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Scientific Significance Statement

Eutrophic lakes are often dominated by blooms of Cyanobacteria during summer. The high variability of Cyanobacteria concen-
trations over time is poorly understood. We measured phycocyanin, a pigment that is diagnostic of Cyanobacteria, each minute
of 11 ice-free seasons in a well-studied eutrophic lake. The data revealed alternating low and high stable states of phycocyanin
concentration within a regime of high stochasticity. Stochastic factors were larger than the difference between stable states,
indicating frequent random shifts between states. By combining high-frequency data and long-term observations with methods
of stochastic-dynamic time-series modeling, this study revealed fundamental regularities in the dynamics of Cyanobacteria.

Abstract
Concentrations of phycocyanin, a pigment of Cyanobacteria, were measured at 1-min intervals during the ice-
free seasons of 2008–2018 by automated sensors suspended from a buoy at a central station in Lake Mendota,
Wisconsin, U.S.A. In each year, stochastic-dynamic models fitted to time series of log-transformed phycocyanin
concentration revealed two alternative stable states and random factors that were much larger than the differ-
ence between the alternate stable states. Transitions between low and high states were abrupt and apparently
driven by stochasticity. Variation in annual magnitudes of the alternate states and the stochastic factors were not
correlated with annual phosphorus input to the lake. At daily time scales, however, phycocyanin concentration
was correlated with phosphorus input, precipitation, and wind velocity for time lags of 1–15 d. Multiple years of
high-frequency data were needed to discern these patterns in the noise-dominated dynamics of Cyanobacteria.

Blooms of harmful Cyanobacteria have adverse effects on
water quality, survival of aquatic animals, and human health in
lakes, reservoirs, and coastal oceans (Carmichael and Boyer

2016; Huisman et al. 2018). Blooms are associated with high
inputs of nutrients interacting with climate change (Michalak
et al. 2013). Growing demand for food and a shift toward more
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meat consumption by a growing human population are increas-
ing the exports of phosphorus from agriculture to surface waters
(MacDonald et al. 2011). At the same time, precipitation is
becoming concentrated into larger storms, thereby increasing
erosion and nutrient transport to surface waters (Carpenter
et al. 2018). Cyanobacterial dominance is further promoted by
rising temperatures (Johnk et al. 2008; Kosten et al. 2012).

Within a eutrophic lake or reservoir, day-to-day fluctuations
of Cyanobacteria can be highly variable (Scheffer et al. 2003;
Huisman et al. 2018). It is these short-term fluctuations that
affect daily human use of the water supply for drinking, recrea-
tion, or harvesting fish. Models of phytoplankton blooms in
the context of nutrient and food web dynamics show diverse
behaviors including multiple stable points and cycles,
depending on the current rate of nutrient input and state of the
consumer food web (Scheffer et al. 2000). This dynamical diver-
sity combined with fluctuations of the physical environment
suggests that planktonic ecosystems may never be at equilib-
rium, although interannual and multilake landscape patterns
are predictable (Padisák et al. 1993; Scheffer et al. 2003).

To compare the roles of equilibria vs. environmental vari-
ability for Cyanobacteria dynamics in surface waters, we stud-
ied fluctuations of phycocyanin, a characteristic pigment of
Cyanobacteria, at 1-min intervals using sensors suspended
from a centrally located buoy during the ice-free seasons of
11 yr in eutrophic Lake Mendota, Wisconsin. The time series
were analyzed using drift-diffusion-jump models (Carpenter
and Brock 2011) (Supporting Information). In each year, we
found abrupt shifts between stable regimes of low and high
phycocyanin. However, stochasticity at the scale of minutes
was larger than the gap between alternate states, and some-
times linked to rapid shifts between regimes.

Methods
Lake Mendota

Limnological studies of Lake Mendota, Wisconsin, U.S.A.
(43�0.60N, 89�250W, 3.98 × 107 m2 surface area, 12.3 m mean
depth) began in 1875 and the lake contained bloom-forming
Cyanobacteria by the 1880s (Carpenter et al. 2006). Eutrophi-
cation is driven primarily by runoff of phosphorus from agri-
culture, with some contributions from urban runoff (Lathrop
et al. 1996; Lathrop and Carpenter 2014). Composition and
seasonality of the bloom-forming Cyanobacteria taxa were
described by Lathrop and Carpenter (1992).

Automated sensor
Concentrations of phycocyanin and chlorophyll a were

monitored every minute at a central station in Lake Mendota
during the ice-free seasons of 2008–2018. Data are available in
the North Temperate Lakes Long-Term Ecological Research pro-
gram database (https://lter.limnology.wisc.edu). Phycocyanin
and chlorophyll data were recorded every minute using Turner
Designs Cyclops 7 sensors suspended 1.0 m below the buoy.

The duration of the measurements is around 175 d each year,
offering rather long time series of approximately 250,000 obser-
vations annually. Phycocyanin sensor readings were expressed
as relative fluorescence units (RFU), which are directly related
to concentrations of the respective pigments (Pace et al. 2017).

Time-series analysis
We fit a drift-diffusion-jump model (Johannes 2004; Carpen-

ter and Brock 2011; Anvari et al. 2016) to summarize the
dynamic patterns of phycocyanin observations over 1-min
intervals of each ice-free season. For each ice-free season, the
sequence of analysis was (1) convert log10(phycocyanin) to
z-scores (yz,t = yt−�y

� �
=s where �y is the sample mean and s is

the sample standard deviation), (2) from the z-scores calculate
standardized levels of phycocyanin, (3) fit a drift-diffusion
jump model to the standardized levels, and (4) calculate equi-
libria and the magnitude of the noise component at each
equilibrium. All calculations used R 3.5.1 (R Core Team 2018).
These steps are described in more detail below and in
Supporting Information Results (Figs. 1, 2) present these steps
for a representative year (2017) with near-average phycocya-
nin concentrations and variability.

To calculate standardized levels, the time series of standard
normal deviates was fit to a dynamic linear model as shown in
the Supporting Information. Dynamic linear models are a form
of state-space autoregressions with time-varying parameters
(Pole et al. 1994). Optimal order of the autoregressions,

Fig. 1. (A) z score of log10(phycocyanin RFU) vs. day of the year in 2017
for predictions of the time-varying autoregressive model (gray line) and
observations (black dots). R2 for one-step ahead predictions to observa-
tions is 0.77. (B) Level parameter (time-varying intercept/time-varying
standard error) vs. day of year based on the fit of the time-varying auto-
regressive model.
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selected by Akaike Information Criterion (AIC), was 1 in all
cases. As a smoothed indicator of phycocyanin, we used the
time-varying intercept divided by its standard error bt/st. We
refer to the time series bt/st as the “standardized level of
phycocyanin.”

We used the standardized levels of phycocyanin as input
(xt) to fit the drift-diffusion-jump model

dx=D1 xð Þdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 xð Þ

p
dW + ξdJ xð Þ ð1Þ

(Carpenter and Brock 2011) (Supporting Information).
D1(x) is the deterministic core of the dynamics as a function
of x called the “drift” in stochastic dynamic modeling. Its

roots D1(x) = 0 are the equilibria. D2(x) is the Gaussian compo-
nent of noise expressed as a standard deviation that is func-
tion of x, known as the “diffusion.” J(x) is the Poisson
component of noise known as the “jump.” J(x) is character-
ized by the Poisson jump rate λ(x) and jump size ξ which is
assumed to be normally distributed as ξ~N(0, σξ

2) where σξ
2 is

called jump amplitude. We estimated drift, diffusion, and
jump functions, that is, D1(x), D2(x), jump rate λ(x), and jump
amplitude σξ

2, by nonparametric regression using the
algorithm of Johannes (2004) implemented in R (Carpenter
and Brock 2011). Equilibria and the contribution of jumps to
total variance (diffusion + jumps) were computed and

Fig. 2. (A) Drift component of the Langevin equation fit to data of
Fig. 1B for 2017. (B) Diffusion components of the Langevin equation fit
to the same data. (C) Time series of the phycocyanin level vs. day of year
in 2017 showing stable equilibria (blue) and unstable equilibrium (red).

Fig. 3. Phycocyanin concentrations and variability near equilibria in each
year. Blue lines and solid dots are stable, red dashed line with open dots
is unstable. (A) Equilibrium concentrations of phycocyanin (log10 RFU).
(B) Diffusion (as standard deviation, in units of log10 RFU) at equilibria.
(C) Proportion of the total diffusion (as variance) due to Poisson jumps at
equilibria. See Supporting Information for explanation of diffusion and
jump terms of the Langevin equation.
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back-transformed to the original units, log10(phycocyanin), as
shown in Supporting Information.

Results
Observed time series were highly variable (Fig. 1A), span-

ning a range of about 20 times the standard deviation within
each year. The standardized level (time-varying intercept
divided by its standard error) had clearly-defined intervals of
low or high values punctuated by sharp shifts (Fig. 1B). High
values of bt/st result from high fitted intercepts bt with small
standard errors st during blooms.

The drift function for 2017 crossed the zero line three
times, indicating three equilibria: a stable equilibrium at low
levels of phycocyanin, an unstable equilibrium at intermedi-
ate levels, and another stable equilibrium at high levels of
phycocyanin (Fig. 2A). The diffusion function, or Gaussian
component of Eq. 1, was relatively large, consistent with the
high variability apparent in the time series (Fig. 2B). Figure 2C
presents the equilibrium values on a plot of the standardized
level vs. day of the year for 2017. There are frequent shifts
between low and high phycocyanin states, showing the
abrupt onset and collapse of blooms.

Values of the equilibria (log10 of phycocyanin RFU) varied
about 10-fold from year to year (Fig. 3A). Diffusion (in the
same units) was substantially higher around the unstable
equilibria than around the stable equilibria (Fig. 3B). More-
over, diffusion varied a million-fold among years, especially
around the unstable equilibria. The percentage of total vari-
ance due to the Poisson component, or jump function
(Supporting Information), also varied among years, ranging
from near 0% to about 80% (Fig. 3C). The role of jumps was
consistently greater around the unstable equilibria.

No significant correlations were found between annual phos-
phorus load (Supporting Information Fig. S7) and any of the
annual parameters of phycocyanin plotted in Fig. 3. However,
the sample size was small (11 yr) and these correlations have low
power. At daily resolution, sample size is higher and there are

significant correlations of phycocyanin time series with phos-
phorus load >9 d earlier, precipitation 12–16 d earlier, and wind
velocity 1–5 d earlier (Supporting Information Fig. S1).

The range of outcomes is illustrated by the contrast
between 2010 (Fig. 4A) and 2016 (Fig. 4B). In 2010, the equi-
libria were relatively low, diffusion was relatively high, and
jumps were dominant (Fig. 3). In 2016, the equilibria were rel-
atively high and diffusion was relatively low (Fig. 3).

Discussion
Phycocyanin dynamics in Lake Mendota were dominated

by stochasticity. Two stable equilibria were found in each
year, but the gap between the stable equilibria was small rela-
tive to the noise. The differences among years are larger than
the differences between stable equilibria seen in any individ-
ual year. The magnitude of stochasticity also showed large dif-
ferences among years.

The interannual variation of equilibria was not correlated
significantly with phosphorus loading, a major driver of
Cyanobacteria in Lake Mendota (Lathrop and Carpenter
2014). Analyses of a longer time series (21 yr) of phosphorus
loading and manual counts of Cyanobacteria quantified the
relationship of phosphorus inputs to Cyanobacteria mean bio-
mass and bloom frequency (Stow et al. 1997; Lathrop et al.
1998). Daily sampling during the ice-free season of 1993
showed that blooms of Cyanobacteria followed changes in
meteorological conditions and grazer biomass with time lags
of 0–9 d (Soranno 1997). In this study, we found similar
effects of phosphorus load, wind velocity, and precipitation
on phycocyanin concentrations at lags of 5–14 d (Supporting
Information Fig. S1). Thus some of the variability of Cyano-
bacteria is related to storm-driven pulses of phosphorus input,
wind-driven mixing, and grazing.

The paradox of enrichment suggests that Cyanobacteria
dynamics exhibit cycles of increasing magnitude as nutrient
supply increases (Rosenzweig 1971). More comprehensive
models show the possibility of multiple stable states or cycles,
depending on the interactions of nutrient input, grazers, and
fish (Scheffer et al. 2000). Syntheses of Cyanobacteria dynam-
ics in many lakes attribute their variability to weather-induced
fluctuations, spatial complexity of the turbulent mixed-layer
environment, and endogenous cycles or chaos (Padisák et al.
1993; Scheffer et al. 2003).Our data indicate two stable states
of phycocyanin concentration that vary among years. During
summer stratification, average Secchi disk transparency ranges
from about 1.5 to 3 m (Lathrop et al. 1996), depending on
phosphorus inputs and density of large-bodied grazers espe-
cially Daphnia pulicaria (Lathrop et al. 1999). At such low
transparency, much of the mixed layer is dark and phyto-
plankton growth may be limited by low irradiance. Therefore
the high stable state of Cyanobacteria concentration may be
determined by a balance of growth and self-shading. The

Fig. 4. Comparison of log10 phycocyanin concentrations vs. day of the
year and equilibria for (A) 2010 and (B) 2016. Blue horizontal lines are
stable equilibria and red is unstable.
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causes of the low stable state may be related to a balance of
growth and grazing losses.

The data we report were collected at a single station in the lake
and therefore cannot assess the spatial variability of
Cyanobacteria in surface waters. Studies with boat-mounted
sensors in Lake Mendota show that spatial variability is large
(Loken et al. 2019). We cannot determine the contribution
of spatial variation to the stochastic models that we fit to these
time series. Better integration of spatial dynamics with long-term
variability is an important need for future studies of
Cyanobacteria.

This decade of high frequency time series observations
reveals a pattern of low and high stable states of Cyano-
bacteria concentration within a regime of high stochasticity.
A short-term study or low-frequency sampling would miss
this overarching pattern of Cyanobacteria dynamics. By com-
bining high frequency and long-term observations with drift-
diffusion-jump models, this study has revealed fundamental
regularities in the stochastic dynamics of Cyanobacteria.
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