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Abstract
The relative macroporosity (wf) and the effective aggregate width (dag) are input
parameters for several dual-permeability models. As wf is geometrically related
to dag, any improvement in its determination is directly extended to dag. The
wf, as estimated by disk infiltrometers, applies only under the assumption that
macropores are cylindrically shaped. We generalize the determination of wf
for ring, hexagon, brick, and rectangular slab macropore-matrix shapes using
a transformation factor, ξ, obtained from pore-scale modeling. The ξ was com-
puted by dividing the relative macroporosity for noncylindrical shapes, wf_nc,
over the relative macroporosity for cylindrical shapes, wf_c. The computation
of ξ accounts for differences in the macropore area and macropore water flow
between noncylindrical and cylindrical shapes. A total of 15 combinations of
macropore width and effective aggregate width were used to construct the geo-
metrical figures and compute both wf_nc and wf_c. For the cylindrical, ring, and
rectangular slab shapes, the macropore water flow was solved using analytical
solutions. For the hexagonal and brick shapes, the macropore water flow was
solved numerically using COMSOL Multiphysics. Remarkably, the computed ξ
was constant and equal to 1.5 for all four noncylindrical shapes under analysis.
We show that the solution is exact for laminar flow under saturated conditions
in the macropores with a rigid and wettable matrix. This methodology enables
the derivation of a better estimate of wf and dag from disk infiltrometer data that
include different macropore geometries. This information is crucial for the setup
of dual-permeability models in risk assessments and detailed studies.

1 INTRODUCTION

A Richards-based dual-permeability model requires solv-
ing matrix and macropore water flow separately, then cou-
pling them with lateral mass transfer equations (Gerke
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& van Genuchten, 1993a, 1993b). Excellent performance
of dual-permeability models was reported in laboratory
studies, demonstrating the validity of the concept (Arora,
Mohanty, & McGuire, 2011; Köhne & Mohanty, 2005).
Under field conditions, dual-permeability models have

Vadose Zone J. 2020;19:e20048. wileyonlinelibrary.com/journal/vzj2 1 of 13
https://doi.org/10.1002/vzj2.20048

https://orcid.org/0000-0003-4925-5277
mailto:carlos.faundezurbina@wur.nl
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/vzj2
https://doi.org/10.1002/vzj2.20048


2 of 13 URBINA et al.Vadose Zone Journal

been used for simulating water flow and chemical trans-
port in drainage systems (Gardenas, Simunek, Jarvis, &
van Genuchten, 2006; Scorza Júnior, Jarvis, Boesten, van
der Zee, & Roulier, 2007; Tiktak, Hendriks, Boesten, &
van der Linden, 2012) and water redistribution in semiarid
environments (van Schaik, Hendriks, & van Dam, 2010).
Therefore, dual-permeability models are an essential com-
ponent of agricultural and environmental studies involv-
ing the computation of water and chemical mass balances.
A large number of parameters, however, may discourage
the use of dual-permeability models, especially because
some parameters are difficult to measure in the field.
Parameterization of dual-permeability models is a diffi-

cult task, and it is considered relevant for further research
(Van den Berg, Gottesbüren, Hammel, Jarvis, & Poot,
2014). A complete parameterization of dual-permeability
models is essential for both local- and regional-scale stud-
ies. One possible approach is to obtain high-quality data
to be used in parameter estimation by inverse methods
(e.g., Andelst study; Scorza Júnior, Smelt, Boesten, Hen-
driks, & van der Zee, 2004). This methodology provides
sufficient estimates for local studies, but the large data
requirements and computational burden render it imprac-
tical for regional studies. Furthermore, inverse methods
require reasonable initial estimates of dual-permeability
model parameters and uncertainty bounds for compu-
tational efficiency (Arora et al., 2011; Köhne, Köhne, &
Gerke, 2002). Therefore, the ability to roughly estimate
dual-permeability model parameters is essential, regard-
less of whethermore precise estimations are to be obtained
through inverse methods. Additionally, it is pertinent for
risk assessment or regional studies, where the availability
of data for calibration is scarce.
The effective aggregate width (dag) and the relative

macroporosity (wf) are common input parameters for dual-
permeability models. The dag denotes the characteristic
distance from the macropore wall to the center of the
matrix. The distance is measured parallel to the soil sur-
face in different cross-sectional planes over depth. The wf
refers to the total area (or volume) ofmacropores over a ref-
erence area (or volume) of soil. The dag is mathematically
related to wf (see Section 2). Therefore, any improvement
in the determination of wf is directly passed on to dag. The
last point is essential because dag has typically been esti-
mated by calibration or pedotransfer functions under field
conditions (Scorza Júnior et al., 2007; Tiktak, Hendriks, &
Boesten, 2012). Therefore, alternativemethods for an inde-
pendent determination ofdag andwf under field conditions
are useful.
Accurate estimations of dag have been performed under

controlled laboratory conditions using cylindrical macro-
pores surrounded by a cylindrical matrix mantle (Arora
et al., 2011; Urbina et al., 2019). These conditions allow

Core Ideas

∙ The relative macroporosity and effective aggre-
gate width are mathematically related.

∙ The transformation factor is constant for non-
cylindrical shapes.

∙ Computation of the relative macroporosity for
mixed geometries is included.

∙ HYDRUS, MACRO, and SWAP models can be
parameterized with this methodology.

∙ Themethodology can be applied to existing disk
infiltrometer databases.

precise knowledge of wf, the effective macropore width,
be, and the macropore-matrix shape over depth. The be is
defined here as the half-radius of a cylindrical macropore
or, for other shapes, some characteristic macropore half-
width. Accurate determinations of dag, wf, and be under
field conditions can be performed by computed tomogra-
phy (Hu, Feng, Yang, & Wang, 2014; Zhang, Xu, Li, Hou,
& Ren, 2017). However, this technology is not widely avail-
able to institutions worldwide. Alternatively,wf and be can
be estimated by disk infiltrometers under field conditions.
Those values, along with the macropore-matrix shape, can
be used to approximate dag.
Disk infiltrometers allow for the determination of dag,

wf, and be only under the assumption of cylindrical macro-
pores and quasi-steady-state one-domain flow conditions
(Watson & Luxmoore, 1986). The use of disk infiltrome-
ters to obtain dag, wf, and be in noncylindrical macropore-
matrix shapes is challenging and is a limitation of the
methodology. Noncylindrical macropore-matrix shapes
include rings, hexagons, bricks, and rectangular slabs.
Those shapes have already been incorporated into various
dual-permeability models (e.g., Gerke & van Genuchten,
1996). Therefore, the challenge is to generalize the compu-
tation of dag and wf for noncylindrical macropore-matrix
geometries with disk infiltrometers.
The main objective of this research was to compute a

transformation factor (ξ) for the estimation of the rela-
tive macroporosity, wf, in the ring, hexagon, brick, and
rectangular slab macropore-matrix shapes under laminar
flow conditions. A mathematical and geometrical relation
between dag and wf for different macropore-matrix shapes
is explicitly shown in Section 2. Implications of ξ in the
computation of dag are also presented in Sections 2 and 5.
The outcomes of this research will allow for the generation
of a theoretical estimate of the effective aggregate width,
dag, and the relative macroporosity, wf, for noncylindrical
and cylindrical geometries, using disk infiltrometers.
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F IGURE 1 Schematic representation of a disk infiltrometer measurement for cylinders (I), rings (II), hexagons (III), bricks (IV), and
rectangular slabs (V). The homogenization and regularization steps are applied to obtain dag andwf for noncylindrical shapes. be is the effective
macropore width; dag is the effective aggregate width; wf_c, and wf_nc are the relative macroporosities for cylindrical and noncylindrical shapes,
respectively; and ξ is the transformation factor

2 THEORETICAL FRAMEWORK

In this section, relevant physical concepts and the intro-
duction of the novel transformation factor is included.
The concept of “porous block” is commonly used in this
manuscript; hence, it is crucial to know its definition. A
porous block is an idealized geometrical figure formed
by a macropore and its corresponding matrix. This term
was used similarly in Gerke and van Genuchten (1996).
An example of a cylindrical porous block is found in
Figure 1, “Homogenization.” The cylindrical porous block
is formed by a cylindrical macropore of radius = 2be and
its matrix mantle of width = dag. The matrix mantle is the
soilmatrix between themacroporewall and the limit of the
porous block. Four types of noncylindrical porous blocks
are found in Figure 1, “Regularization.” For example, the
brick shape porous block is formed by the half-width of
the macropore (be) and its inner matrix, including a half-
width = dag.
The computation of the transformation factor, ξ, com-

pares the four noncylindrical porous blocks against the

cylindrical porous block, as is depicted in Figure 1, “Reg-
ularization.” It is worth to mention that in Gerke and van
Genuchten (1996), the cylindrical macropore surrounded
by a cylindrical matrix mantle is denoted as a “hollow
cylinder,” whereas the ring porous block is denoted as
“solid cylinder.”

2.1 Young–Laplace capillarity theory

For water at 20 ◦C and a contact angle of zero between
the liquid–vapor–solid interface, the equivalent macro-
pore radius (rm, cm) for a given pressure head (h)
is

𝑟m ≅ −0.15
ℎ

cm; 𝑟m = 2𝑏e (1)

where h (cm) is the pressure head imposed at the base

of the disk infiltrometer. For macropore shapes other
than cylindrical and spherical, the following solution of
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Young–Laplace for parallel plates can be used:

𝑑T ≅ − 0.15
ℎ

cm; 𝑑T = 2 𝑏e (2)

where dT (cm) is the width between two parallel plates
(or matrix walls). The fixed pressure head employed at
the base of the disk infiltrometer determines the effec-
tive macropore radius (Equation 1) or effective macropore
width (Equation 2), above which a macropore is excluded
from the water flow process. We advise using Equation 2
instead of Equation 1 for noncylindrical geometries as an
approximation of the macropore width.

2.2 Relative macroporosity

The relativemacroporosity is obtained by dividing the total
macropore area (m2) over the total surface area of infiltra-
tion (AR, m2) as follows:

𝑤f =
𝑁𝐴m
𝐴R

(3)

where N is the number of macropores, and Am (m2) is the
average macropore cross-sectional area. Equation 3 can be
modified as follows:

𝑤f = 𝐴m(
𝐴R
𝑁 )

−1
(4)

where AR over N is the average area of a porous block;
therefore, the union of the macropore and its matrix area.
Equations 3 and 4 can be used for any geometry. Prac-
titioners should be aware that AR can be the total sur-
face area of infiltration of a disk infiltrometer or the
total surface area of infiltration of a noncylindrical porous
block (see the computation of the transformation factor in
Section 3).

2.3 Number of macropores

The number of macropores of a given size (i.e., rm or dT)
can be obtained by

𝑁 =
𝑄
𝑞 (5)

where Q (m3 s−1) and q (m3 s−1) are water flow rate, and
themeaning of thosewater flow rates is context dependent,
because Equation 5 is used for different situations in this
paper.Qmay be thewater flow rate from a disk permeame-
ter under a given pressure head (see Equations 1 and 2),

and qmay be the water flow rate computed for the macro-
pore by pore-scale simulation.

2.4 The effective aggregate width

The effective aggregate width is computed from a cylindri-
cal or noncylindrical porous block. The wf and the effec-
tive macropore width (be) are input parameters for obtain-
ing the effective aggregate width, dag, for different porous
blocks, as follows:

𝑑ag = 2𝑏e
⎡
⎢
⎢
⎣

1
(
𝑤f_c

)1∕2 − 1
⎤
⎥
⎥
⎦

(6)

where wf ]0,1] (cylindrical shapes);

𝑑ag =
𝑏e

{
[
1 −

(
𝑤f_c ⋅ ξ

)]−1∕2
− 1}

(7)

where wf ]0,1[ (rings, hexagons, and bricks);

𝑑ag = 𝑏e [
1

(
𝑤f_c ⋅ ξ

) − 1] (8)

where wf ]0,1] (rectangular slabs);

where dag is the width of the cylindrical matrix mantle in
Equation 6, the radius of the ring matrix or the half-width
for the brickmatrix or the apothem for the regular hexagon
matrix in Equation 7, and the half-width of the rectangu-
lar slab matrix in Equation 8. The be is the half-radius of
the macropore in Equation 6 and is the macropore half-
width in Equations 7 and 8, andwf_c is the relativemacrop-
orosity for cylindrical shapes. The ξwas previously defined.
Some of these equations were derived from Gerke and van
Genuchten (1996). Equations 6–8 demonstrates the math-
ematical relation between dag and wf for different geome-
tries. Next, we will show how to approximate wf and be for
noncylindrical shapes with a disk infiltrometer, to subse-
quently approximate dag using Equations 7 and 8.

2.5 Disk infiltrometer

The disk infiltrometer is a device that allows for the mea-
surement of infiltration rates at different pressure heads
imposed at the base of a disk (Perroux & White, 1988).
These pressure heads can be transformed into a macrop-
ore radius (Equation 1) or macropore width (Equation 2)
using the Young–Laplace capillarity theory. Therefore, the
above equations (Equation 3–8) can be applied to different
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pressure heads if a threshold for differentiating between
the macropores and the matrix system is set. Based on
experimental evidence, Jarvis (2007) suggested the thresh-
old value be −10 or −6 cm pressure head for use in Equa-
tions 1 and 2.
Two example cases are presented below. In Case 1, we

explain how dag and wf could be computed from disk infil-
trometers for cylindrical shapes. In Case 2, we show the
limitations of the use of disk infiltrometer for the obtain-
ment of dag and wf for noncylindrical shapes.

2.5.1 Case 1: Disk infiltrometers and
cylindrical shapes

Let us assume a field condition where four cylindrical
macropores of a radius ≥0.06 cm are found (Figure 1, I).
Placing the disk at 0 and −3 cm pressure head allows us
to measure the macropore water flux in that pressure head
range as follows:

𝑞D[0,−3] =
𝑄0 − 𝑄3

𝐴R
(9)

where qD[0,-3] is the water flux displaced by the disk infil-
trometer (m s−1) for the pressure head range [0, −3], Q0
is the water flow displaced by the disk infiltrometer at 0
pressure head (m3 s−1), and Q3 is the water flow displaced
by the disk infiltrometer at −3 cm pressure head (m3 s−1).
The minimum macropore radius that transports water in
qD[0,-3] is obtained by substituting −3 cm in Equation 1,
which results in rm = 0.05 cm.
The number of cylindrical macropores, Nc, can be

obtained by applying Darcy’s law (the numerator in
Equation 10) and the Hagen–Poiseuille equation (the
denominator in Equation 10), assuming quasi-steady-state
laminar flow conditions (Dunn & Phillips, 1991; Watson &
Luxmoore, 1986), the outcome of which was

𝑁c[0,−3] =
𝑞D[0,−3]𝐴R8η

πρ𝑔𝑟4m,−3
(10)

where η is the dynamic viscosity of water (kg m−1 s−1), ρ is
the density ofwater (kgm−3), g is the gravitational constant
(m s−2), and rm, −3, is 0.05 cm for h = −3 cm. The deriva-
tion of Equation 10 can be found in the supplementalmate-
rial. The primary assumption inEquation 10 is one-domain
flow conditions that produce a unitary gradient.Hence, the
saturated hydraulic conductivity from Darcy (K) is equal
to qD.
The average macropore cross-sectional area of the cylin-

drical porous block (Am in Equations 3 and 4) is computed
by setting rm = 0.05 cm as the radius. The computation of

dag requires choosing the shape of the porous block. Recall
that in this case, the macropore shape is cylindrical, and
for practical applications, we set a cylindrical matrix man-
tle. Therefore, the equations below forwf (Equation 3) and
dag (Equation 6) are valid for a cylindrical porous block:

𝑤fc[0.−3] =
𝑁c[0,−3] 𝐴m,−3

𝐴R
(11)

𝑑ag[0,−3] = 2𝑏e,−3

⎡
⎢
⎢
⎣

1
(
𝑤𝑓𝑐[0,−3]

)1∕2 − 1
⎤
⎥
⎥
⎦

(12)

where the subscript [0, −3] means that the variable was
computed for that pressure head range, and the subscript
−3 (in Am and be) means that those variables were com-
putedwith the correspondingmaximummacropore radius
involved in the infiltration process (0.05 cm). Recall that
be = 0.025 cm in Equation 12 (half-radius).
Practitioners should notice that the assumption of a

cylindrical porous block for the computation of dag is
just a conceptualization. Hence, the matrix surrounding
the cylindrical macropore can be different (e.g., squared
matrix). However, cylindrical macropores and cylindri-
cal matrix mantle have been applied in previous research
with dual-permeability models for the obtainment of dag
and wf (Arora et al., 2011; Urbina et al., 2019). There-
fore, it is convenient to keep that conceptualization. Pre-
vious settings imply that the four cylindrical porous block
areas do not fit below the disk infiltrometer area. That
issue occurs because the conceptualization performedhere
looks to keep the relative macroporosity constant between
the porous blocks. This conceptualization is one of the
characteristics of homogenization (Figure 1).
Homogenization is based on Equation 11 for wf

(Figure 1, “Homogenization”). We observed that Equation
11 (see Equation 4) implies that the total surface area of
infiltration (AR) is being divided by the number of macro-
pores (N). Therefore, using the previous example, four
individual porous blocks are generated by homogeniza-
tion. Every porous block contains a cylindrical macropore
of radius 0.05 cm, and they contain the same matrix area,
which is conceptualized as a cylindrical matrix mantle.
Thus, the four porous blocks have the same dag and wf. A
result of homogenization is that the wf computed using
the four macropores over the disk infiltrometer area by
Equation 11 must be the same as that computed for an
individual porous block using Equation 4. Additionally,
the water flow transported by all the porous blocks is the
same as the displaced water by the disk infiltrometer (see
Equation 10). Regularization (Figure 1) is not applied to
cylindrical macropores shapes.
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Previous computations in Equations 11 and 12 indicate
that both dag and wf must be computed for more pres-
sure head ranges until the threshold of −10 cm pressure
head is achieved. Additionally, including more pressure
head ranges reduces the error associated with homoge-
nization (Figure 1, I). Understanding homogenization is
critical because it is the base of the estimation of dag and
wf for noncylindrical geometries.

2.5.2 Case 2: Disk infiltrometers and
noncylindrical shapes

The average macropore cross-sectional area (and thus
wf) for noncylindrical shapes (Figure 1, II–V) cannot be
computed using disk infiltrometers because more than
one dimension is required (in cylindrical cases, only the
radius is needed to compute the average macropore cross-
sectional area). We generate a three-step process that
includes the homogenization and regularization steps in
order to compute the relative macroporosity for noncylin-
drical shapes, wf_nc (Figure 1).
Let us consider infiltrated water measured by disk infil-

trometer in a pressure head range of [0, −3], and that the
macropore width, dT, is computed by Equation 2 setting
h = −3 cm. The first step is to observe the macropore-
matrix shape under field conditions where the disk infil-
trometer is to be applied. The second step is to presume
that the infiltrated water is transported by a bundle of
cylindrical porous blocks (Figure 1, II-V, “Homogeniza-
tion”), where each cylindrical macropore in a cylindrical
porous block has a radius equal to the macropore width or
rm = dT = 2be = 0.05 cm (see Equations 1 and 2). From
the bundle of cylindrical porous blocks, we compute an
incorrect wf following the methodology of Case 1. To rec-
tify wf, we apply the regularization step, which is the third
step. Regularization implies the use of the relative macro-
porosity of a cylindrical porous block (wf_c) multiplied by
a transformation factor, ξ, to obtain the relative macrop-
orosity for the noncylindrical porous block (wf_nc) that was
initially observed under field conditions (Figure 1, I–IV,
“Regularization”). Therefore, the transformation factor, ξ,
is defined as the ratio between wf_nc and wf_c, and is only
applied in the regularization step for noncylindrical shapes
(Figure 1). Computing the transformation factor, ξ, is the
objective of this research.
The effective aggregate width, dag, can now be com-

puted for different macropore-matrix shapes because we
can compute the relative macroporosity of noncylindrical
shapes following the abovementioned methodology. The
relative macroporosity for cylindrical shapes wf_c along
with ξ can be set in Equations 7 or 8 to compute dag.
Care should be taken to use the half-width of the macro-

pore in Equations 7 or 8. In the previous example where
dT = 0.05 cm (macropore width), be = 0.025 cm (macrop-
ore half-width for noncylindrical shapes).
To simplify the analysis, a regular hexagon represents

the irregular hexagon after regularization, where the
apothem of the regular hexagon is dag. A square shape
represents bricks and rectangular slab shapes, to have
a unique dag after regularization (Figure 1, IV and V,
“Regularization”).

3 METHODS

The computation of the transformation factor explained
below is illustrated comparing one noncylindrical porous
block against one cylindrical porous block. Therefore, we
include homogenization and regularization from Figure 1,
II–IV.

3.1 Transformation factor

The transformation factor, ξ, is the ration of the relative
macroporosity of a noncylindrical porous block (wf_nc)
against the relative macroporosity of a cylindrical porous
block (wf_c) as follows:

ξ =
𝑤f_nc
𝑤f_c

(13)

ξ =
(
𝑁nc𝐴m_nc∕𝐴R

)

(
𝑁c𝐴m_c∕𝐴R

) =
𝐴m_ncqc
𝐴m_c𝑞nc

(14)

where the subscripts “nc” and “c” at each variable mean
noncylindrical and cylindrical shapes, respectively, and q
is macropore water flow. The left-hand side of Equation 14
was derived from Equation 3 for wf. The right-hand side
of Equation 14 was obtained by setting the noncylindrical
porous block as the reference shape, hence the number
of noncylindrical porous blocks is one (Nnc = 1). There-
fore, in this setting, the total surface area of infiltration,
AR, is equal to the area of the noncylindrical porous block
(matrix and macropore area).
The number of cylindrical shapes, Nc, is different from

one, and it is computed using Equation 5 where Q means
the macropore water flow of the noncylindrical porous
block (reference), qnc, and q means the macropore water
flow of the cylindrical porous block, qc. In simple terms,
the meaning of Nc is the amount of cylindrical porous
block necessary to transport the same amount of water
as the reference noncylindrical porous block. Hence, the
transformation factor ξ accounts for differences in the
macropore area and macropore water flow between non-
cylindrical and cylindrical shapes.
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F IGURE 2 The dashed red line depicts the boundary of the noncylindrical porous block, including the effective macropore width, be, and
the effective aggregate width, dag. The dashed green line depicts the outer border of themacropore area where the water flow computations take
place, including the macropore width, dT. This water flow is divided by two to match the boundaries of the noncylindrical porous block. Outer
radius R2 = dag + dT (Equation 20). The roman numerals follow the order of Figure 1: rings (II), hexagons (III), bricks (IV), and rectangular
slabs (V)

To quantify ξ, we generated 15 geometrical figures for
rings, hexagons, bricks, and rectangular slabs combining
three macropore widths, dT (0.075, 0.050, and 0.025 cm),
and five effective aggregate widths, dag (0.5, 1.25, 2.5, 3.75,
and 5.0 cm). The radius of the transitional cylindrical
porous block was set as dT = 2be (homogenization and
regularization step in Figure 1). Previous information is
enough to compute wf_nc and wf_c and thus the transfor-
mation factor by Equations 13 and 14. An example of the
construction of the macropore-matrix shapes is presented
in the supplemental material.

3.1.1 Average macropore cross-sectional
area

The average macropore cross-sectional area,Am, is needed
in Equation 14. We computed Am for rings (Equation 15),
hexagons (Equation 16), bricks (Equation 17), and rectan-
gular slabs (Equation 18) as follows:

𝐴m_nc = π [
(
𝑑ag + 𝑏e

)2
− 𝑑ag

2] (15)

𝐴m_nc = 2
√
3 [

(
𝑑ag + 𝑏e

)2
− 𝑑2

ag] (16)

𝐴m_nc =
(
2𝑑ag + 2𝑏e

)2
− 4𝑑2

ag (17)

𝐴m_nc = 2 𝑑ag𝑏e (18)

where Am_nc is the average macropore cross-sectional area
of the noncylindrical porous block calculated from the pre-
vious 15 combinations of dT and dag.
The average macropore cross-sectional area of the

cylindrical porous block, Am_c, is also needed in Equa-
tion 14 and is computed by setting rm = dT (Figure 1,
“Regularization”). The Am_nc is demarcated from the
matrix limit until the dashed red border (Figure 2). The
noncylindrical porous block limits are denoted by the
dashed red outer border in Figure 2, including the soil
matrix.

3.1.2 Macropore water flow

Macropore water flow for the cylindrical and noncylindri-
cal porous block is needed in Equation 14 for the compu-
tation of the transformation factor. The macropore water
flow was computed in the vertical direction for cylindrical
and noncylindrical porous blocks. The macropore water
flow for the noncylindrical porous blocks was computed
from the dashed green outer border to the macropore-
matrix boundary (Figure 2,_II–IV). The previously macro-
pore water flow computed for all noncylindrical shapes
was divided by two to represent the macropore water
flow of the porous block (dashed red outer border to the
macropore-matrix border). For more details, see the exam-
ples in the supplemental material.
The following conditions were imposed for macro-

pore water flow: (a) laminar flow in the macropore,
(b) the macropore has no interaction with the matrix
(single-domain flow), and (c) the macropore is fully
saturated.
The macropore water flow for the cylindrical porous

block was computed analytically from the Hagen–
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Poiseuille equation:

𝑞c =
[Δ𝑝 − ρ𝑔Δ𝑥 sin (θ)] π 𝑟m4

8ηΔ𝑥 (19)

Where the qc units are cubic meters per second, Δp is the
pressure difference between the inlet and outlet boundary
(Pa), θ is the angle between the horizontal and flow direc-
tion (degrees) where θ = −90◦ applies to vertical flow, and
Δx is the length of the macropore (m).
The macropore water flow for noncylindrical porous

blocks was computed analytically for the ring (Equation
20) (Papanastasiou, Georgiou, & Alexandrou, 1999), and
rectangular slabs (Equation 21) (Spurk & Aksel, 2020) as
follows:

𝑞nc =
[Δ𝑃− ρ𝑔Δ𝑥 sin(θ)] π

8ηΔ𝑥

⎧

⎨
⎩

𝑅4
2 − 𝑑4

ag −
⎡
⎢
⎣

(
𝑅2
2− 𝑑2ag

)2

ln(𝑅2∕𝑑ag)
⎤
⎥
⎦

⎫

⎬
⎭

;

𝑅2 = 𝑑ag + 𝑑T
(20)

𝑞𝑛𝑐 =
4 [Δ𝑃−ρ𝑔Δ𝑥 sin(θ)] 𝑏e

3 𝑑ag
3ηΔ𝑥

× {1 −
∞∑
𝑛=0

192
(2𝑛+1)5π5

𝑏e
𝑑ag

tanh [ (2𝑛+1) π𝑑ag
2𝑑ag

]}
(21)

where qnc units are cubic meters per second, and Equation
21 was solved up to n = 21. The macropore water flow for
hexagons and brick shapes was obtained through numer-
ical simulation using COMSOL Multiphysics software in
the vertical flow direction. Laminar flow conditions were
imposed with no-slip boundary conditions at the walls for
water at 20 ◦C. A no-flow condition was imposed in the
macropore walls. Therefore, no interaction with the soil
matrix was allowed (single-domain flow assumption). The
following set of equations were solved using COMSOL:

ρ (υ ⋅ ∇) υ = ∇ ⋅
{
−𝑝𝐈 + η

[
∇υ + (∇υ)T

]}
− ρ𝑔sin (θ)

(22)

ρ∇ ⋅ (υ) = 0 (23)

where υ is the fluid velocity field (m s−1), p is pressure
(Pa), and I is the identitymatrix. Themacroporewater flow
for hexagon and brick shapes was finally obtained by inte-
grating the fluid velocity field over the outlet area. A fine
physics-controlledmeshwas generated, and the numerical

solutions were computed iteratively until stationary condi-
tions were achieved.
In the flow equations (both analytical and numerical),

the length of the macropore Δx was set as 5 cm, and the
pressure head difference Δp = 0 Pa.

3.2 Numerical solution error and
Reynolds number

The numerical error of COMSOL simulations is computed
by comparing COMSOL flow with the two available ana-
lytical solutions (Equations 20 and 21). The error was com-
puted as a percentage:

% error = 100
||||||
𝑥 − 𝑦
𝑥

||||||
(24)

where x is the flow computed by the analytical solution
(Equations 20 and 21), and y is the flow computed by COM-
SOL numerically.
The assumption of laminar flow conditions was tested

with the Reynolds number, Re, computed for rings and
rectangular slabs as follows:

Re =
ρ𝑣avg𝐷H

η (25)

where DH = 4(AR/wet perimeter), vavg is the average flow
velocity (m s−1) or the flow divided by the cross-sectional
area of the macropore, and DH is the hydraulic diameter
(m).

4 RESULTS

4.1 Transformation factor

The relative macroporosity obtained from presuming
cylindrical shapes (wf_c) was always lower than the actual
value for noncylindrical shapes (wf_nc) (Figure 3).
The transformation factor, ξ, was almost constant with

some small deviations in rings, hexagons, and bricks
porous blocks (Figure 3). Recall that macropore water flow
for both hexagons and bricks was obtained by numeri-
cal simulation, whereas analytical solutions were used for
rings and rectangular slabs. The ξ appears to vary between
1.45 and 1.67 for all noncylindrical porous blocks. The devi-
ations were mainly in the combinations generated with
larger macropore widths and smaller effective aggregate
width (dag).
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F IGURE 3 The transformation factor, ξ (black line), computed dividing the relative macroporosity for noncylindrical shapes, wf_nc, by
the relative macroporosity of cylindrical shapes, wf_c. The lowermost x axis label is shape type, macropore width (cm), and effective aggregate
width (cm)

F IGURE 4 The left y axis shows the percentage error between the analytical and numerical computation of water flow for rings and
rectangular slab shapes. The right y axis shows the Reynolds number (Re). The x axis shows (from bottom to top) shape type, macropore width
(cm), and effective aggregate width (cm)

4.2 Numerical solution and Reynolds
number

The percentage error was higher for the smallest effective
aggregatewidth for both rings and rectangular slabs shapes
(Figure 4). Generally, the percentage error increases when
the macropore width increases (Figure 4). The Reynolds
number was lower than 100, and the correlation between
the Reynolds number and the percentage error was 0.23,
which is not significant.

5 DISCUSSION

5.1 Transformation factor

The transformation factor, ξ, is almost constant across
noncylindrical porous blocks under different geometrical
arrangements (Figure 3). Using the analytical solutions
available for rings and rectangular slabs, we demonstrate
that ξ is approximately equal to 1.5 (see the supplemental
material). However, using the numerical solution for
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hexagons and bricks, the solution for ξ seems to vary
between 1.49 and 1.67 (Figure 3). This variation was
produced by numerical error, which we computed for
the ring and rectangular slabs using both analytical and
numerical solutions (Figure 4). The most significant per-
centage numerical error occurs for the smallest effective
aggregate width and the largest effective macropore width
(Figure 4). For hexagonal and brick shapes, the largest
deviations of ξ are of similar magnitudes as the percentage
numerical errors previously mentioned for rings and
rectangular slabs.
No turbulent flow conditions were observed in this anal-

ysis. ThemaximumReynolds number computedwas<100
for both rings and rectangular slabs shapes, whereas turbu-
lent flow occurs at Reynolds number>1,000 (Jarvis, 2007).
Consequently, ξ with a value of 1.5 applies to all the geome-
tries analyzed under laminar flow conditions. The ξ of 1.5
applies for any macropore orientation (e.g., slope macrop-
ores). This conclusion can be seen by solving Equation 14
directly for rings or rectangular slabs where the pressure
component [ΔP – ρgΔxsin(θ)] is canceled (see the supple-
mental material).

5.1.1 The effective macropore width

The effectivemacroporewidth (be) for field conditionsmay
show a range of values. Only the minimum be in a pres-
sure head range is foundwith the disk infiltrometer. There-
fore, the actual value of the effective macropore width is
a source of uncertainty. In Watson and Luxmoore (1986)
database, the minimum radius (2be) was set to each pres-
sure head range for the computation of wf. The reason for
using theminimumradius at each pressure head rangewas
explained inDunn andPhillips (1991). They concluded that
for a macropore composed of different radius over depth,
the narrowest part in the tube regulates the flow. The be can
also be estimated by using the representative mean pore
radius (Moret & Arrúe, 2007).

5.1.2 Errors in the determination of the
relative macroporosity and the number of
macropores

The wf obtained by presuming cylindrical porous block
was, for all combinations, lower than the actualwf for non-
cylindrical porous blocks. Therefore, the number ofmacro-
pores is miscalculated if cylindrical shapes are always
presumed, as is considered in the methodology of Wat-
son and Luxmoore (1986). These outcomes reveal that
for a more accurate determination of wf by disk infil-
trometers, the shape of the macropores should be con-

sidered. The macropore-matrix shape is usually not men-
tioned in reported disk infiltrometer studies (Nachabe,
1995; Schwärzel et al., 2011).
Because ξ was constant and equal to 1.5 between non-

cylindrical shapes, the actual noncylindrical shape is not
relevant for computing wf. The user needs to differenti-
ate only between cylindrical and noncylindrical shapes
under field conditions. In the case that the macropore-
matrix shape cannot be recognized over the total sur-
face area of infiltration, a cylindrical shape should be
assumed.

5.1.3 Errors in the determination of the
effective aggregate width

The miscalculation of wf presuming cylindrical shapes
propagates as an error into the effective aggregate width,
dag. The ratio between the actual value for dag and the
miscalculated value is proportional to 1/ξ (see Equations
7 and 8). Two primary sources of error can be produced
when computing dag. The first error relates to choosing
the correctmacropore-matrix shape under field conditions
but without applying the transformation factor. The sec-
ond error is mismatching the shape under field conditions.
In the second case, it is assumed that the transformation
factor was applied correctly.
Let us consider a field condition with rectangular slab

macropores, where be = 0.05 cm,wf_c = 0.004, ξ= 1.5, and,
using Equation 8, dag = 8.28 cm. The first error (not apply-
ing ξ in Equation 8) overestimates the final value of dag
by 50% (dag = 12.45 cm). The second error of choosing a
wrongmacropore-matrix shape underestimates dag by 82%
(dag = 1.48 cm) when cylindrical macropores (Equation 6)
are used instead of rectangular slabs (Equation 8). In the
case of choosing rings, hexagons, or bricks instead of the
actual rectangular slab shape, the value of dag is overesti-
mated a 100% (dag = 16.59 cm). The overestimation of dag
is related to larger macropore spacings. Smaller distances
between the macropore wall and the center of the matrix
imply less preferential flow. Distances of 0.1 cm are consid-
ered close to equilibrium (Gerke & van Genuchten, 1993a)
or one domain flow (Larsson & Jarvis, 1999). Therefore, it
is relevant to choose the correct macropore-matrix shape
under field conditions for dag. However, if we denoted
rings, hexagons, and bricks shapes as even-sided poly-
gons or “closed shapes,” practitioners need to differenti-
ate only between cylindrical, “closed shapes,” and rectan-
gular slabs for dag. Hence, it is not necessary to know the
actual “closed shape” under field conditions, which is con-
venient. Previous conclusions are different from the one
for wf, where the user only needs to differentiate between
cylindrical and noncylindrical shapes.
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5.2 Physical assumptions in the
estimation of the transformation factor

The ξ computed for noncylindrical porous blocks is based
on simplifying assumptions of the physical processes for
macropore water flow, which could deviate from the
actual flow at field conditions. Quasi-steady-state and one-
dimensional flow conditions are a requirement for the
developed methodology. Quasi-steady-state conditions are
commonly challenging to achieve, especially for smaller
pressure heads values at the base of the disk (Šimůnek,
Wendroth,& vanGenuchten, 1999).Watson andLuxmoore
(1986) proposed to saturate the soil with a double ring
initially and then place the disk infiltrometer to reduce
the time it takes to reach a quasi-steady state. A one-
dimensional flow condition can be achieved by increasing
the diameter of the disk infiltrometer. A larger diameter
will increase the vertical hydraulic head gradient relative to
the horizontal hydraulic head gradient (Šimůnek, Angulo-
Jaramillo, Schaap, Vandervaere, & van Genuchten, 1998;
Wooding, 1968).

5.3 Mixed shapes

Macropore-matrix shapes are likelymixed under field con-
ditions. In that case, we advise that the same procedure
should be followed for each shape independently. How-
ever, the final wf value to be used in the models should be
multiplied by a weight factor corresponding to their rel-
ative abundance over the total surface area of infiltration
and the differences in water flow:

𝑤f = ϕc w′
f_c + (1 − ϕc) ξw

′
f_c (26)

ϕc = [1 +
𝑞nc
𝑞c

( 1
ϕAc

− 1)]
−1

; ϕAc ]0, 1] (27)

where ϕc is the proportion of the relative macroporosity
corresponding to cylinders, the subscripts “n” and “nc”
are cylindrical and noncylindrical shapes, 𝑤′

f_c is the rel-
ative macroporosity presuming that cylindrical macrop-
ores transport all the infiltrated water by disk infiltrome-
ter (computed following Case 1 in Section 2), and ϕAc is
the proportion of cylindrical porous blocks over the total
number of porous blocks (including cylindrical and non-
cylindrical shapes). The value of ϕAc is subjectively chosen
by the practitioner under field conditions and is an open
subject for future research.
Each relative macroporosity can be used to compute dag

for mixed shapes in a similar way. Equation 26 is for two

macropore-matrix shapes, including a cylindrical macro-
pore and a noncylindrical macropore. Equation 26 can be
expanded to more macropore combinations. More details
about the construction of Equations 26 and 27 are given in
the supplemental material.
In Equations 27, the macropore water flow for the cylin-

drical (qc) and noncylindrical (qnc) shape is needed. This
computation can be done by using the analytical solutions
for cylinder (Equation 19), ring (Equation 20), and rect-
angular slab (Equation 21). In the case that hexagon or
brick shapes are mixed with cylinders, the user might use
numerical solutions. However, following the same con-
struction of shapes performed in this research for the
transformation factor, the macropore water flow through
hexagons can be approximated as 3.5 times the one for rect-
angular slabs. In the case of bricks, the transformation fac-
tor is 4.0 times the one for rectangular slabs.
Follow-up studies can be conducted to implement a

more precise pore-scale model of the macropore water
flow for non-cylindrical porous blocks. Under field condi-
tions, the flow can be in rivulets or films (Germann, Hel-
bling, & Vadilonga, 2007; Nimmo, 2010) or even turbulent
(Beven & Germann, 2013; Chen & Wagenet, 1992; Jarvis,
2007), especially for bigger diameters (or width) of macro-
pores (Germann, 1987).We anticipate that if themacropore
water flow for noncylindrical shapes is different from lam-
inar, the transformation factor should increase from 1.5.
In follow-up studies, we advise that the macropore water
flow for the transitional cylindrical porous block should be
kept as a fully saturated cylindricalmacropore shape under
laminar flow conditions, tomaintain the physicalmeaning
of ξ.
The user should be aware that this methodology is an

initial approximation for dag and wf presuming nearly
quasi-steady-state and one-dimensional flow conditions.
Commonly, three-dimensional flow is expected under field
conditions when the disk infiltrometer is applied (Stewart,
Abou Najm, Rupp, & Selker, 2016).

6 CONCLUSIONS

Disk infiltrometers have been typically used to obtain the
relative macroporosity (wf) and the number of macrop-
ores in the field, under the presumption of cylindrical
macropore shapes. We generalize the computation of wf
with disk infiltrometers by introducing a transformation
factor, ξ, derived from pore-scale modeling. The ξ was
computed, accounting for differences in macropore area
and water flow between the actual shape (ring, hexagon,
brick, and rectangular slab) and the transitional cylin-
drical shape (cylindrical macropores). Macropore water
flow was solved analytically for the cylindrical, ring, and
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rectangular slab shapes.Macroporewater flow for hexagon
and brick shapes was solved numerically using COMSOL
Multiphysics software. The ξ appeared to be constant and
equal to 1.5 for all the noncylindrical shapes analyzed.
An explicit mathematical and geometrical relation was

presented forwf, and the effective aggregate width (dag) for
all the studiedmacropore-matrix shapes. The computation
of ξ for wf allows the computation of dag from disk infil-
trometer data for noncylindrical geometries. The use of ξ in
obtaining dag andwf is an exact solution under the physical
assumptions used for macropore water flow in this study.
We derived an equation for computing wf for soils con-
tainingmixedmacropore-matrix shapes. The user needs to
know the relative abundance of cylindrical porous blocks
over the total number of porous blocks below the surface
area of infiltration.
The current methodology can be applied to previous

databases of disk infiltrometer data. Three conditions are
required for the use of this methodology: (a) there should
be quasi-steady-state conditions during the disk infiltrom-
eter measurement, (b) themacropore-matrix shape should
be known, and (c) the water displaced from the disk infil-
trometer reservoir should be measured for at least two
pressure head ranges, always including a measurement at
zero pressure head.
Both wf and dag are input parameters for several

dual-permeability models, such as HYDRUS, SWAP, and
MACRO. The dag is used in both water flow and chemical
transport components of currently available models and is
a very sensitive parameter towater flow,water content over
depth, and pesticide leaching (Gerke & van Genuchten,
1993a; Jarvis & Larsbo, 2012; Larsbo, Roulier, Stenemo,
Kasteel, & Jarvis, 2005; Tiktak et al., 2012). To our knowl-
edge, this is the first study that has developed an indepen-
dent estimate for dag under field conditions for different
geometries with disk infiltrometers. Therefore, the find-
ings of this investigationmay have substantial implications
on the modeling of water flow and solute transport in soil
profiles, and the leaching of agrochemicals and other pol-
lutants to groundwater and surface water. This methodol-
ogy can be applied to find an initial estimate of dag and
wf for risk assessment problems and regional studies, or
for use as an initial value for fitting parameters in inverse
models.
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