
International Statistical Review (2020) doi:10.1111/insr.12431

Another Look at the Lady Tasting Tea
and Differences Between Permutation
Tests and Randomisation Tests

Jesse Hemerik1 and Jelle J. Goeman2

1Biometris, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The
Netherlands
E-mail: jesse.hemerik@wur.nl

2Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333 ZC,
The Netherlands

Summary

The statistical literature is known to be inconsistent in the use of the terms ‘permutation test’
and ‘randomisation test’. Several authors successfully argue that these terms should be used to
refer to two distinct classes of tests and that there are major conceptual differences between these
classes. The present paper explains an important difference in mathematical reasoning between
these classes: a permutation test fundamentally requires that the set of permutations has a group
structure, in the algebraic sense; the reasoning behind a randomisation test is not based on such
a group structure, and it is possible to use an experimental design that does not correspond to a
group. In particular, we can use a randomisation scheme where the number of possible treatment
patterns is larger than in standard experimental designs. This leads to exact p values of improved
resolution, providing increased power for very small significance levels, at the cost of decreased
power for larger significance levels. We discuss applications in randomised trials and elsewhere.
Further, we explain that Fisher's famous Lady Tasting Tea experiment, which is commonly referred
to as the first permutation test, is in fact a randomisation test. This distinction is important to avoid
confusion and invalid tests.
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1 Introduction

The statistical literature is very inconsistent in the use of the terms ‘permutation tests’ and
‘randomisation tests’ (Onghena, 2018; Rosenberger et al., 2019). Both terms are often used to
refer to tests that involve permutations. Sometimes, these two terms are considered to refer to
strictly distinct classes, sometimes to the same, and sometimes to partly overlapping classes.
The confusion surrounding differences between such tests is an important issue, because there
are major differences between permutation tests and randomisation tests in the sense of, for
example, Onghena (2018), Kempthorne and Doerfler (1969) and Rosenberger et al. (2019),
whose definitions we will follow here. Those authors use these terms to refer to strictly distinct
classes of tests and discuss the terms in detail. Permutation tests are based on random sampling
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2 HEMERIK AND GOEMAN

from populations, and randomisation tests are based on experimental randomisation of treat-
ments. With ‘randomization of treatments’, we refer to the (physical) randomisation that is part
of the experimental design. With ‘permutation-based tests’, we will refer to all tests involving
permutations, including randomisation tests involving permutations.

Another point of confusion has been the role of a group structure, in the algebraic sense, in
permutation-based tests. Southworth et al. (2009), among others, explain that for permutation
tests to have proven properties, it is important that the set of permutations used has such a group
structure, as we discuss in Section 2. For example, the set of balanced permutations, which is a
subset of a permutation group, does not have a group structure, and using it within a permuta-
tion test tends to lead to a very anticonservative test. A balanced permutation, roughly speaking,
is a permutation map that moves exactly 50% of the cases to the control group and 50% of the
controls to the case group. Balanced permutations (not to be confused with stratified permuta-
tions) have been used in several publications (Fan et al., 2004; Jones-Rhoades et al., 2007), but
Southworth et al. (2009) warn against their use.

A common reference in the permutation literature is the ‘Lady Tasting Tea’ experi-
ment, described in Fisher (1935a, Ch. II). This experiment is commonly referred to as
the first published permutation test (Wald & Wolfowitz, 1944; Hoeffding, 1952; Anderson
& Robinson, 2001; Lehmann & Romano, 2005; Langsrud, 2005; Mielke & Berry, 2007;
Phipson & Smyth, 2010; Winkler et al., 2014). Indeed, like permutation tests, this test is
based on permutations. We will see, however, that it is not a permutation test, but a randomi-
sation test, in the sense of Onghena (2018), Rosenberger et al. (2019) and Kempthorne and
Doerfler (1969).

A main goal of the present paper is to explain the difference between two classes of tests
involving permutations (or other transformations): tests that fundamentally rely on a group
structure and tests that do not, in an appropriate sense. To our knowledge, this explicit dis-
tinction has not been made before. It is connected to the difference between permutation tests
and randomisation tests: the former fundamentally rely on a group structure and the latter do
not—with the caveat that a randomisation test should reflect the randomisation scheme of the
(physical) experiment. If the randomisation scheme corresponds to a group, then the test also
involves that group; otherwise, the test does not involve a group. The fundamental point of this
paper is as follows: the mathematical reasoning underlying a randomisation test is not based on
a group structure (even if a group happens to be used); the reasoning underlying a permutation
test, on the other hand, is always based on a group structure and is completely different from the
reasoning underlying randomisation tests. In the existing literature, many randomisation tests
involve a group, but randomisation tests that do not involve a group are also often considered
(Onghena & Edgington, 1994; 2005; Rosenberger et al., 2019). The further contributions of
this paper are as follows.

First of all, because permutation-based randomisation tests do not require a group struc-
ture, it can be useful to consider a randomisation scheme that does not correspond to a
group. We introduce the idea of using an alternative randomisation scheme to increase
the number of possible treatment patterns. This increases the resolution of the p value,
thus improving power for very small significance levels ˛, at the price of power loss for
larger ˛.

In addition, this paper provides the caveat that the lady tasting tea experiment is rather dif-
ferent from permutation tests (in the sense of, for example, Onghena, 2018). Referring to the
lady tasting tea experiment as an example of a permutation test, as is often done, can put read-
ers on the wrong foot, because the reasoning underlying this experiment is not based on a
group structure. Referring to the lady tasting tea may have contributed to the confusion that
has led researchers to design invalid permutation tests without a group structure (Southworth
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et al., 2009). The purpose of this paper is not to identify the first permutation test, which would
not be straightforward (Berry et al., 2014).

This paper is built up as follows. In Section 2, we review existing results on permutation
and group invariance tests, emphasising the key role of the group structure of the permuta-
tions. In Section 3.1, we discuss the lady tasting tea experiment, emphasising why it does not
require a group structure to control the type I error rate. In Section 3.2, we generalise the
test of Section 3.1, providing a general randomisation test and mentioning applications. In
Section 3.3, we apply the general randomisation test in a randomised trial setting, discussing
how we can obtain higher resolution p values than with a canonical permutation-based test. The
performance of our alternative tests is illustrated with simulations in Section 4. We end with a
discussion.

2 Permutation Tests and Group Invariance Tests

In the present section, we explain the mathematical reasoning behind permutation tests,
focusing on type I error control. As mentioned, the terms ‘permutation test’ and ‘randomisation
test’ have been used inconsistently in the literature. A typical example of a permutation test in
the sense of Onghena (2018), Kempthorne and Doerfler (1969) and Rosenberger et al. (2019) is
discussed in Fisher (1936, pp. 58–59). In this thought experiment, measurements of the statures
of 100 Englishmen and 100 Frenchmen are considered. These observations are assumed to be
randomly sampled from their respective populations. Such a model, where observations are
randomly sampled from their populations, is typical for permutation tests in the sense of, for
example, Onghena (2018), Kempthorne and Doerfler (1969) and Rosenberger et al. (2019).
Note that in this example, there is no randomisation of treatments as in, for example, clini-
cal trials. In the example in Fisher (1936, pp. 58–59), to test whether ‘the two populations are
homogeneous’, the difference between the two sample means is computed, and this is repeated
for each permutation of the 200 observations. The null hypothesis is rejected if the original dif-
ference is larger than most of the differences obtained after permutation. We will return to this
example shortly.

Permutation tests are special cases of the general group invariance test. The definition of
the group invariance test in, for example, Hoeffding (1952), Lehmann and Romano (2005)
and Hemerik and Goeman (2018b) is rather general, so that many randomisation tests also fall
under it. The relationships between permutation tests, randomisation tests and group invariance
tests are illustrated in Figure 1. The principle underlying the group invariance test can also be
used to prove properties of various permutation-based multiple testing methods (Hemerik &
Goeman, 2018; Hemerik et al., 2019; Meinshausen & Bühlmann, 2005; Tusher et al., 2001;
Westfall & Young, 1993).

A general definition of a group invariance test is as follows. Generalisations of this frame-
work, such as two-sided tests, are possible. Let X model random data with support in a space
X. For example, X could be a random vector or matrix. Consider a set G of permutation maps
or other transformations g W X ! X. We will assume that G is finite, although generalisations
are possible. The set G is assumed to have a group structure with respect to the operation of
composition of maps, which means that G contains the identity map x 7! x; every element in G
has an inverse; and for all g, h 2 G, gıh 2 G (Hoeffding, 1952). Further, we consider some test
statistic T W X! R. Consider a null hypothesis H0 that implies that the joint distribution of all
test statistics T(g(X)) with g 2 G is invariant under all transformations of X in G (Hemerik &
Goeman, 2018b). This holds in particular if

g.X/
d
DX; (1)
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Figure 1. A Venn diagram showing relationships between permutation tests (P), randomisation tests (R) and group invari-
ance tests (G). Permutation tests (P) are a subclass of group invariance tests (G) and are based on random sampling from
populations. Randomisation tests (R) are based on randomisation of treatments. The randomisation scheme sometimes cor-
responds to a group (R\G) and sometimes does not (R nG). If the scheme corresponds to a group, then this is often a set
of permutations, but not always. There are also group invariance tests that fall outside all these categories (G n (P[R)). An
example of a test from class P is Fisher's thought experiment with Englishmen and Frenchmen described in Section 2. An
example from the class R\G is Fisher's lady tasting tea experiment. A different example, based on sign flipping instead of
permutation, is the test in Fisher (1935a, section 21). An example from the class R nG is in Section 3.3. Examples from the
class G n (P[R) are certain tests based on rotations (Solari et al., 2014) or sign flipping (Winkler et al., 2014)

for every g 2 G.
A typical example of such a setting is the thought experiment from Fisher (1936, pp. 58–59),

mentioned earlier. Let X1, : : : , X100 be the statures of the Englishmen, and let X101, : : : , X200

be the statures of the Frenchmen. The test statistic considered in Fisher (1936, pp. 58–59) is

T .X/ D

ˇ̌̌
ˇ̌ 1

100

100X
iD1

Xi �
1

100

200X
iD101

Xi

ˇ̌̌
ˇ̌ : (2)

The null hypothesis H0 is that X1, : : : , X200 are i.i.d. The null hypothesis is rejected if the
original test statistic is larger than most of the statistics obtained after permutation. The group
G that Fisher considers consists of all permutation maps g W R200 ! R

200. Here, every g 2 G is
of the form

.x1; : : : ; x200/ 7! .x�1 ; : : : ; x�200/;

where (�1, : : : ,�200) is a permutation of (1, : : : , 200). Note that under H0, (1) holds for every
g 2 G.

As another example, consider random data X with support in R
n, with independent entries

that are symmetric about their means. Suppose that under H0, the entries have mean 0. This
may for example be the case if each entry of X is the difference of two paired observations.
Then the distribution of X is invariant under all transformations in G under H0 if we define G to
be the group of all sign-flipping maps of the form

.x1; : : : ; xn/ 7! .s1x1; : : : ; snxn/; (3)

with .s1; : : : ; sn/ 2 f�1; 1gn. We may take T ..x1; : : : ; xn// D
Pn
iD1 xi . If the data-generating

mechanism involves randomisation of treatments (rather than sampling from populations), such
a test can be considered a randomisation test. The test already appears in Fisher (1935a, section
21), albeit without explicit proof. Refer also to Basu (1980).

In these scenarios, we can apply the general group invariance test to test H0. This test
already appears in the literature (Hoeffding, 1952; Hemerik & Goeman, 2018b; Lehmann &
Romano, 2005), but for completeness, we include the result and its proof.
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We will write gXD g(X) for short. Let k D d.1 � ˛/jGje, the smallest integer that is larger
than or equal to .1 � ˛/jGj. Let T .1/.X/ � T .2/.X/ � : : : � T .k/.X/ � : : : � T .jGj/.X/ be
the sorted values T(gX) with g 2 G.

Theorem 1. The size of the group invariance test is at most ˛, that is, under H0,
P
˚
T .X/ > T .k/.X/

�
� ˛:

Proof. By the group structure, Gg D G for all g 2 G. Hence T .k/.gX/ D T .k/.X/ for all
g 2 G. Let G have the uniform distribution on G. Then under H0, the rejection probability is

P

n
T .X/ > T .k/.X/

o
D

P

n
T .GX/ > T .k/.GX/

o
D

P

n
T .GX/ > T .k/.X/

o
:

The first equality follows from the null hypothesis, and the second equality holds because
T .k/.X/ D T .k/.GX/. Because G is uniform on G, the above probability equals

E

h
jGj�1�

ˇ̌̌
fg 2 G W T .gX/ > T .k/.X/g

ˇ̌̌i
� ˛;

as was to be shown.

Under additional assumptions, the test is exact, that is, the rejection probability is exactly
˛ under H0 (Hemerik & Goeman, 2018b). In the above proof, we used the group structure,
which guarantees the symmetry property Gg D G for all g 2 G. A different proof, based
on conditioning on the pooled sample, is also possible and also requires using this symmetry
property (first proof of Theorem 1 in Hemerik & Goeman, 2018b).

Write GX D fgX W g 2 Gg and assume for convenience that gX and g0X are distinct with
probability 1 if g; g0 2 G are distinct. This is usually the case if X is continuous. The permutation
test is based on the fact that under H0, for every permutation g 2 G, the probability PfT .gX/ >
T .k/.X/g is the same. The reason is that under H0, for every g 2 G, the joint distribution of
.gX;GX/ is the same. This is because if g, g0 2 G, under H0, we have

.gX;GX/ D .gX;GgX/ dD.X;GX/ dD.g0X;Gg0X/ D .g0X;GX/:

When Gg D G does not hold for all g 2 G, then the above does not generally hold under H0.
The group structure of G implies that Gg D G for all g 2 G. Under the mild condition that all

g 2 G are surjective, the reverse implication also holds, that is, if Gg D G for all g 2 G, then G
is a group. For example, if Gg D G for all g 2 G, there are h; g 2 G with hgD g. It follows that
G contains an identity element and the other group properties also easily follow. We conclude
that in the argument underlying the permutation test, the group structure is key.

In practice, it is often computationally infeasible to use a test based on the full group G of
transformations. Researchers then usually resort to using a limited number of random transfor-
mations, uniformly sampled from the group G. It is then still possible to obtain an exact test
(refer to Hemerik & Goeman, 2018b, and Phipson & Smyth, 2010, for a detailed treatment).
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3 The Lady Tasting Tea and Randomisation Tests

Unlike a permutation test, a randomisation test is based on data collected in an experiment
involving randomisation of treatments. The randomisation scheme of the physical experiment
does not necessarily correspond to a group, and if it does not, the statistical test does not involve
a group either. Even if a group is used, the reasoning underlying a randomisation test is not
based on the group structure and is very different from the reasoning underlying permutation
tests.

In this section, we first discuss the lady tasting tea experiment, explaining that the reasoning
underlying the test is not based on a group structure, because it is based on randomisation. This
experiment is a special case of a general randomisation test that we discuss in Section 3.2. In
Section 3.3, we apply this test to provide higher resolution p values in randomised trials.

3.1 The Lady Tasting Tea Experiment

In the lady tasting tea experiment (Fisher, 1935a, Ch. II), the null hypothesis is that a partic-
ular lady cannot distinguish between two types of cups of tea with milk: cups in which the tea
was added first and cups in which the milk was added first. To test the null hypothesis, which we
denote by H0, the experimenter ‘mixes eight cups of tea, four in one way and four in the other’,
and presents them ‘to the subject for judgement in a random order’. The experimental setup is
made known to the lady. The lady then tastes from the cups and has to determine which four
cups in the sequence of eight had milk added first. Fisher actually performed the experiment
(Box, 1978; Berry et al., 2014).

There are
�

8
4

�
D 70 possible orders, with respect to the two types of cups. Suppose H0 is true.

If the lady guesses every pattern with probability 1/70, then the probability that she chooses the
correct order is 1/70. Even if she has an a priori preference for a certain order, the probability of
guessing correct is 1/70. Indeed, it is assumed that the researcher randomises the true pattern,
that is, he chooses each pattern with equal probability. Thus, if we reject H0 when the lady
identifies all four ‘milk first’ cups correctly, then the probability of a type I error is 1/70 (1.4%).
The probability that she labels three of the ‘milk first” cups correctly is

�
4
3

� �
4
1

�
=70 D 16=70

(22.9%), and the probability of two correct picks is 36/70 (51.4%). Thus, for example, when
we reject H0 if at least three picks are correct, the level is 16=70 C 1=70 D 17=70 (24.3%).
The test is equivalent to an instance of ‘Fisher’s exact test' (Yates, 1934; Fisher, 1935b; Berry
et al., 2014) with pre-fixed marginal frequencies in the 2� 2 table. Fisher's exact test, however,
was not originally motivated from a permutation or randomisation testing perspective.

Mathematically, we can describe the experiment as follows. Let W � f0; 1g8 be the set of
vectors containing four 0s and four 1s, so that the cardinality of W is R WD jWj D 70. Let
the decision of the lady be denoted by Y, and let W denote the true order, that is, the random
decision by the experimenter. Here, Y and W are random variables taking values in W. Note that
W represents the ‘treatments’ given by the experimenter and Y represents the lady's ‘responses’.
The experimenter's order W is assumed to be uniformly distributed on W. The null hypothesis is

H0 W Y is independent of W:

Let ˛ 2 (0, 1) be the desired type I error rate. If ˛ 2 A D f1=70;17=70;53=70;69=70g, then ˛
is called attainable in the lady tasting tea experiment, meaning that we obtain a test of exactly
level ˛ (Pesarin, 2015). If ˛ is not attainable, then we obtain a test with level strictly less than ˛.
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Let T W W � W ! R be a test statistic such that high values of T(w, y) indicate that the
patterns w and y are similar, that is, that there is evidence against H0. Let

T .1/.Y / � : : : � T .70/.Y /

be the sorted statistics T(w, Y) with w 2 W. Whether the vector of sorted statistics
(T(1), : : : , T(70)) actually depends on Y or not, depends on the definition of T. In Fisher (1935a),
the test statistic is

T .W; Y / D

8X
iD1

1fWiD1g\fYiD1g D

8X
iD1

WiYi ; (4)

and it can be seen the sorted statistics do not depend on Y, because Y always has four entries
that are 1. Let d(1�˛)Re be the smallest integer that is at least (1�˛)R. We have the following
result (Fisher, 1935a).

Theorem 2. The test that rejects H0 if and only if T(W, Y)>T(d(1�˛)Re) has size as most ˛.

Proof. Assume that H0 holds. Conditional on Y, W is uniformly distributed on W, and
T(d(1�˛)Re)(Y) is known. Hence, conditional on Y, the rejection probability is

P

�
W 2 fw 2W W T .w; Y / > T .d.1�˛/Re/.Y /g

�
D

1

R
jfw 2W W T .w; Y / > T .d.1�˛/Re/.Y /gj � ˛:

Thus, marginal over Y, the rejection probability is also at most ˛.

Observe that when we use the test statistic (4), then taking ˛ 2A indeed results in an exact
test. This follows from the fact that

T .1/ < T .2/ D T .3/ D : : : D T .17/ < T .18/ D T .19/

D : : : D T .53/ < T .54/ D : : : D T .69/ < T .70/;

by the argument at the beginning of this section. If ˛ 2 (0, 1) nA, the level is strictly smaller
than ˛. If the experimenter does not choose randomly from all 70 possible patterns, but uses
some smaller set of patterns for him and the lady to choose from, then there may not be any
˛ 2 (0, 1) for which the test is exact, because the sorted test statistics may depend on Y. This is
one of the reasons why using the full set of patterns, in combination with a suitable test statistic
T, is useful. However, to prove Theorem 2, we did not need to use the group structure of the
permutations. The reason is that in the lady tasting tea experiment, under H0, the randomisation
W of the researcher is by design independent of the reference set f.w; Y / W w 2 Wg. Further
considerations follow below.

3.2 A general randomisation test

Theorem 2 still applies if the researcher uses a set of permutations that does not correspond
to a group. Suppose for example that the researcher omits one of the patterns, thus picking
randomly from some set W of 69 patterns, with or without the lady's knowledge. Denote the set
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that the lady chooses from by Y. Then W and Y will still be independent, and Theorem 2 still
applies if we let R D jWj D 69 and let

T .1/.W / � : : : � T .69/.W /

be the sorted test statistics T(w, Y),w 2W. Indeed, conditional on Y, W will have a uniform dis-
tribution on W. In fact, we have the following very general randomisation test, of which the lady
tasting tea experiment is a special case. We refer to this result as a randomisation test because
in most applications of the theorem, the variable W will represent experimental randomisa-
tion of treatments (Kempthorne & Doerfler, 1969; Onghena, 2018). The idea of the theorem is
certainly not new; it is at least implicitly present in earlier works (Morgan et al., 2012).

Theorem 3 (General randomisation test). Let W and Y be nonempty sets, where W is assumed
to be finite. Write R D jWj. Let Y be a variable taking values in Y and assume W is uniformly
distributed on W. (Here, Y and W are variables in a general sense. For example, they may be
random vectors.) Let T WW�Y! R be some test statistic. Consider a null hypothesis H0 that
implies that Y is independent of W. Let T(1)(Y)� : : : � T(R)(Y) be the sorted values T(w, Y) with
w 2W. Consider the test that rejects H0 if and only if T(W, Y)>T(d(1�˛)Re)(Y). Then the result
of Theorem 2 still applies, that is, the test has size at most ˛.

The proof is analogous to that of Theorem 2: under H0, conditional on Y, W is uni-
formly distributed on W and T(d(1�˛)Re)(Y) is known. Hence, conditional on Y, the rejection
probability is

P

�
W 2 fw 2W W T .w; Y / > T .d.1�˛/Re/.Y /g

�
� ˛

as before.
Under additional assumptions, the test is exact, that is, the rejection probability is exactly ˛

under H0. We assumed that W is finite, but generalisations to infinite W are possible, as well as
generalisations to non-uniform W. We can also define a two-sided test.

Note that in Theorem 3, Y might be a constant, conditional on W. In fact, the randomisation
testing literature often views the outcomes as non-random, conditional on the treatments. This
corresponds to the fact that randomisation tests can be used without an assumption that the
responses are randomly sampled from populations (Cox, 2009; Onghena, 2018; Rosenberger
et al., 2019). We discuss this further in the context of randomised trials in Section 3.3.

The general randomisation test of Theorem 3 has many applications. Examples are agri-
cultural experiments and randomised clinical trials. Randomised trials will be discussed in
Section 3.3. We mention a few other interesting applications here.

First of all, Theorem 3 has implications for the lady tasting tea experiment. In Section 3.1, it
is assumed that the lady knows beforehand that there are m cups of each type, where 2m is the
total number of cups she receives. If for some reason she does not know that, then she might
label, for example, mC 1 of the 2m items with the same label. In other words, she might pick
a pattern from a set containing more patterns than the experimenter chooses from. Theorem 3
then says that the type I error probability will nevertheless be at most ˛ under H0. Indeed, in
Theorem 3, Y is allowed to be any non-empty set, so in particular, it can be larger than W.

A further application of Theorem 3 are general sensory tests, of which the lady tasting tea
experiment is an example. It is interesting to note that in the literature on sensory tests, Fisher's
experiment has been regarded a ‘forerunner of modern sensory analysis’ (Bi & Kuesten, 2015).
For example, Harris and Kalmus (1949) perform a sensory experiment that is analogous to the
lady tasting tea experiment, as follows: ‘The glasses are arranged at random. The subject is told
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that four of them contain the substance and four contain water, and he is asked to taste them all
and to separate them into the two groups of four.’

Other applications of Theorem 3 are existing permutation-based randomisation tests that
are used to evaluate whether some classification algorithm has any predictive ability (both in-
sample and out-of-sample). Such tests can be used to evaluate algorithms for, for example, text
categorisation, fraud detection, optical character recognition, and medical diagnosis. Tests of
this type are discussed in, for instance, Golland et al. (2005), Airola et al. (2010), Ojala and
Garriga (2010), Schreiber and Krekelberg (2013) and Rosenblatt et al. (2019).

3.3 Randomisation Testing Without a Group Structure: Higher Resolution p Values

In randomised trials, often we are interested in comparing two different treatments, for exam-
ple, a drug and a placebo. In such a setting, there is a treatment assignment randomised by the
experimenter. In that case, we can use the randomisation test of Theorem 3, as explained. As
discussed, we then do not require a group structure to control the type I error rate. We now dis-
cuss such a setting in detail. The tests considered here will also be studied with simulations in
Section 4.

Let n� 2 be an integer, assumed even for convenience, and suppose we have n subjects, n/2 of
which receive one treatment and n/2 of which receive the other treatment. LetW D .W1; ::; Wn/
denote the treatments and Y D .Y1; : : : ; Yn/ the responses, taking values in R

n. The treatment
pattern W is uniformly sampled from a set W � f0; 1gn. The most common type of randomised
trial is the forced balance procedure, where

W D fw 2 f0; 1gn W w contains n=2 10sg (5)

(Rosenberger & Lachin, 2015; Lachin, 1988b; Braun & Feng, 2001). For each 1� i� n, the
response Yi 2 R is independent of all the other subjects' treatments and responses. We consider
the null hypothesis H0 that Y is independent of W.

These assumptions are still rather general. It can be useful to consider a more specific ran-
domisation model as in Pitman (1937, section 7) who assumes an additive treatment effect. An
important property of randomisation models is that to test whether the treatment has an effect
on our particular individuals, we do not need to assume that they are random draws from popu-
lations. We could consider the individuals as fixed and Y as constant, conditional on W (Pitman,
1937, section 3). Indeed, ‘Any assumption that the units are, say, a random sample from a pop-
ulation of units [ : : : ] is additional to the specification’ of the model (Cox, 2009). This property
is discussed in detail in Onghena (2018) and Rosenberger et al. (2019).

We can invoke Theorem 3 to obtain a test that controls the type I error rate. We can also
obtain an exact test, that is, a test that rejects with probability exactly ˛ under H0. Consider the
test statistic T WW � R

n ! R defined as

T .W; Y / D
X

fi WWiD1g

Yi �
X

fi WWiD0g

Yi : (6)

Recall that Y may be viewed as random or constant, conditional on W. In either case, assume
that Y is such that (with probability 1), for all distinct w1; w2 2 W, T(w1, Y)¤ T(w2, Y). This is
satisfied in particular if Y1, : : : , Yn have continuous distributions. Write N D

�
n
n=2

�
. The test

is exact if ˛ 2 (0, 1) is a multiple of 1=jWj, where jWj equals N. An exact p value is

p.W; Y / D
jfw 2W W T .w; Y / � T .W; Y /gj

jWj
; (7)
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10 HEMERIK AND GOEMAN

that is, if ˛ 2 (0, 1) is a multiple of 1=jWj, then P.p � ˛/ D ˛ under H0. A two-sided exact test
can be obtained analogously.

Because Theorem 3 applies, the test essentially does not rely on a group structure. Hence, we
may consider taking W to be a set that does not correspond to a group. In a different context, this
is also done in Onghena and Edgington (1994,2005), where a set of permutations is used that is
strictly smaller than the full set of permutations. This is done to avoid too repetitive treatment
patterns such as ABBBBAAA. In our setting, if n D 8, instead of taking W to be the set of all
permutations of (0, 0, 0, 0, 1, 1, 1, 1) we could take W to be a subset that does not correspond
to a group, and still obtain an exact test (for certain ˛). As Onghena and Edgington (1994)
illustrates, this may be useful in some settings. However, in a typical randomised trial, there
is no evident reason to only use a subset of the permutations, except to limit the number of
permutations for computational reasons.

A more interesting alternative, when running the experiment, is to draw W from a set that
is strictly larger than the set in (5), for example, from the set of all possible labellings, {0, 1}n

(a Bernoulli trial, Imbens & Rubin, 2015). Indeed, if the standard randomisation scheme is
used, that is, the forced balance trial, then the smallest possible p value that can be obtained
is 1/N, owing to the discreteness of the p value. If n D 8, for example, then 1=N D 1=70.
This means that if the significance level is ˛ D 0:01 for instance, we have a power of 0 to
reject H0. Such small ˛ are often used nowadays, for example because of multiple testing. The
discreteness of the permutation p value is a well-known downside of permutation-based tests
(Berger, 2000). If we take W D f0; 1gn, however, then jWj D 28, so that the smallest possible p
value is 1=28 D 1=256. If 1/256�˛ < 1/70, this means a uniform improvement in power over
the standard randomisation test. Note that there only is a power improvement for very small ˛;
for larger ˛, the Bernoulli trial has less power than the forced balance trial.

Under H0, if ˛ is a multiple of 1/2n, the test with W D f0; 1gn rejects with probability exactly
˛. Otherwise, the test rejects with probability less than ˛ under H0. For W D f0; 1gn, to our
knowledge, it is not known what the optimal choice of T is for testing an additive treatment
effect. In Section 4, we will take

T .W; Y / D
X

fi WWiD1g

.Yi � Y / �
X

fi WWiD0g

.Yi � Y /; (8)

where Y D n�1.Y1 C : : : C Yn/. Using this, test statistic ensures that under H0, the expected
value of T(W, Y) does not depend on the random labelling W. In Appendix A1, we show how
the Bernoulli trial can be modified to enforce covariate balancing.

That it is possible to take W D f0; 1gn has been noted by several authors (Pocock, 1979;
Kalish & Begg, 1985; Lachin, 1988a; Wei & Lachin, 1988; Suresh, 2011; Imbens &
Rubin, 2015; Rosenberger et al., 2019). They do not recommend this approach, but merely
mention it as a possibility, while focusing on more common randomisation schemes. Their main
argument against taking W D f0; 1gn is that it leads to less power than the usual approach of
restricted randomisation (Pocock, 1979, p.188). This is true when ˛ is large enough and it is
then better to use the forced balance approach. When ˛ is rather small, however, that test has 0
power, while the Bernoulli trial may have substantial power. The idea that using W D f0; 1gn
leads to higher resolution p values has not been mentioned before to our knowledge. Nowa-
days, the use of large multiple testing corrections is more common than in the past, so higher
resolution, exact p values can clearly be of interest.

Suppose we use W D f0; 1gn. Then, if we happen to draw W D .0; : : : ; 0/ or W D
.1; : : : ; 1/, the value of the statistic (8) is 0, and we can have no hope of rejecting H0 (if
˛ D 0:05). Hence, we might exclude (0, : : : , 0) and (1, : : : , 1), and perhaps more elements,
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Another look at the Lady Tasting Tea 11

from W. In any case, if ˛ < 1/N, it can be useful to consider a design with jWj larger than N.
Note that in practice, we must choose W before administering the treatments. Once the treat-
ments have been given, we cannot change our minds about W. The randomisation test that uses
all patterns from {0, 1}n except (0, : : : , 0) and (1, : : : , 1) is further studied with simulations in
Section 4.

3.4 Randomisation Testing Under a Random Sampling Model

For completeness, we note the following, but it can be skipped at a first read. Existing per-
mutation tests based on random sampling from populations rely on a group structure. However,
in some cases, we can use an alternative approach to avoid the requirement of a group struc-
ture also in this setting. This is a novel idea, to our knowledge (and arguably falls outside the
categories of Figure 1). The approach is analogous to the test in Section 3.3. Suppose that we
are comparing two populations, for example a population of cases and a population of controls,
or Englishmen and Frenchmen. Let W have the uniform distribution on W D f0; 1gn or some
subset thereof, as before. Then we could draw from the two populations as indicated by W, that
is, for every 1� i� n, the i-th individual is drawn from the first population if Wi D 0 and from
the second population if Wi D 1. For 1� i� n, let Yi be the observation for the i-th individual,
for example his or her stature. We can then perform a test exactly as in Section 3.3, using the
test statistic (8) and the p value (7).

If we take W as in (5), then the test will be equivalent to a standard permutation test. For
many other choices of W, we obtain a novel type of test. If we take for instance W D f0; 1gn,
then the number of observations drawn from each population will be random, with only the
total number of observations being fixed at n. In many situations, this would be impractical, for
example because there is only a limited, fixed number of cases. We will not pursue such tests
further here.

4 Empirical Example

Here, we illustrate the idea in Section 3.3 with a simple simulation study. We considered
two randomisation tests: a standard randomisation test and an alternative test that provides
higher resolution p values, as discussed in Section 3.3. The setting was as in the example in
Section 3.3, with n D 8. Every Yi was distributed as the absolute value of a N(0, 1) variable if
Wi D 0; if Wi D 1 it had the same distribution, but with an increase in mean of 2 in the power
simulations. Under the null hypothesis, the distribution of Yi does not depend on Wi. The first
test considered was the standard randomisation test. This test usesN D .nŠ/=..n=2/Š.n=2/Š/ D
70 permutations. The second test was based on all relabellings in {0, 1}n excluding (0, : : : , 0)
and (1, : : : , 1). Thus, this test used 2n � 2 D 254 relabellings. We used the test statistic (8). By
Theorem 3, both tests control the type I error rate. Moreover, the first test is exact if ˛ 2 (0, 1) is
a multiple of 1/70. The second test is exact if ˛ is multiple of 1/254. It is important to note that
the two tests are based on different randomisation schemes, that is, on different data-gathering
mechanisms. In practice, the type of test should already be decided upon before running the
physical experiment.

In Table 1, for different values of the significance level ˛, the estimated level and power of
the two tests are shown. Every estimate in the table is based on 104 repeated simulations. The
regular randomisation test had no power for ˛ < 1/70, because of the fact that only 70 rela-
bellings are available with this approach. Test 2, which is based on 254 relabellings, however,
did have substantial power for 1/254�˛ < 1/70, as explained in Section 3.3. In the table, the
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12 HEMERIK AND GOEMAN

Table 1. Performance of an alternative to the standard randomisation test.
Test 1 is the standard test, based on a forced balance procedure. Test 2 is the
alternative test, based on more relabellings.

˛

Test 1/254 (�0.0039) 0.005 0.01 0.02 0.05

Size Test 1 0 0 0 0.0122 0.0418
Test 2 0.0034 0.0034 0.0076 0.0190 0.0464

Power Test 1 0 0 0 0.9011 0.9725
Test 2 0.5443 0.5443 0.7027 0.8436 0.9316

estimated size for ˛ D 1=254 is 0.0034, which is approximately the true size 1/254	 0.0039.
Note that for ˛ D 0:005, the size and power are the same as for ˛ D 1=254. The reason is the
discreteness of the p value: 0.005 lies between 1/254 and 2/254.

5 Discussion

In this paper, we have distinguished between two types of permutation-based tests: tests that
fundamentally rely on a group structure and tests based on treatment randomisation, which do
not necessarily require a group structure. We have discussed that in settings where treatments
are randomly assigned, it can be useful to consider a randomisation scheme that does not cor-
respond to a group. In particular, this allows obtaining higher resolution exact p values than are
possible with standard randomisation tests. This paper also provides the caveat that referring to
the lady tasting tea experiment as an example of a permutation test can be misleading, because
the reasoning underlying this experiment is not based on a group structure.

The two types of tests between which we distinguish roughly correspond to respectively
‘permutation tests’ and ‘randomisation tests’ in the sense of Onghena (2018) and Rosenberger
et al. (2019). As we mentioned, the use of these terms has been rather inconsistent throughout
the literature. For example, Edgington and Onghena (2007, p.1) write that ‘randomisation tests
are a subclass of statistical tests called permutation tests’, while Onghena (2018) proposes
to use the terms for strictly distinct classes of tests. In any case, we propose to use the term
‘randomisation test’ only when there is some form of treatment randomisation. This is in line
with Kempthorne and Doerfler (1969), Edgington and Onghena (2007), Onghena (2018) and
Rosenberger et al. (2019).

As mentioned in the Section 1, it would not be straightforward to identify the first permuta-
tion test (Berry et al., 2014). In any case, it is clear that, once the concepts of randomisation
of treatments and random sampling from populations had been established in the 1920s
(Rubin, 1990; Fisher, 1925; Neyman & Pearson, 1928), the way was paved for the theoretical
development of permutation-based tests. However, until the 1980s, there was limited interest in
permutation-based procedures, due to lack of access to fast computers. Nowadays, the opposite
is true (Albajes-Eizagirre et al., 2019; Hemerik et al., 2019; Rao et al., 2019), and this arti-
cle discusses important differences between two types of tests involving permutations or other
reassignments.
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Appendix A: Enforced Covariate Balance in a Bernoulli Trial

Consider the Bernoulli trial discussed in Section 3.3. Here, we illustrate how we can use this
type of approach while also enforcing covariate balance. We provide a simple example where
there is one (binary) covariate, say sex, and we want the percentage of women to be the same
in the two treatment groups. Generalisations can also be formulated.

Suppose that n> 0 is divisible by 4 and that there are n/2 men and n/2 women. The goal is
to achieve covariate balance, which means that we want the same fraction of women in both
treatment groups. One way to proceed is as follows. Randomly and independently allocate
treatments to the n/2 women. There are 2n/2 ways to do this. Let l be the number of times that
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the women received treatment I. Then, randomly allocate treatment I to l of the men. In this
way, covariate balance is achieved: l women and l men have received treatment I, and n/2� l
men and n/2� l women have received treatment II. In each treatment group, the percentage of
women is the same (although there is a small probability that one treatment group is empty).

We now compute the total number of possible treatment allocation patterns. Given l, there are�
n=2

l

��
n=2

l

�

possible patterns. Hence, the total number of possible patterns is

n=2X
lD0

�
n=2

l

��
n=2

l

�
: (A1)

Correspondingly, the smallest possible p value is the inverse of this number. Note that with
the common design that enforces equally large treatment groups, the total number of possible
treatment allocation patterns is �

n=2

n=4

��
n=2

n=4

�
:

This is smaller than (A1), which means that the smallest possible p value is larger than for the
Bernoulli trial.
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