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ABSTRACT

Resilient cows are minimally affected in their func-
tioning by infections and other disturbances, and re-
cover quickly. Herd management is expected to have an 
effect on disturbances and the resilience of cows, and 
this effect was investigated in this study. Two resilience 
indicators were first recorded on individual cows. The 
effect of herd-year on these resilience indicators was 
then estimated and corrected for genetic and year-
season effects. The 2 resilience indicators were the vari-
ance and the lag-1 autocorrelation of daily milk yield 
deviations from an expected lactation curve. Low vari-
ance and autocorrelation indicate that a cow does not 
fluctuate much around her expected milk yield and is, 
thus, subject to few disturbances, or little affected by 
disturbances (resilient). The herd-year estimates of the 
resilience indicators were estimated for 9,917 herd-year 
classes based on records of 227,655 primiparous cows 
from 2,644 herds. The herd-year estimates of the resil-
ience indicators were then related to herd performance 
variables. Large differences in the herd-year estimates 
of the 2 resilience indicators (variance and autocor-
relation) were observed between herd-years, indicating 
an effect of management on these traits. Furthermore, 
herd-year classes with a high variance tended to have a 
high proportion of cows with a rumen acidosis indica-
tion (r = 0.31), high SCS (r = 0.19), low fat content (r = 
−0.18), long calving interval (r = 0.14), low survival to 
second lactation (r = −0.13), large herd size (r = 0.12), 
low lactose content (r = −0.12), and high production 
(r = 0.10). These correlations support that herds with 
high variance are not resilient. The correlation between 
the variance and the proportion of cows with a rumen 
acidosis indication suggests that feed management may 
have an important effect on the variance. Herd-year 
classes with a high autocorrelation tended to have a 
high proportion of cows with a ketosis indication (r 
= 0.14) and a high production (r = 0.13), but a low 
somatic cell score (r = −0.17) and a low proportion 
of cows with a rumen acidosis indication (r = −0.12). 

These correlations suggest that high autocorrelation 
at herd level indicates either good or poor resilience, 
and is thus a poor resilience indicator. However, the 
combination of a high variance and a high autocorrela-
tion is expected to indicate many fluctuations with slow 
recovery. In conclusion, herd management, in particular 
feed management, seems to affect herd resilience.
Key words: resilience, management, variance, 
automatic milking system, dairy cow

INTRODUCTION

Dairy cows have to cope with a variety of environmen-
tal disturbances, such as pathogens or extreme weather. 
Resilient cows are minimally affected in their function-
ing by such disturbances, and if they are affected, they 
quickly recover (Colditz and Hine, 2016; Berghof et 
al., 2019). Herd management is expected to affect the 
resilience of cows because management is known to af-
fect several components of resilience, such as resistance, 
tolerance, and recovery to and from certain infections 
(Deng et al., 2019). In addition, herd management is 
known to affect the number of environmental distur-
bances on a farm, such as infection pressure (Deng et 
al., 2019) and exposure to hot weather (Kendall et al., 
2006; Fournel et al., 2017).

Recently, 2 traits were developed that indicate the 
resilience of individual cows. These traits were the 
natural log-transformed variance and lag-1 autocor-
relation of daily milk yield deviations from a lactation 
curve (Poppe et al., 2020). High variance indicates high 
variability in milk yield caused by disturbances, and 
high autocorrelation indicates slow return rate of milk 
yield to expected levels upon disturbances. Averaged 
per herd, variance and autocorrelation are expected to 
indicate the level of herd resilience, which is the ability 
of herd management to control resilience of the cows, 
and to control the number and severity of disturbances.

Several studies used a mixed animal model to study 
variation in traits between herds (Koivula et al., 2007; 
Caccamo et al., 2008; Stoop et al., 2008). Such models 
correct for genetic effects, which makes it possible to 
compare differences in traits between herds due to dif-
ferences in management. Differences in herd estimates 
for the variance and autocorrelation are expected to ex-
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ist, but it is still unknown how large variation between 
herds is, and how differences between herds are related 
to herd management.

The first aim of this study was, therefore, to investi-
gate differences in herd resilience between herds, using 
the herd estimates of variance and autocorrelation of 
milk yield deviations measured on individual cows. 
The second aim was to explain the differences in herd 
resilience between herds by indicators of the herd (size) 
and its cow management (rumen acidosis, ketosis, SCS, 
longevity, fertility).

MATERIALS AND METHODS

To address the aims of this study, for each herd 
included in this study the following information was 
needed: (1) an indication of herd resilience, and (2) in-
formation about variables indicating the management 
and performance of the herd. First, the calculation of 
the herd resilience indicators will be described. After 
that, the calculation of herd variables related to herd 
management and performance based on milk produc-
tion recording data will be described. For most herds, 
several years of data were available. Management within 
herds was expected to vary between years, for example 
due to changes in feed management or expansion of the 
herd. Therefore, the data of each herd were split into 
herd-year classes, and the resilience indicators and herd 
management variables were computed for each herd-
year class instead of for each herd. Data editing was 
performed by the AWK programming language (Aho et 
al., 1988) and R (version 3.4.3; R Project for Statistical 
Computing, Vienna, Austria).

Calculation of Resilience Indicators

Resilience indicators were first calculated for indi-
vidual cows within herds using daily milk yield records 
obtained by automatic milking systems (AMS). These 
indicators were then used to compute resilience indica-
tors at the herd-year level using mixed model equa-
tions (see Equation [2]). The data used was the same 
as in Poppe et al. (2020), and originally contained 
1,782,373,113 milk yield records on 1,120,550 cows ob-
tained by AMS and conventional milking systems. The 
data were provided by Cooperation CRV (Arnhem, the 
Netherlands).

Data preparation started off with selecting only pri-
miparous cows that were milked by AMS, that were 
at least 87.5% Holstein Friesian, that were herd-book 
registered, and that calved after 640 d of age and before 
June 1, 2017. Milk yield records obtained during single 
AMS visits were first converted to daily milk yield re-
cords per cow. Daily milk yield records after 350 DIM 

were excluded. The remaining milk yield records were 
used to model a lactation curve for each cow that re-
flected her expected milk yield in the absence of distur-
bances. Lactation curves were fitted using fourth-order 
polynomial quantile regression with a 0.7 quantile:

 y t t t tt = + + + + + ,β β β β β ε0 1
1

2
2

3
3

4
4× × × ×  [1]

where yt is the observed milk yield on DIM t, tn are 
DIM to the power of n, where n is 1, 2, 3, or 4, βn are 
regression coefficients describing the relationships be-
tween tn and yt, and ε is the error term. Quantile regres-
sion was used instead of classical regression because it 
is better able to model a lactation curve without distur-
bances, which makes the negative deviations larger and 
more informative about resilience (Koenker, 2005; 
Poppe et al., 2020). The model was fitted using the 
quantreg package (Koenker, 2018) and the poly func-
tion in R. After fitting a lactation curve for each cow, 
the deviations in milk yield were calculated as y − .̂y  
The deviations on the first and last 10 d of each lacta-
tion were removed because of poor fit of the model in 
the beginning and end of the lactation. If a cow had at 
least 50 remaining daily milk yield deviations and not 
more than 5% was missing, these records were used to 
calculate the resilience indicators, which were the natu-
ral log-transformed variance (LnVar) and the lag-1 
autocorrelation (rauto) of the deviations. A low LnVar 
indicates that the milk yield of a cow does not fluctuate 
much around the expected milk yield, and thus indi-
cates good resilience. A low rauto indicates that milk 
yield fluctuates quickly and independent from the pre-
vious day, and thus indicates good resilience (Berghof 
et al., 2019).

The data preparation until this point was the same 
as in Poppe et al. (2020) and resulted in 255,096 first-
parity cows with an observation for LnVar and rauto. 
The remaining 2 data preparation steps differ in the 
current study compared with Poppe et al. (2020) with 
respect to outliers and the number of cows per herd-
year class. Here, records for LnVar or rauto that devi-
ated more than 4 standard deviations from the mean 
were removed, which were 47 LnVar records and 227 
rauto records. In Poppe et al. (2020), the same approach 
was used, but they computed each resilience indicator 
based on 4 different lactation curves. If one resilience 
indicator was an outlier based on all lactation curves, 
all other resilience indicators were also set to missing, 
resulting in removal of more records than in the current 
study. Finally, herd-year of calving classes were made, 
and classes with less than 10 cows were removed. After 
removal, 9,917 herd-year classes remained, including 
2,644 herds from the years 2011 to 2017. These herd-
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year classes contained 227,615 cows with a record for 
LnVar and 227,453 cows with a record for rauto. For 
a detailed description of the data preparation steps, 
including the number of records and cows remaining 
after each preparation step, see Table 1 in Poppe et al. 
(2020).

After calculating the LnVar and rauto of individual 
cows, for each herd-year the level of these traits was 
estimated, corrected for genetic effects and general 
year-season effects using a mixed model. By correct-
ing for genetic and year-season effects, differences in 
LnVar or rauto between herds can be attributed only 
to herd management. The estimates of LnVar and rauto 
per herd-year were obtained using the following mixed 
animal model:

 y HY YS a eijk i j k ijk= + + + ,  [2]

where yijk is the LnVar or rauto of cow k in herd-year 
class i and year-season class j, HYi is the fixed effect of 
herd-year of calving i, YSj is the fixed effect of year-
season of calving j (4 seasons: January–March, April–
June, July–September, October–December), ak is the 
random genetic effect of animal k, and eijk is a random 
error term. The following assumptions were made about 
the vector of random genetic effects, a, and the vector 
of residuals, e: a 0 A~ , ,N aσ

2( )  and e 0 I~ , ,N eσ
2( )  where 

A is the additive genetic relationship matrix, I is the 
identity matrix, σa

2  is the additive genetic variance, 

and σe
2  is the residual variance. The model was applied 

with ASReml 4.1 (Gilmour et al., 2015) and the pedi-
gree included 5 generations of ancestors resulting in 
758,921 animals. The estimates of LnVar and rauto for 
each herd-year computed by the mixed model were 
used in our further analyses as measures of herd resil-
ience. Herd-year classes with a high estimate for LnVar 
contain cows that have on average a highly variable 
daily milk yield, and herd-year classes with a high esti-
mate for rauto contain cows that have on average a 
slowly fluctuating milk yield.

Calculation of Herd Performance Variables from Milk 
Production Registration Data

The second aim of this study was to investigate the 
relationships between the resilience indicators and vari-
ables indicating herd management. Variables indicating 
herd management were derived from milk production 
registration data, birth and calving dates, and informa-
tion about breed and herd book status. These variables 
will be referred to as herd performance variables. Herd 

performance variables were calculated for each herd-
year class that also contained cows with resilience 
indicators. The data set with milk production registra-
tion records included 3-, 4-, 5-, or 6-weekly records on 
milk yield (kg), fat percentage (%), protein percentage 
(%), lactose percentage (%), SCC, ureum, and a keto-
sis indication based on fat-protein ratio and Fourier-
transform infrared measurements of milk acetone and 
milk β-hydroxybutyric acid (binary, only available for 
first 60 d after calving; Vosman et al., 2015). The origi-
nal data set contained 9,272,501 records on 1,065,931 
first-parity cows from 4,947 herds. However, only the 
2,159,817 records on the 227,655 cows in the 9,917 
herd-year classes that also had resilience indicators 
were used.

The herd performance variables are listed in Table 
1. Part of the herd performance variables were based 
on the milk production recording data of the cows that 
also had a resilience indicator (that is, primiparous 
cows that met the inclusion requirements, such as being 
at least 87.5% Holstein Friesian and being herd-book 
registered). The other part of the herd performance 
variables, such as the herd size and average age, were 
based on pedigree data and calf dates of all cows in the 
herd-year, including older cows, crossbred cows, and 
so on. The herd performance variables that describe 
a mean of a trait were calculated by averaging the 
trait per cow, and then taking the mean of all cows 
in the herd-year. The herd performance variables that 
describe a proportion are the number of cows with a 
certain condition divided by the total number of cows 
that calved in the herd-year.

The SCS was derived from SCC as (CRV, 2018):

 SCS log
SCC

= +




















1 000 100

1 000
2,

,
.×  [3]

For the proportion of cows with 1 or more cases of 
elevated SCC, an SCC record was considered elevated 
if it was greater than 100,000 (Windig et al., 2005a; 
Hooijer et al., 2008). For the proportion of cows with 
1 or more rumen acidosis indications, a rumen acidosis 
indication was given based on fat and protein content: 
when at least once during the lactation of a cow the fat 
content was lower than the protein content and at the 
same time lower than 4.00% (CRV, 2014), the cow re-
ceived a score of 1, and otherwise 0. For the proportion 
of cows that survived to the second lactation, survival 
to second lactation was based on the second calving 
date: when a second calving date was known, a cow 
received a score of 1 and otherwise 0. If a herd-year 
class contained less than 10 cows with a record for a 
certain trait, the record for that herd-year class was set 
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to missing. Table 1 shows for each herd performance 
variable the number of remaining herd-year classes that 
were used for calculation of correlations (see Analyses 
section). For multiple regression, only herd-year classes 
could be used without missing herd performance vari-
ables, which were 7,828 classes (see Analyses section).

Analyses

Variation in LnVar and rauto Between Herd-
Years and Consistency Between Years Within 
Herd. To investigate variation in LnVar and rauto be-
tween herd-years, the standard deviation, minimum, 
and maximum of the herd-year estimates for LnVar 
and rauto were computed. To investigate the association 
between LnVar and rauto at herd-year level, Pearson 
correlations between the herd-year estimates of LnVar 
and rauto were calculated. In addition, for both traits, 
Pearson correlations were calculated between herd-year 
estimates within herd between different years, to inves-
tigate how consistent LnVar and rauto were within herds 
over years.

Associations Between Herd-Year Estimates 
and Herd Performance Variables. Pearson correla-
tions were calculated between the herd-year estimates 
of LnVar and rauto and the herd performance variables 
derived from milk production recording data. In addi-
tion, a multiple linear regression with stepwise model 
selection was performed with the herd-year estimates 
of LnVar and rauto as dependent variables and the herd 
performance variables as independent variables. Such a 
multiple regression yields partial effects of herd perfor-
mance variables on LnVar and rauto at herd-year level, 
conditional on the other variables involved. Stepwise 

model selection was performed using the StepAIC func-
tion from the MASS package (Venables and Ripley, 
2002) in R. The stepwise model selection could only 
be performed on the 7,828 herd-years where none of 
the herd performance variables were missing. Multiple 
linear regression with stepwise model selection was per-
formed both with mean milk yield included as a fixed 
independent variable, and without mean milk yield 
included as an independent variable, to investigate 
how milk yield level influences the effect of other herd 
performance variables on resilience. After performing 
stepwise model selection, the relative importance of 
each remaining variable was obtained using the calc.
relimp function with the lmg metrics from the relaimpo 
package (Grömping, 2006). The lmg metric is based 
on sequential R2, but accounts for the effect of differ-
ent orderings of regressors on the sequential R2 and 
therefore takes the average across different orderings 
by permuting the order of the regressors (Grömping, 
2006). The relative importance of a variable is thus in 
other words the average relative contribution of each 
variable to R2.

RESULTS

Variation in LnVar and rauto Between Herd-Years

The LnVar and rauto differed extensively between 
herd-year classes. The highest LnVar estimate was 
more than 6 times larger than the lowest LnVar es-
timate (Table 2). To illustrate this: the primiparous 
cows of the herd-year with the smallest LnVar had on 
average a standard deviation of 1.19 kg in their de-
viations from expected yield, whereas the primiparous 
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Table 1. The herd performance variables, units, the type of cows on which each herd performance variable 
was based, and the number of records for each herd performance variable

Herd performance variables  Unit

Cows on which 
variable 
is based1

Number of 
herd-years 
with record

Mean milk yield Kilograms 1 9,917
Mean fat content % 1 9,914
Mean protein content % 1 9,914
Mean lactose content % 1 9,914
Mean ureum content — 1 9,566
Mean SCS — 1 9,830
Mean calving interval from first to second lactation Days 1 8,662
Mean age at first calving Months 1 9,917
Proportion of cows with at least 1 elevated SCC — 1 9,830
Proportion of cows with at least 1 rumen acidosis indication — 1 9,914
Proportion of cows with at least 1 ketosis indication — 1 8,977
Proportion of cows that survived to second lactation — 1 9,917
Mean age Years 2 9,917
Number of cows calved — 2 9,917
Proportion of cows that are not 100% Holstein Friesian — 2 9,917
Proportion of cows that are herd-book registered — 2 9,917
11 = primiparous cows with a resilience indicator in the herd-year class; 2 = all cows in the herd-year class.
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cows of the herd-year with the largest LnVar had on 
average a standard deviation of 3.66 kg in their devia-
tions from expected yield. The highest rauto estimate 
was more than 4 times larger than the lowest rauto esti-
mate (Table 2). The first-parity cows of the herd-year 
class with the smallest rauto had on average a correlation 
of 0.32 between subsequent deviations from expected 
yield, whereas the first-parity cows of the herd-year 
class with the largest rauto had on average a correlation 
of 0.59 between subsequent deviations from expected 
yield. The herd-year estimates of LnVar and rauto were 
both normally distributed upon visual inspection. At 
herd-year level, LnVar was negatively correlated with 
rauto (−0.34, P < 0.001), which means that herd-years 
with high LnVar tended to have low rauto. Thus, if in a 
certain herd-year one of the indicators indicated good 
resilience, the other indicator tended to indicate poor 
resilience. In summary, herds differed extensively in 
the 2 resilience indicators LnVar and rauto, and the 2 
resilience indicators were negatively correlated at herd 
level.

Consistency of LnVar and rauto Within  
Herds Between Years

Herd-year estimates of the same herds between years 
were positively correlated (Table 3): if a herd had a high 
LnVar or rauto in a certain year, the herd also tended to 
have a high LnVar or rauto in other years. The correla-
tions between years were stronger for LnVar (average: 
0.58) than for rauto (average: 0.53). The correlations be-
tween years decreased with the interval between years. 
The average correlation between herd-year estimates of 
subsequent years was 0.69 for LnVar, and 0.64 for rauto 
(Table 3). In summary, the resilience indicators showed 
consistency within herds between years.

Association Between Herd-Year Estimates  
of Resilience Indicators and Herd  
Performance Variables

The herd-year classes had a mean milk yield of 
25.23 kg per day with 4.42% fat and 3.59% protein, 
and an SCS between 1,409 and 1,726 (Table 4). The 
correlations between LnVar and the herd performance 

variables ranged from −0.18 to 0.31 (Table 5). Herd-
years with high LnVar (low resilience) tended to have 
high production (correlation 0.10), low fat content 
(−0.18), low lactose content (−0.12), high proportion 
of cows with a rumen acidosis indication (0.31), high 
SCS (0.19), high proportion of cows with an elevated 
SCC (0.20), long calving interval (0.14), low survival to 
second lactation (−0.13), large herd size (0.12), and low 
participation in the herd book (−0.10; P < 0.001). The 
correlations between rauto and the herd performance 
variables ranged from −0.17 to 0.14 (Table 5). Herd-
years with high rauto (low resilience) tended to have a 
high production (correlation 0.13) and a high propor-
tion of cows with a ketosis indication (0.14), but a low 
proportion of cows with a rumen acidosis indication 
(−0.12), low SCS (−0.17), and low proportion of cows 
with elevated SCC (−0.15; P < 0.001). In summary, 
LnVar and rauto at herd-year level were correlated with 
several herd performance variables, and especially the 
correlation between the herd-year estimate of LnVar 
and the proportion of cows with a rumen acidosis indi-
cation was considerable (0.31).

Partial Effects of the Herd Performance Variables  
on LnVar and rauto

The model for LnVar remaining after stepwise model 
selection explained 20% of the variation, and when in-
cluding mean milk yield this increased to 21% (Table 
6). All regression coefficients were in the same direc-
tion as the correlations in Table 5, regardless if mean 
milk yield was included or not. Moreover, the relative 
importances of the explanatory variables were similar 
in the models with and without mean milk yield. The 
proportion of cows with a rumen acidosis indication 
had the highest relative importance in both the model 
without mean milk yield and the model with mean milk 
yield (0.37 and 0.40, respectively), followed by the herd 
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Table 2. Descriptive statistics of the herd-year estimates of natural 
log-transformed variance of milk yield deviations (LnVar) and lag-1 
autocorrelation of milk yield deviations (rauto)

Herd-year 
estimate Mean Minimum Maximum SD

LnVar 1.339 0.381 2.557 0.269
rauto 0.554 0.183 0.817 0.084

Table 3. Pearson correlations of herd-year estimates between years 
within herds1

Year

Year

2011 2012 2013 2014 2015 2016 2017

2011  0.72 0.56 0.54 0.47 0.48 0.38
2012 0.68  0.68 0.58 0.56 0.53 0.48
2013 0.55 0.60  0.65 0.61 0.57 0.49
2014 0.56 0.52 0.63  0.66 0.60 0.52
2015 0.55 0.47 0.55 0.61  0.71 0.60
2016 0.50 0.47 0.55 0.55 0.67  0.69
2017 0.31 0.32 0.44 0.43 0.57 0.63  

1Correlations for herd-year estimates of natural log-transformed vari-
ance of milk yield deviations are above the diagonal, and correlations 
for herd-year estimates of lag-1 autocorrelation of milk yield deviations 
are below the diagonal.
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size (0.12 and 0.11, respectively). Mean milk yield itself 
had a relative importance of 0.08. In summary, the 
proportion of cows with a rumen acidosis indication 
explained most variation in LnVar across herd-years, 
and the mean milk yield level had little effect on this 
association.

The model for rauto remaining after stepwise model 
selection explained 8% of the variation, and when in-
cluding mean milk yield this increased to 10% (Table 
7). All regression coefficients, except the one for the 
proportion of non-Holstein Friesian cows, were in the 
same direction as the correlations in Table 5, regard-
less if mean milk yield was included or not. When 
including mean milk yield in the model, the relative 
importance of the proportion of cows with a ketosis 
indication decreased from 0.22 to 0.16 compared with 
excluding mean milk yield from the model. The relative 
importance of mean SCS decreased from 0.19 to 0.14. 
In the model without mean milk yield, the propor-
tion of cows with a ketosis indication had the highest 
relative importance (0.22), whereas in the model with 
mean milk yield the proportion of first-parity cows with 
a rumen acidosis indication had the highest relative 
importance (0.19). Mean milk yield itself had a rela-
tive importance of 0.16. In summary, differences in rauto 
between herd-years could be partly explained by herd 
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Table 4. Descriptive statistics of the herd performance variables 
based on milk production recording data

Herd performance 
variable1 Mean SD Minimum Maximum

Milk (kg) 25.23 2.90 13.70 37.07
Fat (%) 4.42 0.19 3.73 5.24
Protein (%) 3.59 0.11 3.17 4.05
Lactose (%) 4.64 0.05 4.41 4.81
Ureum 23.00 2.45 11.37 33.70
SCS 1,564 45.43 1,409 1,726
CIN (d) 402.10 28.23 336.50 676.70
CA (mo) 25.40 1.34 21.45 34.17
PropSCC 0.67 0.17 0.08 1.00
PropACI 0.20 0.14 0.00 1.00
PropKET 0.08 0.09 0.00 0.90
PropSURV 0.85 0.13 0.00 1.00
Age (yr) 4.00 0.34 1.97 5.61
Herd size 108.20 47.63 13 485
PropNonHF 0.22 0.18 0.00 1.00
PropReg 0.95 0.07 0.22 1.00
1Milk = mean milk yield; fat = mean fat content; protein = mean 
protein content; lactose = mean lactose content; ureum = mean ureum 
content; SCS = mean somatic cell score; CIN = mean calving inter-
val from first to second lactation; CA = mean age at first calving; 
PropSCC = proportion of cows with at least 1 elevated somatic cell 
count; PropACI = proportion of cows with at least 1 rumen acidosis 
indication; PropKET = proportion of cows with at least 1 ketosis indi-
cation; PropSURV = proportion of cows that survived to second lacta-
tion; age = mean age; herd size = number of cows calved; PropNonHF 
= proportion of cows that are not 100% Holstein Friesian; PropREG 
= proportion of cows that are herd-book registered.

Table 5. Pearson correlations of herd-year estimates of the resilience indicators natural log-transformed 
variance of milk yield deviations (LnVar) and lag-1 autocorrelation of milk yield deviations (rauto) with the 
herd performance variables

Herd performance 
variable1

Resilience indicator

LnVar

 

rauto

Correlation with herd 
performance variable P-value

Correlation with herd 
performance variable P-value

Milk (kg) 0.10 <0.001 0.13 <0.001
Fat (%) −0.18 <0.001 0.03 0.011
Protein (%) −0.02 0.115 −0.05 <0.001
Lactose (%) −0.12 <0.001 0.04 <0.001
Ureum 0.01 0.372 0.02 0.024
SCS 0.19 <0.001 −0.17 <0.001
CIN (d) 0.14 <0.001 0.00 0.772
CA (mo) 0.08 <0.001 0.00 0.940
PropSCC 0.20 <0.001 −0.15 <0.001
PropACI 0.31 <0.001 −0.12 <0.001
PropKET 0.03 0.009 0.14 <0.001
PropSURV −0.13 <0.001 0.03 0.003
Age (yr) −0.05 <0.001 0.02 0.014
Herd size 0.12 <0.001 −0.08 <0.001
PropNonHF 0.01 0.225 −0.03 0.009
PropREG −0.10 <0.001 0.05 <0.001
1Milk = mean milk yield; fat = mean fat content; protein = mean protein content; lactose = mean lactose 
content; ureum = mean ureum content; SCS = mean somatic cell score; CIN = mean calving interval from first 
to second lactation; CA = mean age at first calving; PropSCC = proportion of cows with at least 1 elevated 
somatic cell count; PropACI = proportion of cows with at least 1 rumen acidosis indication; PropKET = 
proportion of cows with at least 1 ketosis indication; PropSURV = proportion of cows that survived to second 
lactation; age = mean age; herd size = number of cows calved; PropNonHF = proportion of cows that are not 
100% Holstein Friesian; PropREG = proportion of cows that are herd-book registered.
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performance variables obtained from milk production 
registration recording, and mean milk yield affected the 
associations between some herd performance variables 
and rauto.

DISCUSSION

This study investigated herd differences between 2 
resilience indicators, LnVar and rauto, measured on in-
dividual cows. Low LnVar of a cow indicates that milk 
yield does not fluctuate a lot from day to day, and low 
rauto indicates that milk yield of a cow recovers upon a 
disturbance quickly rather than slowly. Therefore, low 
LnVar and rauto were expected to indicate cows with 
good resilience (Berghof et al., 2019). Because herd-
years with low herd-year estimates for the resilience 
indicators had low LnVar and rauto among cows, low 
herd-year estimates were expected to indicate good herd 
resilience. This study showed that herd-year estimates 
of LnVar and rauto differed between herd-years. Because 
the variation between herds was corrected for genetic 
effects and general year-season effects, this indicates 
that herd management affects LnVar and rauto. Other 
studies also found variation in herd estimates resulting 

from genetic analyses, especially for production traits 
and SCS (Koivula et al., 2007; Caccamo et al., 2008; 
Stoop et al., 2008). This study also showed that herds 
with high LnVar tended to have worse health and a 
lower survival than herds with low LnVar. These as-
sociations confirm the importance of herd LnVar as an 
indicator of herd resilience. However, the associations 
between rauto and herd performance variables were am-
biguous, which may indicate that rauto at herd level is 
less directly associated with health-related traits and 
therefore might be perceived as not being a good indi-
cator of resilience. In the following paragraphs, we will 
first discuss the meaning of herd resilience, we will then 
discuss the associations of LnVar and rauto with the 
herd performance indicators in more detail, and finally 
we will discuss potential application for improvement of 
herd management.

Throughout the paper, we have considered LnVar 
and rauto at herd level as indicators of herd resilience. 
It is, however, important to discuss that herd resilience 
consists of 2 aspects, which could not be disentangled 
in our study. The first aspect of herd resilience is the 
control of number and severity of disturbances in the 
herd. With respect to this aspect, herds are resilient if 
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Table 6. Results from multiple linear regression with stepwise model selection of the herd-year estimates of 
natural log-transformed variance of milk yield deviations on the herd performance variables1

Herd 
performance 
variable2

Milk excluded

 

Milk fixed

Regression 
coefficient

Relative 
importance

Regression 
coefficient

Relative 
importance

Milk (kg) —  1.16E-04 0.08
Fat (%) −1.20E-05 0.11 — —
Protein (%) — — −8.13E-06 0.00
Lactose (%) −7.24E-05 0.07 −7.98E-05 0.07
Ureum — — — —
SCS 4.58E-04 0.09 5.29E-04 0.09
CIN (d) 6.55E-04 0.04 6.42E-04 0.04
CA (mo) 7.36E-03 0.01 8.56E-03 0.01
PropACI 4.93E-01 0.37 5.14E-01 0.40
PropKET 1.33E-01 0.01 5.45E-02 0.00
PropSURV −2.06E-01 0.04 −2.18E-01 0.04
PropSCC 1.99E-01 0.10 2.20E-01 0.11
Age (yr) −5.31E-02 0.02 −3.79E-02 0.01
Herd size 8.98E-04 0.12 8.52E-04 0.11
PropNonHF — — — —
PropREG −2.62E-01 0.03 −3.11E-01 0.03

Adjusted R2  0.20  0.21
1Regression coefficients and relative importances are shown for the herd performance variables remaining in the 
model after stepwise model selection, both when mean milk yield based on milk production recording (Milk) 
was excluded as an independent variable, and when Milk was included as an independent variable. Adjusted 
coefficients of determination (R2) of the models are shown in the bottom row.
2Milk = mean milk yield; fat = mean fat content; protein = mean protein content; lactose = mean lactose 
content; ureum = mean ureum content; SCS = mean somatic cell score; CIN = mean calving interval from first 
to second lactation; CA = mean age at first calving; PropSCC = proportion of cows with at least 1 elevated 
somatic cell count; PropACI = proportion of cows with at least 1 rumen acidosis indication; PropKET = 
proportion of cows with at least 1 ketosis indication; PropSURV = proportion of cows that survived to second 
lactation; age = mean age; herd size = number of cows calved; PropNonHF = proportion of cows that are not 
100% Holstein Friesian; PropREG = proportion of cows that are herd-book registered.
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management reduces exposure of cows to disturbances. 
For example, hygiene practices can reduce exposure to 
pathogens (Deng et al., 2019), and roof insulation can 
reduce exposure to extreme weather (Fournel et al., 
2017). The second aspect of herd resilience is the abil-
ity of cows in a herd to cope with disturbances. With 
respect to this aspect, herds are resilient if manage-
ment reduces vulnerability of cows to disturbances. For 
example, feeding an adequate amount of vitamins and 
minerals can reduce vulnerability to mastitis patho-
gens (Heinrichs et al., 2009). The resilience indicators 
in this study capture both aspects of herd resilience 
simultaneously, and in the case of high LnVar or rauto 
it is unknown whether it is the result of a high num-
ber of disturbances or the lack of ability of the cows 
to respond to disturbances, or a combination of the 
2 aspects. Although it is unknown from our resilience 
indicators which aspect leads to poor herd resilience, 
high LnVar and rauto can still provide a sign that man-
agement may need improvement.

Herd resilience is expected to be affected by multiple 
factors and is not a direct measure of health, survival, or 
fertility. Nevertheless, herds with a high LnVar among 
cows tended to have a high proportion of cows with a 

rumen acidosis indication, high SCS, a high propor-
tion of cows with elevated SCC, low survival to second 
lactation, long calving interval, a high proportion of 
cows with a ketosis indication and high age at first 
calving. These relations suggest that high LnVar is also 
indicative of the health, survival, and fertility status of 
the herd. It is not surprising that LnVar is indicative 
of health traits, because rumen acidosis (Krause and 
Oetzel, 2006; Enemark, 2008; Humer et al., 2018), mas-
titis (Rajala-Schultz et al., 1999b; Gröhn et al., 2004; 
Halasa et al., 2009), and ketosis (Rajala-Schultz et al., 
1999a) can all lead to drops in milk yield in individual 
cows. A high number of cows with drops in yield in a 
herd will lead to increased mean LnVar at the herd 
level as well. In addition, the effect of health problems 
on LnVar in individual cows will likely be reinforced by 
the increased vulnerability to other disturbances once 
a cow has a health problem, such as subclinical ketosis 
(Raboisson et al., 2014). Furthermore, if high LnVar 
indicates reduced health, and we assume that reduced 
health is related to low survival (Beaudeau et al., 1995; 
Neerhof et al., 2000) and poor fertility (Fourichon et 
al., 2000; Wolfenson et al., 2015), then high LnVar is 
also expected to be related to low survival and fertility 
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Table 7. Results from multiple linear regression with stepwise model selection of the herd-year estimates of 
lag-1 autocorrelation of milk yield deviations on the herd performance variables1

Herd 
performance 
variable2

Milk excluded

 

Milk fixed

Regression 
coefficient

Relative 
importance

Regression 
coefficient

Relative 
importance

Milk (kg) — — 4.68E-05 0.16
Fat (%) −2.83E-06 0.02 — —
Protein (%) — — −1.40E-06 0.02
Lactose (%) 5.61E-06 0.01 — —
Ureum 6.54E-04 0.00 8.76E-04 0.00
SCS −2.37E-04 0.19 −2.14E-04 0.14
CIN (d) 1.47E-04 0.02 1.45E-04 0.02
CA (mo) 1.58E-03 0.01 1.64E-03 0.01
PropACI −8.19E-02 0.18 −8.53E-02 0.19
PropKET 1.26E-01 0.22 9.90E-02 0.16
PropSURV 3.46E-02 0.03 2.68E-02 0.02
PropSCC −3.16E-02 0.14 −2.21E-02 0.10
Age (yr) — — 8.57E-03 0.01
Herd size −1.76E-04 0.14 −1.98E-04 0.14
PropNonHF 1.58E-02 0.00 2.71E-02 0.01
PropREG 6.39E-02 0.02 6.41E-02 0.02

Adjusted R2  0.08  0.10
1Regression coefficients and relative importances are shown for the herd performance variables remaining in 
the model after stepwise model selection, both when the herd performance variable mean milk yield based on 
milk production recording (milk) was excluded as an independent variable, and when milk was included as an 
independent variable. Adjusted coefficients of determination (R2) of the models are shown in the bottom row.
2Milk = mean milk yield; fat = mean fat content; protein = mean protein content; lactose = mean lactose 
content; ureum = mean ureum content; SCS = mean somatic cell score; CIN = mean calving interval from first 
to second lactation; CA = mean age at first calving; PropSCC = proportion of cows with at least 1 elevated 
somatic cell count; PropACI = proportion of cows with at least 1 rumen acidosis indication; PropKET = 
proportion of cows with at least 1 ketosis indication; PropSURV = proportion of cows that survived to second 
lactation; age = mean age; herd size = number of cows calved; PropNonHF = proportion of cows that are not 
100% Holstein Friesian; PropREG = proportion of cows that are herd-book registered.
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as we observed. In addition, there may be management 
practices, such as feeding frequency (DeVries, 2019), 
that underlie both LnVar and health and fertility traits. 
Although correlations between the herd performance 
variables and LnVar were in the expected direction, 
most of them were weak. However, strong correlations 
were not expected because LnVar indicates general 
resilience that is affected by many factors (Putz et al., 
2019; Poppe et al., 2020). If the correlation with, for 
example, SCC, would be strong, LnVar would be a 
mastitis indicator rather than a general resilience in-
dicator. The fact that all correlations with health and 
survival traits were favorable, without any exception, 
is an important confirmation that LnVar indicates gen-
eral herd resilience.

The positive association between LnVar and the pro-
portion of cows with a rumen acidosis indication was 
by far the most important one. This association may 
suggest that management practices that lead to rumen 
acidosis, such as feeding too many rapidly fermentable 
carbohydrates (Krause and Oetzel, 2006; Enemark, 
2008; Humer et al., 2018), are important factors con-
tributing to an increased LnVar. This association is as 
expected because a decreased rumen pH can result in a 
reduction in feed intake, followed by an increase in feed 
intake (Humer et al., 2018). This fluctuating feed in-
take pattern can lead to a variable milk yield (increased 
LnVar). However, in this study, we used an indicator 
of rumen acidosis based on an inverted fat-protein 
ratio, which is not the same as true rumen acidosis. 
Not only intake of large amounts of rapidly ferment-
able carbohydrates, but also grazing can increase the 
probability of an inverted fat-protein ratio (Elgersma 
et al., 2004; Couvreur et al., 2006). Yet, grazing does 
not necessarily deprive health (Dijkstra et al., 2020). 
Grazing is also likely to lead to a higher LnVar than 
TMR due to variations in grass quality, which may 
explain the positive association between LnVar and the 
proportion of cows with a rumen acidosis indication. 
Because of the expected association between LnVar and 
the application of grazing, as well as application of dif-
ferent grazing strategies within and between herds, it 
is important to properly account for grazing in future 
research, especially in the relationship between LnVar 
and the rumen acidosis indication.

A positive correlation was observed between LnVar 
and mean milk yield, which was in accordance to some 
hypotheses, but in contrast to others. To start with the 
contrasting one, we may hypothesize that a high mean 
milk yield is related to low LnVar (negative association) 
because environments that lead to high milk yield have 
been shown to be related to good udder health (Haile-
Mariam et al., 2003; Montaldo et al., 2010) and few 

drops in milk yield (Windig et al., 2005b). However, 
a hypothesis that is in accordance with our results is 
that LnVar and mean milk yield are positively associ-
ated because of scaling. From a statistical perspective, 
an increase in mean of a trait leads to a proportional 
increase in variance (Falconer and Mackay, 1996). How-
ever, scaling cannot be the only reason for the posi-
tive association between LnVar and milk yield because 
herds with high LnVar also tended to have a higher co-
efficient of variation (SD/mean) than herds with a low 
LnVar (data not shown). From a feeding perspective, 
we may also hypothesize a positive association between 
LnVar and mean milk yield. Feeding large proportions 
of rapidly fermentable carbohydrates results in a high 
milk yield, but also increases the risk of rumen acidosis 
(Krause and Oetzel, 2006; Enemark, 2008; Humer et 
al., 2018), which was indicated to be related to high 
LnVar. The observed positive correlation between Ln-
Var and mean milk yield is probably a result of all 3 
hypotheses and therefore also not very strong.

Previous studies have suggested that high rauto in-
dicates reduced resilience (Scheffer, 2009; Berghof et 
al., 2019; Poppe et al., 2020). The positive association 
between rauto and the proportion of cows with a ketosis 
indication suggests that high rauto among cows indi-
cates reduced herd resilience: ketosis reduces milk yield 
(Rajala-Schultz et al., 1999a; Raboisson et al., 2014), 
and reduces resilience to further disturbances (Rabois-
son et al., 2014). However, herds with high rauto among 
their cows also tended to have low SCS, low incidence 
of cows with an elevated SCC, low proportion of cows 
with a rumen acidosis indication, and high survival. 
These associations indicate that a low instead of a high 
rauto is a sign of decreased resilience. Moreover, rauto and 
LnVar were negatively correlated (−0.34) at herd level, 
whereas a positive association was expected if high rauto 
indicated poor resilience. An explanation for the find-
ing that poor resilience could be indicated by both high 
and low rauto could be that drops with slow recovery 
lead to increased rauto, whereas deep drops that imme-
diately recover lead to low rauto. Both types of drops are 
signs of poor resilience, but lead to opposing rauto.

Because of the ambiguous correlations of rauto with 
the herd performance variables, rauto by itself is not a 
good indicator of resilience at the herd level. However, 
in combination with increased LnVar, the herd-year es-
timates of rauto may provide information about recovery. 
If a herd has both a high LnVar and a high rauto, drops 
in milk yield occur and the recovery is slow. If a herd 
has a high LnVar but a low rauto, drops occur but recov-
ery is fast. Therefore, resilience may be more severely 
affected in herds with high LnVar and high rauto than in 
herds with high LnVar but low rauto. In summary, rauto is 
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by itself not a good resilience indicator, but an index of 
LnVar and rauto may be a better indicator of resilience 
at herd level than LnVar alone.

The question still remains how the index of LnVar 
and rauto should be used as a management tool, given 
that AMS systems provide warning tools related to 
drops in milk yield as well. The most important appli-
cation is the tactical and strategic benchmarking of the 
resilience of a herd relative to other herds and relative 
to the previous year. This benchmarking may assist 
farmers in making tactical or strategic decisions, such 
as changing the feeding regimen. Warnings provided 
by AMS have a different purpose than the resilience 
indicators because they act on the operational level 
rather than the tactical or strategic level. A warning 
is given when milk yield of individual cows drop or if 
the average herd yield drops, and action is expected 
immediately upon a warning. However, these warnings 
do not inform farmers if they have a lot of individual 
or herd drops in milk yield compared with other farms 
or compared with previous years, which the resilience 
indicators do. In summary, warnings provided by AMS 
are useful for operational management, whereas the 
herd resilience indicators are useful for tactical or stra-
tegic management.

Herd-year estimates of LnVar, perhaps in combina-
tion with rauto, can inform about resilience level, but 
they do not indicate how herd resilience can be im-
proved. The information from milk production record-
ing, such as SCC, can provide clues, but many more 
factors are related to herd resilience (e.g., protection 
from weather influences, nutrition, cow density) that 
are not covered by milk production recording, as the 
low R2 of our regression models showed. Therefore, 
there is probably not a single solution to improve 
resilience, and the optimal solutions will likely differ 
between farms. Using their own expert knowledge of 
their farm, farmers can deduce which of their manage-
ment practices likely contribute to decreased resilience. 
In some cases data from milk production recording and 
the AMS may help. Farmers can then decide if and 
how they will adjust management to improve resilience. 
In this sense, improving herd resilience is no different 
from improving other multifactorial traits, such as herd 
milk yield. There are also multiple methods to increase 
milk yield level; the optimal method will differ between 
farms, and some farmers accept a low milk yield level 
whereas others want to increase it. In summary, resil-
ience of a farm could be a measure of the management 
quality and the general level of control at the farm, and 
provide information additional to the existing data on 
health and productivity level.

This study investigated herd estimates of resilience 
indicators based on AMS data on a yearly basis. How-

ever, herd estimates of the resilience indicators could 
potentially also be calculated for farms with a con-
ventional milking system with electronic milk meters, 
although this should be studied first. In addition, the 
herd resilience indicators could be even more useful 
when calculated for shorter periods, because this would 
show effects of herd management adjustments on herd 
resilience more quickly. Such an approach has been 
taken for monthly herd estimates of production traits 
and SCS by Koivula et al. (2007) and Caccamo et al. 
(2008). The resilience indicators could for example be 
provided on a monthly basis together with the milk 
production recording data. In some cases the data of 
the resilience indicators and the milk production re-
cording data may support each other, for example if 
herd resilience decreased and SCC increased compared 
with the previous month. In other cases, the resilience 
indicators may warn of resilience problems, while no 
problems are suggested (yet) by the milk production 
recording data. This would be an important benefit of 
the resilience indicators compared with already existing 
tools because they allow farmers to detect decreasing 
resilience and intervene before any real health problems 
arise.

CONCLUSIONS

This study showed that LnVar and rauto, which 
were supposed to indicate resilience, varied widely 
between herd-year classes. Moreover, the differences 
between herd-year classes were related to several herd 
performance variables obtained from milk production 
recording. The associations with the herd performance 
variables demonstrated that low LnVar indicates good 
resilience at herd level, and suggest that resilience can 
be improved through management. The ambiguous 
findings for rauto suggest that this trait is less suitable 
as a resilience indicator at herd level than LnVar. 
However, for herds with high LnVar, rauto may indicate 
rate of recovery. In conclusion, differences in resilience 
indicators between herds exist, and these differences 
can be partly explained by herd management.
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