pagan test rejects the null hypothesis that the intercepts are equal to zero, confirming that 
the pooled model should not be used. Finally, a Hausman test was run to test the null 
hypothesis that the coefficients estimated by the efficient random effects estimator are 
the same as those estimated by the consistent within effects estimator. In the model at 
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hand, there is no evidence against the null that the GLS estimates are consistent, so a 
random effects estimator should be preferred to a fixed effects estimator.

The last model discussed is the dynamic panel AR(1) estimator. A dynamic estimator 
includes a lagged version of the endogenous variable as an explanatory variable. Lagged 
yields, although not of direct interest in the current study, are needed to calculate 
consistent estimates of the exogenous variables (Bond, 2002). Note that a squared 
precipitation term could not be included in the model because of the problem of near 
collinearity between that term and the time dummies. The time dummies were left in the 
model for reasons of comparison. Results for temperatures for wheat, maize, barley and 
now soybeans are all significant and negative. Precipitation is no longer significant for any 
of the crops in the table.

In general, results indicate that maximum temperatures and precipitation are statistically 
significant for several crops in several models. Ignoring standard errors for the moment, the 
results tell a fairly consistent story for models which incorporate individual effects, namely, 
increases in temperatures will reduce yields for all crops with the exception of rice. Results 
for precipitation are mixed, wheat, maize, and barley yields all increase, while rice and 
soybeans decrease. However, tests indicate that the random effects model is the preferred 
choice. An additional recommendation for that model is that its significant estimates fall 
between those of the levels pooled model and the within model, an indication that the 
model is well-specified (Bond, 2002). Other models considered and tested include a non-
linear time trend as suggested by figure 2b, and models with interaction terms, but they 
did not significantly alter the results of the random effects model. Finally, table 1 illustrates 
the consistency of the effects of weather on yields; higher temperatures almost certainly 
have negative effects on the yields of wheat, maize, and barley, and possibly soybeans.

3.1.3	 Model Estimates
In the previous subsection we derived the general form of the model that will be applied 
in the analyzes to follow. This subsection addresses the hypothesis of whether there are 
statistical differences between how the yields of poor and rich countries have reacted to 
changing weather patterns.

∆Yieldit = constant+∆Maximum Temperatureit +∆Precipitationit +∆Precipitation2
it +uit

i = 1, ...,N; t = 1, ...,T ; where uit = µi + vit (2)

9
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Table 2. Random effects model estimates of yield data for 1990-2009 for both poor and rich 

countries.
Poor Countries Rich Countries

Crop Temp. Precip. Precip. Sq. Temp. Precip. Precip. Sq.
Barley - 61.94 6.60 0.00 - 164.81 14.83 - 0.01

- 1.72 2.70 - 2.38 - 5.81 4.32 - 6.35
Cassava 54.53 11.43 0.00 - 247.88 - 35.42 0.01

0.47 1.86 - 1.95 - 0.83 - 3.26 2.73
Maize - 164.82 3.14 0.00 - 276.98 6.97 0.00

- 3.97 1.59 - 1.46 - 5.84 2.12 - 1.97
Potatoes 75.54 11.63 0.00 - 139.00 - 1.06 0.00

0.61 1.77 - 1.46 - 1.14 - 0.11 - 0.36
Rapeseeds - 33.66 - 7.72 0.00 4.86 2.55 0.00

- 1.37 - 4.13 3.86 0.19 1.22 - 1.79
Rice - 9.04 - 1.43 0.00 64.79 - 4.94 0.00

- 0.26 - 0.85 1.64 1.76 - 2.04 1.56
Sorghum - 16.24 1.70 0.00 - 182.62 - 1.50 0.00

- 0.96 2.23 - 1.54 - 2.67 - 0.28 0.16
Soybeans - 57.99 2.60 0.00 - 138.03 12.35 - 0.01

- 2.23 1.84 - 1.72 - 3.89 3.61 - 3.79
Sugar beets - 2258.91 160.51 - 0.06 - 899.97 223.41 - 0.11

- 3.17 3.03 - 2.55 - 2.40 4.83 - 4.40
Wheat - 106.36 3.40 0.00 - 153.57 10.20 - 0.01

- 3.85 1.78 - 1.40 - 6.42 3.64 - 4.76

Note: All variables are first-differenced as in table 1. Year dummies are included in all models. As 
in table 1, either the Swamy and Arora or Nerlove methods were used to calculate the variance 
components of the model.

where the µi denotes the unobservable individual specific effects and vit denotes the 
remaining disturbance.

Table 2 reports regression results for all crops using the random effects model with 
maximum temperature, precipitation, and squared precipitation as exogenous terms. 
The method used to categorize countries was to split the data according to  a country’s 
average real GDP per person for available years in the Penn World Table database (Heston 
et al., 2011). For both poor and rich countries, F-statistics for barley, maize, sorghum, 
soybeans, sugar beets and wheat are significant at the 5% or better levels and rice nearly 
so at that same level. The regressions for potatoes are insignificant for both poor and rich 
countries, while the remainder are significant for one group or the other. Before turning 
to the results in the table, we note that equation 2 was used to run regressions for data 
combining both the poor and rich countries. A dummy variable  to distinguish between 
poor and rich countries was included in the regressions in order to test whether there 
are significant differences between poor and rich countries. The dummy was positive 
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and significant for maize, potatoes, rice and sugar beets. For those crops, poor and rich 
countries should be modeled separately in order to account for the higher initial yields of 
rich countries.

Maximum temperatures are significant for both poor and rich countries for barley, 
maize, sorghum, soybeans and wheat. Only in the case of sugar beets is the maximum 
temperature significant for poor but not rich countries. And in all cases, both for poor 
and rich countries, the effects of rising temperatures on yields are negative. Yields of rich 
countries appear to be more sensitive to temperature changes in the cases of barley, 
maize, sorghum, soybeans and wheat, although it is not possible to discuss the relative 
effects for sugar beets because the estimate for rich countries is insignificant. By sensitive 
we mean, for instance, that a 0.1 degree increase results in a greater decrease in yields for 
rich countries than the same temperature increase for poorer countries. However, yields 
in rich countries are generally higher than in poorer countries, in fact, there is a strong 
positive, non-linear, relationship between GDP per person and yield that can be observed 
by plotting yields against real GDP per person (Powell and Rutten, 2013). Yields in poorer 
countries are somewhere between a half and a third of those of richer countries in our 
sample for those crops for which estimates were significant.

Take the case of wheat, for which the average yields in poorer countries are 20,190 and 
33,913 hectograms per hectare (hg/ha) in richer countries. According to table 2, a 0.1 
degree increase in temperature will reduce yields in poor countries by 106.36 hg/ha, 
while for rich countries the reduction will be 153.57 hg/ha, which convert to a reduction 
in wheat per ha of around 0.53% for poorer countries and 0.45% for richer countries, the 
relationship is similar for maize and sugar beets. For sugar beets, poorer countries do far 
worse than richer countries. However, for soybeans, it is the richer countries that are worse 
off. These are clearly rough estimates, for instance, standard deviations reported in the 
table show that there is a great deal of variation within the two broad GDP categories. The 
results indicate the importance of examining the effects of weather on a per crop basis.

For poorer countries, precipitation is significant for rapeseed, soybeans and sugar 
beets. An increase in precipitation leads to greater yields for those crops. Precipitation 
is significant for more crops grown in richer countries; in addition to rapeseed, soybeans 
and sugar beets, estimates for barley, cassava, maize and wheat are also significant for 
richer countries. Precipitation increases have a positive effect on yields of barley, maize, 
rapeseed, soybeans, sugar beets and wheat, but a negative effect on cassava yields. For 
the three crops which can be compared, namely rapeseed, soybeans and sugar beets, 
poor countries appear to be more susceptible in the case of rapeseed and sugar beets, but 
less so in the case of soybeans. In other words, a 1mm increase in precipitation will reduce 
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yields of rapeseed and sugar beets more for poor countries than for richer countries, but 
will have less of an impact for soybeans.

Figure 3. Wheat coefficients for maximum temperatures and precipitation.

Conclusions to be drawn from this subsection are that the effects of weather variables 
on yields are both crop and country specific. Results from table 2 clearly indicate that 
for those crops with significant outcomes, higher temperatures will reduce yields, while 
increases in precipitation will have positive effects for all crops except cassava. In short, 
whether changes in weather will harm poorer or richer countries is crop dependent.

3.2	 ARIMA model
Panel models give a general overview of relationships between yields and weather 
variables per crop at a global level. However, they produce just one global equation per 
crop characterizing the relationship between yields and weather variables, it that sense 
panel models are rough approximations. In this subsection, country level analyzes are 
calculated for use in MAGNET. In particular, ARIMA models are used to forecast yields for 
wheat, rice, barley, maize, rapeseed, sorghum and soy. These crops are then aggregated 
into the following four aggregate agricultural sectors included in MAGNET: wheat, rice, 
grains, and oils.

3.2.1	 ARIMA methodology
ARIMA models are used to forecast time series variables using information contained 
in past realizations of the yields themselves and the weather variables. Estimates of the 
exogenous variables tell us the additional contribution to yields associated with the 
weather variables net of information contained in yields from previous periods. The 
ARIMA models estimated are not complete explanatory models, building that sort of 
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(b) Coefficients for wheat precipitation estimates.

Figure 3: Wheat coefficients for maximum temperatures and precipitation.

Conclusions to be drawn from this subsection are that the effects of weather variables on yields are both crop and country
specific. Results from table 2 clearly indicate that for those crops with significant outcomes, higher temperatures will reduce
yields, while increases in precipitation will have positive effects for all crops except cassava. In short, whether changes in
weather will harm poorer or richer countries is crop dependent.

3.2 ARIMA model

Panel models give a general overview of relationships between yields and weather variables per crop at a global level. How-
ever, they produce just one global equation per crop characterizing the relationship between yields and weather variables,
it that sense panel models are rough approximations. In this subsection, country level analyzes are calculated for use in
MAGNET. In particular, ARIMA models are used to forecast yields for wheat, rice, barley, maize, rapeseed, sorghum and
soy. These crops are then aggregated into the following four aggregate agricultural sectors included in MAGNET: wheat,
rice, grains, and oils.

3.2.1 ARIMA methodology

ARIMA models are used to forecast time series variables using information contained in past realizations of the yields
themselves and the weather variables. Estimates of the exogenous variables tell us the additional contribution to yields
associated with the weather variables net of information contained in yields from previous periods. The ARIMA models
estimated are not complete explanatory models, building that sort of model requires micro-economic, crop level data that is
not generally available for a large number of countries.
The basic form of the model is:

yt = θ1yt-1 + ...+θpyt-p + εt +α1εt-1 + ...+αqεt-q+

+∆Maximum Temperaturet +∆Precipitationt +∆Precipitation2
t .

(3)

For each country, the model was run across a spectrum of possible, meaningful, lags. The ’best’ model was then chosen
based on the Akaike Information Criterion (AIC). That model was then used to forecast yields ten years into the future using
standard time series forecasting methods.
The figures in 3 show the density distributions of estimates for country level coefficients for wheat. For instance, figure 3a
shows that a large majority of estimates for maximum temperatures for wheat range from -400 to 200. The mean of the data
is slightly negative, as expected given the generally negative effects of temperatures on wheat. A value of -100 implies that a
0.1 ◦C increase temperature reduces wheat yields by -10.0 hectograms.
The t-values presented in table 3 for each of the temperature and precipitation variables indicate that only a minority of the
estimates are significant. That result is not surprising given that the autoregressive and moving average terms in the model
are picking-up a lot of the variations and that there are many factors that influence yields which are not included in the model.
What the ARIMA procedure employed does is select the best model given the parsimonious method used. The models, and
resulting forecasts, should be seen as indicators of the direction that yields may take given changes in weather patterns, and
not as precise predictions.
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model requires micro-economic, crop level data that is not generally available for a large 
number of countries.

The basic form of the model is:

For each country, the model was run across a spectrum of possible, meaningful, lags. 
The ’best’ model was then chosen based on the Akaike Information Criterion (AIC). That 
model was then used to forecast yields ten years into the future using standard time series 
forecasting methods.

The figures in 3 show the density distributions of estimates for country level coefficients 
for wheat. For instance, figure 3a shows that a large majority of estimates for maximum 
temperatures for wheat range from -400 to 200. The mean of the data is slightly negative, 
as expected given the generally negative effects of temperatures on wheat. A value of 
-100 implies that a 0.1 ◦C increase temperature reduces wheat yields by -10.0 hectograms.

The t-values presented in table 3 for each of the temperature and precipitation variables 
indicate that only a minority of the estimates are significant. That result is not surprising 
given that the autoregressive and moving average terms in the model are picking-up a 
lot of the variations and that there are many factors that influence yields which are not 
included in the model. What the ARIMA procedure employed does is select the best model 
given the parsimonious method used. The models, and resulting forecasts, should be seen 
as indicators of the direction that yields may take given changes in weather patterns, and 
not as precise predictions.

Table 3. Significance values of major crops at two levels.
Temperature Precip. Precip. Sq.

Crop t-val. > 1.96 t-val. > 1.50 t-val. > 1.96 t-val. > 1.50 t-val. > 1.96 t-val. > 1.50 Num.  
Countries

Barley 12 17 21 26 12 27 58
Maize 19 29 19 38 21 32 132
Rapeseed 3 7 8 8 5 9 26
Rice 18 30 17 28 10 20 101
Sorghum 11 15 9 18 13 19 73
Soybeans 2 7 8 13 9 14 39
Wheat 19 34 28 40 15 27 97

Note: The t-values are reported in absolute values.

yt = θ1yt-1 + ...+θpyt-p + εt +α1εt-1 + ...+αqεt-q+

+∆Maximum Temperaturet +∆Precipitationt +∆Precipitation2
t .

(3)

◦C increase temperature reduces wheat yields by -10.0 hectograms.

direction that yields may take given changes in weather patterns, and

11
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3.2.2	 MAGNET simulations
This section discusses the economic implications of shocks calculated using ARIMA 
forecasts. It uses those results to run five simulations, one, the base scenario, in which 
neither temperatures nor precipitation change, and four scenarios in which yields are 
shocked assuming changes in temperatures and precipitation are realized. For instance, 
scenario (0,1) shocks yields according to an assumed 0.0mm increase in precipitation 
and a 0.1 ◦C increase in temperature for ten years; while scenario (2,1) assumes that 
yields are affected by a 2.0mm yearly increase in precipitation and a 0.1 ◦C increase in 
temperatures. The other two scenarios, (0,2) and (2,2), are calculated following the 
same methodology. The shock implemented assumes in the case of scenario (2,1), that 
precipitation increases by 2mm per year for ten years and 0.1 ◦C per year for ten years. In 
short, in ten years precipitation is assumed to have increased by 20 mm and temperatures 
by 1.0 ◦C. This is a big simulated increase, but within the realm of possibility. For instance, 
earth’s mean surface temperature has increased in the 20th Century by about 0.8 ◦C with 
about two-thirds of that increase occurring since 1980 National Research Council (2011). 
However, the point of the MAGNET exercises is to establish direction rather than calculate 
precise estimates, relatively large shocks help to realize this aim without being so large 
as to destabilize the model. In addition, the results are reported using an average of the 
simulations so that the influence of extreme simulations are reduced.

The following two figures present, respectively, the expected changes in exports and 
imports resulting from changes in weather across four crop categories. As mentioned, each 
point in a figure is the average of the four simulated changes in weather less the base case 
in which weather remains constant for each of the 45 regions in the sample 1 in the study. 
Together these regions encompass the world. Results should be interpreted as indicating 
the additional effects of changes in weather on the economy assuming everything else in 
an economy continues to develop as expected. Please note that MAGNET, like most CGE 
models, is a deterministic model, no stochastic assumptions are made. While the shocks 
were created using econometric techniques which allow measures of confidence to be 
associated forecasts, MAGNET produces unique, non-distributional, outcomes; therefore, 
terms such as estimates and forecasts do not have their associated technical connotations. 
The advantage of using MAGNET is that it provides a detailed, global, sectoral specific 
overview of economic results following a shock, something econometric models are not 
designed to do.

Figures 4a and import 5a show expected changes in exports and imports respectively. 
More precisely, they present the additional percentage changes in exports and imports 
expected in 2020 based on the average changes over the weather scenarios. It is 
important to keep in mind when reading the figures that the values reported are relative 
to a country’s exports and imports and are percentage values. For instance, Korea is not a 
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significant exporter of grains, so a nearly 10% increase in exports for that region is only a 
small amount in absolute terms.

Whereas production changes for the most part were found to be small, changes in trade 
vary considerably as can be seen by the range of values along the x-axes of the figures. 
The major exporters of grains are the United States, Argentina, Brazil, Ukraine, South 
Africa and the European Union. Exports from the United States increase slightly while the 
region Rest of South America, which includes Argentina, and the region of South Africa, 
will experience sharp falls in exports of between 4% and 5%. Brazil, on the other hand, 
will experience a slight increase in exports. In what will become a familiar refrain, the 
situation for Europe is mixed, with some countries expected to experience increases in 
grain exports while others will experience decreases. The major European exporter, the 
Ukraine (ree), will see a decrease in exports of around 2%, while exports from Russia will 
increase by around the same percentage.

Of the major palm oil exporters, Indonesia will experience a decrease in exports of oils 
of around 5%, while exports from Malaysia (sea), will remain constant. A major soybean 
exporter Rest of South America, a region which includes Venezuela, can expect a large 
decrease in exports, while Brazil will see exports increase by around 5% and the United 
States by around 2%. The large increases in rice exports for Japan and Korea have to be 
tempered by the fact that they export very little rice. All of the current major rice exporters, 
Thailand, Vietnam (both sea), and India, will experience slight decreases in exports.

1Regions: kor = Koreas; me = Middle East; indo = Indonesia; rus = Russia; fin = Finland; mex = Mexico; swe 
= Sweden; grc = Greece; mltcyp = Malta and Cyprus; prt = Portugal; rsas = Rest of South Asia; chi = China; 
tur = Turkey; usa = USA; aut = Austria; naf = North Africa; jap = Japan; can = Canada; deu = Germany; bra = 
Brazil; bulrom = Bulgaria and Romania; irl = Ireland; caf = Central Africa; rwe = Rest of Western Europe; nld = 
Netherlands; dnk = Denmark; gbr = United Kingdom; belu = Belgium and Luxembourg; ita = Italy; fra = France; 
india = India; svk = Slovakia; svn = Slovenia; pol = Poland; sea = Southeast Asia; esp = Spain; ree = Rest of Eastern 
Europe; cze = Czechoslovakia (and components thereof ); hun = Hungary; oce = Australia and New Zealand; rsa 
= Rest of South Asia; saf = South Africa (region); rca = Rest of Central America; euba = Eastern Europe and Baltic 
states; rfsu = rest of former Soviet Union.
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Of the current major wheat exporters, the United States and Canada will see substantial 
increases in exports, Europe will experience mixed results with France showing a small 
decrease and Germany a small increase. Australia will see a slight decrease in exports, while 
Russia will see a remarkable increase nearing 30%. In 2013 Russia exported around 12 million 
tons of wheat, so the increase of 30% amounts to around 3.6 million additional tons due to 
changes in temperatures and precipitation. The Ukraine (ree), which exported around 3.1 
million tons in 2013, is expected to experience a substantial decrease in production.

Figure 4. Exports.

Note: The values presented in this figure and the next are percentage differences.

Results reported in the import figure 5a are dominated by the region Rest of Former Soviet 
Union (rfsu), which includes countries such as Afghanistan, Kazakhstan, Kirghizstan, and 
Tajikistan. This region shows remarkable increases in the imports of grains, oils and wheat. 
However, these countries import very little of these products so their results should be 
interpreted with caution. The major importers of maize are Japan, Mexico, Korea, the 
Western Europe and China. Japan and Mexico will experience little change in amounts 
imported while Western Europe shows a slight decrease in imports. China will experience 
a slight decrease in oil imports, while India will experience a very large, over 20%, increase 

2%. The large increases in rice exports for Japan and Korea have to be tempered by the fact that they export very little
rice. All of the current major rice exporters, Thailand, Vietnam (both sea), and India, will experience slight decreases in
exports.

Of the current major wheat exporters, the United States and Canada will see substantial increases in exports, Europe will
experience mixed results with France showing a small decrease and Germany a small increase. Australia will see a slight
decrease in exports, while Russia will see a remarkable increase nearing 30%. In 2013 Russia exported around 12 million
tons of wheat, so the increase of 30% amounts to around 3.6 million additional tons due to changes in temperatures and
precipitation. The Ukraine (ree), which exported around 3.1 million tons in 2013, is expected to experience a substantial
decrease in production.
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Figure 4: Exports.

Note: The values presented in this figure and the next are percentage differences.

Results reported in the import figure 5a are dominated by the region Rest of Former Soviet Union (rfsu), which includes
countries such as Afghanistan, Kazakhstan, Kirghizstan, and Tajikistan. This region shows remarkable increases in the
imports of grains, oils and wheat. However, these countries import very little of these products so their results should be
interpreted with caution. The major importers of maize are Japan, Mexico, Korea, the Western Europe and China. Japan and
Mexico will experience little change in amounts imported while Western Europe shows a slight decrease in imports. China
will experience a slight decrease in oil imports, while India will experience a very large, over 20%, increase in vegetable oil
imports. Results for Western Europe show a slight increase in imports on average. India will import substantially more rice,
50%, due to changes in weather, however, recall that it is a large net exporter of rice. Of the major importers of rice, the
region of Central Africa (caf), which includes Nigeria, is stable, while imports to the region of North Africa (naf) fall, and
imports into the region of South Africa increase. Imports into two other major importing regions, Bangladesh and the Middle
East, also appear to be stable. Changes for wheat importers are generally small. Imports to Egypt (naf), the world’s largest
importer, will fall, as they will for Indonesia. Imports into Brazil will fall by 1% and 2%, while Chinese imports will increase
slightly.

Ultimately, policy makers are concerned with consumption, particularly in poorer countries. Changes to consumption were
found to be small relative to changes in exports and imports. This is a reasonable outcome given the structure of the con-
sumption of agricultural products in most countries. On the whole, countries or regions consume products produced within
the country or region, while exports and imports absorb surpluses and deficits. Recall as well, that although the shocks im-
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in vegetable oil imports. Results for Western Europe show a slight increase in imports 
on average. India will import substantially more rice, 50%, due to changes in weather, 
however, recall that it is a large net exporter of rice. Of the major importers of rice, the 
region of Central Africa (caf ), which includes Nigeria, is stable, while imports to the region 
of North Africa (naf ) fall, and imports into the region of South Africa increase. Imports 
into two other major importing regions, Bangladesh and the Middle East, also appear to 
be stable. Changes for wheat importers are generally small. Imports to Egypt (naf ), the 
world’s largest importer, will fall, as they will for Indonesia. Imports into Brazil will fall by 
1% and 2%, while Chinese imports will increase slightly.

Ultimately, policy makers are concerned with consumption, particularly in poorer 
countries. Changes to consumption were found to be small relative to changes in exports 
and imports. This is a reasonable outcome given the structure of the consumption of 
agricultural products in most countries. On the whole, countries or regions consume 
products produced within the country or region, while exports and imports absorb 
surpluses and deficits. Recall as well, that although the shocks implemented are large in 
terms of the weather changes simulated, weather effects on yields only explain a small 
part of the total production of crops.

Figure 5. Imports.
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Figure 5: Imports.

In terms of consumption, the biggest gainers and losers for grains are people from the region Rest of former Soviet Union
(rfsu), India, Central and South America, India, Central and North Africa, and some of the newer European countries. Korea,
China, Turkey, and the Middle East region experience increases in consumption. Grain consumption in richer countries is
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In terms of consumption, the biggest gainers and losers for grains are people from the 
region Rest of former Soviet Union (rfsu), India, Central and South America, India, Central 
and North Africa, and some of the newer European countries. Korea, China, Turkey, and 
the Middle East region experience increases in consumption. Grain consumption in richer 
countries is not significantly affected by changes in weather. For oils, Indonesia and India 
consume less as do many other regions in Asia and the region Rest of Central America. All 
regions in Africa (naf, caf, saf ), consume less oil. The only major increase in oil consumption 
occurs in Mexico. Consumption of rice in Indonesia, India, and other regions in Asia is also 
adversely affected. Africa escapes largely unscathed in terms of rice consumption. Finally, 
wheat consumption in the region of Central Africa falls, as it does in the region of the Rest 
of the Former Soviet Union. The countries that benefit are India, Rest of Central America 
and the Rest of South America. In general, rich countries are not significantly affected 
by weather changes; for instance, consumption in Germany, Canada, the United States 
and France change little. Japan consumes slightly less rice, and Ireland consumes less of 
everything.

4.	 Conclusions

Conclusions will be drawn from each of the above three sections with an emphasis placed 
on the unique contribution of each technique towards answering the research questions 
and the section’s contribution to the paper’s overall methodology and conclusions.

The first section described the basic characteristics of the data and found strong evidence of 
increasing temperatures in grids growing ten major food crops. Temperature fluctuations 
across crops follow similar short and long-term patterns and the increases were found to 
be statistically robust. Results for precipitation showed two distinct periods, a first in which 
precipitation fell, followed by a second in which it rose. They also suggest that, in contrast 
to temperatures, there has been a large variation in the amount of precipitation falling in 
different crop growing grids. The results suggest that if the underlying data generating 
processes behind the observed increases in temperatures persists, as it has throughout 
the period studied, then we can expect temperatures in the future to rise as well.

The yields subsection found that yields have been increasing but, in many cases, they 
have been increasing at a decreasing rate, results which suggest that a non-linear term 
should be included in regressions. Combining the weather and yield data stressed the 
degree to which relationships between those variables vary across the globe. While many 
countries have experienced increasing yields and temperatures, a sizable minority have 
experienced increasing yields and decreasing temperatures.
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Panel results indicated that temperatures for wheat, maize, and barley are significant and, 
in all cases, lead to lower yields given higher temperatures, while increases in precipitation 
lead to increases in the yields of wheat, maize, and perhaps barley. Estimates for rice 
and soybeans were insignificant. A Breusch-Pagan test rejected the null hypothesis that 
intercepts are equal to zero, confirming that pooled models should not be used. Finally, a 
Hausman test was used to test the null hypothesis that the coefficients estimated by the 
random effects estimator was the same as those estimated by the within effects estimator. 
There was no evidence against the null that the GLS estimates were consistent therefore 
a random effects estimator was found to be preferred to a fixed effects estimator. In short, 
individual country effects were found to be significant. Standard pooling tests were 
performed using the sum of squared errors from the pooled and within models. In all 
cases, an F-type test provided strong evidence that country specific parameters should be 
included in models. This outcome was expected given the previously observed diversity 
of relationships between yields and weather data. In short, models that do not include 
country specific characteristics should be avoided.

In general, results indicate that maximum temperatures and precipitation are statistically 
significant for several crops in several models. However, tests indicate that the random 
effects model is the preferred model choice. An additional recommendation for that 
model is that its significant estimates fall between the pooled model and the within 
model, an indication that the model is well-specified. Other models were considered, but 
they did not significantly alter the results of the random effects model. Ignoring standard 
errors, the results tell a consistent story for models with individual effects, namely, 
increases in temperatures will reduce yields for all crops with the exception of rice. Results 
for precipitation were mixed, wheat, maize, and barley yields all increased, while rice and 
soybeans decreased.

ARIMA models were then used to estimate ten year forecasts of the effects of changes 
in weather variables on yields. The ’best’ models for each country and each crop in the 
analysis were chosen according to the AIC criterion; forecasts from the selected models 
were then used within MAGNET to simulate weather changes. For many countries, the 
weather variables were found to be statistically insignificant. However, the wide spectrum 
of countries and crops over which results were found to be significant gives some 
confidence that the basic ARIMA structure, including the weather terms and the AR and 
MA terms, is identifying important effects of the weather terms on yields.

The MAGNET model was then shocked using the ARIMA forecasts to determine the 
effects, ten years in the future, of changes in weather on the global production, trade, 
and consumption of four major crop groups, namely, grains, oils, wheat, and rice. Results 
for exports, imports, and consumption will be discussed immediately below in the order 
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listed. Results for exports closely follow changes in production. Wheat exports from the 
United States and Argentina increase slightly, but many other countries in the region 
South America experience sharp decreases in exports. Exports from Indonesia, a major 
exporter of oils, will fall, as will oil exports from South America. However, oil exports from 
the United States and Brazil increase following their expected increases in production. All 
of the major rice exporters can expect slight decreases in exports, while the major wheat 
producers will all export more.

The major importers of grains are not substantially affected by the changes, although 
Chinese imports fall slightly. China will also experience a decrease in oil imports. Of the 
major importers of rice, the region of Central Africa (caf ), which includes Nigeria, were 
stable, while imports to the region of North Africa (naf ) fell, and imports into the region 
of South Africa increased. Changes for wheat importers were in general found to be small, 
while imports to Egypt (naf ), the world’s largest importer, will fall, as they will for Indonesia. 
Brazilian imports will fall by 1% and 2%, while Chinese imports will increase slightly.

Ultimately, policy makers are concerned with consumption, particularly in poorer regions. 
For grains, the biggest losers are people from the region Rest of former Soviet Union (rfsu), 
India, Central and South America, Central and North Africa, and some of the newer European 
states. Those regions are Korea, China, Turkey, and the Middle East. Grain consumption in 
richer countries is not significantly affected by changes in weather. For oils, Indonesia and 
India will consume less as will many other regions in Asia and the region Rest of Central 
America. All regions in Africa (naf, caf, saf ), will consume less oil. The only major increase 
in oil consumption occurs in Mexico. Consumption of rice in Indonesia, India, and other 
regions in Asia is also adversely affected, although Africa escapes largely unscathed in 
terms of rice consumption. Finally, wheat consumption in the region of Central Africa falls, 
as it does in the region of the Rest of the Former Soviet Union. The countries that benefit 
are India, the regions Rest of Central America and Rest of South America. In general, rich 
countries are not significantly affected by weather changes.

The analysis brought together several techniques, each with their own strengths and 
weaknesses. Analyzes which relied primarily on figures or simple regressions of variables 
through time, while fine for investigating general trends of individual variables, can 
be deceptive when examining interactions between variables. Using panel models it 
was possible to quantify the importance of country specific characteristics, but that 
methodology produces just one general model for all countries. The ARIMA methodology 
was used to forecast yields into the future, but, given the high aggregation level of the 
analysis and consequent lack of data, the methodology could not be used to analyze 
the underlying components determining yields. Furthermore, while the MAGNET model 
has a global scope, the results it produces are heavily dependent on the acceptance of 
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underlying economic assumptions, and its deterministic nature means that it is impossible 
to attach statistical confidence to results. Finally, we asked a very limited set of data to do 
a lot of work. In our favor, we limited the forecast period to just ten years, a relatively small 
number of years in comparison to many CGE experiments, and our shocks were modest. 
We have attempted to play to the strengths of each method, while being forthright 
throughout the text concerning their respective limits.

Mindful of the above qualifications, in terms of the main research question, we conclude 
that changing weather patterns will have significant effects on the trade, and, in some 
cases, the consumption of major food crops. The effects will be both country and crop 
specific. As for the ancillary question concerning the relative effects of weather on richer 
versus poorer countries, results were mixed, but indicate that consumption in richer 
countries, with few exceptions, will be largely unaffected by changing weather patterns, 
while consumption in many poorer regions will decrease.



126   |   Chapter 4

References

Arvis, J., Duval, Y., Shepherd, B., and Utoktham, C. (2013). Trade Costs in the Developing World: 1995-2010. 

World Bank. Baltagi, B. H. (2008). Econometric Analysis of Panel Data. John Wiley and Sons, Ltd.

Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. The 

Institute for Fiscal Studies Department of Economic, UCL cemmap working paper CWPO9/02.

Bradshaw, B., Dolan, H., and Smit, B. (2004). Farm-level adaptation to climatic variability and change: 

Crop diversification in the Canadian prairies. Climatic Change, 67:119–141.

Cutter, S. L., Emrich, C. T., Webb, J. J., and Morath, D. (2009). Social vulnerability to climate variability 

hazards: A review of the literature. Staff report no. ages 9049, Hazards and Vulnerability Research 

Institute, Department of Geography, University of South Carolina, Columbia, SC 29208.

Dixon, P. B., Parmentar, B. R., Ryland, G. J., and Sutton, J. (1977). ORANI: A General Equilibrium Model of 

the Australian Economy. First progress report of the impact project, vol.2. Canberra, Australian 

Government Publishing Service.

Erda, L., Wei, X., Hui, J., Yinlong, X., Yue, L., Liping, B., and Luyong, X. (2005). Climate change impacts 

on crop  yield and quality with co2 fertilization in china. Philosophical Transactions of The Royal 

Society, Biological Sciences, 360(1463):2149–54.

FAOSTAT (2013). United Nations Food and Agricultural Organization (UN-FAO) online statistics 

database. http:// faostat.fao.org/site/291/default.aspx.

Frees, E. W. (2004). Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. 

Cambridge University Press.

Frees, E. W. and Miller, T. W. (2004). Sales forecasting using longitudinal data models. International 

Journal of Forecasting, 20:99–114.

Gebrehiwot, T. and Veen, A. v. (2013). Farm level adaptation to climate change: The case of farmer’s 

in the Ethiopian Highlands. Environmental Management, 52:29–44.

Greene, W. H. (2007). Econometric Analysis. Prentice Hall, sixth edition.

Greenstone, M. and Deschenes, O. (2006). The economic impacts of climate change: Evidence from 

agricultural profits and random fluctuations in weather. FEEM Working Paper No. 6.

GTAP (2012). GTAP 8 database description. https://www.gtap.agecon.purdue.edu/databases/v8/

v8_doco.asp. Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

Hertel, T. W., editor (1997). Global Trade Analysis: Modeling and Applications. Cambridge University Press.

Hertel, T. W., Martin, W. J., and Leister, A. M. (2010). Potential implications of a special safeguard 

mechanism in the WTO: the case of wheat. Policy research working paper series 5334, The 

World Bank.

Heston, A., Summers, R., and Aten, B. (2011). Penn world trade version 7.0. Center for International 

Comparisons of Production, Income and Prices at the University of Pennsylvania.

Hsiao, C. (2003). Analysis of Panel Data. Cambridge University Press, New York, second edition.

I



4

Effects of changing weather patterns on the trade of major food crops   |   127   

FPRI (2009). Climate change: Impact on agriculture and costs of adaptation. food policy report. 

Technical report, IFPRI. Jones, P. and Harris, I. (2008). Cru time series (ts) high resolution gridded 

datasets. Technical report, University of East Anglia Climate Research Unit (CRU). NCAS British 

Atmospheric Data Centre.

Josling, T., Anderson, K., Schmitz, A., and Tangermann, S. (2010). Agricultural products: One hundred 

years of contributions by agricultural economists. American Journal of Agricultural Economics, 

92(2):424–446.

Leff, B. N., Ramankutty, and Foley, J. A. (2004). Geographic distribution of major crops across the 

world. Global Biogeo- chemical cycles, 18.

Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., and Ramankutty, N. 

(2010). Mind the gap: how do climate and agricultural management explain the ’yield gap’ of 

cropland around the world? Global Ecology and Biogeography, 19(6):769–782.

Lobell, D. B. and Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of 

recent warming. Environmental Research Letters, 2.

Lobell, D. B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production 

since 1980. Science, 333(6042):616–620.

Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. R., and Matson, P. A. (2002). A method for quantifying 

vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental 

Change, 13(4):255–267.

Moïsé, E., Delpeuch, C., Sorescu, S., Bottini, N., and Foch, A. (2013). Estimating the constraints to 

agricultural trade of developing countries. Trade policy papers no. 142, OECD.

National Research Council (2011). America’s climate choices. Technical report, The National Academic 

Press.

Nelson, G. C., Valin, H., Sands, R. D., Havlik, P., Derying, D., Elliot, J., Fujimori, S., Hasegawa, T., 

Heyhoe, E., Kyle, P., von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der 

Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, 

A., and Willenbockel, D. (2013a). Climate change effects on agriculture: Economic responses to 

biophysical shocks. PNAS. Epub ahead of printing.

Nelson, G. C., van der Mensbrugghe, D., Blanc, E., Calvin, K., Hasegawa, T., Havlik, P., Kyle, P., Lotze-

Campen, H., von Lampe, M., Mason d’Croz, D., van Meijl, H., Müller, C., Reilly, J., Robertson, R., 

Sands, R. D., Schmitz, C., Tabeau, A., Takahashi, K., and Valin, H. (2013b). Agriculture and climate 

change in global scenarios: why don’t the models agree. Agricultural Economics, 45(1):85–101.

Nerlove, M. (1971). Further evidence on the estimation of dynamic economic relations from a time-

series of cross-sections. Econometrica, 39:359–382.

Pandey, S., Bhandari, H., and Hardy, B. (2007). Economic costs of drought and rice farmers’ coping 

mechanisms: a cross- country comparative analysis. Technical report, IRRI (International Rice 

Research Institute.

Powell, J. and Rutten, M. (2013). Convergence of European wheat yields. Renewable and Sustainable 

Energy Reviews, 28:53–70.



128   |   Chapter 4

Powell, J. P. (2014). Productivity implications of extreme precipitation events: the case of Dutch 

wheat farmers. Submitted February 2014.

Prato, T., Zeyuan, Q., Pederson, G., Fagre, D., Bengston, L. E., and Williams, J. R. (2010). Potential 

economic benefits of adapting agricultural production systems to future climate change. 

Environmental Management, 45(1):577–89.

Reilly, J., Hohmann, N., and Kane, S. (1994). Climate change and agricultural trade: Who benefits, 

who loses? Global Environmental Change, 4(1):24–36.

Robinson, S. (1990). Analysing agricultural trade with single-country computable general equilibrium 

models. In Goldin, I. and Knudsen, O., editors, Agricultural Trade Liberalization. Paris:OECD.

Robinson, S., Kilkenny, M., and Hanson, K. (1990). The USDA/ERS computable general equilibrium 

(CGE) model of the United States. Staff report no. ages 9049, Economic Research Service, U.S. 

Department of Agriculture.

Rutten, M. M., Chant, L. J., and Meijerink, G. W. (2011). Sit down at the ballgame: How trade barriers 

make the world less food secure. Available at SSRN: “http://ssrn.com/abstract=1769745” or 

“http://dx.doi.org/10.2139/ssrn. 1769745”.

Sacks, W. J., Derying, D., Foley, J. A., and Ramankutty, N. (2010). Crop planting dates: an analysis of 

global patterns. Global Ecology and Biogeography, 19:607–620.

Schlenker, W. and Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to 

U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the 

United States of America (PNAS), 106(37):15594– 15598.

Sims, R., Taylor, M., and Bioenergy, I. (2008). Biofuels technologies: An overview of current industry 

and r & d activities. Sonka, S. (1991). Methodological guidelines for assessing the socio-

economic impacts of climate change on agriculture. In Climate Change: Evaluating the Socio-

Economic Impacts, pages 21–45. OECD, Paris.

Swamy, P. and Arora, S. (1972). The exact finite sample properties of the estimators of coefficients in 

the error components regression models. Econometrica, 40:261–275.

Tabeau, A. and Woltjer, G. (2010). Modelling the agricultural employment development within the 

CGE framework: the consequences for policy responses. In Trade for Sustainable and Inclusive 

Growth and Development, Bangkok, Thailand. Thirteenth Annual Conference on Global 

Economic Analysis.

Tamiotti, L., Teh, R., Kulaçg˘lu, V., Olhoff, A., Simmons, B., and Abaza, H. (2009). Trade and climate 

change. A report by the United Nations environment programme and the world trade 

organization, World Trade Organization.

Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., 

Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., and Kyle, K. (2014). The future of food demand: 

Understanding differences in global economic models. Agricultural Economics, 41(1):51–67.

van Meijl, H., van Rheenen, T., Tabeau, A., and Eickhout, B. (2006). The impact of different policy 

environments on land use in Europe. Agriculture, Ecosystems and Environment, 114(1):21–38.

van Wijk, M. T., Rufino, M. C., Enahoro, D., Parsons, D., Silvestri, S., Valdivia, R. O., and Herrero, M. 

(2012). A review on farm household modelling with a focus on climate change adaptation 



4

Effects of changing weather patterns on the trade of major food crops   |   129   

and mitigation. Working Paper 20, CGIAR Research Program on Climate Change(CCAFS), 

Copenhagen, Denmark.

Verburg, P., Eickhout, B., and van Meijl, H. (2008). A multi-scale, multi-model approach for analyzing 

the future dynamics of European land use. Annals of Regional Science, 42(1):57–77.

WageningenUR (2012). WageningenURsite. http://www.wageningenur.nl/en/About-Wageningen-

UR.htm.



5CHAPTER 5



Measuring the effects of extreme 
weather events on yields

J.P. Powell, S. Reinhard



Extreme weather events are expected to increase worldwide, therefore, anticipating 

and calculating their effects on crop yields is important for topics ranging from 

food security to the economic viability of biomass products. Given the local nature 

of weather, particularly precipitation, effects are best measured at a local level. This 

paper analyzes weather events at the level of the farm for a specific crop, winter 

wheat. Once it has been established that extreme events are expected to continue 

occurring at historically high levels for farming locations throughout the Netherlands, 

the effects of those events on wheat yields are estimated while controlling for the 

other major input factors affecting yields. Econometric techniques are applied to 

an unbalanced panel data set of 334 farms for a period of up to 12 years. Analyzes 

show that the number of days with extreme high temperatures in Dutch wheat 

growing regions has significantly increased since the early 1900s, while the number 

of extreme low temperature events has fallen over that same period. The effects of 

weather events on wheat yields were found to be time specific in that the week in 

which an event occurred determined its effect on yields. High temperature events 

and precipitation events were found to significantly decrease yields.Ab
st
ra
ct
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1.	 Introduction

1.1	 Introduction
Weather, whether in terms of averages or events, is an important determinant of yields. 
Extreme weather events are expected to increase worldwide, therefore, anticipating and 
calculating their effects on crop yields is important for topics ranging from food security 
to the economic viability of biomass products. The latest IPCC report, confirming previous 
findings, attaches high confidence to the probability that extreme weather events will 
reduce food production (Field et al., 2012; Porter et al., 2014). Extreme events are expected 
to affect the volatility of yields and are seen as the principle immediate threat to global 
crop production (Meehl et al., 2000; Rosenzweig et al., 2001; Olesen et al., 2007; Urban 
et al., 2012; Min et al., 2011; Lobell et al., 2013). A natural question that arises is how to 
measure their effects on yields. We know from the above and other studies that variations 
in weather events are geographically specific, thereby implying that effects need to be 
examined at a correspondingly low level of analysis. An analysis of short-term weather 
events requires detailed time series data on weather variables at low spatial and temporal 
levels and corresponding data for all of the other primary factors influencing yields. The 
approach taken in this paper is to examine the effects of uncommon precipitation and 
temperatures events of short duration on winter wheat yields. By precisely analyzing 
the effects of observed events over a relatively short time span it becomes possible to 
anticipate the effects similar such events will have in the future when their occurrence is 
expected to increase.

The paper consists of two main threads: first, the increasing occurrence of extreme weather 
events, formally defined below, is established in order to motivate the relevance of the 
topic. Daily time series analyses using data from up to 100 years are used to establish and 
forecast the development of extreme precipitation and temperature events for over thirty 
regions in the Netherlands. Once the case has been made that the number of such events 
is either increasing and will continue to do so into the future, then the potential of extreme 
weather events to alter wheat yields is calculated using econometric techniques. In order 
to econometrically ascertain their specific, marginal, effects on yields, it is necessary to 
include all major inputs needed to produce winter wheat into the econometric model. In 
short, the specific effects of weather events on yields can only be correctly isolated once 
the effects of other production factors, including unobserved factors, have been filtered 
out or controlled for in a model. In this analysis, we combine production input data used of 
winter wheat, e.g., labor, capital and land, for over three hundred farms in the Netherlands 
from 2002 to 2013 with daily precipitation, temperature and evapotranspiration (ET) data 
measured at the local level. We test whether all of these various types of data are necessary 
in order to isolate the effects of extreme weather events on yields.
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1.2	 Literature review
The impact of weather on yields has been analyzed in relation to several objectives. 
Traditionally, crop growth models attempt to simulate average crop growth while 
econometric approaches are used to link inter-annual variation in weather with yields. 
For example, inter-annual variation in yields has been estimated using experimental plots 
resulting from the weather conditions in a particular year (Oskam and Reinhard, 1992). 
That study included data on weather and nitrogen fertilizer over the period 1948–1964 
and divided the Netherlands in five regions based on location and soil type. Other studies 
have estimated inter-annual variation in yields of winter wheat, sugar beets, and starch 
potatoes using farm level panel data including nitrogen fertilizer and the acreage planted 
(Leneman et al., 1999). In that study, weather effects, both direct and indirect, were 
captured by including year dummies (1975–1996) in the regressions.

The last decade has seen a variety of techniques applied at farm and regional levels 
which have begun to map the effects of climate change at a local level. A meta-analysis 
of crop yields for several crops under climate change conditions concluded that the inter-
annual variability of mean yields is likely to increase and the consensus in the literature 
is that yield changes will be negative beginning in 2030 (Challinor et al., 2014). Recent 
studies of extreme events in Europe point to an increase in the number of warm days 
and nights, and a decrease of the number of cold days and nights (Porter et al., 2014). 
Several studies also indicate general increases in the intensity and frequency of extreme 
precipitation events particularly in winter months during the last four decades, however, 
inconsistencies between studies, regions and seasons are reported (Hirschi et al., 2011; 
Vautard et al., 2007; Seneviratne et al., 2010; Berrang-Ford et al., 2014; Yamamoto et al., 
2014; Sugiyama et al., 2014; Moriondo et al., 2011; Calzadilla et al., 2013).

The diverse nature of prolonged drought and excess precipitation was found to affect 
specific aspects of the growth cycle of a given crop and associated field management. 
Extreme weather events can directly impact the physiological processes of a crop through 
physical damage, but can also affect the timing and conditions of field operations. Due 
to differences in growth patterns among crops the impact of warming temperatures and 
weather extremes is crop dependent (van der Velde et al., 2012). A study at the global 
level used various weather scenarios to measure the effects of extreme weather events 
on agricultural regions with diverse crops and found that higher temperatures and events 
may lead to significant reductions in crop yields (Rosenzweig et al., 2001). Insect, pest, 
and plant diseases may exacerbate those reductions. Another study used a model based 
on daily weather data to simulate yields under climate scenarios and concluded that the 
impact of climate changes on sunflower yields will be larger than that of winter wheat 
(Moriondo et al., 2011). Similarly, a wheat simulation model combined with local scale 
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climate scenarios predicted that yield losses from drought will fall, but the yield losses due 
to heat stress will substantially increase (Semenov and Shewry, 2011).

Previous micro-level studies, including crop models, have shown that weather events 
affect yields. However, few of those models have included a complete set of the most 
important production factors affecting yields. That qualification aside, the net effects of 
extreme weather events have been shown to damage most crops, an observation that 
has most commonly been made in relation to rice yields (Wassmann et al., 2009; Welch et 
al., 2010).

In general, extremely high daytime temperatures are damaging and occasionally lethal to 
crops (Schlenker and Roberts, 2009; Porter and Gawith, 1999). However, there is debate 
within the climate change literature in regards to the point at which temperatures begin 
to negatively affect yields (Porter et al., 2014). For instance, some statistical studies find 
a positive effect of daytime warming on yields when extremes are infrequently realized 
(Welch et al., 2010). Rice yields in some regions of China have been found to be positively 
correlated with higher temperatures, while other regions show negative correlations 
(Zhang et al., 2010). Another study found that the availability of smaller spatial-scale yield 
data may allow for improvements in the empirical relation between hot days, precipitation 
and yields (Hawkins et al., 2013).

The exclusion of important variables affecting yields leads to omitted variable bias, an 
irrecoverable problem affecting all model estimates (Greene, 2012, e.g.,). In addition, the 
local nature of weather, particularly precipitation, favors low level spatial studies, indeed, 
there appears to be a trend towards review studies in which conclusions from various 
micro-level studies are systematically extended to higher levels of aggregation (Porter et 
al., 2014, Chap. 7). For example, a recent study using a crop model to calculate the effect of 
multiple weather stress occurrences on wheat yields across fourteen European locations 
found that for all sites the overall adverse event frequency is much more likely to increase 
than to decrease (Trnka et al., 2014). Further points of comparison for the current study 
are briefly reviewed by country of analysis. Articles about the effects of climate change 
variables on Chinese agricultural production include articles by Tao et al. (2006), Wang 
et al. (2008) and Chen et al. (2010). The articles are principally phenological studies of 
the effects of climate change on agriculture production, including winter wheat, and 
use both panels and data analysis techniques Tao et al. (2009, 2014). In particular, Tao et 
al. (2014) regress weather variables to explain wheat growth in China; You et al. (2009) 
conduct a similar study for China as the one proposed in this paper but at a higher level 
of aggregation and not specifically focused on extreme weather events. For India, Pathak 
et al. (2003) used a simulation model to examine the effects of weather variables on rice 
and wheat yields, however, no other production variables were included in their model. A 
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study by Auffhammer et al. (2012), which analyzes rice yields in India, takes a very similar 
approach to the current study except that it uses a much higher level of time and spatial 
aggregation. Kucharik and Serbin (2008) and Lobell et al. (2005) conduct statistical analyses 
for, respectively, the United States and Mexico, but do not include production variables 
in their analyzes. Brisson et al. (2010) provides a comprehensive analysis, including time 
series and simulation models, of the variables that have led to stagnating yields in France, 
yet at a higher level of aggregation then the one we propose. Licker et al. (2013) use 
times series weather variables to examine changes in wheat yields in Picardy, France and 
Rostov, Russia. Gregory and Marshall (2012) using a physiological based model, report 
potato yield increases for Scotland as a result of warming temperatures. Finally, Ludwig 
et al. (2009) used a model to show that despite decreasing rainfall in Western Australia, 
simulated yields based on actual weather data did not fall. This paper contributes to the 
literature by including a comprehensive set of microeconomic data and weather variables  
at a very low level of aggregation to examine the marginal effects of weather events on 
yields.

The remainder of this paper consists of two parts. The first presents the case that extreme 
weather events have steadily increased in the Netherlands for more than a century. If the 
argument is accepted that such events are real phenomena that will persist and perhaps 
increase in the future, then it is worthwhile to establish whether and to what extent they 
will affect yields. The second part of the paper does so by estimating the net effects of 
extreme events on winter wheat farmers in the Netherlands for the period 2002–2013.

2.	 Dutch long-term weather trends

The following section describes the data and methods used to identify long-term weather 
trends in the Netherlands and assess the likelihood that those trends will continue into 
the future.

2.1	 Weather trends data and methods
The concept behind the approach used to identify events, whether for the long or short 
term, was to record the number of days for which measures exceeded a specific threshold. 
Two general methods were used to identify events, the first method is a relative method 
comparing, for example, the high daily temperature for a specific day in a year with the 
high temperature for that same day across all years in the sample. The second method 
used an absolute scale which identified, for instance, the number of days in a week equal 
to or above 32 °C. Both the relative and absolute methods were used to identify event 
trends and included in panel regressions during the model selection phase, however, 
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given their high correlation with one another only the relative results are presented in the 
trend section.

The relative method is an adaptation of the methodology presented in (Klein Tank et al. 
(2009). Data used to identify long-term trends has been collected for many years by the 
Royal Dutch Weather Institute (KNMI) at its primer weather station, station 260, which is 
located near the center of the country. Station 260 was chosen because it has the longest 
series of readily available data and the data has been homogenized. Four types of extremes 
were identified, daily high temperatures, daily low temperatures, precipitation, and the 
reference evapotranspiration (a measure of the potential water loss which is often used 
as a proxy for crop growth potential). The identical methodology was used to identify the 
extremes for each variable examined, however we describe the methodology only for the 
maximum temperature variable.

Daily maximum temperature data for each day in a given year was compared to data 
for that specific day across all years available. Temperature values above the 95% 
quantile were selected as extreme events. For instance, for a given day in a year there 
are 109 observations corresponding to the number of years in the data set; those days 
with temperatures above the 95% quantile were identified as extreme events. The 95% 
quantile is a somewhat arbitrary choice, the intention was to select very rare events, but 
still have enough of them to be able to draw statistically meaningful conclusions. Similarly, 
those days with temperatures below the 5% quantile for a given day across all years were 
selected as extreme minimum temperature events. Precipitation and evapotranspiration 
events were similarly identified. Evapotranspiration is calculated by the KNMI using the 
Makkink method (Hooghart, 1987).

Several alternative aggregation methods were tested in order to determine their effect 
on the number of events identified. The method described above takes a day as the unit 
of comparison, we also calculated events based on weeks and months. The methodology, 
for example high temperatures and months, sums the number of days with temperatures 
above the 95% quantile for a particular week or month in a year. The appropriate level 
of aggregation to use in the econometric analyses depends on the sensitivity of winter 
wheat across a time span for the event measured. For example, aggregating over months 
rather than a specific day produces more observations, but did not significantly affect the 
conclusions drawn. The choice of which aggregation level to use depends on the amount 
of data and the question at hand. An example might help to illustrate the issue. For winter 
wheat, the precise day a high temperature event occurs is probably not critical. For instance, 
whether an event occurs on July 24th or July 25th will make little difference to the overall 
yields realized on a farm and so those two events could be aggregated, stronger still, it 
is probably inappropriate to assume that events on the 24th are significantly different 
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than events occurring on the 25th in terms of wheat production. However, the further 
apart two events are, the more likely they will be to have different effects on yields; events 
in early August will certainly affect yields more than events in late August because by 
late August the crop is harvested, therefore monthly aggregation is less appropriate. The 
testing several different aggregations and expert knowledge lead to the conclusion that 
a weekly aggregation is best.

2.2	 Weather trends results
This section first presents the changes in weather patterns that have occurred in the 
Netherlands. Both extreme events and average weather events are plotted through 
time in order to identify trends. Unless otherwise noted, figures were made using 
weekly aggregated data. All of the weather data used in the paper were collected and 
disseminated by Royal Dutch Weather Institute (KNMI). 

Fig. 1a shows that the number of yearly extreme low temperature events has decreased 
over the period from 1901 to 2013. The line near the center of the figure is a LOESS 
regression line showing, essentially, a locally weighted moving average trend line; its 
purpose is to help the reader to identify trends in the data. A Chow test was used to test 
where there was a structural break in the data in the 1970s, as the figures suggests but 
was rejected as was evidence of structural breaks in all other events analyzed. In short, 
there is no evidence that the number of events switched to another slope in the 1970s 
despite appearances in the figure. The slope across the entire data set is highly significant  
(t-value 3.64), meaning that we can be confident that the trend is not a result of chance. An 
auto-regressive, integrated, moving average (ARIMA) model was used to fit and forecast 
weather event data. As necessary, the data have been differenced in order to transform 
non-stationary data to stationary data. The mean of the point forecasts of the fitted 
ARIMA(3,1,1) model over the period 2014–2023 was 12.6, indicating that the number of 
extreme low temperature events will remain low compared to the historical average of 
18.8 over the entire sample. These point forecasts should be read with caution, Fig. 1a 
shows, and the ARIMA forecast confirms, that the amount of variation in the data is large; 
only the AR(2) and MA(1) approach significance (z values = 1.77 and 22 respectively). This 
holds true for all of the extreme ARIMA regressions. The regressions are meant to be an aid 
to identifying general trends visible in the figures.

Fig. 1b plots the number of yearly extreme high temperature events from 1901 to 2013. 
The slope is again highly significant (t-value = 5.56) and an ARIMA(0,1,1) model forecasts 
an average of 30.6 such events over the period 2014–2023, indicating that the relatively 
high number of extreme high temperature events are likely to continue compared to the 
historical number of yearly high temperature events of 18.8. The moving average term 
was found to be highly significant with a z value of over 17 while the trend was nearly 
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significant (z 1.72). The findings for low and high temperature events correspond to those 
found in the most recent IPCC report, specifically, the occurrence of more warm days 
and nights compared to the historical average. The findings reinforce the importance of 
measuring the effects of those events on yields in anticipation of more such events in the 
future.

Fig. 2a shows that the number of days with extremely high amounts of precipitation has 
increased, a similar figure, not included, for days with no precipitation shows a strong 
decreasing trend. Given the historical trend, the Netherlands can expect to experience 
more periods with heavy rains given that the regression slope is significant (t-value 
3.75). ARIMA results forecast an average of 23.4 events over the period 2014–2023. Fig. 
2b shows the number of evapotranspiration events since 1957, the first year for which 
data is available, has been steadily decreasing. The t-value is significant ( 2.45) and the 
ARIMA(2,1,1) model forecasts an average of 35 such events over the period 2014–2023, 
about the same as the historical average of 34.6 events. Nearly all of the AR (z values of 
1.71, 1.98) and MA (49) terms are significant as was the trend (4.14).

Fig. 1. Extreme temperature events, source original data: (Koninklijk Nederlands Meteorologisch 

Instituut (KNMI): Royal Dutch Meteorological Institute, 2014). 

Fig. 1. Extreme temperature events, source original data: (Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological Institute, 2014). (a) Extreme
minimum temp. events. (b) Extreme maximum temp. events.
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Fig. 2. Precipitation and evapotranspiration events per month (Koninklijk Nederlands Meteorologisch 
Instituut (KNMI): Royal Dutch Meteorological Institute, 2014).

The data presented in Fig. 4b is designed to show yearly changes in maximum temperatures, 
but with the data partitioned by month to keep the figure readable. The plotted lines are 
the LOESS regression lines of average high temperatures per month. The general trend 
across the entire period for all months is for a slight increase in maximum temperatures, 
particularly in the latter decades. Regressions against time show that April, July, August, 
October, November, and December have significant, positive, slope coefficients. A similar 
figure, not included, of minimum temperatures across all months shows a significant 
(t-value = 6.04), steadily increasing trend from 1902 to 2013. Temperatures, both the 
maximum highs and lows, appear to be increasing in the Netherlands although the 
changes vary by month.

The graphical and accompanying statistical evidence presented provide convincing 
evidence that high temperatures and precipitation events are occurring in historically 
high numbers; while low temperature and evapotranspiration events are occurring 
in decreasing numbers. The results are robust, with similar patterns appearing across 
different time aggregations and definitions of weather events. ARIMA forecasts suggest 
that the number of events will either stabilize or continue to increase thereby all of which 
motivates the following section which estimates the impacts of events on yields.

experience more periods with heavy rains given that the regres-
sion slope is significant (t-value¼3.75). ARIMA results forecast an
average of 23.4 events over the period 2014–2023. Fig. 2b shows
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Fig. 1. Extreme temperature events, source original data: (Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological Institute, 2014). (a) Extreme
minimum temp. events. (b) Extreme maximum temp. events.

Fig. 2. Precipitation and evapotranspiration events per month (Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological Institute, 2014).
(a) Extreme precipitation events. (b) Extreme evapotranspiration events.
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3.	 Estimating effects of weather events on yields

Estimating the effects of weather events on yields requires specifying a suitable model. 
Given the number of potential variables in the data set, model selection involves a 
systematic removal of variables that are either redundant in terms of the information they 
convey or do not significantly add to the explanatory power of the model. The econometric 
method allows us to test the influence of extreme events and other inputs on yields.  If 
an extreme event has no impact then that lack of influence should, ideally, be reflected 
in the econometric results, namely, the estimate for that variable should be insignificant. 
Ultimately, we are looking for measures that are highly correlated with and explain yearly 
changes in yields. Before turning to model specification, the primary potential model 
variables are described.

3.1	 Weather in regressions
In addition to the relative event measures used to identify trends, absolute measures 
were defined for the same weather variables previously presented. In contrast to the 
relative measures which were identified using quantiles, absolute measures are a matter 
of choosing a threshold, for instance, daily measurements above or below a particular 
benchmark are identified as events. Choosing a good benchmark is crop, geographic, 
and time specific in the sense that crops in different regions are vulnerable to events at 
particular times during their development (van der Velde et al., 2012; Rosenzweig et al., 
2001; Moriondo et al., 2011). In a sense, the term absolute is a misnomer in that farmers 
adapt their behavior to expected conditions where they are located and for the crops 
they farm. The term as used here primarily refers to events that are extraordinary for a 
given time in the Dutch winter wheat production cycle. Important months for the yields of 
winter wheat in the Netherlands are July and August when the kernel is forming, therefore 
weekly extremes were chosen with reference to those months (see Kennisakker (2014) 
and University of Kentucky (2014) for details). We are not claiming that only the weeks in 
those months are important for yields, for instance, during the winter months freezing 
temperatures are necessary for crop development. Rather, the focus of our study is on 
events that affect yields at one particularly vulnerable time in their development.

The thresholds of thirty-two degrees Celsius and above and ten degrees Celsius and 
below were identified as extremes for the weeks in our study. Thirty-two degrees was 
chosen because temperatures above thirty degrees are defined as tropical or extreme 
by the KNMI. Both benchmarks were chosen with reference to the data presented in 
Table 1 which shows that the benchmarks chosen are above and below their respective 
quantiles for given weeks of the year. Similarly, days with precipitation above 10 mm 
and evapotranspiration above 5 mm were flagged as events. Other measures include a 
measure of the number of consecutive days with precipitation above 10 mm.



142   |   Chapter 5

Table 1. Data description.
Variable Mean Standard deviation 10% Quant. 90% Quant.
Yield kg/ha 8144.82 1988.54 5386.80 10392.44
Pesticides euros/ha 177.91 84.85 62.87 274.23
Fertilizers euros/ha 138.31 80.63 34.55 237.98
Farm size ha 85.59 69.10 21.61 162.78
Land euros/ha 221.80 838.00 17.55 377.55
Capital euros/ha 268.41 1556.92 8.34 354.51
Labor euros/ha 438.74 1926.75 18.79 638.05
Precip. Evt. Abs. Week 26 158.52 141.99 0.05 338.05
Precip. Evt. Abs. Week 32 192.27 148.75 27.05 398.61
Avg. Week Max Temp. Week 26 216.13 28.21 179.86 255.43
Avg. Week Max Temp. Week 32 222.01 29.90 197.57 258.57
Avg. Week Min Temp. Week 26 120.50 18.15 96.86 145.00
Avg. Week Min Temp. Week 32 133.83 20.07 108.57 163.14
Avg. Week Evap. Week 26 34.40 6.60 25.86 44.00
Avg. Week Evap. Week 32 27.00 4.65 21.57 32.34
Precip. Evt. Abs. Week 26 0.46 0.69 0.00 1.00
Precip. Evt. Abs. Week 32 0.54 0.65 0.00 1.00
Max Temp. Evt. Abs. Week 26 0.07 0.29 0.00 0.00
Max Temp. Evt. Abs. Week 32 0.22 0.85 0.00 0.00
Min Temp. Evt. Abs. Week 26 1.68 1.68 0.00 4.00
Min Temp. Evt. Abs. Week 32 0.90 1.17 0.00 3.00
Evap. Evt. Abs. Week 26 0.33 0.52 0.00 1.00
Evap. Evt. Abs. Week 32 0.32 0.55 0.00 1.00
Conseq. Days Precip. Week 26 0.46 0.69 0.00 1.00
Conseq. Days Precip. Week 32 0.54 0.65 0.00 1.00
Precip. Evt. Quantile Week 26 0.35 0.55 0.00 1.00
Precip. Evt. Quantile Week 32 0.37 0.54 0.00 1.00
Max. Temp. Evt. Quantile Week 26 0.41 0.74 0.00 2.00
Max. Temp. Evt. Quantile Week 32 0.34 1.05 0.00 1.00
Min. Temp. Evt. Quantile Week 26 0.24 0.52 0.00 1.00
Min. Temp. Evt. Quantile Week 32 0.29 0.59 0.00 1.00
Evap. Evnt. Quantile Week 26 0.43 0.58 0.00 1.00
Evap. Evnt. Quantile Week 32 0.42 0.59 0.00 1.00

Note: data isfor all years across all farms. Original data: (LEI, 2014a, 2014b).

In addition to including extreme events in regressions, average weekly daily temperatures 
and precipitation amounts were considered for inclusion in the regressions. These variables, 
when falling within normal ranges, are expected inputs into the wheat production process 
and therefore should be included in the regressions along with other inputs. These 
weather data represent the general underlying trends, as opposed to disruptive events. 
Another reason for considering their inclusion is that doing so allows us to measure the 
effects of extreme events net of the effects of their expected, normal, values.
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As opposed to the weather data used in the trend analysis section, weather data used in 
the current section consists of data collected for 35 weather stations located throughout 
the Netherlands of which 29 or 30, depending on the weather variable measured, are 
used in the analyses. Weather data from 2002 to 2013 is used and matched with farm data 
which is only available over the same period.

Although the Netherlands is a small country (41,543 km2), there is a great deal of variation 
in weather across the country on any given day. This variation across space effectively 
multiplies the number daily observations. For example, instead of one temperature 
observation per day there are effectively 30 different, although correlated, observations, 
one for each weather station and associated farms in the data set. The weather data for a 
particular station was assigned to a farm based on its proximity, with the station closest 
determining the events for a particular farm.

Critical weeks for winter wheat yields in the Netherlands are in the last weeks before 
harvest when the wheat is ripening. In general, harvest begins somewhere in the second 
half of July in the southern provinces and gradually extends to the northern provinces. 
Both drought and dampness can affect winter wheat yields in these periods. In order 
to avoid the problems of damaged kernels and germination, an acute problem in wet 
circumstances, harvest has to begin at the right moment. Timing of the harvest is largely 
dependent on the dampness of the kernel with the ideal dampness at harvest at around 
15–16% in the kernel. Too damp and the wheat cannot be stored for long, particularly 
if the temperature is above 15 °C. Dampness can also increase the likelihood of fungus 
infections. Kernels are also susceptible to damage if too dry. Tropical temperatures, 
defined as temperatures over 30 °C as defined by the KNMI, can damage wheat in this 
period. However, enough rain and dampness in the ground can prevent high temperature 
damage.

3.2	 Farm data and method
Farm level data used in the analysis is collected by LEI (LEI, 2014a). LEI, a part of the 
Wageningen University and Research Centre, the leading agricultural research institute 
in the country, is responsible for, among other activities, collecting, analyzing and 
disseminating agricultural data to national and international organizations.

The initial economic data set considered for inclusion in the analyzes to follow consists 
of the main inputs used to produce winter wheat on 334 farms over the period 2002–
2013 throughout the Netherlands. Winter wheat is the most important grain grown in 
the Netherlands and the country enjoys one of the highest wheat yields in the world. 
The main inputs are: fertilizers, pesticides, energy, labor, capital, a catch-all account called 
other inputs, and four soil types. Data are converted to their per hectare equivalents. The 
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econometric method prizes parsimony as one element of a model and it is the reason 
why it is common to report the adjusted R-squared instead of the R-squared. Adjusted 
R-squared, like other econometric measures of comparison such as the Akaike information 
criterion and Bayesian information criterion (Greene, 2012), penalize the addition of 
explanatory variables. In short, a model with fewer exogenous variables and the same 
explanatory power will be preferred to models with the same explanatory power and 
more variables. Variables that are highly correlated with one another are candidates for 
removal for reasons of parsimony, but also to avoid the problem of multicollinearity. This 
is not to say that the variables removed from the model are unimportant, only that their 
effects are already incorporated within the model by the included variables.

Dutch farms generally produce several different crops in a given year, therefore it is 
necessary to apportion the share of a farm’s total productive resources to the share that is 
used to produce winter wheat. The method used here was based on the portion of profits 
derived from winter wheat in a farm’s total yearly profits. For instance, if 50% of a farm’s 
costs before tax profits came from winter wheat in a given year, then 50% of the total 
energy of a farm for that year were assigned to wheat. This is not a perfect methodology, 
for instance, some crops use more energy than others, but it is an economically sound 
approximation given that the costs that a farmer is willing to incur to produce a product 
are likely to reflect the relative profitability of that crop. Other apportionment methods 
were tried such as apportioning based on the area of a farm devoted to the production 
of winter wheat relative to the total size of a farm, but no appreciable differences were 
observed in the results. Similarly, the panel models were run using the quantities of 
variables used rather than their value in euros, again, no appreciable differences were 
noted in either the relative importance of estimates or their significance.

Indicators presented in Table 1 show the means, standard deviations, and 10% and 90% 
quantiles of the economic and weather variables used in the panel regressions. A feature 
of the data is the large standard deviations for the economic data, this implies a great deal 
of variation across Dutch farms in terms of the amounts of inputs they use per acre. This 
variation is important in the analysis; econometric methods depend upon such variation 
in order to calculate statistically meaningful results. It is this variation across time and 
across farms which makes the panel method employed effective. It allows us, essentially, 
to multiply the number of observations in the analysis and cover a wide range of differing 
input combinations and weather events.

Capital costs are based on yearly depreciation expenses. Labor costs are the total wages 
paid to all labor employed in the production process including an estimate of the value 
of the farmer’s own labor. Energy includes both diesel and electricity costs. The costs of 
land are represented by the mortgage paid for farm land. In addition to the land costs, we 
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also include the area of land to test for the returns of additional land. Fertilizers include 
costs for both nitrogen and phosphate, while pesticides include all inputs used to protect 
plants. Other variables were tested, in addition to using quantities, we tried: including 
nitrogen and phosphate as separate explanatory variables; using only the active pesticides 
rather than all inputs used to protect plants; including electricity and diesel as separate 
regressors, and; using only the wages of permanent farm employees by excluding the 
wages of temporary workers. However, none of these variations led to notable changes in 
the general conclusions which could be drawn from the final model.

The type of soil used to grow winter wheat greatly affects yields. There are ten relevant 
soil types in the Netherlands, these were consolidated into five major categories: sand, 
peat, loess, clay and mixed soil types. Peat is a spongy soil type that forms at the bottom 
of swamps and is found in the northern and western Netherlands; it tends to retain water. 
Loess is a rich soil primarily composed of sand and/or silt and to a lesser extent clay; it, like 
sand, has good drainage. Clay naturally tends to trap water which can damage wheat in 
periods of heavy rains, however, it is the most commonly taken to be the most productive 
soil type.

Fig. 3. Yields and average precipitation amounts (mm) across important wheat growing months 
(Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological Institute, 2014). 

Fig. 3a shows wheat yields for a representative subset of the farms in the data over the 
period 2002–2013. While there is a great deal of variation across farms, yields tend to move 
in the same direction and in response, presumably, to similar underlying disturbances. In 
short, there appears to be enough variation and yet enough similarity between farms in 
the Netherlands to make statistical analyses meaningful (Fig. 4).
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3.3	 Model specification
Model specification concerns which variables to include in the model and in which form. 
There is a high degree of correlation between many of the weather variables and a few of 
the economic variables; the question is whether to remove one of the correlated variables 
and, if so, which one to remove. Using weekly weather data and absolute and relative 
measures of weather events results in hundreds of potential weather variables. That 
number was substantially reduced by concentrating the analyses on the weeks in July and 
August. The number of variables was further reduced by using a combination of statistical 
tools and expert knowledge. The first step was to run a basic linear regression model using 
all of the presumably relevant variables, and then use variance inflation factor (VIF) analysis 
to identify highly correlated variables. The VIF is a standard econometric technique used 
to quantify multicollinearity in an ordinary least squares regression analysis (Studenmund, 
2006). The simple correlations of variables identified as problematic by VIF were then 
used to remove highly correlated variables from consideration in the regressions. For 
instance, high correlation was identified between the number of consecutive days with 
precipitation over 10 mm, absolute precipitation events, and the total number amount of 
rain in a given week, indicating that perhaps any one of these indicators could be used as 
a proxy for the others and that only one of them should be included in the model. Similar 
high correlation was observed for weekly average low and high temperatures and their 
corresponding weekly events. Finally, high correlation between measures of absolute and 
relative events was identified as a potential problem.

Fig. 4. Time series Dutch of precipitation and temperatures. Source original data: (Koninklijk 
Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological Institute, 2014). Station 
260 is located in Utrecht, close to the center of the Netherlands. 

sand, has good drainage. Clay naturally tends to trap water which
can damage wheat in periods of heavy rains, however, it is the
most commonly taken to be the most productive soil type.

Fig. 3a shows wheat yields for a representative subset of the
farms in the data set over the period 2002–2013. While there is a

great deal of variation across farms, yields tend to move in the
same direction and in response, presumably, to similar underlying
disturbances. In short, there appears to be enough variation and
yet enough similarity between farms in the Netherlands to make
statistical analyses meaningful (Fig. 4).

3.3. Model specification

Model specification concerns which variables to include in the
model and in which form. There is a high degree of correlation
between many of the weather variables and a few of the economic
variables; the question is whether to remove one of the correlated
variables and, if so, which one to remove. Using weekly weather
data and absolute and relative measures of weather events results
in a hundreds of potential weather variables. That number was
substantially reduced by concentrating the analyses on the weeks
in July and August. The number of variables was further reduced
by using a combination of statistical tools and expert knowledge.
The first step was to run a basic linear regression model using all
of the presumably relevant variables, and then use variance in-
flation factor (VIF) analysis to identify highly correlated variables.
The VIF is a standard econometric technique used to quantify
multicollinearity in an ordinary least squares regression analyses
(Studenmund, 2006). The simple correlations of variables identi-
fied as problematic by VIF were then used to remove highly cor-
related variables from consideration in the regressions. For in-
stance, high correlation was identified between the number of
consecutive days with precipitation over 10 mm, absolute pre-
cipitation events, and the total number amount of rain in a given
week, indicating that perhaps any one of these indicators could be
used as a proxy for the others and that only one of them should be
included in the model. Similar high correlation was observed for
weekly average low and high temperatures and their corre-
sponding weekly events. Finally, high correlation between mea-
sures of absolute and relative events was identified as a poten-
tial problem.

Fig. 3. Yields and average precipitation amounts (mm) in across important wheat
growing months (Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal
Dutch Meteorological Institute, 2014). (a) Production for farms with data for all
eleven years in the study.

Fig. 4. Time series Dutch of precipitation and temperatures. Source original data: (Koninklijk Nederlands Meteorologisch Instituut (KNMI): Royal Dutch Meteorological
Institute, 2014). Station 260 is located in Utrecht, close to the center of the Netherlands. (a) Sum of monthly precipitation per year. (b) Average monthly temperatures per
year.

J.P. Powell, S. Reinhard / Weather and Climate Extremes ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: Powell, J.P., Reinhard, S., Measuring the effects of extreme weather events on yields. Weather and Climate
Extremes (2016), http://dx.doi.org/10.1016/j.wace.2016.02.003i



5

Measuring the effects of extreme weather events on yields   |   147   

The degree of correlation between two or more variables is only an indicator of whether 
to remove a variable from a regression, if, with the exception of extremely high correlation 
which results in multicollinearity, there is a good economic or another reason to include 
a variable in a regression despite high correlation with other variables, then it should be 
included. That said, the decision was made to include only absolute measures rather than 
relative measures for consideration because some absolute measures have a recognized 
phenological effect on wheat whereas relative measures do not. In addition, high 
correlation between the absolute and relative measures indicate that these measures are 
identifying exceptional events.

Finally, the decision was made to include both high temperatures and evapotranspiration 
rates for consideration in the model. These two variables capture different processes, 
in particular, the evapotranspiration variable captures potential interactions between 
precipitation and high temperatures (Hiemstra and Sluiter, 2011). We follow convention by 
including typical inputs into the farm production function: fertilizers, pesticides, energy, 
labor, capital and other costs. In addition, farm size was included to capture the effects of 
scale on the production process. Only the costs of land per ha were removed because of 
its very high correlation with capital and labor costs.

Even after the problem of correlation was addressed, the potential number of variables 
was still large. While the decision to include only absolute measures of weather effectively 
halved the number of weather variables, each of these variables, precipitation, high and 
low temperatures and evapotranspiration, included seven weeks of data covering the 
period from the beginning of July to middle August. Given the exploratory nature of the 
study, a final selection of variables was made using measures of best fit. The procedure 
used was to include permutations of all of the remaining potential variables in regressions 
and choosing the best model based on the adjusted R-squared. The variables finally 
selected are those found in Table 1.

The data were then used to run a series of panel regressions with wheat yields as the 
endogenous variable and the other variables, including a measure of the effects of time, 
as explanatory or exogenous variables. It is common practice to include time effects in 
panel regressions to account for changes through time not otherwise identified (Baltagi, 
2008). Results for three models are reported in Table 2. The Complete model, which 
includes both the economic and weather exogenous variables, and separate models for 
the economic and weather variables. By comparing results across models, we will be able 
to draw conclusions about the importance of each group of variables in determining 
yields. In particular, the comparison is important because it allows us to determine just 
how wrong we might be when only regressing yields against weather variables as is 
common in highly aggregated studies.
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Table 2. Panel results.
Coefficient Complete model Economic model Weather model

Estimate t-value Estimate t-value Estimate t-value
Pesticides euros/ha 12.854 8.608 12.766 8.445
Fertilizers euros/ha 3.297 2.809 3.905 3.289
Farm Size ha - 6.154 - 1.761 - 5.728 - 1.617
Capital euros/ha 0.324 4.897 0.329 4.918
Pesticides - 0.020 - 6.462 - 0.020 - 6.273
Fertilizer - 0.006 - 1.897 - 0.006 - 2.202
Farm size 0.015 1.747 0.015 1.710
Capital - 0.000 - 4.273 - 0.000 - 4.376
Soil loess - 502.641 - 1.240 - 668.176 - 1.626
Soil mixed - 83.427 - 0.398 - 94.582 - 0.447
Soil peat - 208.77 - 0.549 75.084 0.201
Soil sand 93.259 0.313 22.860 0.076
Precip. Evt. Week 26 31.650 0.596 - 15.622 - 0.286
Precip. Evt. Week 27 - 11.754 - 0.298 - 2.939 - 0.072
Precip. Evt. Week 28 58.236 1.291 51.591 1.106
Precip. Evt. Week 29 - 50.538 - 1.012 - 14.479 - 0.280
Precip. Evt. Week 30 - 25.549 - 0.475 - 26.496 - 0.475
Precip. Evt. Week 31 - 91.294 - 2.268 - 135.172 - 3.254
Max. Temp. Evt. Week 27 - 429.745 - 4.851 - 440.821 - 4.797
Max. Temp. Evt. Week 29 - 49.702 - 0.624 - 52.223 - 0.633
Max. Temp. Evt. Week 30 - 151.491 - 1.050 - 162.867 - 1.087
Max. Temp. Evt. Week 32 62.689 1.296 23.765 0.478
Min. Temp. Evt. Week 26 35.209 1.238 41.566 1.409
Min. Temp. Evt. Week 27 - 2.011 - 0.052 0.098 0.002
Min. Temp. Evt. Week 29 - 85.863 - 1.954 - 92.196 - 2.020
Min. Temp. Evt. Week 30 - 140.914 - 2.787 - 150.367 - 2.871
Min. Temp. Evt. Week 32 111.207 3.280 97.788 2.775
Evap. Evt. Week 27 - 200.450 - 1.706 - 209.200 - 1.733
Evap. Evt. Week 27 - 200.450 - 1.706 - 209.200 - 1.733
Evap. Evt. Week 28 - 148.745 - 1.490 - 111.177 - 1.075
Evap. Evt. Week 30 76.901 0.620 - 0.758 - 0.006
Year 2004 418.305 2.237 458.094 3.157 363.197 1.882
Year 2007 - 1675.280 - 10.198 - 1565.259 - 16.423 - 1778.394 - 10.461
Year 2011 - 1027.684 - 4.536 - 1101.385 - 11.564 - 995.056 - 4.266
Year 2012 - 573.073 - 4.197 - 460.655 - 4.585 - 376.207 - 2.711
Year 2013 - 508.192 - 3.359 - 199.596 - 1.891 - 320.623 - 2.063

Note: the Complete model includes both the economic and weather variables, the Economic model 
includes only economic variables, while the Weather model consists of only the weather variables. 
The coefficients of all three models are for the fixed effects or ’within’ model and include time effects 
as well as individual effects. Standard tests strongly reject a common group intercept (p = 3.26e-87). 
The F-statistic (374,1454) for the entire model is 11.89° of freedom with a corresponding p-value 
of less than 6.3e-267. Adjusted R-squared= 0.69. A F-test (368,1460)= 12.06 indicates the overall 
regression is significant (p-value= 9.2e-269). A F-test (333,1460) rejects an OLS model specification 
in favor of the within specification (p-value= 1.237e-88). A Wald test Chi-squared (11)= 156.25 for 
joint significance of time dummies for all years is rejected (p- value= 7.86e-28). A Hausman test 
favors the within over the random effects form of the model (ChiSq (35)= 147.01, p-value= 1.12e-
15). Finally, Wald tests favor the Complete model over either the Economic or Weather models 
(ChiSq= 0.0012 and 2.0e-11 respectively).
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The within form of the panel model was chosen over the OLS and random effects models. 
The within model removes the effects of both unobserved and observed variables 
affecting yields (Baltagi, 2008). The statistics comparing these models are reported at the 
end of Table 2. The essential messages of those statistics are that, on the whole, individual 
Dutch farms have distinguishing characteristics and should be analyzed as individuals 
rather than lumped together as a single set of data. In addition, a Hausman test indicates 
that the assumptions of the random effects model are not met, and so we use the within 
form (Greene, 2012). A test of the joint significance of the time variables is rejected, 
however, individual years were found to be significant as measured by their t-values. In 
particular, the years 2004, 2007, 2011, 2012 and 2013 were found to be significant, with 
yields in 2004 above average and those in 2007 and 2011 below average. The effects in 
2007 and 2011 are clearly visible in Fig. 3a.

The first two columns in Table 2 present results for the Complete econometric model; 
the model which includes both economic and weather variables. Columns three and four 
show results for the Economic model; only the economic variables plus soil type and time 
are included in the model. Columns five and six present results for the Weather model 
which only includes time and the weather variables. A working assumption, later statically 
confirmed, is that the economic and weather models are wrong to the extent that they 
are misspecifications, i.e., they omit important determinants of yields out of the model. 
They were modeled precisely for that reason, to allow us to speculate on the effects of 
leaving out variables given that they are frequently not available or of poor quality in 
more aggregated studies. As reported in Table 2, Wald tests of comparing the Complete 
model with the Economic model and the Complete model with the Weather model reject 
the nulls, i.e., the Complete model is preferred to either of those two models.

The estimate column for each of the models shows the effect of a one-unit increase in 
a variable on the kilograms per hectare (yield) of winter wheat produced. The t-value 
reports the statistical confidence that can be placed in the variable, by convention, an 
absolute t-value of around 1.96 or greater is considered significant. Those t-values with 
absolute values less than 1.96 are considered to be insignificant in the sense that their 
contribution  to the explanatory power of the model cannot be distinguished from zero, 
in short, they do not help to explain changes in yields given the other variables in a model.

Pesticides, fertilizers, and capital in the Complete model are all significant and have the 
expected sign, i.e., the more of these inputs added to the production of wheat, all else 
equal, the greater the yield. The negative, significant, sign for farm size indicates that 
increasing the size of a farm reduces yields. Quadratic terms for each of these variables 
were also included in order to assess whether diminishing returns are present. Although 
none of the coefficients is large, they are all significant or nearly so and have a negative 
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sign indicating decreasing marginal productivity. The coefficients for three of the four soil 
types, although insignificant, are as expected in that they are all negative because they are 
calculated in relation to wheat grown on clay, generally regarded as the most productive 
of the soil types in the Netherlands. The coefficient for sand is positive; indicating that, 
all else equal, it is more productive than clay (which is absorbed in the intercept term). 
This result could be due to the drainage properties of sand, that is confirmed in previous 
studies (Oskam and Reinhard, 1992). 

Turning to the effects of the weather variables in the Complete model, recall that variables 
are categorized according to whether they are events or averages. Given that we chose 
to use weekly rather than, e.g., monthly data, the effects of events and average values for 
the same variable in a given week are naturally highly correlated; accordingly, the decision 
was made to only include event variables. Although quadratic terms for each of these 
variables were included in the model, they were all insignificant and dropped from the 
final specification as were interaction terms.

The model indicates that events can have either positive, negative or no effect on yields. 
This is unsurprising given that we know that wheat kernels can be damaged by either 
too wet or too dry conditions. Results in the table can be read, loosely, as the average 
effects of these events on yields across all farms over the period 2002–2013. The only 
precipitation event that has a significant effect on yields is the precipitation event in week 
31. This is near the end of the harvest season, and the effect is negative. Furthermore, the 
significance of the other precipitation terms remained low even when evapotranspiration 
events were removed from the model or when only weekly sums of precipitation and low 
and high temperature events were included in the model.

The coefficient for high maximum temperature events in week 27 (July 1st in 2013) is 
significant and negative, indicating that high temperature events near the beginning of 
the harvest season damage crops or, perhaps, force farmers to harvest before the yield has 
reached its maximum. They remained so in nearly every permutation of variables tried. 
The estimate for week 27 tells us that one additional high temperature event will lower 
yields by nearly 430 kg per hectare. Given the average yield in Table 1, this represents a loss 
of around 5%. The effects of low temperature events were also significant and negative in 
the 29th and 30th week. Low temperature events in the middle and near the end of the 
harvest season, depending on the specific year, have negative effects on yields. The only 
positive effect of weather events observed is for cool days in the 32nd week near the end 
of the harvest season.
Cooler days in that week are associated with higher yields.
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The Wald-test favors the Complete model over the Economic and Weather models. 
Comparing the Complete model with the Economic model illustrates the importance 
of including weather variables. Although none of the variables that are significant in 
both models change signs, their magnitudes do change, in some cases substantially. A 
comparison of the Complete model with the Weather model indicates that a researcher 
would, in general, overestimate the negative effects of significant weather events, using 
the Weather model. Although the signs of the estimates that are significant in both models 
remain stable, their magnitudes are quite different, to the degree that they might convey 
the wrong impression.

4.	 Discussion and conclusions

4.1	 Discussion
The added value of the current research is a narrowly focused analysis of the net effects 
of weather events on winter wheat yields at a local level after having controlled for the 
effects of differing production inputs and hidden fixed effects. There is a tension between 
precision of results and general applicability. The full value of the findings presented here 
will be realized when they are placed in a wider context along with other micro-level 
studies. We measure and report the combination of direct and indirect effects of weather 
events on Dutch winter wheat yields. Dutch farmers are some of the most productive in 
the world, they have access to the latest technologies and operate in an efficient, stable, 
economy, and have ready access to a large market. All of which allows them a degree of 
flexibility in how they produce, harvest, and distribute their products, thereby affording 
them a degree of insulation from environmental changes. Farmers in countries without 
these characteristics will presumably be more susceptible to extreme weather events. In 
short, the findings presented here need to be combined with other micro-level economic 
studies. Wheat production and consumption takes place within a global market which 
will adjust to prices and other economic indicators. Understanding how the production 
and consumption of wheat and other crops will react to climate changes will require 
placing micro-level studies into a wider context. The trick will be to retain the information 
contained in low aggregation studies while scaling-up the analyzes to levels at which 
global policies can be influenced.

Another characteristic of using micro-level data, particularly precise weather data, is 
the possibility of incorporating local knowledge. Our study required us to focus on a 
particularly susceptible period in the development of winter wheat in the Netherlands 
in order to retain adequate degrees of freedom in the regression models. Although 
this trade-off allows us to focus analyses on events that are most likely to affect yields 
when they are most vulnerable, we were required to limit the time frame of the study. 
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That said, studies using data at higher levels of aggregation run the risk of incorporating 
weather events that do not significantly affect yields. In contrast to the low level analysis 
used here, highly aggregated econometric studies cannot disentangle changes in yields 
attributable to changes in weather variables versus changes attributable to other inputs 
simply because important yield determining variables cannot reasonably be included in 
such models (Lobell and Field, 2007; Lobell et al., 2011).

Our Complete model is comparable with that of (Oskam and Reinhard (1992). They 
aggregated weather over the entire growing season using monthly temperature and sum 
of evapotranspiration, but they did not include weather extremes. In their model, the time 
trend was significantly negative for three out of five regions and follows a similar pattern 
to the pattern observed in this paper. Both the temperature and evapotranspiration 
show decreasing marginal returns in their model, indicating that excess temperature and 
evapotranspiration reduce yields.

Another result, using meteorological information on temperature and precipitation during 
the growing season at a higher level of aggregation than our study, suggests that careful 
consideration of nonlinear technology trends and an interaction between temperature 
and precipitation is essential in any empirical mode (Hawkins et al., 2013). All of our 
quadratic and interaction terms were found to be insignificant, perhaps, as discussed, 
due to the short time scale used in our analysis. Finally, a study comparing observed and 
modeled yields of wheat and maize in France in two years with extreme conditions, found 
that both years adversely affected yields (van der Velde et al., 2012). Our results confirm 
that yields in 2007 were extremely, negatively, affected, however, 2003 does not appear to 
be either a significantly good or bad year for Dutch wheat yields. This discrepancy is due 
to differences in weather and harvesting patterns between the two countries.

4.2	 Conclusions
Dutch weather data over the period 1901–2013 show that the number of extreme high 
temperatures and extreme precipitation events is increasing while the number of yearly 
low temperatures extremes is decreasing. Our findings confirm the IPCC findings and 
indicate that the number of precipitation events is increasing. Most importantly, the effects 
of those events on winter wheat yields in the Netherlands were found to be detrimental. 
Our findings support the conclusions of Trnka et al. (2014) who found, using site data, that 
adverse effects were likely to out-number the positive effects of weather events.

Furthermore, our results indicate that a model that includes both economic and weather 
variables is statistically preferred to one that includes only one of the two sets of data. 
Although the direction of the effects of a given subset of significant exogenous economic 
or weather variables in comparison to a model combining these variables remains the 
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same; the magnitude of the variables changes, thereby leading to potentially erroneous 
conclusions. However, if only one set of data is available, either economic or weather data, 
then our results show that such a model would accurately identify the direction that the 
included variables would have yields, but not their magnitude.

This study contributes to the literature on climate change by assessing the impact of 
weather extremes on winter wheat yields of a panel of Dutch farms for twelve years. Yields 
are examined in relation to the actual regional weather data and observed productive 
inputs used to grow winter wheat on a farm. While the primary goal of this paper was 
to measure the effects of weather events on yields in the Netherlands, the relevance of 
that goal depends on the expected occurrences of weather events in the Netherlands. 
Based on an analysis of over a hundred years of daily data, the expected patterns of the 
occurrence of extreme events were estimated and forecasted ten years into the future. 
The number of extreme high temperature and precipitation events was shown to be 
significantly increasing over the period while the number of minimum temperature and 
evapotranspiration events was found to be significantly decreasing. These results provide 
convincing evidence that weather events have been steadily increasing and ARIMA model 
results indicate that they are likely to remain at historically high levels. In addition, average 
rainfall and both average maximum and minimum temperatures have been increasing 
steadily over the last 100 years.

Given that long-term trends indicate that the number of precipitation and high 
temperature events will increase or remain at historically high levels, we can conclude 
that their impacts will be detrimental for winter wheat yields. However, given that the 
number of minimum temperature events is decreasing and that a decrease in the number 
of minimum temperature events increases yields, all else equal, that process will increase 
yields. However, the number of extreme minimum temperatures is approaching zero. At 
the point that such events become rare, the negative effects of increasing precipitation 
and maximum temperature events will dominate Dutch wheat production.
Studies conducted at high levels of aggregation cannot adequately account for the effects 
of farm and crop level characteristics influencing yields. It was argued that a low level 
analysis is necessary in order to isolate the effects of weather events on yields. Therefore, 
in addition to weather variables, economic variables, including the main factors of 
production, were included in a within panel model to explain yields. Results indicate the 
importance of both weather events on yields and the need to specify the time period over 
which events are measured. Weather events can have either positive or negative effects 
on yields depending on the week in which they occur. However, the majority of events, 
either precipitation, or low or high temperature events reduce yields.
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6CHAPTER 6



Forecasting Food Crop Yields and 
Assessing their Credibility

Jeffrey P. Powell



An accurate forecast of crop yields is a critical piece of information used by policy 

makers to make informed decisions on topics ranging from the prospects for global 

food security to the economic viability of biomass products. An accessible and 

transparent framework is provided to allow policy makers to assess the trade offs 

involved when forecasting yields and measure the value of those forecasts. Yields 

of ten important global food crops are forecasted for ten years and their accuracy 

reported. A comparison is made between the results of the standard technique 

used to forecast yields, and auto-regressive, integrated, moving average (ARIMA) 

forecasts. ARIMA forecasts out-perform those of the standard methodology and 

provide a convenient means to assess their added value. While the mean forecasts 

of top producers for most crops are expected to increase, the amount of associated 

uncertainty is large, and forecasts beyond only a few years should be made with 

caution.Ab
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1.	 Introduction

An informed understanding of yield forecasts and their limits is crucial for policy makers 
who must find a balance between the many competing demands for agricultural products 
and make the investment decisions today that will determine agricultural supplies in the 
future. This paper will present an easy to implement method for forecasting yields of major 
food crops. It compares the proposed, more general, technique to methods in common 
use and discusses the inherent, underlying, limits of forecasting. In particular, a distinction 
is made between the uncertainty associated with a specific forecasting method and a 
more fundamental uncertainty intrinsic to all of the forecasting methods discussed.

The demand for agricultural products that can be used as food is expected to increase 
due to population increases, policies designed to promote the use of biomass products, 
and a shift towards relatively more meat and dairy consumption [1, 15, 21, 22, 52, 60, 63]. 
Changes in climate, particularly increases in the number of extreme weather events, are 
expected to form an increasing threat to food supplies [19, 51].

Population growth will increase the direct demand for food. According to the United 
Nations Department of Economic and Social Affairs, the World’s population will continue 
to increase for decades even under low growth scenarios [3]. An expected population of 
8.1 billion in 2025 and 9.6 billion in 2050 will further strain the world’s food supply. There 
is evidence that demands for biofuels have also increased the direct demand for certain 
crops such as maize, rapeseed, and sugarcane and, as a consequence, the supply and prices 
of crops which compete with them for land and other resources used in their production 
[33, 41]. Although the issue of assessing the precise impact of biofuels on global land use 
and food supplies and prices is complex, there is circumstantial evidence of significant 
effects for specific countries and crops. For instance, of the total yearly supply of maize 
grown in the US in 2012, 41.8% went to the production of ethanol, compared to 14.2% in 
2005, the year the Energy Policy Act was implemented [63, 64]. In addition, rising income 
and increasing urbanization are adding to demand for more or different sources of animal 
products, principally meat and dairy products [67]. Large amounts of mainly maize and 
soybeans have gone to animal feeding facilities to satisfy demands for meat, production 
of which has risen from 50 million tons (Mt) in 1950 to about 110 Mt in 1975, thereafter 
more than doubling to around 275 Mt in 2010 [59]. Changes in weather patterns too, 
although their effects will be crop and region specific, are predicted to reduce yields, with 
extreme weather events being the major threat to food supplies [19, 51].

Increasing the production of food crops will be a critical component in efforts to provide 
enough food to  feed the world’s growing population and ease tensions between the 
various demands for agricultural products. Estimates are that agricultural production 
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may need to increase by between 60% and 110% to meet these demands [17, 46, 60]. 
Increasing yields, output per unit of area, is an attractive manner to increase production 
without having to bring more farmland into production and thereby avoiding further 
environmental degradation [6]. There appears to be a consensus that yield increases are 
the preferred alternative for increasing the amount of available food [21, 22, 25, 44, 48, 49, 
62].

Although desirable, is it possible to significantly increase yields in the future? Evidence 
from previous decades has shown that, among others, increases in the use of irrigation, 
synthetic fertilizers, machinery, genetic improvements and pesticides have led to steady 
increases in yields and prevented the mass starvations predicted by observers in the mid-
1960s [2]. The evidence would strongly suggest that we should expect yields to increase 
in the future. Indeed, the biophysical limits of crop yields have not yet been reached [9, 
10, 12, 42, 47, 61]. The introduction of biotechnology traits and the development of new 
breeding methodologies using DNA based markers are technologies expected to further 
improve yields [13]. For irrigated crops, that potential is defined as the yield of a crop 
cultivar when growth is limited only by solar radiation, temperature, and carbon dioxide 
from the atmosphere and additionally, for rain-fed cropping systems, the amount and 
distribution of precipitation [16, 42].

The range of potential yield measurements in the literature is large. It is reported that 
average yields in rain-fed systems are commonly fifty percent or less of potential yields, but 
the size of that gap is dependent on whether the comparison is based on experimental, 
model, or realized farmer potential yields [42]. A more optimistic forecast of potential 
yields is that the introduction of stress tolerant crops could mean that future yields might 
be three times current commercial maize yields [61]. Others warn that grain yields may 
have peaked in the mid-1990s, and further improvement in the genetic potential of grain 
yields awaits some new technologies or biological advance [24].

Realized yields are not only a matter of exploiting technologies, they are also influenced 
by a wide range of factors including social and economic policies, some of which are not 
intended to maximize yields. Dyson, 1999, claims that world cereal production has grown 
more slowly than population growth chiefly because of deliberate policies and political 
developments in North America, Oceania, Europe and the Former Soviet Union [11]. 
Farmers in well-functioning market economies are not motivated to increase or maximize 
yields per se, a better, if not perfect assumption is that they are motivated to maximize 
or satisfice their profits, while farmers in subsistence economies are motivated largely by 
survival considerations.



6

Forecasting Food Crop Yields and Assessing their Credibility   |   163   

Technical capabilities define yield potentials, and while social policies and economic 
considerations can influence those potentials, they also frequently result in yields that 
are well below those potentials. Yields are a product of a combination of breeding and 
management techniques [9]. The energetic response of maize farmers in the United States 
to increase yields in response to the higher prices afforded by the Energy Policy Act of 2005 
and the Energy Independence and Security Act of 2007 is an example of how the profit 
motives of farmers can influence cropping decisions, see figure 1. The sub-figures show 
the large increases in both area used and yields achieved by maize farmers throughout 
the world; note that the United States is the world’s largest producer of maize. Recent 
assessments show that the introduction of these sorts of crop yield response mechanisms 
into models were the most critical parameters in the models [8, 31].

Given the importance of increasing yields and the potential to increase those yields within 
genetic, technical, social and economic constraints, what can we expect from yields in the 
future? Global yield increases for most major cereal crops have been generally linear since 
the start of the green revolution [20, 27]. Where linear, as will be discussed in greater detail 
below, refers to the linear trend model presented in equation 1. Many forecasters assume 
that these linearly increasing trends, with conditions, will continue into the distant future 
[11, 38, 52, 56]. Others, including several using computational partial equilibrium models, 
assume compound annual rates of yield increases [30, 53]. However, such optimism should 
be tempered by increasing evidence that while yields for many of the most important 
crops and producers are increasing, they are doing so at decreasing rates [37, 58]. To 
account for this expected deceleration in crop yields, several recent projections of yields 
consider a declining compound rate of growth over time which aims to mimic the shape 
of an asymptotic trend [5].

Studies by Tilman et al. 2011, and Grassini et al. 2013 are two important recent contributions 
to efforts to forecast food demand and supply and so it is informative to take a closer 
look at how forecasts in those studies were modeled [23, 60]. Tilman et al., as a part of 
their effort to forecast global food demand, include a time trend variable along with 
several other variables in their model. Specifically, they: ’...used past yield relationships 
and trends to estimate yields that might be achievable by 2050’. They use aggregated 
yield data composed of nine time points. Mean yields for 1965, 1970, 1975, etc., combined 
with economic and biophysical data are used to forecast yields using a linear trend model. 
Grassini et al., claim that the mathematical form of the historical yield trend can be linear, 
exponential, parabolic, linear plateau or flat for the 36 countries and regions in their 
study. Further, they claim that linear models, with or without a discontinuous break point, 
adequately describe all yield trends in their study.
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To summarize, previous paragraphs have established that there is a need to increase the 
production of food crops to meet increasing demands and threats to supply, and that 
increasing yields is the preferred method to meet those demands. It was argued that 
while it is technologically possible to increase yields, increases are also a matter of social 
and economic policies. Finally, the prevalent current method to forecast food yields was 
presented. The remainder of the paper will present and argue for the implementation 
of a more general form of linear model to forecast yields, one that largely encompasses 
the models previously cited. It first outlines the standard, linear trend, forecasting 
methodology used to estimate future yields and then contrasts it with the ARIMA 
methodology. The paper outlines the decisions needed to develop an ARIMA model and 
compares the accuracy of resulting forecasts to those of the standard technique. In ends 
by asking whether it is meaningful to forecast decades into the future given two types of 
uncertainty.

Table 1. Data Description for 2012

Yield 
(kg/ha)

Area (ha) Production (tonnes)

Crop N. 
Obs.

Mean	
SD

Mean	 SD Mean	 SD

Wheat 105 22736	 16418 1918205	
4866328

4289255	
12175793

Rice paddy 108 29054	 16832 1376402	
5269790

4440504	
19152729

Cassava 95 91041	 50443 148884	 403969 1496298	
4570902

Barley 84 20963	 14652 650451	 1243809 1439109	
2759161

Maize 143 26267	 27106 903854	 3272465 3348975	
19792846

Potatoes 136 143691	 87724 113953	 408873 1669972	
5869170

Rapeseed 32 17579	 8448 545203	 1383631 761464	
1957050

Sorghum 79 15415	 12868 561338	 1880006 738092	
2394001

Soybeans 60 13724	 7006 1031745	
3964815

2078006	
9302421

Sugar beet 35 375482	 171103 153597	 209921 5351388	
7632160

Note: Data is from FAOSTAT, preliminary data 2012. Original data: [18]
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2.	 Data and Method

2.1	 Data
The starting point for building an econometric forecasting model of any type is an 
examination of what happened in the past. Actualized, historical yields of the type used in 
this study are the yields that farmers realized given the entirety of constraints bounding 
their behavior and aims in a particular year. They are the result of the accumulated 
decisions, vagaries, and external influences affecting yields. Econometric methods do not 
ask, by way of contrast, what the maximum achievable yield was or will be; rather, they 
start with what is taken to be true, and move forward based on assumptions about the 
continuation of previously observed patterns in the data.

Data used in the analyses to follow are from the FAOSTAT database [18]. The database 
contains time-series information on yields, area used to grow a crop, and production. A 
time-series is simply a sequence of observations of an object over a number periods, i.e., 
yearly yields of wheat for France for the period 1961 to 2012. The ten crops in the study 
are representative of the most important global food staples. Note that yields are rates 
in that they measure an amount of output per area and should not be confused with the 
amount of a crop produced; for instance, several countries have very high yields for a crop 
but produce only a small amount. Yields are a measure of partial productivity in the sense 
that they inform us about one important aspect of the crop production process, other 
productivity measures, including labor and capital productivity, are not included in this 
study. All years for which data are available are included in the study, so 1961-2012 for 
countries with complete data sets.

Effort was made to include as many countries as possible in the analyses with the proviso 
that enough data exists to perform meaningful econometric regressions. Those countries 
with at least complete sets of yield data from 1983 to 2012 were included in the analyses. 
In short, to be included in the study, yield data for all years between 1983 and 2012 needed 
to be available; if, for instance, a country was missing data for one or more of those years 
it was removed. The thirty year cut-off time span (1983-2012) used is somewhat arbitrary, 
it is possible with just two years of data to calculate a time trend, but given that the aim 
is to forecast ten years into the future, thirty years provides a reasonable base from which 
to model historical relationships. Most countries in the analyses have data for the entire, 
1961-2012, period. Other minimum time spans were tried including ten and twenty 
year spans, but these alternatives did not change the overall conclusions of the analysis. 
Effectively, the approach employed means that countries which were superseded by other 
countries, e.g., the Soviet Union, and newer countries such as Bosnia and Herzegovina, 
were dropped from the analysis. In total, 183 unique countries were included for one or 
more crops, only China had data for all ten crops.
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In contrast to many of the previously cited studies, the data used to forecast yields was 
not aggregated either across countries or time [23, 31, 60]. Aggregating data is sometimes 
necessary, for instance when data for a country is missing or in order to reduce the number 
of explanatory variables in an analysis to a manageable number, but doing so results in a 
loss of information and should be avoided when data availability allows as in the current 
case. Aggregating countries into, e.g., regions, reduces the number of observations 
directly, while aggregating across time, such as averaging across five year time spans to 
create fewer time points, reduces the availability of variation, a necessary ingredient in 
forming robust econometric estimates.

between 1983 and 2012 needed to be available; if, for instance, a country was missing data for one or more
of those years it was removed. The thirty year cut-off time span (1983-2012) used is somewhat arbitrary, it is
possible with just two years of data to calculate a time trend, but given that the aim is to forecast ten years into
the future, thirty years provides a reasonable base from which to model historical relationships. Most countries
in the analyses have data for the entire, 1961-2012, period. Other minimum time spans were tried including ten
and twenty year spans, but these alternatives did not change the overall conclusions of the analysis. Effectively,
the approach employed means that countries which were superseded by other countries, e.g., the Soviet Union,
and newer countries such as Bosnia and Herzegovina, were dropped from the analysis. In total, 183 unique
countries were included for one or more crops, only China had data for all ten crops.

In contrast to many of the previously cited studies, the data used to forecast yields was not aggregated either
across countries or time [23, 31, 60]. Aggregating data is sometimes necessary, for instance when data for a
country is missing or in order to reduce the number of explanatory variables in an analysis to a manageable
number, but doing so results in a loss of information and should be avoided when data availability allows as in
the current case. Aggregating countries into, e.g., regions, reduces the number of observations directly, while
aggregating across time, such as averaging across five year time spans to create fewer time points, reduces the
availability of variation, a necessary ingredient in forming robust econometric estimates.
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Figure 1: Relative changes in average production, area and yields.

Figure 1 is a compact method to picture data with widely divergent units of measurement. Yearly averages
of area and yield data for five of the ten major food crops were divided by their total respective averages
over all years for all countries in the data set–it was not possible to include all ten crops in one figure and retain
readability. Figure 1a shows how the relative area used to grow a crop has changed through time; where relative
refers to the area used to grow that crop in a given year compared to the total average area used to grow crops
across all time periods. For the sake of comparison, only countries with data for all fifty-two years were used
to create the figures. To illustrate reading the figures, more land was used to grow cassavas in 2011 than any
other year and the amount of land devoted to maize production grew at a very fast rate; however, the absolute
amount of land used to grow cassavas in 2012 (19,421,827) was much less than that used to grow wheat in the
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Figure 1. Relative changes in average production, area and yields.

Figure 1 is a compact method to picture data with widely divergent units of measurement. 
Yearly averages of area and yield data for five of the ten major food crops were divided 
by their total respective averages over all years for all countries in the data set–it was not 
possible to include all ten crops in one figure and retain readability. Figure 1a shows how 
the relative area used to grow a crop has changed through time; where relative refers to 
the area used to grow that crop in a given year compared to the total average area used 
to grow crops across all time periods. For the sake of comparison, only countries with 
data for all fifty-two years were used to create the figures. To illustrate reading the figures, 
more land was used to grow cassavas in 2011 than any other year and the amount of land 
devoted to maize production grew at a very fast rate; however, the absolute amount of 
land used to grow cassavas in 2012 (19,421,827) was much less than that used to grow 
wheat in the same year (211,088,142). In contrast, the relative amount of land used to 
grow wheat and potatoes has stayed more or less the same for some decades.
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In contrast to area, relative yields, figure 1b, of all five crops have increased over the entire 
period. Yields (hg/ha) are not calculated from the area (ha) and production (tons) data, 
but taken directly from the FAO data set. Maize yields have, until 2012, been on a steeper 
trajectory than the other crops, due in part to the subsidies that have made biofuels profitable 
to produce, adding further support to claims that policies which affect prices are important 
mechanisms for increasing yields [8, 31, 32]. Another factor which may partially explain 
why the relative yields of maize have risen above those of rice and wheat is the difficulty of 
developing hybrids for those crops, both of which are self-pollinated [34]. The importance of 
the two figures is that they emphasize that steady yield increases have allowed production 
to expand without necessarily bringing new farmland into production.

There have been noticeable differences in the growth rates of crops over the period from 
1961 to 2012. The following are rough measures in that they do not weigh aggregate yields 
according to the amount a country produces. In short, the yields of a small country which 
produces little in a year, receive equal weight to the yields of countries that produce large 
amounts. However, the intent is to show how average yields per crop across all countries 
have changed between 1961 and 2012 and not how global averages have changed over 
that period. With that qualification in mind, yield percentage increases of countries with 
complete (1961-2012) sets of data were calculated. In decreasing order, growth rates 
were: maize (188%), wheat (133%), potatoes (105%), barley (104%), sugar beets (104%), 
rapeseed (91%), paddy rice (90%), soybeans (89%), sorghum (68%) and cassavas (42%). 
These highly aggregated growth rates are impressive, yields of many crops doubled or 
were close to doubling, although they hide the variation growth rates between countries. 
As will be discussed below, a linear trend model essentially projects these historical trend 
patterns into the future for as long as a researcher believes those rates will hold.

Finally, table 1 describes the basic characteristics of the data in 2012 across all countries. 
For instance, the number of countries used in the analysis of wheat yields was 105, average 
wheat yields for all countries with wheat data in 2012 was 22,736 kg/ha, the average area 
used to grow wheat was 1,918,205 ha, and production was 4,289,255 tons. The standard 
deviations (SD) are large, reflecting the large amount of diversity in the data that individual 
country forecasts should identify.

2.2	 Method
2.2.1	 Linear Trend Model
The econometric models used in the time series studies cited above are forms of an 
extrapolation model, a standard technique that has been used for decades in economic 
and business forecasting [50]. The method should be used if the assumption can be made 
that yields will increase at a constant absolute rate in each time period into the future. If that 
assumption is accepted, then the following model can be used to fit the data with a trend line:
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where t represents time, yieldst are yields at time t, β0 is a constant (the intercept term), 
β1 is a linear trend term estimator, and εt is the error term. The error or disturbance term 
is the deviation of the observed value from the unobserved true underlying value of the 
variable. The observed value may deviate from the real value for many reasons including 
measurement error. We know for instance, that the time variable used in equation 1 is an 
imperfect proxy for all of the factors affecting yields in a particular year for a particular 
country, so we should expect that there will be errors. Time t, is usually set equal 0 or 1 in 
the base period, 1961 for most of the countries in the FAO data set, and incremented by 
one for each year in the sample, so t is a simply a variable of the form 1,2,3..., 52. Yield data 
for each country and crop is then regressed against the time variable. Using the time trend 
model for U.S. wheat yields produces the following regression results:

which is interpreted to mean that wheat had an intercept term equal to 17,169, while yields 
increased by a steady 253.4 kg/ha per year over the period 1961-2012. The t-values for both 
the intercept term and trend (slope) are highly significant (38.8 and 17.1 respectively). 
Significance can be understood as the probability that the estimates are different than 
zero, i.e., a significant term is a useful indicator of the relationship between yields and 
time. An absolute t-value of 1.96 or greater is, by convention, considered significant, so the 
observed values are highly significant.

A possible point of confusion when referring to trend models is the term linear. Linear, in 
the common linear regression model, refers to the linearity of the β parameters, and not 
the linearity of the explanatory variables. The β s in equation 1 have a polynomial degree 
of one, while the ts may be squared, cubed, logged and so forth as long as the associated 
β s are of polynomial degree one and with a reasonable additional constraint that the 
resulting coefficients are economically or otherwise meaningful. The time data can be of 
a degree other than one, for instance, it is possible and common to add a β2t2 term to 
equation 1 to identify nonlinear effects in a time series. The β2 would then be a measure of 
the change of the change (curvature) of yields through time, where a negative β2 implies 
a decrease in the increase of yields through time. In any case, the model would still be a 
linear model because the degrees of all of the β s are one.

Notice that the model represented in equation 1, and all models discussed in this paper, is 
not a structural model in that it does not attempt to explain the mechanisms causing yields 
to change.  This model only says that  if it can be assumed that those underlying mechanisms 
determining yields continue to determine yields in the future, we can assume that yields will 

yieldst = β0 +β1 × t + εt; (1)

yieldst are yields at time t, β0 is a constant (the intercept term), β1 is a linear trend
εt is the error term. The error or disturbance term is the deviation of the observed value

7
t, is usually set equal 0 or 1 in the base period, 1961 for most of

t is a simply a variable

yieldst = 17168.8+253.4× t + εt; (2)

β parameters, and not the linearity of the explanatory variables.
ts may be squared, cubed, logged and so forth

β s are of polynomial degree one and with a reasonable additional constraint that the

β2t2 term to equation 1 to identify nonlinear effects in a
β2 would then be a measure of the change of the change (curvature) of yields through time,
β2 implies a decrease in the increase of yields through time. In any case, the model would

β s are one.



6

Forecasting Food Crop Yields and Assessing their Credibility   |   169   

continue to increase at the same constant, unwavering, rate. The principle advantages of the 
form of the model shown in equation 1 are that they are easy to implement, understand, 
and explain. And, most importantly, they have previously provided reasonably accurate 
forecasts. The model does well for most major producing countries that have avoided 
anything less than a disastrous disruption to their agricultural system; it does well for all 
countries represented in figure 2. For instance, the model for France, which has a trend 
coefficient of 933 kg/ha (t-value = 17.3), and Germany with a trend coefficient of 975 kg/ha 
(t-value = 23.7), two countries which have recently experienced diminishing yield increases, 
also perform well. Even Australia, which has been recovering from a decade of drought, has 
a significant t-value (4.55) for a calculated yearly increase of 133.9 kg/ha [43]. These models 
do well in the sense that the trend term is highly significant and not, as reported in some of 
the studies reported above, in terms of the R-squared of the entire model.

2.2.2	 Linear Trend Limits
So why if the linear trend model performs well use another model specification? The simple 
answer is the observation that recent yield increases, for some crops and countries, have 
not been following a linear trend path [37, 58], an observation that can be corroborated 
by examining figure 2b. The figure indicates that the yields for France and Germany, two of 
the world’s top wheat producers, while increasing, are increasing at decreasing rates. Using 
a more systematic method, specifically, by comparing the corrected Akaike information 
criterion (AICc) indicators of several polynomial forms of models for all countries and crops, 
shows that the linear trend model is not always the preferred model [26]. The procedure 
indicates that the data for 129 countries across all crops are best described as linear trend, 
234 are best described by a model with an additional term of degree two, 503 with a 
degree three term, and 11 with a degree four term. Please note that all models include 
lower degree terms as well, so a model of degree two includes a term of degree one as 
well. At first blush, using this basic comparative technique, the linear form of degree one 
seems inappropriate in many cases. For instance, adding a quadratic trend term (β2 t2 to 
equation 1 for the French and German wheat models results in significant negative values 
for that term (France: -18.78 kg/ha, t-value = 3.04; Germany: -8.98 kg/ha, t-value = -3.29); 
thereby confirming the visual evidence in figure 2b that while wheat yields are increasing 
in those countries, they are doing so at a decreasing rate. In both the French and German 
models the linear trend term remains highly significant. However, adding a quadratic time 
term to the U.S. wheat model results in an insignificant, negative coefficient (-1.42 kg/ha, 
t-value = -1.30), while the linear time value remains significant. The insignificance of the 
quadratic term in the US case is predictable given the nearly constant trend in figure 2b; 
there is no observable tapering off of wheat yields for the US.

However, two potential issues arise when additional polynomial terms are added to a 
model, one is that interpretation can become difficult as the meaning of degree terms 
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becomes more esoteric the higher they become and, although the resulting model most 
probably fits the observed data better, it may not forecast as well as  a model with fewer 
terms. These two points are essential decisions facing forecasters when specifying any 
econometric forecasting model and are discussed below. There is no statistical test or rule 
book defining how many variables to include in a model or their form.

Interpreting a model with a quadratic term takes some getting used to, as discussed, 
it represents the change in the change in yields over time; attributing meaningful 
interpretations to higher degree estimates is problematic. Since the goal of the entire 
exercise is to develop a model that forecasts well, it could be argued that as long as it does 
that, then interpretation is an unnecessary luxury. This raises the second issue which is 
more subtle and perhaps counter-intuitive. An extreme example illustrates the issue. It is 
a simple matter to fit a line which goes through most or all points of the yield data for all 
sensible FAO data sets, perhaps by adding an increasing number of sequential polynomial 
terms to a model or by implementing a smoothing spline method. Such a line will then 
serpentine from observation to observation as the years pass. Although such a strategy 
will result in a better fit of the observed data, it does not necessarily lead to a better fit 
of the data one would like to forecast. This is a reason that the corrected AIC method 
mentioned above, and other model comparison techniques, penalize the addition of 
variables to a model; if two models explain the relationship between the dependent and 
independent variables equally well, then the model which uses the fewer number of 
variables is preferred. In short, parsimony is preferred, and not only for aesthetic reasons.

The process of adding too many variables to a model is called over-fitting; where how 
many is too many is a matter of experimentation and art. A model which accounts for 
every nuance in the yield data will, in a sense, be conflating random fluctuations in the 
data with more consistent underlying mechanisms which might help to forecast yields 
into the future [29, 39]. We can be certain, for instance, that the FAO yield data contains 
measurement errors due, for instance, to aggregation. A model which fits a line to each 
point of a data set will likely perform worse than a model that ignores every twist and turn 
in data due to measurement error in favor of a more robust, uncomplicated, representation 
of the basic underlying data generating mechanisms. Both interpretation and forecasting 
suffer as a result of the over-fitting.

Part of the appeal of the linear trend model is that it avoids the problem of over-fitting 
because it uses just one explanatory variable. There is no pat formula to find the best 
model that fits both extant data and future data, although, as will be shown, it is possible 
to see how well a model would have done in forecasting existing data. Finally, a high 
t-value alone or a lower corrected AIC statistic are not sufficient conditions for choosing a 
model. For instance, although the quadratic term in both the French and German models 
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is significant, the corrected AIC statistic rejects its addition in both models because the 
curvatures is a relatively recent phenomenon. In short, the AIC prefers the linear trend 
model to the linear trend plus quadratic term model. However, if a researcher believes that 
the decrease will continue, then that term should be included in the model. In addition, 
the ARIMA model helps a researcher to determine which underlying data generating 
mechanisms are robust and therefore likely to continue into the future.

Figure 2. Yields of largest producers of maize and wheat.

2.2.3	 ARIMA Model
Rather than imposing a particular structure on a model ex ante, linear trend or otherwise, the 
auto-regressive, integrated, moving average (ARIMA) model uses historical data to formulate a 
model. The model was first described by Whittle in 1951 and made popular by Box and Jenkins 
in a series of papers and, eventually, a book published in 1970 [4, 45, 66]. ARIMA models were 
developed for forecasting and have been the standard forecasting tool for time series for 
decades. The basic principle underlying the methodology is that forecasts of a time series can 
be based solely on their past record. The form of the eventual forecast function is dictated, to a 
large extent, by the data–a principle known as “letting the data speak for itself” [45].

For the case at hand, the model assumes that yields in a particular year are linearly 
dependent on yields in previous years:

AR(1) MA(1) model form, where the 1 refers to the lag, for example, an AR(2) model would 
contain a yieldst-2 term in addition to the yieldst-1 term.

the ARIMA model helps to a researcher to determine which underlying data generating mechanisms are robust
and therefore likely to continue into the future.
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Figure 2: Yields of largest producers of maize and wheat.

2.2.3 ARIMA Model

Rather than imposing a particular structure on a model ex ante, linear trend or otherwise, the auto-regressive,
integrated, moving average (ARIMA) model uses historical data to formulate a model. The model was first
described by Whittle in 1951 and made popular by Box and Jenkins in a series of papers and, eventually, a
book published in 1970 [4, 45, 66]. ARIMA models were developed for forecasting and have been the standard
forecasting tool for time series for decades. The basic principle underlying the methodology is that forecasts of
a time series can be based solely on their past record. The form of the eventual forecast function is dictated, to
a large extent, by the data–a principle known as "letting the data speak for itself" [45].

For the case at hand, the model assumes that yields in a particular year are linearly dependent on yields in
previous years:

yieldst = θ1yieldst-1 + εt +α1εt-1; (3)

AR(1) MA(1) model form, where the 1 refers to the lag, for example, an AR(2) model would contain a yieldst-2

term in addition to the yieldst-1term.

where the yieldst are yields at time t, θ1yieldst-1 are yields in the previous period, εt denotes a serially uncorre-
lated innovation term with mean zero and constant variance, and al pha1εt-1 are white-noise (error) terms from
the previous period. Simply, the εt is no more than the error term of standard linear regression models (e.g.,
as in 1), while the al pha1εt-1 term is the error term from the previous year. The model depicted represents a
first order, autoregressive, first order, moving average process. Additional orders can be constructed by further
lagging yields and white noise terms.
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producers of maize and wheat.

yieldst = θ1yieldst-1 + εt +α1εt-1; (3)

t-2

t-1term.

t are yields at time t, θ1yieldst-1 are yields in the previous period, εt denotes a serially uncorre-
al pha1εt-1 are white-noise (error) terms from

εt is no more than the error term of standard linear regression models (e.g.,
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where the yields are yields at time t, θ1yieldst-1 are yields in the previous period, εt denotes 
a serially uncorrelated innovation term with mean zero and constant variance, and 
alpha1εt-1 are white-noise (error) terms from the previous period. Simply, the εt is no more 
than the error term of standard linear regression models (e.g., as in 1), while the alpha1εt-1 
term is the error term from the previous year. The model depicted represents a first order, 
autoregressive, first order, moving average process. Additional orders can be constructed 
by further lagging yields and white noise terms. ARIMA models are the obvious alternative 
to the models described above. They are, in theory, the most general class of model for 
forecasting time series which can be made to be stationary by differencing because they 
do not impose an ex ante structure on the data, but let the dynamics in the historical data 
define the model. A time series process is strictly stationary if its properties are unaffected 
by a change of time origin, but for our purposes it is enough to refer to weak stationarity, 
the idea that the means, variances, and covariances of a series are independent of time 
[65]. None of the series in figure 2 are stationary because their means are generally 
increasing through time, in short, the means are not independent of time.

Differencing is a manner to make a non-stationary series stationary. The effect of 
differencing is intuitive, in the case of yields, differencing–subtracting yields from the 
previous period from the current period–is simply the change in yields from one period 
to the next. The first data point in the series, in most cases 1961, is effectively removed 
from the analysis because data for 1960 is unavailable and therefore cannot be subtracted 
from the value for 1961. Given that some years’ experience increases in yields and others 
decreases, a nonstationary process can be made stationary. There is no obvious reason 
to believe that the means, variances, and covariances of yearly changes in yields, and 
many economic variables, should be dependent on time. In a few cases it was necessary 
to difference the yield data twice–difference the already differenced data once again–in 
which case two data points were lost. The amount of differencing required is identified as 
integration, the ’I’ term in the ARIMA model. It is possible to difference a series too often. 
Differencing tends to introduce negative correlation: if a series initially shows strong 
positive autocorrelation, then differencing will reduce the autocorrelation and perhaps 
even drive autocorrelation to a negative value [14, 28]. The method of differencing only 
works if the original data changes through time. In several cases, FAO yield data are 
constant for a country over a number of years, in which case differencing was not an 
option and a linear trend model was the form assumed to represent the data.

The first step in fitting an ARIMA model was to determine the order of differencing needed 
to make the series stationary. Normally, the correct amount of differencing is the lowest 
order of differencing that produces a time series which fluctuates around a well-defined 
mean value and whose autocorrelation function (ACF) plot decays fairly rapidly to zero. 
The ACF and partial autocorrelation function plots (PACF) are convenient methods to 
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visualize how yields in a year are correlated with yields in previous years, the stationarity 
condition requires that the correlation gradually falls to zero or fades to insignificance.

Although ACF and PACF figures are a good means to check for autocorrelation, it is not 
practical to analyze thousands of these figures. Therefore, Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) and augmented Dickey Fuller tests were used to initially test whether yields 
were stationary. If series were found to be non-stationary, they were differenced until 
they were made stationary [40, 54]. Results of the two tests were then compared to an 
automated procedure developed by Hyndman and Khandakar, 2008 [36]. Only when there 
were discrepancies among the tests and procedures was the differencing decision based 
on a combination of the auto-correlation and partial auto-correlation plot functions and 
the difference order which received the most votes of the three methods [65]. Comparisons 
were made for each of the country crop combinations, the majority of which could be 
made stationary by differencing once (760), less than a hundred needed no differencing 
(75), while the remainder (42), needed to be differenced twice. There was generally 
agreement among the three methods used to identify differencing requirements.

The next step in the ARIMA procedure was to establish the order of the ARIMA model, i.e., 
the number of AR and MA terms to include in a model. All combinations of orders from 
zero to three for both the AR and MA terms were tested and compared–16 combinations 
in total. For example, an ARIMA model, using the differenced data, of the order AR(0) 
and MA(0) was run, then an AR(0) and MA(1) model was run and so forth until AR(3) and 
MA(3) terms were included in the model. I used the Akaike information criterion (AIC), 
the Bayesian information criterion (BIC), and the corrected AIC recommended in Burnham 
(AICc) to select the best model for a country and crop [7, 57]. These are standard criteria 
to compare models which take not only model fit into account, but penalize the addition 
of variables. Another consideration in determining the order of differencing is the role 
played by the constant term in the model if one is included. The constant represents 
the mean of the series if no differencing is performed, the average trend in the series if 
one order of differencing is used, and the average trend-in-the-trend (curvature) if two 
orders of differencing are required. In a model with one or two orders of differencing, 
the constant or drift term may or may not be included depending on whether or not 
an average trend or an average trend-in-trend is meaningful. As previously argued, both 
measures are relevant for yields, and so a constant was included in all of the models.

The final step was to forecast yields based on the chosen model. Forecasting ARIMA 
models, like forecasting standard linear trend models, is essentially an iterative process 
in which the chosen model for each country and crops is used to forecast one year in 
advance, then that forecast is used to forecast the next year and so forth.
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2.2.4	 ARIMA Forecasts
The model development procedures described above generated a parsimonious 
econometric model that was then used to forecast yields. Table 2 presents results for 
ARIMA ten year forecasts for the top three producers for each of the ten crops in the 
study. All results are available in the supplementary material section of the paper. The 
country column contains the ISO3 country code and the yield column yields in 2012, the 
last available year of data. The percent column contains the yearly percent increase (or 
decrease) required to move from a three year average of yields in years 2010, 2011, and 
2012, to the mean forecasted yield in 2022. For instance, taking wheat for China, China’s 
average yield for the last three years of data would need to increase by 1.571% per year 
for ten years (2013-2022) to reach 58,379 kg/ha in 2022. A three year average was used 
in order to neutralize the effects of a particularly low or high yield in 2012. The required 
percentage increase is sensitive to the base yield used in its measurement, so using the 
average was an imperfect means to provide for a more neutral measure. In addition to 
mean forecasts, lower and upper forecast ranges for the 95% confidence interval are 
reported. The confidence intervals are set at their 95% values, showing, essentially, that 
in repeated sampling in 95% of the cases the intervals will contain the true value of the β 
concerned. Ranges or some other indicator of uncertainty need to be reported along with 
the mean in order to be able to assess the accuracy attached to a forecast.

A strength of the econometric method in comparison to deterministic models, including 
most general and partial equilibrium models and simulation models, is that it is possible 
to quantify the uncertainty of results. The range of low and high values in the table is great, 
despite the consistency and general stability of the yields of the countries presented; 
countries which have experienced higher yield variances will generally have greater low 
and high confidence intervals in percentage terms. Taking a closer look at values in the 
percent column, values range from -0.273% for barley in Australian, to 3.479% for maize 
in the US. A rate of 3.479 implies a doubling of yields in a little over twenty years; a value 
near the top of the potential current yield gap cited above. The negative value for barley 
yields in Australia is due to a series of droughts that led to erratic yields for several years.

The accuracy of a forecast is a measure of the confidence that can be placed in an outcome 
or range of outcomes. A forecast without an attached measure of accuracy is nearly 
meaningless; what use would a weather forecast of rain be without some indication of its 
likelihood? Figure 3 shows ten year forecasts for wheat in the Netherlands and maize in 
the United States. The Dutch have, depending on the year of measurement, the highest 
or one of the highest wheat yields in the world, while the USA is consistently one of the 
world’s largest producers of maize. The figures are included because they show both the 
strengths and limits of forecasting with ARIMA models and forecasting in general.
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Figure 3a of wheat yields in the Netherlands shows the ARIMA forecast at its best. Both 
ARIMA and linear-trend ten year forecasts (2013-2022) are presented in the figure. The 
wandering solid black line set against the light-gray colored background is the mean of 
ARIMA forecast, while the linear trend line forecast is the straight line intersecting the 
y-axis at a point somewhat above 40,000 kg/ha. For a given year in the future, the distance 
between the gray boundaries represents the 95% confidence interval. The range of values 
is quite large, and should be disconcerting for a policy maker. For instance, in 2022, the 
high estimate for yields is around 118,000 kg/ha while the low is around 78,000 kg/ha; a 
large spread given current yields of 85,870 kg/ha.

Table 2. Forecast and Ranges

Crop Country Yield (kg/ha)
2012

Percent Lower Forecasts 2022
Mean	 Upper

Wheat CHN 49952 1.571 51287 58379 65471
IND 31732 1.069 31630 35292 38954
USA 31148 0.543 29703 32880 36058

Paddy Rice CHN 67427 1.282 66553 76588 86624
IND 35906 1.282 35590 40785 45981
IDN 51360 1.257 50819 58196 65572

Cassava NGA 140260 0.658 112135 149770 187405
IDN 213631 3.154 235422 291426 347430
BRA 136118 0.077 102126 137174 172222

Barley FRA 67381 1.131 62904 75403 87901
DEU 61925 1.081 61127 68956 76785
AUS 22109 -0.273 15677 21514 27350

Maize USA 77442 3.479 95834 109016 122197
CHN 59552 1.305 59726 67796 75866
BRA 50057 1.730 52921 59421 65921

Potatoes CHN 158151 0.859 127740 172280 216821
IND 236842 0.184 217627 241226 264825
USA 418114 0.884 376116 456564 537012

Rapeseed CAN 18389 1.660 17956 21679 25402
CHN 19178 1.994 15523 23364 31206
IND 11446 1.554 11133 13355 15576

Sorghum MEX 38295 0.635 33439 40799 48159
NGA 12545 1.236 10214 14186 18157
USA 31280 2.996 32242 42019 51797

Soybeans USA 26642 1.676 28320 31461 34603
BRA 26366 1.958 28046 32008 35969
ARG 22814 2.402 21683 28926 36168

Sugar beet FRA 864785 1.649 839430 1018411 1197392
USA 655933 0.079 567037 661105 755174
DEU 693633 0.938 666661 761546 856430
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Note: Table of lower, mean, and upper forecasts for the top producers in 2012 of ten major food 
crops using ARIMA models with a trend or drift term. The percent column is the yearly percentage 
increase required to go from yields averaged across 2010, 2011 and 2012 to the mean forecast in 
2022. The three year average was used to smooth the series and a void starting from either a yield 
peak or valley. IDN is Indonesia, IND is India, NGA is Nigeria, and ARG is Argentina. Original data: FAO 
preliminary data for 2012 [18]

Linear trend forecasts are always straight lines, while ARIMA forecasts, given enough 
information in the ’true’ data upon which a model is estimated, will reproduce discerned 
patterns in forecasts. In the example, the estimated model is robust, and the forecast 
reproduces the consistent, undulating pattern observed for Dutch wheat yields from 
1961-2012. In contrast, the linear trend line finds the best fit from previous years and 
extends that trend into the future, ignoring yearly variation in the data. In the Dutch case, 
the linear trend line appears to initially overestimate observed yields until the late 1970s 
at which point it underestimates them until the 1990s, thereafter it begins to alternate 
between underestimating and overestimating the data.

Figure 3. ARIMA forecasts for Dutch wheat and US maize.

Figure 3b shows the limits of the approach, in particular, the ARIMA forecast ’reverts’ to 
the linear trend model after the 2013 forecast. The reason for the reversion is that there is 
not enough information in the data upon which to base a forecast beyond the estimate 
that yields in future years will be the conditional mean of previous years. The erratic 
behavior is observable in the data from 1961-2012, periods of large fluctuations in US 
maize yields were followed by relatively flat periods and both correlated and uncorrelated 
consecutive yearly yield changes. The only reason that the forecast continues its assent is 
that a constant or drift term was added to the model. This allows the estimate to mimic the 
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Figure 3: ARIMA forecasts for Dutch wheat and US maize.

Figure 3b shows the limits of the approach, in particular, the ARIMA forecast ’reverts’ to the linear trend model
after the 2013 forecast. The reason for the reversion is that there is not enough information in the data upon
which to base a forecast beyond the estimate that yields in future years will be the conditional mean of previous
years. The erratic behavior is observable in the data from 1961-2012, periods of large fluctuations in US maize
yields were followed by relatively flat periods and both correlated and uncorrelated consecutive yearly yield
changes. The only reason that the forecast continues its assent is that a constant or drift term was added to
the model. This allows the estimate to mimic the linear trend model once the additional information from the
ARIMA procedure has been exhausted. It is in this sense that the ARIMA model is a general form of the linear
trend line.

If the historical process is robust, then the ARIMA model will transcribe it into the future, if it is weak, the
best ARIMA forecast for the future is simply the conditional mean of the yield or the yield in the last year
for which it was able to forecast. Technically, there are insufficient temporal dynamics within the historical
data to allow forecasts to vary from their means. This characteristic of ARIMA models allows researchers to
characterize the robustness of a model. The procedure used in the analysis was to remove the constant from
the model and then rerun the models. If a forecasted value does not change from its previous value for several
years, then there is evidence that there is not enough information after that time to make a forecast other than
the conditional mean. Following this procedure for each of the ten crops showed that data for around 40% of
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linear trend model once the additional information from the ARIMA procedure has been 
exhausted. It is in this sense that the ARIMA model is a general form of the linear trend line.

If the historical process is robust, then the ARIMA model will transcribe it into the future, 
if it is weak, the best ARIMA forecast for the future is simply the conditional mean of the 
yield or the yield in the last year for which it was able to forecast. Technically, there are 
insufficient temporal dynamics within the historical data to allow forecasts to vary from 
their means. This characteristic of ARIMA models allows researchers to characterize the 
robustness of a model. The procedure used in the analysis was to remove the constant 
from the model and then rerun the models. If a forecasted value does not change from 
its previous value for several years, then there is evidence that there is not enough 
information after that time to make a forecast other than the conditional mean. Following 
this procedure for each of the ten crops showed that data for around 40% of countries 
represented lacked the temporal dynamics necessary to forecast, in the first forecast 
year, anything other than the conditional mean; values range from 47% for rapeseed to 
35% for soybeans. In addition, there is no readily discernible pattern in regards to which 
countries have enough dynamics to form forecasts other than the conditional mean, in 
fact, forecasts for 151 countries for one or more crops were the mean. The conclusion is 
that for many countries, the statistical information contained in the historical data does 
not justify making a forecast much beyond the statement that yields in the future will, on 
average, equal yields today.

Table 3. Data Performance

One Year Ten Year
Crop ARIMA preferred Linear trend 

preferred
ARIMA preferred Linear trend 

preferred
Wheat 66 39 56 49
Rice paddy 74 34 72 36
Cassava 72 23 63 32
Barley 52 32 55 29
Maize 97 46 80 63
Potatoes 96 40 88 48
Rapeseed 21 11 17 15
Sorghum 58 21 48 31
Soybeans 31 29 30 30
Sugar beet 23 12 22 13

Note: ARIMA and Linear trend model forecasts for ten crops. Models are run for countries with 
complete data sets, i.e., 1961-2012. The ARIMA model includes a constant or drift term. Original 
data: [18]
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3.	 Discussion and Conclusions

3.1	 Linear Trend ARIMA Comparison
Models are built using available data and used to predict future data. It is not possible 
to know how well a model will do in forecasting future events, but it is possible to assess 
how well a model would have done in forecasting a known entity. A procedure commonly 
used is to build a model based on a subset of the data, and then use the resulting model 
to forecast values taken to be true. Following this procedure, yield data for each country 
across all crops from 1961-2011 were used to construct ARIMA and time trend models 
and the resulting models were then used to forecast known 2012 values. Similarly, yield 
data from 1961-2002 were used to construct models that were then used to forecast the 
period 2003-2012.

Table 3 compares the forecasting accuracy of the selected ARIMA and the standard linear 
trend regression models for all crops using the mean absolute error (MAE) comparison 
method. The MAE indicator, like most accuracy indicators, penalizes the difference 
between a known outcome and the value predicted by the model [35]. Other comparison 
methods were used as well, but with no appreciable differences in outcomes.

Results for the one year forecast, as shown in table 3, indicate that the accuracy of the 
ARIMA model, with the exception of soybeans, is much better than the linear trend model; 
where better means that the MAE quantity indicates that the ARIMA model does a better 
job at forecasting the true 2012 value than the linear trend model. The values in the table 
refer to the number of countries per crop for which the ARIMA model performs better 
than the linear trend model. For instance, there are one hundred and five countries with 
wheat data used in the analysis, see the first row of table 1, in 66 of those cases the ARIMA 
model was preferred and in 39 cases the linear trend model was preferred. For the ten 
year (2003-2012) forecast, the ARIMA model, once again with the exception of soybeans, 
outperforms the linear model. The performance of the ARIMA falls off the longer the 
forecast period because, as shown, it reverts to the linear trend model. A plausible reason 
that the ARIMA model does not always outperform the linear trend model despite being 
a more general form is, as previously discussed, because a model that better fits historical 
or training data, does not necessarily fit future or test values better.

A natural question arises, namely, how far into the future should one forecast? It is not 
uncommon, particularly when general equilibrium models are employed [55], to forecast 
decades into the future, but is that reasonable given the results presented in this paper? 
There are two sources of uncertainty at play, the first regards the uncertainty of forecasts 
made assuming the historical data generating processes continues into the future, while 
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the second concerns the more fundamental question of whether those generating 
processes are expected to continue into the future.

3.2	 Known and Unknown Uncertainties
The discussion so far has focused largely on the first sort of uncertainty which is displayed 
in part in table 2 and figures 3. Evidence derived from table 2 shows that twenty-two of 
the thirty lower end forecasts reported are below the three year average of yields in 2010, 
2011 and 2012. In short, it is possible that yields in 2022 could be below their current 
levels, unlikely, but possible. At the other extreme, achieving the high end forecasts will 
mean butting against the biophysical limits of yields. Given enough observations, 95% 
of data will fall between the two extremes. In short, how far into the future to forecast is 
a decision that can be supported by the statistical confidence associated with a forecast. 
This is easiest to see in figures 3, which show, for a given year, the mean forecast and 
flanking confidence intervals.

A particular strength of the ARIMA model over the linear trend model is that it gives an 
indication of the robustness of past data patterns. Recall that around 40% ARIMA forecasts 
were unable to contribute anything more to the discussion other than the message that 
yields beyond 2012 will be the same as yields in 2012; nothing more can be defended 
statistically. The linear trend model has no equivalent means to indicate robustness, 
although it too is commonly presented with confidence intervals. Placed in a less 
flattering light, econometric forecasts in general are indicators of the ignorance contained 
in forecasts which policy makers should be aware of when formulating policies. In direct 
contrast to other, deterministic, modeling techniques, econometric models are explicit 
concerning what they cannot explain.

While the econometric models discussed can help assess forecast uncertainty, the forecasts 
themselves are made under the condition that historical data generating processes 
will continue into the future. If those processes significantly change, then forecasts will 
suffer accordingly. For instance, if a researcher believes, for whatever reason, that yield 
increases for high yield countries will continue to decrease, then linear trend forecasts 
will overestimate yields and a quadratic term should be added to the model. Projecting 
patterns into the future depends upon the belief that historically identified patterns 
will continue into the future. Forecasts by themselves, ARIMA or otherwise, provide no 
additional reason for expecting those patterns to continue. How yields will develop in 
the future is not primarily the prerogative of econometrists or other model builders. 
Rather, it is the place of agronomists, plant geneticists and others with the knowledge to 
comment on the technological likelihood of achieving the biophysical limits of crop yields, 
and political economists and other social scientists who are able to make meaningful 
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statements on, not least, the economic capacity and willingness of actually realizing those 
higher potential yields.

ARIMA models are general models that encompass other linear models and do not require 
ex ante model specification; they let the data determine the model. In addition, they 
are easy to implement and while interpretation can be difficult if many lag AR and MA 
terms are included in a model, most data in the analyses above could be described with 
simple ARIMA model forms. In addition, in the majority of cases, ARIMA forecasts were 
more accurate than their linear trend equivalent. However they, as with all other models, 
will not help to clarify the uncertainty concerning the prolongation of underlying data 
generating mechanisms. Forecasts that purport to predict thirty or forty years into the 
future are only sensible if those underlying mechanisms can be expected to hold for as 
long into the future.
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7.	 Conclusions and discussion

This final chapter presents the main conclusions of each of the previous research chapters 
as well as more general conclusions and a discussion of the main policy implications 
of important findings. There is also a section that provides for critical reflection on the 
research, in particular, where there is room for improvement, and a final section which 
suggests possible avenues for future research.

7.1	 Research chapter conclusions
In the following paragraphs, the conclusions of each of the research questions are 
presented. The research questions correspond to chapters in the manuscript. Research 
questions are briefly reiterated and the motivation behind each question are presented 
before they are answered.

Will climate change have significant country and crop specific effects on crop production?
The overall objective of Chapter 2 was to estimate the effects of climate change on global 
agricultural production. In particular, it attempts to disaggregate the analysis found in 
Lobell and Field (2007) by using an econometric panel technique that controls for country 
level differences. Estimating the effects of climate change on agricultural production 
continues to be a critical topic for the viability of biomass products and issues such as food 
security (see also Hasegawa et al., 2018; Rozenzweig and Livermore, 2005; Edmonds and 
Rosenberg, 2005). In contrast to the highly aggregated econometric model used by Lobell 
and Field which leads to overly robust results, a panel model indexed across countries and 
years using the same base data as those authors was run. The basic objectives of the analysis 
were two fold, first, to estimate the effects of climate change on crop production while 
taking into account country specific differences and, second, to show that the technique 
employed allowed for a more nuanced analysis of the differing effects of weather changes 
across crops and countries. To allow for a comparison of the two techniques, I closely 
followed Lobell and Field’s procedures for obtaining and preparing the data. The specific 
case examined was the effect of minimum and maximum temperatures and precipitation 
on the yields of six major global crops as reported by the FAO. In general, I confirmed 
Lobell and Field’s claim that global temperatures have been increasing in the major crop 
growing regions over the forty-six years of available data. However, whereas Lobell and 
Field chose to use global yields, in other words, for each year in their study, one global 
yield data point was used to represent yields across all countries, I disaggregated the data 
to yields and weather data per country, per year. That choice turned out to have important 
implications for the conclusions which could be drawn from the data. In particular, the 
method used allowed me to attach statistical significance to estimated changes in yields 
per crop and country. 
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Analyses for each of the six crops were run in a separate panel model. The analysis of 
wheat, for example, consisted of a database of 57 countries each with 45 years of data. I 
found that of those 57 countries, only 10 had statistically significant results for changes 
in yield against changes in precipitation, 9 countries had significant results for changes 
in yield against changes in minimum temperature, and 11 had significant changes in 
yield against changes in maximum temperature. Of the 10 wheat growing countries with 
significant results, 4 showed a positive relationship between changes in precipitation and 
changes in yields and 6 showed a negative relationship for the same regression. In other 
words, estimates showed that while some countries would experience decreases in yields, 
others would experience increases as a result of increases in precipitation. The high level 
of aggregation used by Lobell and Field leads them to report highly significant outcomes 
applicable across the globe, while a more disaggregated approach leads to the conclusion 
that for those countries for which significant results could be established, some countries 
will benefit from changing weather patterns while others will suffer. For many crop and 
country combinations, no statistically significant results could be reported, perhaps a 
less marketable conclusion, but one that more accurately represents the current state 
of knowledge. Some more general conclusions could be drawn, for instance, a majority 
of rice and maize growing countries will likely benefit from changes in precipitation. 
However, in general, across crops, a majority of countries with significant results were 
expected to suffer from increases in minimum and maximum temperatures, and to the 
degree that these crops are grown for local consumption, this will directly, adversely, 
affect consumption in those countries. The main finding related to the research is the 
conclusion that climate change may affect yields and that those effects will depend on the 
crop and the country in which the crop is grown. On balance however, climate changes 
will reduce yields for most crops and countries. A highly aggregated model, although 
parsimonious, cannot adequately account for the diversity of changes in yields that occur 
across different crops and countries.

Are crops yields in Europe converging and if so, what will be the effects on the supply of crops 
used in the production of biomass products? 
Chapter 3 addresses the issue of whether crop yields in Europe are converging and the 
implications of any changes in yields on land used to produce major crops, with an 
emphasis on the effects of those crops used in the production of biomass products (see 
also Searchinger, 2008; Edwards et al., 2010; de Wit et al., 2011). The underlying issue 
addressed was whether increases in crop yields will lead to cheaper biomass products 
following the often unarticulated argument that as yields increase in eastern European 
countries biomass products will become cheaper. That position assumes that increases in 
yields will increase the production of biomass crops and that those crops will necessarily 
go to the production of biomass products. 
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The first step in the analysis was to define and measure yield changes through time and 
measure whether they were converging. Thereafter, the greater effects of yield changes 
on the economy needed to be calculated. The transition rates of yields were estimated 
using a combination of convergence, time-series, and dynamic panel models. Scenarios 
are then run using estimated yields as input into a computable general equilibrium 
(CGE) model. As explained in the introductory chapter, a CGE model provides a narrative 
framework through which the total economic impact of changes in yields can be accessed 
(Hellman and Verburg, 2010; Hertel and Tyner, 2010). Although no evidence of a common 
rate of yield convergence across countries in Europe was found, evidence of absolute 
convergence in yield rates was estimated to be significant. Absolute convergence is the 
more obvious type of convergence, it tells us whether yields are converging towards a 
common level rather than a common rate of increase (Barro and Xavier, 2003). The working 
hypothesis of some biomass optimists seems to be that countries with lower initial yield 
rates will increase their yields at a faster rate than countries with higher initial rates. The 
higher yields will result in the production of more biomass products without adversely 
affecting the consumption in other sectors competing for these crops. The reasoning 
behind the argument for absolute convergence is that countries with lower initial yield 
rates will be readily able to adapt and implement extant technologies. 

Analysis showed that lower initial yield rates were correlated with higher growth rates 
over the period 1961–2010. The importance of this finding for the current analysis is that 
we can expect, on average, that European countries with lower initial yields will increase 
their yields at higher rates than established European countries. In short, although there is 
not a common yield rate among countries, we expect, on an average, that countries with 
lower yields will catch-up to European averages. So while standard time series and panel 
forecasting methods indicated the potential for only very modest yearly yield increases 
across most of Europe; potential yearly increases in newer European states could, in some 
cases, be substantially higher. 

The next step was to establish whether estimated yield increases will necessarily result 
in significantly higher production of the associated crop. The argument is that, all else 
equal, higher yields will release or free-up additional land for the production of additional 
crops and, in particular, biomass products. In order to address this question, I decided to 
concentrate the analysis on one product, in other words, I address the question, what are 
the economic effects across sectors when the yields of one crop increases? The wheat 
sector was chosen as the object of the CGE study because wheat is grown in countries 
across Europe and it is an important sector in the CGE model employed in the study. By 
focusing on one major crop, I was able to isolate and follow the impacts of a change in 
yields on the economy without the added complications of disentangling the effects of 
changes to yields of two or more crops. 
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The overall question of whether significant wheat yield increases will necessarily lead 
to large increases in land available to produce bio-energy crops was rejected. Analysis 
found that land freed by wheat yield increases will go to the production of a wide range 
of agricultural products that value land as an input. The same reasoning which links yields 
and land use applies to all significant agricultural products when they are produced and 
distributed in well-functioning markets. In short, the total amount of land released as a 
result of potential yield increases in the wheat sector was found to be modest because of 
an increase in demand for land by sectors other than wheat.

The principle message of the chapter is that the economic effects of yield changes or 
any other significant change in production need to be analyzed with regard to their 
substitutes and complements and the marketplace in which they operate. The analysis 
showed that while wheat yields are likely to increase, the resulting land released will not 
necessarily go to produce biomass crops as argued by biomass proponents. 

How will changing weather patterns due to climate changes affect the global trade of major 
food crops? What will be the effects on less developed countries?
The effects of climate change on trade have been identified as an important, neglected, 
research topic (Josling et al., 2010; Tamiotti et al., 2009). In chapter 4, I attempt to address 
this gap in the literature through a combination of techniques, namely, econometric 
models were used to forecast the effects of climate variables on crop yields the results 
of these models were then to “shock”, as explained in Chapter 1, MAGNET, a CGE model, 
in order to assess their on global trade (Meijl, van et al., 2018; Wang, 2018). In particular, 
I compare and contrast the effects of changing trade patterns on developed versus less 
developed countries. The scope of the chapter is global and includes all major crops 
represented in MAGNET and all crop growing regions. The approach implemented differs 
from those found in previous studies by employing this combination of techniques to 
address the interactions of climate change and trade.

As in previous studies (Parry et al., 2004; Schlenker and Roberts, 2009; Lobell and Field, 2007; 
Zhao et al., 2017), I found strong evidence of increasing temperatures in grids growing ten 
major food crops. Temperature fluctuations across crops followed similar short and long-
term patterns and the increases were found to be statistically robust. Average results across 
all crops showed that maximum average temperatures have increased by 0.017 C° per year 
in crop growing grids, while average minimum temperatures for all crops have increased 
by 0.020 C° per year. Results for precipitation showed two distinct periods, a first in which 
precipitation fell, followed by a second in which it rose. The results also suggested that, 
in contrast to temperatures, there has been large variation in the amount of precipitation 
falling in different crop growing grids. The results suggested that if the underlying data 
generating processes behind the observed increases in temperatures persist as they have 
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throughout the period studied, then we can expect temperatures in the future to rise as 
well. Running separate regressions for the two precipitation periods lead to statistically 
significant results for crop averages in both periods with an estimate of negative 1.42 and 
t-value of negative 2.2 in the first period, and an estimate of positive 2.34 with a t-value of 
3.0 in the second period. Chow tests confirmed the observed structural break, and results 
from regressions are significant for each period reported.

Results for time series analyses of crop yields show that, on average, yields have increased 
over the period under investigation, however our results confirm previous findings that 
they have been increasing at a decreasing rate (IFPRI, 2009; Powell and Rutten, 2013; Sims 
et al., 2008). There have been noticeable differences in the growth rates of crops over the 
50 year period for which data were available. Yields of cassavas, at 31%, increased the 
least over the period, while percentage increases of sorghum (120%), wheat (133%) and 
maize (180%) have been well over 100%; rapeseed (65%), paddy rice (75%), sugar beet 
(81%), barley (86%), potatoes (89%) and soybeans (100%) round out the field. Results 
indicate that for wheat, maize, and barley higher temperatures lead to lower yields, while 
increases in precipitation lead to increases in the yields of wheat, maize, and perhaps 
barley. Estimates for the effects of precipitation on rice and soybeans were insignificant. 
ARIMA models were then used to estimate ten year forecasts of the effects of changes in 
climate variables on yields. The best performing models for each country and each crop 
in the analysis were chosen according to the AIC criterion; forecasts from the selected 
models were then used within MAGNET to simulate weather changes.

The MAGNET model was then shocked using the yield forecasts to determine the 
effects, ten years in the future, of changes in weather on the global production, trade, 
and consumption of four major crop groups in MAGNET; namely, grains, oils, wheat, and 
rice. Results for exports closely followed changes in production. Wheat exports from the 
United States and Argentina increased slightly, but many other countries in the region 
South America experienced sharp decreases in exports. Exports from Indonesia, a major 
exporter of oils, are expected to fall, as were oil exports from South America. However, 
vegetable oil exports from the United States and Brazil are expected to increase following 
their increases in production. All of the major rice exporters can expect slight decreases in 
exports, while the major wheat producers can all expect to export more. 

The major importers of grains were not substantially affected by the changes, although 
Chinese imports fell slightly. Of the major importers of rice, the region of Central Africa, 
which includes Nigeria, were stable, while imports to the region of North Africa fell, and 
imports into the region of South Africa increased. Changes for wheat importers were 
in general found to be small, while imports to Egypt, the world’s largest importer, are 
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expected to fall, as would those for Indonesia. Brazilian imports were expected to fall by 
1% and 2%, while Chinese imports are expected to increase slightly. 

Ultimately, policy makers are concerned with consumption, particularly in poorer regions. 
For grains, the biggest losers in terms of consumption were people from the regions: 
Rest of former Soviet Union, India, Central and South America, Central and North Africa, 
and some of the newer European states. Grain consumption in richer countries was not 
significantly affected by changes in weather. For oils, Indonesia and India would consume 
less as would many other regions in Asia and the region Rest of Central America. All regions 
in Africa consumed less oil. The only major increase in oil consumption occurred in Mexico. 
Consumption of rice in Indonesia, India and other regions in Asia were also adversely 
affected, although Africa escaped largely unscathed in terms of rice consumption. Finally, 
wheat consumption in the region of Central Africa fell, as it did in the region of the Rest 
of the Former Soviet Union. The countries that benefited were India, the regions Rest of 
Central America and Rest of South America. In general, rich countries were not significantly 
affected by weather changes while many poorer regions will experience decreases in 
consumption. 

What will be the implications of extreme weather events on yields?
In contrast to the other chapters in this manuscript, chapter 5 analyzes the effects of 
extreme weather events at the level of the farm for a specific crop, winter wheat, in the 
Netherlands. This level of analysis, as opposed to the higher geographical aggregations 
used in previous chapters, allows more precise measurement of the effects of climate 
change on a specific crop across time. The major contribution of the chapter to the 
literature is that it combines weather data with factors of production over time into one 
model, thereby allowing an estimation of the effects of extreme weather events after 
having controlled for the effects of changes in other important input factors (Rosenzweig 
et al., 2001; Porter and Gawith, 1999; Vogel, 2018, Komen and Peerlings, 2001). 

The first goal of this chapter was to establish whether extreme weather events have been 
increasing in the Netherlands, which required a working definition of what constitutes an 
extreme event. The concept used to identify events, whether for the long or short term, 
was to record the number of days for which measures exceeded a specific threshold. Two 
general methods were used to identify events, the first method was a relative method 
comparing, for example, the high daily temperature for a specific day in a year with the 
high temperature for that same day across all years in the sample. The relative method is 
an adaptation of the methodology presented in Klein Tank (Klein Tank et al., 2009). The 
second method used an absolute scale which identifies, for instance, the number of days 
in a week equal to or above 32°C. The two methods were found to be highly correlated. 
Data used to identify long-term trends has been collected for many years by the Royal 
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Dutch Weather Institute (KNMI) at its primer weather station, station 260, which is located 
near the center of the country.

Studies conducted at high levels of aggregation cannot adequately account for the effects 
of farm and crop level characteristics influencing yields. Therefore, in addition to weather 
variables, economic variables, including the main factors of production, were included in 
a ‘within’ panel model to explain yields. Results indicated the importance of both weather 
events on yields and the need to specify the time period over which events were measured. 
Weather events could have either positive or negative effects on yields depending on the 
week in which they occur; however, the majority of events, either precipitation or low or 
high temperature events were found to reduce yields. 

Analysis showed that the number of yearly extreme low temperature events decreased 
significantly over the period from 1901-2013. An autoregressive, integrated, moving 
average (ARIMA) model forecasted that there would be 14 low temperature events in 
2023 which, on average, is a lower number than has occurred over the last decade. In 
short, there will be fewer extreme cold events in the future. In contrast, the outcomes 
of the analysis showed a significant increase in the expected number of yearly extreme 
high temperature events. ARIMA models forecast 30 such events in 2023, a number which 
is significantly higher than the average number of such events that have occurred in 
the past decade. The findings for low and high temperature events correspond to those 
found in the most recent IPCC report, specifically, the occurrence of more warm days 
and nights compared to the historical average. For the case of precipitation events, the 
Netherlands can expect to experience more periods with heavy rains; the slope for that 
variable is significant (t-value=3.75) and ARIMA results forecast 23 such events in 2023. 
Finally, the number of evapotranspiration events since 1957, the first year for which data 
is available, has been steadily decreasing and the t-value is significant (-2.45). An ARIMA 
model forecasts 18 such events in 2023. 

The general trend in temperatures, so not events, across the entire period for all months 
showed a slight increase in maximum temperatures, particularly in the latter decades. 
Regressions against time showed that April, July, August, October, November, and 
December had significant positive slope coefficients; while minimum temperatures across 
all months were positive and significant (t-value=6.04). A steadily increasing trend was 
identified for the period 1902-2013. In short, temperatures, both the maximum highs and 
lows, were increasing in the Netherlands although the changes vary by month. 

Once the expected number of weather events and temperature trends were determined, 
the remainder of the chapter attempted to determine the effects of those variables on 
Dutch winter wheat yields. The approach used was to combine production input data 
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used to produce winter wheat, i.e., fertilizers, pesticides, energy, labor, capital, a catch-all 
account called other inputs, and four soil types labor, capital and land, for 334 farms in the 
Netherlands from 2002 to 2013 with precipitation, temperature and evapotranspiration 
data measured at the local level. All of these various types of data were necessary in order 
to isolate the effects of extreme weather events on yields.

Model results show that pesticides, fertilizers, and capital are all significant and have the 
expected sign, i.e., the more of these inputs added to the production of wheat, all else 
equal, the greater the yield. The negative, significant, sign for farm size indicates that 
increasing the size of a farm reduces yields. Of the weather variables in the model, only 
the precipitation event in week 31, near the end of the harvest season, had a significant, 
negative, effect on yields. Furthermore, the significance of the other precipitation terms 
remained low. The effect for high maximum temperature events in week 27 (July 1st 
in 2013) is significant and negative, indicating that high temperature events near the 
beginning of the harvest season damage crops or, perhaps, force farmers to harvest 
before yields have reached their maximum. The estimate for week 27 tells us that one 
additional high temperature event lowers yields by nearly -430 kilograms per hectare. 
The effects of low temperature events, periods of cold, were also significant and negative 
in the 29th and 30th week. Cooler periods in the middle and near the end of the harvest 
season, depending on the specific year, have negative effects on yields.

The findings confirmed IPCC findings which indicate that the number of precipitation 
events has been increasing (Field et al., 2012; Porter et al., 2014). Most importantly, 
the effects of those events on winter wheat yields in the Netherlands was found to be 
detrimental. The findings also supported the conclusions of researchers who found, using 
site data, that adverse effects were likely to out-number the positive effects of weather 
events. Furthermore, results indicate that a model that includes both economic and 
weather variables was statistically preferred to one that included only one of those two 
sets of data. However, if only one set of data is available, either economic or weather data, 
then results showed that either model would accurately identify the direction that the 
included variables would have on yields, but not their magnitude. 

How do the various econometric techniques used to forecast yields affect predictions of 
country level yields? How far into the future should you trust forecasts?
The purpose of chapter 6 was to provide an argument for estimating yields for the crops 
found in CGE models using ARIMA models rather than standard linear trend models. 
ARIMA models can better account for the complex trends observable in yields across 
crops and countries (Chao, 2015; Alam, 2018). 
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The approach used was to compare simple time-trend models and ARIMA yield forecasts 
for each country in the FAO data set across all crops from 1961-2011 and compare forecast 
results to known 2012 values. Other combinations were tried, for instance comparing 
forecasts made using training data from 1961-2002 to forecast 2003-2012 values, but the 
various permutations tried did not significantly affect the results of the analysis. Forecast 
accuracy of ARIMA and the standard linear trend regression models for all crops were 
measured using the mean absolute error (MAE) comparison method. The MAE indicator, 
like most accuracy indicators, penalizes the difference between a known outcome and the 
value predicted by the model. Other comparison methods were tried as well (RMSE, MSE), 
but there were no appreciable differences in outcomes. 

Results for the one year forecast indicated that the accuracy of the ARIMA model, with the 
exception of soybeans, was much better than the linear trend model; where better means 
that the MAE statistic indicates that the ARIMA model did a better job at forecasting 
the true 2012 value than the linear trend model. For instance, there were one hundred 
and five countries with wheat data used in the analysis, in 66 of those cases the ARIMA 
model out-performed the linear trend model while in 39 cases the linear trend model was 
preferred. For the ten year (2003-2012) forecast, the ARIMA model, with the exception of 
soybeans, outperformed the linear model. The performance of the ARIMA model fell-off 
the longer the forecast period because, as argued in the chapter, it reverted to the linear 
trend model. 

In addition to providing evidence that the ARIMA model should generally be preferred 
to the linear trend model, I addressed the question of how far into the future one should 
reasonably hope to forecast yields. It is not uncommon, particularly when general 
equilibrium models are employed, to forecast yields decades into the future. Is this 
reasonable given uncertainty in ARIMA models? A particular strength of the ARIMA model 
is that it gives an indication of the robustness of past data patterns. Remarkably, models 
indicated that that in close to 40% of the ARIMA forecasts, the analyses were unable to 
contribute anything more to the forecast other than the message that yields beyond 2012 
would be the same as yields in 2012; in short, no more informative conclusion could be 
defended statistically despite the large amount of historical data. 

Placed in a less flattering light, while ARIMA models generally out-perform simple time 
trend models, they will often be of little assistance to policy makers when deciding 
the direction and magnitude of yields in the long term. However, in contrast to other, 
deterministic, modeling techniques, econometric models are explicit concerning what 
they are unable to explain. 
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7.2	 General conclusions
This manuscript examines relationships between crops yields, climate change, prices, 
and the bioeconomy. It brings together a diverse set of techniques including general 
equilibrium models, time series and panel analysis, and applies a multi-level approach. 
A primary objective of this research was to answer the question of whether an economy 
based on first generation biomass products will be economically viable. It is argued that 
this question turns, in large part, on the expected yield increases of crops used in their 
production. An important determinant of future yields, in turn, will be the effects of 
climate change. 

Research presented in previous chapters examined the significant economic and 
environmental factors influencing yields across several levels of aggregation. The use 
of several layers of geographic aggregation including global, European and farm level 
aggregation, allowed me to estimate effects of climate change on the yields of various 
crops directly and estimate the repercussions of those changes on production, trade and 
consumption. The lower the level of aggregation, the more detail that can be brought to 
bear to examine and disentangle the effects of climate change on yields. 

In general, it might be argued that lower levels of aggregation are more desirable because 
it might still be meaningful to aggregate results to higher levels of aggregation. However, 
lower levels of aggregation call for vastly more data and, as shown in this manuscript, not 
all questions can be answered at low levels of aggregation. For instance, with enough 
crop and farm level data it might be possible to draw conclusions for countries, regions 
and the world. However, such a database would be extensive and would ideally include 
data similar to that used in the chapter on the effects of extreme events on Dutch wheat 
farmers found in this manuscript. For instance, in addition to factor inputs for a specific 
crop over time, weather data would also ideally be included at the farm or county level 
in order to account for its effects on yields. Such data is not yet generally available, and 
therefore higher levels of aggregation are necessary in order to address the questions 
posed in this manuscript. In addition, the implications of climate change on trade can only 
be analyzed at the level at which crops are traded. Therefore, while each of the chapters 
in this manuscript contributes to the topic of forecasting changes in the yields of one 
or more major crops, crops that will either directly or indirectly affect the production of 
biomass products, they do so at different levels of aggregation. The methodologies used 
range from purely econometric to a combination of econometric and global, general 
equilibrium models. The next few sections the main findings and implications of each 
chapter will be presented with an emphasis on the level of aggregation at which the 
analysis was conducted.
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The highest possible level of aggregation is the global level across all crops. However, 
the second chapter argues that effects of climate changes on crop yields are better 
understood at a country rather than a global level. The chapter provides strong evidence 
that the effects of climate change will depend in part on country specific characteristics, 
for instance, the location of a country on the globe, and the type of crop grown. Country 
is still a high level of aggregation, it conflates important characteristics affecting yields, 
for instance, a country’s economic and technical development, into one explanatory 
feature. The implications of this level of analysis is that countries and crops will be affected 
differently and should therefore be analyzed separately. However, in general, yields 
of some important crops will be adversely affected by forecasted changes in weather 
patterns. Global yields of important crops are generally expected to fall, so agricultural 
policies should therefore reflect those differences as well as the general trend. In addition, 
several chapters argued and demonstrated that the rate of yield of high yield countries is 
falling. In other words, the yields of high yield countries for some crops have plateaued, 
perhaps for biological, economic or some other reason. Determining why yields have 
stagnated will have important policy implications, for instance, if the cause is economic, 
then economic incentive could be used to increase yields, while if it is determined that 
yields have approached their biological limit, then yields will continue to stagnate unless 
the underlying biology changes. 

The third chapter examined the effects of climate change and economic development 
on yields at the European level and it demonstrates that crops should not be aggregated. 
Results from that chapter showed that although there is no evidence that the yields of 
European countries are converging to a common yield rate, there is statistical evidence 
that yields from less economically developed countries are increasing. The chapter argues 
that crop yields should not be studied in isolation from the yields of other crops, in short, 
because crop yields influence one another through the market. 

More generally, it showed that the effects of changing crop yields of a particular crop on 
production and consumption need to be examined in relationship to the complements 
and substitutes of that crop and the entire economic web in which the crop is produced 
and consumed. The chapter demonstrated that CGE models are uniquely designed 
to address these issues by including the key economic sectors of the real economy in 
one modelling framework. The policy implications are that the effects of yield changes 
of important biomass products produced in Europe need to be understood at least at a 
regional level and, more importantly, the effects of yield changes of biomass crops can 
only be understood with reference to other affected crops. 

Chapter four demonstrated that the effects of climate changes on trade need to be 
examined with reference to the entire, global, economy because the crops in question are 
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traded globally. The effects of changes in weather on trade and ultimately consumption 
were found to have greater negative effects on poorer countries implying that trade 
policies might need to be adjusted to mitigate these effects. For instance, by lowering 
trade barriers or stimulating more local production. A downside of using models that 
include all of the key elements of a real economy is that there is little room for subtlety 
in terms of the particular effects of changes in weather on yields. For these types of 
questions, less aggregated models are necessary such as used to examine the effects of 
extreme weather events on yields. 

Consequently, in chapter five I defined several definitions of extreme weather events and 
showed that, regardless of the common definitions used, extreme events are expected 
to increase in the Netherlands. The chapter uses the most disaggregated level of data. It 
includes a wide range of inputs into the analyses including fertilizers and pesticides used 
to produce winter wheat. Using farm and crop level data I showed that extreme weather 
events, after controlling for other factor inputs, will have a negative effect on wheat yields. 
This level of aggregation allows analysts to measure the effects of climate change relative 
to other crop inputs. In principle, this level of analysis might be the most relevant for policy 
makers because, given enough data, and particularly diversity within the data, it might 
be to experiment and identify those inputs that mitigate the negative effects of climate 
change. However, the level of expert knowledge necessary to understand these models 
is high. An analyst must understand how different factor inputs, including weather, affect 
yields at different stages of crop development over at least several years. 

The sixth chapter argues that there are more accurate forecasting techniques available, 
including ARIMA models, than the standard time series with trend methods used in some 
CGE modelling frameworks. Furthermore, it demonstrates that models that claim to 
forecast decades into the future should be viewed with skepticism. 

7.3	 Discussion
By bringing together a combination of techniques to address the issue of the effects of 
changes in weather on yields at several levels of aggregation I was able to gain a more 
complete understanding of the range of effects that can be expected from climate 
change. The aggregation level of the data largely determined the type of the model 
which could be employed which in turn determined the types of questions that could 
be addressed. The earlier chapters used data that was aggregated at the country level, 
making panel models indexed by country and year the obvious econometric technique of 
choice. Panel models were chosen because they take into account correlations between 
countries and across time. From the panel models I was able to estimate and forecast 
changes in temperatures and precipitation, but also expected changes in yields over time. 
These forecasts were then used in MAGNET, a CGE model. In short, the different levels of 
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geographic aggregation recommended research questions and techniques appropriate 
to that given level of aggregation. The result is that while all of the chapters address 
changing yields in one form or another, together they do not sum to unified whole, rather, 
they come at the issue of yields from various angles. Unfortunately, for instance, a farm 
level database containing factors of production for farms around the world does not yet 
exist. Instead, I used country indexed panel models and a CGE model at the highest level 
of aggregations, and a farm indexed panel model with factors of production at the lowest 
level of aggregation. 

CGE models are ambitious in their scope, but are required to make severe assumptions in 
terms of behavior and economic relationships such as elasticities in order to model the 
flow of goods globally. The GTAP database, and as a consequence the MAGNET model, 
consists of just 57 sectors and 113 regions to represent all products produced and traded 
globally. The sectors directly relevant to the thesis are remarkably well represented in 
the database given their relatively small economic importance, they include the sectors 
wheat, paddy rice, cereals and grains, oil seeds, sugar cane and sugar beets, and the 
category other crops. These agricultural sectors are the interfaces through which to affect 
the MAGNET model and assess the implications of changes to yields on these sectors 
and consequences for other sectors. Furthermore, biomass products represent just a 
small subset of the value of those products. The various elasticities of the 57 products in 
the GTAP database are critical in determining how the demand and supply of products 
react in relationship to one another. However, elasticity values are difficult to determine 
particularly for new products (Horridge, 2018, Sato, 2017). CGE models also assume that 
technological change remains constant over time, a particularly vulnerable assumption 
given rapid increase in technology directly relevant to crop production. In short, GTAP 
can be a rather blunt instrument with which to measure the influence of relatively small 
valued products such as biomass products. The approach used in this thesis was to use 
only the agricultural products represented in the GTAP database rather than defining 
new biomass sub-products and attempting to calculate their inputs and outputs and 
elasticities, although this would have been a valid approach. 

Econometric techniques were used to estimate changes in agricultural sectors due to 
changes in weather and other significant variables. Estimated models were then used to 
calculate forecasts which were used to shock the MAGNET model in order to determine 
how various GTAP products would react to the changing weather patterns. The greatest 
single weakness of using these techniques was the limited amount of data. For instance, 
we were heavily dependent on FAO yield data, a very good data source, but one consisting 
of largely aggregated data. For example, there is only one type of wheat and only two 
types of maize. In response to this lack of detail, I decided to look at one specific crop in 
the Netherlands and the inputs used to produce it over a number of years, this level of 
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detail is not possible to reproduce across crops and countries, the data simply doesn’t 
yet exist. Such databases are starting to be developed and will provide a means to make 
detailed studies of the effects of changes in weather at regional or global levels while 
accounting for changes in other inputs. 

While the econometric models discussed in the thesis can help to assess forecast 
uncertainty, forecasts themselves were made under the condition that historical data 
generating processes would continue into the future. If those processes significantly 
changed, then forecasts would suffer accordingly. We argued that forecast models, ARIMA 
or otherwise, provide no additional reason for expecting underlying patterns to continue 
into the long run. How yields develop in the future is not primarily the prerogative of 
econometricians or other economic model builders. Rather, it is the place of agronomists, 
plant geneticists and others with the knowledge to comment on the technological 
likelihood of achieving the biophysical limits of crop yields, and political economists and 
other social scientists who are able to make meaningful statements on, not least, the 
economic capacity and willingness of actually realizing those higher potential yields. 

7.4	 Future research
The range of the themes discussed in this manuscript, yields, climate change, and 
the bioeconomy and other economic sectors, is large, and the techniques used are 
correspondingly blunt. This breadth of topics and approaches was driven by research 
questions which attempt to address the economic consequences of climatic changes 
affecting agriculture production. Each of the themes is an academic discipline so 
combining them in order to understand their interactions required a general purpose 
tool such as MAGNET. Econometric tools were primarily used to incorporate the effects 
of climate change on variables used as input to MAGNET. However there may be some 
interesting alternatives to these admittedly heavy-handed approach.  

There is no getting away from the fact that the chapters in this manuscript were written 
some time ago and that I have left academia.  This, however, does not mean that I have lost 
my interest in some of the topics addressed in this manuscript.  My current assignment 
is with a large commodity trading company which needs to make crop forecasts in order 
to take trading positions.   I have been quite busy comparing modeling techniques for 
crop yields for states and counties in the USA, provinces and departments in Argentina, 
and Brazilian states, to name a few.   The linear approach with weather features such as 
temperatures, precipitation, and various measures of drought measures work well for most 
analyses and can explain around 80% of the variance in yields through time, particularly 
when the trend term is strong (NASS, 2020; NOAA, 2020).
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Data can be obtained via an API, FTP or scraping if necessary and stored inexpensively. 
Big data techniques, in regards to the current context, allow the rapid testing of many 
feature permutations to the point that preventing over-fitting becomes the main 
challenge.  However, the small number of observations, even USDA data only goes back 
to 1924, means that many of these high powered techniques are wasted because of the 
limited degrees of freedom available. For many USA states, a simple regression of weather 
features and a time trend against yield does very well with the time trend picking up 
technical change; sometimes a squared time trend term can help to pick-up increasing or 
decreasing rates of technological change. In short, standard linear regression techniques, 
and panel models, remain appropriate techniques when there are few years of data, and 
there is enough variation in the data. 

However, linear techniques may be just the starting point, for instance, they cannot 
account for conditions that have never occurred before, for instance, a lack of rainfall for 
the first three months of the planting season in Brazil this year which will likely have severe 
effects on soybeans (Reis, et al., 2020). If history doesn’t include at least one example of 
the effects of three months without rain, other techniques, including expert knowledge, 
are required to estimate yields. 

As mentioned in the introductory chapter, several other methods have been applied to 
assess the impact of temperatures and other weather features on crops (Zhao, 2017).  
Two approaches mentioned are processed-based crop models and simulation models 
(Rosenzweig et al., 1994, Rosenzweig, 2014; Archontoulis, 2020). The approach to 
estimating yields applied in this manuscript is based on historical data which was used 
to build models which are then used to estimate future yields.  As mentioned, as long as 
estimated historical patterns can be estimated, and to the degree that they continue into 
the future, this approach can be accurate given enough data. This approach depends on 
recurring patterns, if, for whatever reason, those patterns are broken, then the accuracy 
of forecasts will fall until a pattern reemerges. It is an obvious point, but one worth 
mentioning, that a major advantage of using historical yield data is that the yield data in 
any given year or period represents all of the factors affecting yields. In short, it includes 
the historical circumstances of a crop growing area, as well as the economic, technical, 
political, logistical, and all of the determinants which went into production per area in a 
given period in a given location. For instance, it might be possible for a farmer to increase 
yields given no constraints, but the farmer does face historical, technical and logistical 
constraints which act as very real limits to their ability and willingness to produce crops. 
Accurately reported yields reflect these constraints. In this sense, it is a purely empirical 
approach and takes no stance on what yields should or could be. 
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The yield gap literature attempts to determine what yields might be if constraints were 
removed or reduced and can potentially give policy makers a guide from which to improve 
yields (Ittersum, et al., 2013a; Ittersum and Cassman, 2013b; van Oort, et al., 2017). The 
approach has been criticized for concentrating on technical solutions while ignoring the 
wider social, economic and political contexts that shaps farmer decision-making about 
agricultural production (Snyder et al., 2017). Successful adoption of newer techniques will 
require deeper understanding of the wider historical and societal contexts in which they 
are to be placed (Clapp and Ruder, 2020). 

The yield gap literature continues to identify more precisely the elements of these gaps 
more generally and in specific countries (Zeist, et al. 2020; van Dijk, 2017; van Dijk, 2020). 
A recent paper from Zeist, et al. (2020), concludes that many countries are well below 
their attainable yield based on linear and plateau trends taken from 1990 to 2010 and 
extends the forecasts to the 2040-2050 period. More recent yield data from the FAO (2020) 
and USDA (2020) sources show increasing yields, shifting the trend line up to a higher 
intercept or plane. However, forecasting decades into the future is of questionable value, 
statistical models cannot help there (Chapter 6). Recent developments have led to better 
understanding of the relationships between yields and technology and via R&D (Smeets-
Kristkova, et al., 2017a; Smeets-Kristkova, et al., 2017b; Smeets-Kristkova, et al., 2016). 
These developments, particularly in regards to better estimates of R&D elasticities, will 
help CGE models to better estimate the effects of technological change on yields and 
resulting implications for the wider economy. Another developing line of research which 
will improve the performance of CGE models such as MAGNET, are on-going experiments 
to reduce the short-run flexibility of many features of those models, for example, land 
allocation is not allowed to adjust immediately and thereby becomes fixed in the short term 
(van Meijl, personal correspondence). Finally, new sectors such as biobased chemicals and 
pharmaceuticals have been added to some of these models and will make the relationship 
between these sectors and the economy more explicit. An alternative or supplement to 
MAGNET might be a CGE model specifically developed to model relationships between 
agricultural and energy markets and the rest of the economy. Specifically models that 
account for the introduction of new technologies and are focused on the medium term 
rather than the long term. However, CGE models will always be limited by their scope; by 
design they encompass such a wide spectrum of the global economy that they cannot 
be expected to adequately model specific sectors, particularly those undergoing rapid 
change. 

A more promising approach will use massive amounts of microeconomic data. For 
example, farm level panel databases which contain factors of production at the crop 
level across many years are becoming available in certain regions, see for instance the 
Living Standards Measurement Study (LSMS) program at the World Bank Group. These 
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panels of data, combined with weather data and other features, will allow researchers to 
better understand the factors affecting yields and yield forecasts. Ideally, global farm level 
panel datasets would allow researchers to discern ever greater patterns including trade 
patterns. The increasing use of robots, sensors, aerial images and GPS technologies will 
only increase the amount of data available, while distributed computing power largely 
removes the computing power constraints. An emerging constraint, as I found out, is the 
engineering and coding expertise necessary to combine such diverse sources of data. A 
successful project will have to combine the expertise of economists, agronomists, and 
data scientists. 
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