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Abstract: Treatment of wastewater is expected to become a major development issue in the years
to come. We investigate the relationship between climate and costs of wastewater treatment with
the objective of examining if changes in climate might have an impact on the costs of wastewater
treatment. For that purpose, we use a cross-section sample of 163 treatment plants from China to
estimate the industry’s cost function. The methodology used comprises an econometric estimation
procedure of treatment costs of the wastewater sector, and a simulation of changes in these costs
predicted with future climate conditions, policy implementation scenarios, population growth and
development trends. Our results find evidence of climate change impact on treatment costs. We
also simulate potential impact of future policy and climate scenarios on costs of treatment, and we
measure the cost impact of all other cost determinants but climate—as these are indirectly affected by
accounting for climate in the estimation procedure. This indirect impact predicts total cost changes of
different magnitudes across the range of future scenarios investigated.
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1. Introduction

Economic development, urbanization, and population growth trends are raising the demand for
water around the world. The uncertainty of future conditions, most noticeably climate change, urges
society to decide upon and pay in advance for mitigation efforts. This, in turn, requires quantification
of the distribution of outcomes following both action and inaction strategies. One such strategy could
be the reuse of treated wastewater for beneficial purposes, a phenomenon which unsurprisingly is
currently gaining traction mainly in arid and semi-arid regions in the world [1].

Reuse of treated wastewater can mitigate water scarcity. As a relatively stable source of supply
it can substitute for natural fresh water sources. However, the costs of the treatment process, those
associated with direct input use, and those potentially affected by regulatory requirements, quality
enhancement considerations and others, might hinge on the attractiveness of this solution. Surprisingly,
wastewater treatment, which is also an activity of a public good nature, was studied thus far mostly
among engineers and at the outskirts of economic research. Our objective in this paper is therefore
to enrich the literature by examining if changes in climate might have an impact on the costs of
wastewater treatment. This will be, to the best of our knowledge the first contribution to do so. If
indeed costs of treatment are impacted by climate changes, any analysis ignoring them is either over,
or underestimating the desirability of wastewater reuse to society.
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A recent survey [1] identified the untapped potential of wastewater reuse in the world. Of the 181
countries surveyed in the period between 1995 to 2012, 40 and 30 percent provided partial and complete
information, respectively, on wastewater generated, treated, and reused, reported in cubic kilometers
per year. While not a complete count, this data set suggests that global wastewater generated, treated,
and reused annually amounts to 340, 165, and 24 km3, respectively. This is a significant potential that
has not yet been tapped sufficiently in many countries. Using Israel as a case study, [2] valued the
contribution of treated wastewater reuse to the local water economy on a long-term planning horizon
by approximately 330 to 460 thousand USD per 1 million m3 of reused water annually, depending
on the level of natural recharge assumed. While these estimates are obviously dependent on local
conditions, which most likely vary considerably on a global scale, the figures cited above yield an
estimate of some 46 to 64 billion USD in worldwide economic welfare that could be realized annually
through reuse of existing treated wastewater. An alternative measure is an equivalent of about 54 to 76
percent of the estimated value of future damages to water resources associated with a 1 C◦ increase in
global mean temperature [3]. Thus, the potential of returning these benefits to the economy cannot be
ignored. Furthermore, if indeed the objective of cutting untreated wastewater disposal globally in half
by 2030 will materialize, as indicated in SDG 6.3 and SDG 6.3.1 of the Sustainable Development Goals
report [4], these benefits can even be larger.

As more countries realize the role of wastewater in their water resources management, and invest
public and private funds in wastewater systems, several points of caution must be addressed. The
multiple effects of population increase and climate change impacts on water resources and water
services have ramifications for policy, which is the aim of this paper.

The paper develops as follows: Next we review the literature concerned with the likely impacts of
climate change on the water and wastewater sectors, and why they are critical for policy. In Section 3
we describe the situation in China that is used to apply our approach; we also present in detail the
dataset used for the estimation of the cost function. Section 4 describes the methodological components
of empirical framework and specifications, and derived simulations. In Section 5, we present the results
of the econometric estimation of a sector-level treatment cost function. Section 6 presents simulations
of future climate change scenarios and their impact on wastewater treatment costs, using the estimated
cost function parameters from Section 5. Section 7 concludes and addresses policy implications of our
analysis and results.

2. Literature Review

Scientists’ predictions of climate change impacts on various sectors have already materialized in
many parts of the world [5–7]. Sectors that are most vulnerable to climate change include agriculture
and water resources. Some of the impacts of climate change that are predicted to affect these sectors
include temperature increase and alteration of precipitation patterns [8]. For the most part, economic
literature on the impacts of climate change addressed its effects on agricultural productivity, using both
econometric and programming approaches (an appropriate coverage of both can be found in [9–12], and
references therein). A prominent discussion within the associated econometric literature is concerned
with the usefulness of different methods to identify the true impact of climate change in order to elicit
relevant policy actions [9,13,14]. Contributing to this discussion, Reference [11] (page 107) summarized
the debate and highlighted the essence of the different arguments by stating that:

“Due to omitted variables concerns in the cross-sectional approach the recent literature has preferred the
latter panel approach, noting that while average climate could be correlated with other time-invariant
factors unobserved to the econometrician, short-run variation in climate within a given area (typically
termed “weather”) is plausibly random and thus better identifies the effect of changes in climate
variables on economic outcomes.

While using variation in weather helps to solve identification problems, it perhaps more poorly
approximates the ideal climate change experiment. In particular, if agents can adjust in the long run
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in ways that are unavailable to them in the short run, then impact estimates derived from shorter run
responses to weather might overstate damages from longer run changes in climate.”

It has been noted that climate change could also significantly affect the human-built infrastructure
through increasing uncertainty in future air temperature, precipitation, wind speed, and rise in sea
level. Climate change may thus influence existing and planned urban water systems [15,16]. The
wastewater sector is being affected by climate change in various ways. For example, higher amounts
of pathogens could be carried to the wastewater treatment plant (WWTP) if it is connected to storm
water collection systems. Higher levels of rainfall also can increase flows of sewage fed via the
collection system. These two types of events can lead to operational needs beyond the treatment
plant’s capacity, thus, impacting reliability and operating costs [17–19]. Another impact of climate
change on wastewater treatment performance is its effects on the biological processes used in treatment
plants, specifically dropping the nitrogen removal rate [20–22]. In particular, Reference [22] (page 202)
found that intra-annual variations in temperature affect the performance of anaerobic reactors and
stabilization ponds, compared with activated sludge, and aerobic biofilm reactors that are less sensitive
to temperature fluctuations due to their “higher technological input and mechanization levels.” [23]
also identify potential challenges in the operation of a wastewater treatment plant resulting from
changes in temperatures. The authors emphasize the sensitivity of the treatment process to temperature
extremes. Because WWTPs are designed for a range of assumed flows and sewage characteristics, as
well as climatic conditions, any changes to the designed values may lead to under performance or
even failure [20].

Referring to the earlier discussion regarding climate change impacts on agricultural productivity
and the adaptation measures that can potentially be feasible under this setting, it is important to note
that the impacts on the wastewater sector we just reviewed are much more mechanical in nature than
the effects on food production. Therefore, contrary to the agricultural sector, the set of tools existing at
the individual decision unit level (i.e., treatment plant versus a farm) are much more limited. Generally,
even at a higher decision-making level, the notion of adaptation seems to be a very complex task in
the wastewater treatment sector [23]. It is, therefore, quite surprising that despite the engineering
observations regarding impact of climate change on wastewater treatment performance, most of the
recent economic estimates of wastewater treatment cost functions that we are aware of (e.g., [24–28])
do not account for any future climate impacts.

3. Wastewater Treatment in China and Data

China was selected as the focus of our approach in this study for various reasons. First, data on
economic variables of a major component of the wastewater industry is readily available. Second,
China is a growing economy with major investments in the wastewater sector. Third, China faces
climate variation across the landscape of the wastewater treatment facilities around the country. Finally,
increased attention is given to climate impacts on the wastewater treatment sector in China, due
to the large amount of energy and chemicals consumed in wastewater treatment processes [29,30],
and because government regulations of urban drainage and sewage treatment require that climate
trajectories should be considered in the process of wastewater treatment planning [31].

3.1. The Wastewater Sector of China

With fast industrialization and urban growth, wastewater discharge in China has increased from
48.2 billion tons (~m3) in 2004, to 71.1 billion tons (~m3) in 2016 [32]. Construction of WWTPs has also
intensified over this period. Between 2006 and 2016, the number of WWTPs has more than tripled,
increasing from 1019 to 3552, with treatment capacity increasing from 68.62 to 179.46 million m3

per day [33] (several official data sources demonstrate variation in total number of treatment plants
reported in the industry. After consulting with a professional in this field, we decided to use the
current reference. While these differences amount to roughly 20 percent, we do not think they should
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significantly affect the analyses presented in the paper). This development is, however, unbalanced
geographically and across urban and rural centers [34].

The treatment technologies mostly used in China are conventional Activated Sludge process (AS),
Oxidation Ditch, Sequencing Batch Reactors (SBR), Anaerobic/Anoxic/Oxic (AAO), and Anoxic-Oxic
(AO) processes. Less widely used are Biofilm processes, Membrane Bioreactors (MBR), natural biologic
treatment systems (e.g., constructed wetland), and Anaerobic Biologic treatment processes [35,36].
Nearly 75 percent of WWTPs in China are medium-size (1–10 × 104 m3/day). Small (<1 × 104 m3/day)
and medium WWTPs mainly use Oxidation Ditch and SBR processes, while the majority of large plants
(>10 × 104 m3/day) use AAO processes [35].

The WWTPs in China follow the national standards determining the quality of treated wastewater
discharge (defined under regulation titled GB 18918–2002). This standard defines four classes for
effluent disposal, separated by the levels of constituents imposed under each class [37]. These classes
are determined based on the age of the treatment plant as well as on the receiving water body [30].
The wastewater effluent meeting Class 1A can be reused or discharged to a recreational or scenic water
body. Class 1B effluents can be reused or disposed of to the sea through running rivers or streams [38].
In addition to the national standard, every province may issue its own effluent discharge standard,
and the local standard must be stricter than or equal to the national standard. According to [35] only
20 out of 31 provinces in mainland China have issued such standards.

3.2. Description of the Data

We analyze a cross-section data of 163 WWTPs from China, sampled in 2006. The dataset is
described in detail in [28], and [39]. Due to data misspecification regarding the year of establishment,
we had to remove two plants from the original sample. For each WWTP in the dataset, we obtained its
geo-reference, the year of establishment and associated investment, its treatment capacity, the actual
volume treated in 2006, several quality parameters of influent and effluent water, and the annual
operating and maintenance (O&M) costs. The descriptive statistics of these variables is presented in
Table 1.

Table 1. Descriptive statistics of the cost model variables.

Variable Units Mean Std. Dev. Min Max

Dependent Variable
O&M Costs Million $ 1.95 1.46 0.15 8.24

Explanatory Variables
Investment Million $ 28.75 26.37 1.86 139.41

Volume Treated 104
×m3/day 6.46 6.32 0.21 40.00

Treatment Capacity 104
×m3/day 7.54 7.04 0.60 40.00

Tenure (years since establishment) Years 8.77 6.47 1.00 50.00
BOD Influent mg/L 169.99 89.00 17.99 480.00
BOD Effluent mg/L 13.40 8.34 1.20 60.00

Notes: Acronym BOD stands for biological oxygen demand.

We also use information regarding the treatment processes (technologies) used in each plant.
Following [36], these are divided into eight groups as depicted in Table 2 (We refer the interested reader
to [40] for detailed information regarding the characteristics of the different processes). We also report
in Table 2 the share of each technology group in the WWTPs and in the total designed capacity in our
sample. We compare these shares to those reported by [35], based on data from 2012, and by [36],
based on data from 2013, for the entire wastewater treatment sector in China (these two sources present
slight to moderate differences in reporting, and both rely on official and reliable data sources).
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Table 2. Shares of treatment processes by number of treatment plants, and total designed capacity in
the sample and the entire sector, (percent).

Treatment Process
Number of WWTPs Designed Capacity

Sample
(2006)

Reported
in [35]

Reported
in [36]

Sample
(2006)

Reported
in [35]

Reported
in [36]

AAO 12 25 31 17 33 21
Chemical and

Physicochemical 3 1 3 3 2 3

AO 6 6 8 4 8 5
Biological Film 3 2 4 2 1 6

AS 15 9 11 21 4 15
SBR 10 17 10 8 10 11

Oxidation Ditch 40 29 21 35 28 25
Others 11 11 12 10 14 14

Notes: Initials AAO stands for Anaerobic/Anoxic/Oxic. Initials AO stands for Anoxic-Oxic. Initals AS stands for
Activated Sludge. Initials SBR stands for Sequencing Batch Reactors.

It appears from Table 2 that AAO technology is underrepresented in our sample, and that Oxidation
Ditch and AS technologies are overrepresented, compared to the data reported in the other two sources.
The rest of the sample seem to be representative of the entire population in terms of technologies
used. As reported earlier, China’s wastewater treatment industry had developed dramatically between
2006, the year of our sample, and the years reviewed by [35,36]. It seems natural that some of the
differences appearing in Table 2 might be a result of that rapid development. Nevertheless, we calculate
sampling weights based on these differences and introduce them into the estimation procedure, which
is described in the following sections.

To include the impact of climate on the cost of wastewater treatment, we supplemented the dataset
with long-term weather data taken from the widely used Climatic Research Unit (CRU) database [41].
We used the inverse distance weighting (IDW) method in order to fit each WWTP in the sample with
its own set of climate variables. For each treatment plant in the sample, we computed both historical
and the sample period values of each climate indicator as depicted in Table 3, i.e., based on the year
of establishment, we computed for each plant its unique 30-year historical average of each climate
variable listed in Table 3. We also computed for each plant the same variable (observed weather) for
the year 2006, the year of our sample. Descriptive statistics summary of these climate variables is
presented in Table 3.

Table 3. Descriptive statistics of climate variables.

Historical Climate Observed Weather
Units Mean Std. Dev. Mean Std. Dev.

Temperature
Annual Average C◦ 14.28 3.41 15.31 3.40

Intra Annual Variance (C◦)2 87.67 36.54 85.89 35.76

Precipitation
Annual Average mm 975.78 387.05 901.32 426.39

Intra Annual Variance (mm)2 5390.59 3746.01 4337.57 3880.45

It appears from Table 3 that on average in our sample, between the establishment of a facility
and the year 2006, temperatures have increased, and their distribution within the year has narrowed.
Precipitation has declined on average and became less variable. Figure 1 depicts the spatial climate
differences among the sample’s WWTP observations.
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Figure 1. Relationship between historical climate variables in the dataset. (a) Annual average 
temperature and precipitation levels for each wastewater treatment plant in the sample; (b) Annual 
average temperature levels and intra-annual variation in temperature for each wastewater treatment 
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for each wastewater treatment plant in the sample. 

Figure 1. Relationship between historical climate variables in the dataset. (a) Annual average
temperature and precipitation levels for each wastewater treatment plant in the sample; (b) Annual
average temperature levels and intra-annual variation in temperature for each wastewater treatment
plant in the sample; (c) Annual average precipitation levels and intra-annual variation in precipitation
for each wastewater treatment plant in the sample.

As can be seen in Figure 1, there is a very strong and well-defined relationship between the
climatic characteristics of the WWTPs in the sample. Observations from high-temperature regions also
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are characterized by high precipitation levels (Figure 1a), lower variance in temperature within the
year (Figure 1b), and higher variance in precipitation within the year (Figure 1c).

To examine the temporal trends of the climate variables in our sample, we compute for each
such variable the ratio between the 2006 sample year value of that variable, and its historical average
(normal). These ratios are presented in Figures 2 and 3 as a function of temperatures and precipitation
historical averages, respectively.
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Figure 2. Temporal variation in climate (temperature) variables in the sample. (a) Ratio between
observed and historical annual average temperature levels for each wastewater treatment plant with
respect to historical annual average temperature levels; (b) Ratio between observed and historical
intra-annual variation in temperature for each wastewater treatment plant with respect to historical
intra-annual variation in temperature.
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concluded that our data adheres to the general climate trends in China, as well as to the regional 
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Figure 3. Temporal variation in climate (precipitation) variables in the sample. (a) Ratio between
observed and historical annual average precipitation levels for each wastewater treatment plant with
respect to historical annual average precipitation levels; (b) Ratio between observed and historical
intra-annual variation in precipitation for each wastewater treatment plant with respect to historical
intra-annual variation in precipitation.

Figure 2 shows that all the treatment plants in the sample have experienced an average temperature
increase with respect to the climate preceding their establishment, and that this increase was larger for
plants in colder regions (Figure 2a). The variation in temperature within the year was mostly affected in
warmer regions, where both higher and lower variation levels can be observed (Figure 2b). According
to Figure 3, average precipitation levels generally decreased during the period of comparison, with
some exceptions in the warmer and wetter regions (Figure 3a). The same can be said with respect to the
intra-annual variation in rainfall (Figure 3b). Overall, while our sample accounts for only 16 percent of
the WWTPs in China (in 2006), by examining Figures 1–3 it can be concluded that our data adheres to
the general climate trends in China, as well as to the regional climatic contrasts described in [42].

4. Methodology

The methodology in this paper comprises of an econometric estimation procedure of treatment
costs of a wastewater sector, and a simulation of changes in these costs predicted with future climate
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conditions, policy implementation scenarios, population growth and development trends. The
coefficients from the econometric estimation of the wastewater treatment sector cost function in the first
stage are used in the simulation of future costs under various scenarios. The estimation of the treatment
cost function includes, as explanatory variables, climate indicators at the plant level. This enables
capturing the impact of changes in climate on costs of treatment, but also it allows distinguishing, as
part of the simulation, between predicted costs when climate changes are accounted for, or ignored.
Thus, providing an estimate of the opportunity costs associated with ignorant policy making with
regard to climate changes impact on wastewater treatment costs. The estimation procedure and
simulation model are described in general form in the following subsections.

4.1. Empirical Specifications

Following previous studies that estimated cost functions for wastewater treatment, we adopt
a reduced form estimation approach, and assume a constant elasticity functional form relationship
between costs of treatment and explanatory variables [43–46]. These assumptions are translated into
an explicit definition of a cost function, as presented in general terms in Equation (1):

TVC = e
α0+

∑
k
αkzk∏

m
xβm

m (1)

where TVC are the total annual operating and maintenance (O&M) costs of the WWTP in the 2006
sample year, zk ∈ Z ≡ {T, P, D} is a set of plant’s characteristics represented by dummy variables; T is a
vector of dummy variables representing the treatment technology of the plant, capturing differences in
technology effectiveness; P is a vector of dummies for the province where the plant is located, capturing
provincial differences; and D is a vector of variables indicating the decade at which the treatment plant
was built, capturing technological improvements in recent decades. xm ∈ X ≡ {I, V, C, Y, Q, W} is the set
of continuous determinants, where I is the gross investment in the plant at the year of establishment (in
2006 constant dollars), V is the average daily volume treated in the plant during the 2006 sample year,
C is the plant’s daily average treatment designed capacity, Y is a count of years since the establishment
of the WWTP, and Q, and W, are vectors of quality parameters and climate indicators, respectively.
The α’s and β’s are the estimated parameters.

We include the investment in the treatment plant at the year of its establishment as a proxy for other
design characteristics, such as area and other immobile capital associated with the treatment process.
We expect this variable to have a positive and marginally decreasing effect on costs. Both volume
of treatment and designed capacity are used in our analysis. Our hypothesis is that the closer the
actual volume treated is to the designed capacity, the more cost-efficient the plant is. Regarding quality,
we follow common practice in the literature on wastewater cost estimates and use biological oxygen
demand (BOD) level as a single representative indicator for contaminants’ levels. This is also supported
by professional literature suggesting that all the indices in our dataset (i.e., BOD, chemical oxygen
demand-COD and total suspended solids-TSS) are closely related [40]. Our underlying hypothesis
regarding the impact of climate on treatment costs is that each plant’s treatment efficiency is a function
of its design. That design, in turn, is presumably a function of the prevailing climate in the region
and the time at which the plant was built. Any changes with respect to that benchmark evident in
the sampled period will affect the treatment efficiency and, consequently, the plant’s operating and
maintenance costs.

While it has been argued that accounting for the differences between treatment technologies in
the estimation of cost functions is important [47], studies that evaluated performance among WWTPs
in different settings did not reach a consensus regarding the preferred technology in terms of cost
efficiency [48–50].

Looking for examples to support the previous argument, we could find only esoteric treatment
cost-estimation studies that addressed this issue. Reference [51], for example, compared capital and
O&M costs of two treatment processes, namely up-flow anaerobic sludge blanket (UASB) and waste
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stabilization pond (WSP), among 25 WWTPs in the Yamuna River basin in India. Their findings
suggest that the WSP is the cheaper technology of the two. Reference [52] focused their analysis on
wastewater treatment costs in China. They concluded that chemical treatment processes are cheaper
than biological ones. The authors have further classified biological treatment processes and indicated
that anoxic-oxic (AO) has the lowest cost. To conclude, studying the literature concerned with the
effect of different treatment processes on operating costs, we could not find any a priori justification for
clear dominance of one technology over the other. To further strengthen this assumption, we refer
to [53,54] who demonstrated that a combined processes approach, to achieve different treatment level
goals, is the optimal cost-minimizing strategy.

We use the province dummies as both economic development indicators [52] and (in the absence
of other documented classification) as indicators of the regulatory environment (i.e., effluent standards
stringency) under which the plant operates. The decadal dummies account for technological differences
(for example, older plants did not have access to technologies that were developed after their
establishment).

In the next section we present the results of the ordinary least squares (OLS) estimates of Equation (2):

ln(TVCi) = α0 +
∑

k

αkzki +
∑

m
βm ln(xmi) + εi. (2)

In Equation (2), all the continuous variables described earlier are expressed in natural-log form,
and εi stands for the statistical error.

4.2. Simulation Procedure

The simulation is conducted in order to determine the magnitude of the impact of climate change
on wastewater treatment costs predicted in the future, as well as estimating the cost of designing
policy ignoring these impacts. For that purpose, the estimated coefficients from Equation (2) along
with predicted values for variables in Z, and X, are used to determine wastewater treatment costs
in future time-periods under different sets of policy, climate, and wastewater volume scenarios. Let
predicted values of climate indicators Wgrt, for a future time-period (t), be derived from a specific
combination of a climate prediction model (g), and greenhouse gas emission scenario (r). Let the quality
of wastewater be subject to regulation, and thus its value in future time-periods Qpt, an outcome of
unique policy design (p); and let the volume of wastewater in the future Vvt, be determined by projected
trends of wastewater volumes (v), derived from population growth, infrastructural development, and
consumption behavior predictions. The predicted costs of wastewater treatment at the plant level can
be defined as in Equation (3):

TVC
s
grpvti = f

(
Zs

t , Xs
rgpvt, Ωs

)
. (3)

In Equation (3), Zs
t and Xrgpvt

S correspond to the vectors of explenatory variables defined in the
previous subsection, where the values for explenatories depends on the combination of policy, climate
and wastewater volume scenarios as described above. The set Ωs includes the coefficients α’s and
β’s estimated from Equation (2). A unique simulation (s) then determines the inclusion or exclusion
of variables in Zs

t , and Xs
rgpvt, as well as the choice of coefficients from Ωs, estimated under various

specifications, used to predict TVC
s
grpvti under the combination of all future scenarios.

5. Estimation Results

We present in Table 4 the results of the estimated coefficients for Equation (2) under four
specifications differentiated by the inclusion of control vectors. Column A corresponds to the
estimation of Equation (2) excluding the vectors of provincial and decadal fixed effects. In column B,
the estimated equation includes provincial dummies. Column C includes decadal fixed effects only,
and column D includes both provincial and decadal fixed effects. The coefficients are presented along
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with their standard errors. Each specification’s adjusted R-Square, and the Moran I test statistic for
spatial autocorrelation are also presented.

Table 4. Estimated coefficients for O&M cost equation under different specifications.

Variable\Model A B C D

Investment (βI) 0.267 (0.068) 0.159 (0.070) 0.290 (0.070) 0.182 (0.072)
Capacity (βC) 0.566 (0.166) 0.714 (0.166) 0.493 (0.173) 0.657 (0.170)
Volume (βV) −0.095 (0.149) −0.127 (0.144) −0.076 (0.150) −0.115 (0.145)
Tenure (βY) 0.079 (0.084) 0.040 (0.126) 0.301 (0.149) 0.221 (0.171)

Quality Parameters
BOD Influent (βQIn ) 0.167 (0.077) 0.168 (0.079) 0.168 (0.079) 0.171 (0.080)
BOD Effluent (βQOut ) −0.030 (0.063) −0.036 (0.065) −0.03 (0.063) −0.036 (0.065)

Climate Indicators
Hist. Mean Temp. (βpst

tmpav
) 0.091 (0.224) 0.395 (0.450) 0.061 (0.224) 0.451 (0.450)

Hist. Intra-Ann. Temp. Var. (βpst
tmpvar

) 0.376 (0.135) 0.054 (0.439) 0.366 (0.135) 0.306 (0.465)
Mean Temp. Ratio (βrat

tmpav
) −0.753 (1.445) 0.538 (3.678) −0.881 (1.455) −0.497 (4.094)

Intra-Ann. Temp Var. Ratio (βrat
tmpvar

) 2.190 (0.817) 3.167 (2.756) 2.423 (0.836) 2.052 (2.885)

Treatment Technologies (βT)
Chemical and Physicochemical −0.349 (0.148) −0.247 (0.174) −0.362 (0.149) −0.235 (0.176)

AAO −0.156 (0.148) 0.012 (0.160) −0.175 (0.153) −0.001 (0.161)
AO −0.314 (0.191) −0.047 (0.195) −0.353 (0.192) −0.077 (0.195)

Biological Filter −0.278 (0.240) −0.208 (0.261) −0.304 (0.242) −0.209 (0.262)
SBR 0.021 (0.160) 0.073 (0.173) 0.016 (0.163) 0.073 (0.173)

Oxidation Ditch −0.122 (0.118) 0.032 (0.132) −0.137 (0.125) 0.024 (0.139)
Not Specified −1.292 (0.363) −1.301 (0.357) −1.352 (0.370) −1.290 (0.366)

Constant Term −3.778 (1.099) −2.453 (2.779) −4.827 (1.332) −4.412 (3.107)

Control Vectors
Province (P) No Yes No Yes
Decade (D) No No Yes Yes

Adjusted R2 0.659 0.714 0.660 0.718
Moran I 1.710 0.310 2.960 1.070

Notes: Standard errors are reported in parenthesis. The coefficients presented under column 3 (C) are based on a
maximum likelihood estimation of a spatial autoregressive procedure.

Similar to previous studies in this field, our results demonstrate that the sample’s cost function is
characterized by economies of scale [43,44]. This could be realized based on the elasticity of costs with
respect to the plant’s capacity, which is positive and lower than 1. The estimated coefficient for the
investment variable shows similar sign and magnitude of the elasticity with respect to size, which
suggests that operating costs also are characterized by scale economies with respect to other capital,
which is beyond the correlation with the size of the plant. Volume treated, once capacity is controlled
for, does not have a statistically significant effect on costs. The estimated coefficient of the tenure
variable indicates the expected sign, suggesting that older plants would be more expensive to run. Yet,
this effect is only statistically significant when decadal dummy controls are included in the estimation
(Columns B and D). With respect to quality, our results indicate that the contamination level of the
incoming flow (to the plant) is the important factor affecting the costs of treatment.

Moving onwards to discuss the impact of climate change on treatment costs, it is important
to emphasize again that the variables used are the historical average temperature and intra-annual
variance in temperature (normal), and the ratios between the sample year-observed-weather for the
same variables and their historical counterparts. This means that the effect of past average temperature
(intra-annual variance in temperature) actually equals the difference βpst

tmpav
− βrat

tmpav
(βpst

tmpvar
− βrat

tmpvar
).

Whereas βrat
tmpav

and βrat
tmpvar

correspond to the effects of the sample year observed values of average
temperature, and the variance in temperature within-year, respectively. (The statistical significance of
the difference coefficient is determined based on a test performed after the estimation. Results of these
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tests correspond to the significance level derived from the coefficients and standard errors of βpst
tmpav

and

β
pst
tmpvar

, reported in Table 4, for average temperature and intra-annual variance, respectively.)
Our choice of including temperatures alone is justified in several ways: First, based on the strong

biological connection between temperature and treatment efficiency as presented in the scientific
literature review provided earlier. Second, given the current conditions of the wastewater collection
systems in China [28], the precipitation effects discussed in the same literature review are less likely to
occur. Third, the strong relationship between temperature and precipitation patterns in our sample
(Figure 1) introduces multicollinearity when both types of variables are included in the model.

The estimation results support our earlier hypothesis. Historical within-year variance in
temperatures has a negative and statistically significant coefficient at the 1 percent level. This
implies that a plant designed to operate under higher past temperature variance (keeping, among all
other variables, the 2006-observed within-year variance constant) is cheaper to run in 2006—the year
of the sample. The coefficient for the sample year’s intra-annual variance in temperature is positive
and significant at the 1 percent level. This corresponds to the effects of weather extremes that are
beyond the designed capacity of the plant. The interpretation is that the operating cost of a treatment
plant that at the time of its establishment experienced a 10 percent higher within-year temperature
variance than the sample average, is lower by 18.4 percent (according to the coefficient in column A of
Table 4). Whereas an increase of 10 percent in observed within-year variance of a plant leads to an
increase of almost 22 percent (column A in Table 4) in variable treatment costs. Coefficients of average
temperatures (observed in 2006, and historical normal) are not statistically significant but do have
intuitive signs.

Regarding treatment technologies, some findings from previous studies [52], on which we reported
earlier, are also partially supported by our results (i.e., cheaper operations when using AO treatment
technology). However, as a general conclusion and in-line with the existing literature, we cannot
point to a specific technology as being cost preferred over another. The only consistently significant
coefficient in our results belongs to the group of plants defined “Not Specified.” This group consists of
two plants whose reported technology specification made it impossible to assign to any of the other
technology groups. We also estimated the model without these two observations; this experiment did
not yield any significant improvements to the reported results.

Our attempt to control for economic development or standards stringency through the inclusion
of provinces’ dummy indicators did not yield meaningful results. This is due to high multicollinearity
between provinces and climate, which also influences the latter’s statistical significance (Column B of
Table 4). As can be found in [55], provinces are almost completely homogenous in climate attributes,
and are divided almost exclusively between China’s climate zones [55] (Figure 1). Interestingly, for
the log-linear functional form, the estimation presented in Appendix A Table A1 (Columns 4 and 5),
including the provincial dummy variables did not yield the same outcome (i.e., the coefficients for
historical and the sample year intra-annual variance in temperatures, which is of similar signs to the
coefficients presented in Table 4, remained significant at the 1 percent level). Obviously, this implies
that our results are sensitive to the functional form choice. Yet, it also demonstrates that the cost impact
of changes in climate we observed in our estimation is not only attributed to climatic differences across
provinces in China, but rather also to spatial differences in climate changes between plants from the
same province. The latter conclusion supports our earlier argument of multicollinearity, which stems
from variables definitions, in favor of a systematic bias associated with excluding time-variant and
-invariant determinants from the estimation that are captured by provincial differences.

Next, we address several important econometric issues. First, we find our estimation results
robust to the introduction of sampling weights as calculated based on differences presented in Table 2
(see Appendix A Table A2 for comparison). With respect to the choice of functional form, while we
chose the constant elasticity form to represent the technology based on common practice in the field,
other alternatives should also be considered. Using the Ramsey (RESET) specification-error test [56],
we could not exclude either the linear form or the log-linear form as compatible models. Nevertheless,
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we find that the results from all three functional form models are qualitatively non-distinguishable.
We also test our model for endogeneity with respect to the concentration of BOD in effluents, which
can be thought of being subject to managerial decisions. The results of these tests could not reject
the null hypothesis that this variable is exogenous (see Appendix A Table A3). The Moran I test for
the existence of spatial autocorrelation in error terms is mostly rejected, except for one specification.
For that specification (Column C in Table 4), coefficients are estimated using a maximum likelihood
procedure. However, the results of that estimation, as presented in Table 4, do not differ significantly
from the alternative specifications. Lastly, we perform several robustness checks to our model (not
reported). These include replacing average temperature with minimum and maximum temperature
variables, controlling for larger climatic regions instead of provinces, and inclusion of the different
combinations of control vectors (i.e., decadal dummies, provincial dummies, and climatic regions
dummies) in different functional form specifications—as those are described in Appendix A Table A1.

In the next section we demonstrate the use of the estimated WWTP cost function through several
simulations of different policy scenarios under various climate change predictions, using the estimated
coefficients presented in Table 4.

6. Simulations of Future Policy Impacts

We start this simulation exercise with a short discussion of possible future scenarios and projections
of important factors to be considered in the analyses. First, with respect to future policy scenarios,
given the literature reviewed, and specifically with respect to the Chinese case analyzed earlier, we
choose to focus on treated wastewater discharge standards as the future policy intervention. Over time,
and as wastewater reuse becomes more widespread, one can observe increased levels of regulatory
policies using more stringent quality standards for treated wastewater disposal [57]. Quality standards,
especially one-quality-fits-all, are applied as the policy intervention to protect human health and the
environment. The policy question that has been discussed in the literature addresses the tradeoff

between increased cost of treatment and the level of stringency of the quality standards [39,58]. In
the context of the China case, several works identified that quality standards for treated wastewater
discharge should be amended, and that future policies should be designed to confront China’s growing
water quality issues in general [30,36,59].

6.1. Climate Predictions

The simulation horizon starts in 2020 and ends in 2100 and is divided into three equal 27-year
periods. For climate change predictions, we use projections from the Coupled Model Inter-Comparison
Project (CMIP5) database [60]. Following previous literature that addresses climate change in
China [61,62], and given potential sensitivity of simulation results to the use of predictions from a
specific climate change model [63], we try to account for a wide range of future predictions in our
analysis. For that purpose, we use projected climate from seven different global circulation models
(GCMs) selected from the ensemble reviewed by [62] (we decided not to use the model FGOALS-s2 [64],
since it did not have predictions for RCP 2.6 and RCP 4.5. The other three GCMs we are not using
predict that annual average temperatures will drop below their observed levels in our sample (in 2006),
under all RCPs). For each of the selected models, predictions of future climatic conditions are derived
from three greenhouse gas emission scenarios, which are also known as representative concentration
pathways (RCPs).

For all chosen GCMs, we collected monthly near-surface temperature data from the CMIP5
database. We then computed, for each of the three future periods, 27-year average values for the
annual average and intra-annual variance in temperatures (The results from these robustness checks
did not yield significantly different results to the ones presented herein and are therefore not presented
for the sake of brevity, but are available from the authors upon request. We also collected monthly
precipitation data and computed the same variables as we did for temperature. We use these computed
variables to corroborate the assumption that the relationship presented in Figure 1 prevails also for



Water 2020, 12, 3272 14 of 31

the predicted future climate. Excluding MIROC-ESM and MIROC-ESM-CHEM climate predictions
from all models support this assumption.). As before, we fit the predicted climate variables for each
observation in our sample using the IDW method. following common practice in this field [62,65], all
GCMs data were uniformly interpolated to identical resolution (0.5◦ × 0.5◦) using bilinear interpolation
prior to fitting the data to each observation in the sample. The temperature predictions for each model
under all RCPs and for each of the future periods is presented in Table 5.

Table 5. Temperature predictions by climate model, emission scenario and future period.

Variable Annual Average (C◦) Intra-Annual Variance (C◦)2

Period and Model RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

Base (2006) 14.32 87.25

BCC-CSM1 14.53 14.61 14.92 88.54 92.44 87.52
CanESM2 16.14 16.11 16.36 86.01 87.27 85.49
GISS-E2-R 15.22 15.37 15.69 60.83 60.95 58.61
MIROC5 16.35 16.37 16.61 95.39 96.27 95.31

MIROC-ESM 16.33 16.13 16.51 90.15 91.56 90.67
MIROC-ESM-CHEM 16.47 16.03 16.55 94.07 94.23 92.96

MPI-ESM-LR 15.19 15.24 15.35 78.48 80.12 81.63
Average (2020-2046) 15.75 15.69 16.00 84.78 86.12 84.60

BCC-CSM1 14.77 15.18 16.10 90.35 89.96 90.20
CanESM2 16.42 16.92 17.85 85.39 88.11 88.27
GISS-E2-R 15.17 15.83 16.62 59.47 59.43 59.21
MIROC5 17.09 17.43 18.27 97.17 95.26 95.49

MIROC-ESM 16.72 17.45 18.55 93.60 93.27 91.79
MIROC-ESM-CHEM 16.72 17.21 18.42 92.25 95.18 91.24

MPI-ESM-LR 15.16 15.69 16.84 78.77 79.91 76.92
Average (2047–2073) 16.01 16.53 17.52 85.29 85.87 84.73

BCC-CSM1 14.63 15.44 17.57 91.31 89.68 93.77
CanESM2 16.29 17.37 19.56 87.49 86.78 91.73
GISS-E2-R 14.92 15.82 17.73 60.06 62.03 57.37
MIROC5 17.15 17.89 19.66 96.45 97.03 95.31

MIROC-ESM 16.85 17.80 20.78 94.83 94.73 90.92
MIROC-ESM-CHEM 16.62 17.69 20.74 97.04 94.32 91.25

MPI-ESM-LR 14.98 16.04 18.38 78.65 77.38 77.71
Average (2074–2100) 15.92 16.86 19.20 86.55 85.99 85.44

Observed and predicted annual average temperature and precipitation levels across China, as well as the locations
of wastewater treatment plants included in the sample are presented in Appendix B.

According to Table 5, the models can be roughly grouped, based on their future predictions,
to fit different temperature trajectories. In terms of annual average temperatures, one group of
models (CanESM2, MIROC5, MIROC-ESM and MIROC-ESM-CHEM) is generally more expanding
(i.e., predicts larger temperature increases) than the other more moderate group of models (BCC-CSM1,
GISS-E2-R and MPI-ESM-LR). In terms of intra-annual variance in temperatures, most models are
grouped together and present only small changes with respect to the base period. Whereas, two models
predict moderate (MPI-ESM-LR) and sharp (GISS-E2-R) decrease in within-year variance. Models also
can be distinguished by their future trends; however, such a distinction is much finer and depends on
the RCP scenarios.

6.2. Policy Scenarios

As mentioned, we choose to focus on treated wastewater discharge standards as our policy
scenario. In that respect and given the literature reviewed earlier, we simulate a homogeneous quality
standard requiring all plants in our dataset to treat wastewater to Class 1A as defined by the national
standard for treated wastewater discharge (GB 18918–2002). We assume that inflow quality to each
plant remains at the observed level throughout the simulation exercise. Thus, this policy implies a
further reduction of at least 50, 67, and 83 percent in effluents’ BOD level for 49, 32, and 11 percent of the
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WWTPs in our sample, respectively. As mentioned earlier, we aim to analyze a wide range of scenarios
in this simulation exercise. This, in turn, will allow us to provide cautious estimates toward the
usefulness of our approach, i.e., estimating the opportunity costs associated with ignoring future climate
change impacts on wastewater treatment. Since our simulation is conducted on future predictions, we
also try to account for possible trends in other important variables, specifically wastewater volumes.
Obviously, such future aspects introduce higher level of uncertainty, and predicted trajectories will be
determined by a combination of multiple factors. We therefore concentrate on measurable factors and
supporting literature in order to construct several meaningful scenarios. With respect to factors to be
considered, wastewater volumes should be a function of domestic and industrial water consumptions,
and the rates of sewage generated, collected, and conveyed to treatment facilities.

Following the literature concerned with modeling future water consumption in China [66,67], we
consider the following factors in constructing our scenarios: (a) population growth, (b) per-capita water
consumption, and (c) urbanization rates. For population trajectories, we rely on the “high-variant”
and “low-variant” scenarios taken from the population division of the United Nations [68]. Per-capita
water consumption and urbanization rates are more elusive factors in terms of future predictions. We
therefore assume for both either linear trends of continuous growth, based on documented recent
historical trends in China, Reference [66] for urbanization; and [32] for per-capita water consumption,
or no change at all, throughout the duration of the simulated horizon. Finally, the population connected
to sewage systems and centralized treatment facilities in China is approximately 80 percent in urban
areas, and far lower in rural ones [69]. Whether centralized or decentralized, treatment systems will be
characterizing future development and, in turn, influencing these shares is still unknown [69]. We
therefore assume either linear trends throughout the horizon or no change for this factor as well.

Based on all possible combinations of the aforementioned factors, we construct multiple trajectories
from which we picked six, representing a wide range of possible wastewater volume development
paths. These trajectories are presented in Figure 4 and labeled V1 through V6. According to Figure 4,
an increasing trend characterizes V1 through V3. In V1 scenario, wastewater volume increase is of an
exponential form, V2 demonstrates a more moderate growth projection of wastewater volumes, and
V3 predicts only a slight increase in wastewater volumes throughout the century. Scenarios V4 and V6
demonstrate a decreasing trend in predicted wastewater volumes, with V4 being the more conservative
prediction. According to V5 scenario, wastewater volumes are expected to increase until the middle of
the century, and then decline back almost to their original observed level. We also construct three policy
scenarios, based on the future period in which our hypothetical treated wastewater discharge policy
standards will be implemented (i.e., in the short, medium, or long term). We label these scenarios as
P1, P2, and P3 for short-term, medium-term, and long-term implementation scenarios, respectively.
We also notate as R1, R2, and R3 the three RCP scenarios, RCP 2.6, RCP 4.5, and RCP 8.5, respectively.
Our seven GCMs are labeled G1 through G7 according to their order of appearance in Table 5.

We conduct three separate simulations, and in each the set of relevant variables is adjusted to its
projected values according to the scenarios described above. The treatment cost in each simulation is
predicted based on the different estimated functions as they are prescribed in the following description.
The first, labeled “Sim1,” is carried using the coefficients estimated in the previous section. Being
conservative, we use the coefficients from Model B (Table 4, Column 3) accounting for provincial
differences. For each combination of policy scenario (P0 through P3) and wastewater volume trajectory
(V0 through V6), we simulate all combinations of GCMs and RCPs for each of the three future periods(P0
and V0 are the scenarios in which volume and discharge standards remain at their base-year observed
levels throughout the duration of the simulated period.) For the second simulation (Sim2), we project
impacts on costs of treatment from future policy scenarios and wastewater volume changes alone,
keeping climate variables at their observed 2006 values. Similar to Sim2, in the third and final simulation
(Sim3) we calculate only the impact of policy scenarios and volume projections’ combinations on the
cost of treatment. However, for this last simulation we use a new set of coefficients, i.e., we estimate
the cost function model presented in Equation (2); however, dropping from the estimation the climate



Water 2020, 12, 3272 16 of 31

variables W (see Appendix A Table A4). This set of coefficients is used to simulate the changes in costs
when all possible climate impacts (direct and indirect) are ignored.
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Figure 4. Future trajectories of wastewater flows (index, 2020 = 100). Labels V1 through V6 refer to
different trends of predicted wastewater flows.

Using results of all three simulations, the impact of future predictions with respect to climate
change on treatment costs can be broken down into two parts. The first part, represented by the
difference in treatment costs between Sim1 and Sim2 is the impact of predicted climate change alone
(both use the same set of coefficients but differ in the values of climate variables used for predicting costs
of treatment). Whereas, the difference in treatment costs between Sim2 and Sim3 is attributed only to
the inclusion of climate change in the estimation exercise (in both of these simulations, climate remains
unchanged however, different sets of coefficients are used for predicting treatment costs). It is measured
by the cost impact derived from changes to the coefficients of the cost function determinants other
than climate. These changes, in turn, are the result of including the climate variables in the estimation.

Under all three simulations, we compute the O&M costs, TVC
s
grpvti, for each plant i in our sample

(i = {1, . . . , 163}). Based on that calculation, we can also compute the average treatment cost per unit of

water treated at the plant level (µP
i =

TVC
s
grpvti

Vvti
), and the total annual O&M costs for the entire sample,

θS (where θS =
∑
i

TVC
s
grpvti). For both cost measures, we compute average (θ

P
, µP), min (θP

min, µP
min),

and max (θP
max, µP

max) values for the sample.

6.3. Simulation Results

We turn now to describe the results of our simulation analysis. First, we report the results from
Sim1, which is the total predicted effect of climate change on treatment costs. Table 6 presents the

predicted levels of θS, θ
P

and µP, in present-value terms, for all RCPs and for each of the GCMs,
averaged over policy and volume change scenarios. The discount rate for calculation of present values
is assumed to be 3 percent (acknowledging the literature discussion regarding assumed discount rates
in [70], we also use discount rates of 1.4 and 5.5 percent).
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Table 6. Simulated future climate change impacts on wastewater treatment costs.

Variables

Annual O&M Costs (Million $) Per Unit of Wastewater Treated
O&M Cost ($/m3)

Entire Sample (θS) Average Plant (θP) Average Plant (µP)

R1 R2 R3 R1 R2 R3 R1 R2 R3

Base 302.031 1.853 0.106

G1 329.362 358.274 339.455 2.021 2.198 2.083 0.143 0.155 0.147
G2 281.974 300.643 305.689 1.730 1.844 1.875 0.128 0.137 0.141
G3 81.056 82.476 75.737 0.497 0.506 0.465 0.029 0.030 0.027
G4 349.028 350.360 351.665 2.141 2.149 2.157 0.127 0.128 0.129
G5 313.543 323.116 315.857 1.924 1.982 1.938 0.133 0.137 0.131
G6 333.101 339.844 327.530 2.044 2.085 2.009 0.135 0.138 0.132
G7 176.581 186.171 194.034 1.083 1.142 1.190 0.069 0.072 0.076

For brevity purposes, we only present results from high- and low-discount rate computations in a summary form.
We refer the interested reader to the Supplementary Materials attached to this paper for the detailed reports.

It can be seen from Table 6 that for most models and for different RCP scenarios, costs of treatment
are expected to increase as a result of climate change. The reason is the positive and relatively
large values of estimated coefficient for the change with respect to past climate of the intra-annual
temperature variation (Table 4, Row 10). According to most models that variable is predicted to
increase over time (Table 5). The exceptions are models G3 and G7, which as noted earlier, predict a
decrease in the within-year variation in temperatures compared to the historical climate. According to
Table 6, the impacts on total annual costs over the sample range between an increase of 19 percent and
a decrease of 75 percent, at the extremes. The changes predicted in annual O&M costs for the average
plant in the sample are the same. Average costs for a unit of water treated ranges according to the
simulated predictions between a 46 percent increase and 75 percent decrease. As the predicted changes
in climate generally expand with time, the use of lower discount rate magnifies these outcomes such
that costs are expected to increase with respect to the base year under all models except G3. The
changes in total annual costs over the sample and for an average plant, based on the lower discount
rate calculations, are within 156 percent increase to a decrease of 45 percent. Average cost for treated
unit of water ranges between a 229 percent increase and 41 percent decrease. Using a higher discount
rate reverses the relationship such that costs under all models and RCP scenarios decrease with respect
to the base year. Total and average annual O&M costs changes range between a decrease of 55 to 91
percent. Average cost per unit of water treated also decreases in the range of 47 to 91 percent.

Table 7 reports, for the various cost measures, the differences between Sim2 and Sim3 as well as
differences between Sim1 to Sim3, on average, across all models and scenarios. The ratio of these two
differences, which is also reported in Table 7, can be interpreted as an estimate of the opportunity costs
associated with ignoring climate change impacts on treatment costs. As noted earlier, it is the share of
cost impact derived from changes to all other coefficients in the estimated cost function (except for
the climate coefficients), when climate variables are also included in it, and while keeping climate
unchanged with respect to the observed values in the 2006 sample year. When in the range of 0 to 100,
a higher ratio indicates a better prediction of the opportunity cost simulated by the impact of climate.
A ratio outside of that range indicates a poor prediction of the simulated impact of climate, where it is
either an overestimation (ratio over 100) or suggests an estimate in the opposite direction (negative
ratio) of the projected impact.
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Table 7. Differences in calculated cost measures between scenarios.

Variables
Annual O&M Costs (Million $) Per Unit of Wastewater Treated O&M

Cost ($/m3)

Entire Sample
(θS)

Average Plant
(θP)

Cheapest
Plant
(θP

min)

Most
Expensive

Plant
(θP

max)

Average Plant
(µP)

Cheapest
Plant
(µP

min)

Most
Expensive

Plant
(µP

max)

Sim2–Sim3 36.999 0.227 0.025 1.287 0.015 0.002 0.057
Sim1–Sim3 80.032 0.491 −0.006 4.585 0.044 −0.003 1.336

Ratio (percent) 46 46 −407 28 33 −94 4

Notes: Figures in the tables are rounded to the third decimal, whereas the ratios presented are based on the
actual numbers.

The ratios presented in Table 7 suggest that for an average plant in the sample (and for the
entire sample), 46 percent of the impact on annual O&M costs predicted by Sim1 with respect to Sim3
is attributed to all other factors considered in the estimation except climate. As explained above,
this partial impact is manifested through changes in estimated coefficients resulting solely from the
inclusion of climate variables in the estimation procedure. For the average treatment cost per unit
of water, µP, the ratio is 33 percent, suggesting a slightly lower predicted impact of that opportunity
costs estimate. On average, the cheapest plant in terms of both annual and per unit of treated water
O&M costs appears almost unaffected by climate change. This means that the inclusion of climate
variables in the estimation attributes an increase in costs (i.e., the difference between Sim1 to Sim2),
which disappears (and even reverses) when climate effects themselves are accounted for (i.e., the
difference between Sim1 to Sim3). The highest impacts predicted by climate change simulation across
our sample seem to be only weakly or moderately explained by the inclusion of climate variables in
the estimation alone.

Table 8 presents the same ratio that was presented in Table 7 across the range of GCMs and RCPs.
Given that calculation of the ratio of differences in annual O&M costs is identical for an average plant
and for the total annual costs over the entire sample, we report henceforth just on the former.

Table 8. Ratio of differences in calculated annual O&M costs between simulations by climate models
and emission scenarios.

Variable
Annual O&M Costs for an

Average Plant
(θP)

Per Unit of Wastewater Treated
O&M Costs in an Average Plant

(µP)
GCM/RCP R1 R2 R3 R1 R2 R3

G1 27 23 26 19 17 19
G2 41 34 33 25 21 20
G3 -35 −36 −34 −41 −41 -39
G4 24 24 24 25 24 24
G5 31 29 30 22 21 23
G6 27 25 28 22 21 23
G7 −306 −1496 840 665 266 165

According to Table 8, the portion of climate change effects on wastewater treatment costs, which
is associated with inclusion of climate variables in the estimation, ranges between 23 to 41 percent,
and from 17 to 25 percent for the annual O&M costs of an average plant, and for average cost of unit
of water treated, respectively. The exceptions are the G3 and G7 models, in which the cost impact
predictions based on that ratio are either overestimated or in the opposite direction of the simulated
impact resulting from the models’ projections. The ranges for these ratios when calculated based on

high (low) discount rate are 21 to 41 (24 to 42) percent, and 15 to 24 (18 to 25) percent, for θ
P

and
µP, respectively.
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Turning to examine variation in the results from a different perspective, Table 9 presents the same
ratio between differences in costs across volume and policy scenarios.

Table 9. Ratio of differences in calculated annual operating and maintenance costs between simulations
by volume and policy scenarios.

Variable Annual O&M Costs for an Average Plant (θP)
Per Unit of Wastewater Treated O&M Costs

in an Average Plant (µP)
Wastewater

Volume/Policy
Scenario

P0 P1 P2 P3 P0 P1 P2 P3

V0 −30 −21 −27 −29 54 56 54 54
V1 29 37 33 30 107 122 110 108
V2 −7 −1 −5 −6 63 66 64 63
V3 −28 −20 −26 −28 55 57 56 56
V4 −55 −43 −51 −53 50 51 50 50
V5 −23 −16 −21 −23 52 53 52 52
V6 −128 −98 −120 −125 45 46 45 45

Looking across volume and policy scenarios, the share of annual O&M costs’ impact from climate
change associated with the estimation alone ranges between −128 and 37 percent. In the majority of
scenarios, the simulated impact from climate change and the opportunity cost estimates are predicted
to have opposite signs. For the average cost of unit of water treated that ratio ranges between 45 and
122 percent—with most scenarios predicting a lower ratio than 100 percent. Calculating the variation of

ratios using high (low) discount rate, we find that θ
P

ranges between −19 to 43 (−214 to 2872) percent,
and µP ranges between 51 to 291 (42 to 192) percent, respectively.

To summarize, the results of the simulation analysis suggest that climate change impacts on
wastewater treatment costs can be substantial. The estimate we calculated for the opportunity cost
associated with ignoring these potential effects is also quite significant. Depending on assumed
discount rate, we find that variation of the opportunity costs estimate among policy implementation
scenarios, given uncertain future development, could be substantial as well. Yet, depending on
predicted changes in climate from different GCMs, in some cases climate effects will decrease or even
reverse the predicted impacts resulting from the educated estimation alone. For the former, the cost of
ignoring climate change might be negligible. These cases; however, are the minority according to the
results of our analysis.

7. Conclusions and Policy Implications

A higher number of wealthy people living in urban areas results in increased pressure on water
resources and the environment. On the one hand this means an increased demand for water and
higher level of sewage generation that necessitates treatment to reduce health risks and environmental
damage. On the other hand, treated municipal wastewater is a source of stable and good-quality water
supply. However, the benefits of that additional, reliable source of water is affected by the wastewater
collection, treatment, and disposal, which are all capital- and energy-intensive processes. This makes
treatment necessity an expensive social dilemma that must be addressed by proper public policy.
The result of such a dilemma, which is associated with public budget tradeoff, is that the majority of
developing countries still do not treat wastewater, whereas countries in the developed world face, at
different magnitudes, challenges associated with economic efficiency of the treatment investments and
disposal of wastewater sub-quality.

Uncertainty in future climate only intensifies this dilemma. The impacts associated with climate
change may have contradicting effects on the social costs of wastewater treatment. While reoccurring
droughts, dry and warm conditions encourage the potential use of treated wastewater as a substitute
to natural fresh water for beneficial uses, higher frequency of extreme climate-related events, such as
floods, cold or hot weather might impair the efficiency of the treatment process, making it much more
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expensive and less effective. Being within the public good domain (or public bad, as stated by [71]),
wastewater-related activities are usually characterized by some level of centrality, making them more
susceptible to policy interventions. However, in order to conduct the social cost-benefit analysis the
climate-related potential impacts must be quantified. The current paper therefore takes a first step
toward a better understanding of the impact of climate change on actual operating costs of wastewater
treatment and, ultimately, on the ability of societies to cope with increased water scarcity and water
quality risks.

We estimate an average cost function for a cross-section sample of the wastewater treatment sector
in China, and we use the estimated coefficients to simulate impacts of future climate changes on the
costs of treatment. While the analysis in this paper uses data from China, the approach we use could be
applied to any country or region from around the world where data might be available. This approach
offers the ability to assess several policy interventions that could be considered by regulatory agencies
in order to sustain the wastewater treatment sector.

While relatively simplistic, our analysis offers some important insights. The econometric estimation
results corroborate our a priori assumption regarding climate effect, i.e., materialized extremes that
lie outside of the distribution of climate measures observed at the time the WWTP was designed
are estimated to significantly alter the cost of treatment. Therefore, climate must be accounted for
when wastewater treatment processes are designed, and their costs and performance are studied. The
simulation analysis points to three noteworthy results and their derived conclusions. First, based
on most climate predictions used in the analysis, costs of wastewater treatment are expected to rise
with the effect diminishing and even reversed as assumed discount rates increase. This, in turn,
demonstrates the importance of quantifying uncertainty and measuring the magnitude of its impact,
which in our case is quite large. Second, keeping climate stationary, our estimate of the opportunity
costs associated with ignorance of these potential impacts can be fairly significant, emphasizing our
earlier conclusion regarding the inclusion of climate in future analyses. Third, when comparing across
policies, ignoring climate change impacts on future planning of wastewater treatment could have
different estimated opportunity costs, suggesting that information on future climate change impact
could be critical for efficient policy design.

Finally, our analysis can benefit from several future extensions. First, increasing the sample
size, spatially and temporally, provides the opportunity to identify and statistically interpret each
of the individual effects we studied in a more robust manner. Second, as suggested in relevant
literature [44,72,73], some variables within the wastewater treatment domain might be endogenous
and determined by some type of equilibrium process. This suggests that a structural approach could
be relevant, which can either corroborate or reject the underlying theory. Another strand of the
literature in this field is focused on measuring relative performance and using it to identify factors that
can contribute to efficiency gains [49,50,74,75]. Both of these approaches could generate important
insights to the social dilemma we analyzed, but would require a larger dataset, including a wider
range of observations and control variables, than the data used in our study. Lastly, our results rely
on a cross-section estimation, a methodology that is commonly criticized for omitting important
time-variant and -invariant variables. This can obviously lead to biased estimates. While this problem
is partially solved by introducing provincial dummy variables, still caution should be taken when
interpreting the results. Consequently, any future analysis should preferably use panel methods and
expand the range of determinants when trying to identify climate impacts on treatment costs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/11/3272/s1,
Table S1: Simulated future climate change impacts on wastewater treatment costs under 1.4% interest rate
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rate assumption; Table S3: List of symbols used in the manuscript.
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Appendix A Different Cost Treatment Model Specifications

In this appendix, we describe the outcomes of different specifications for the cost function
estimation procedure. In Table A1 we present the results of several alternative functional forms for the
underlying technology. Table A2 shows the outcomes of estimating the model while accounting for
sampling weights based on different calculations. In Table A3 we report the second stage results from
an instrumental variable estimation procedure performed to test for endogeneity of the level of BOD
in effluents, along with the tests’ statistics. The instrumental variables used for these estimations are
the level of COD and TSS in the plant’s effluents. Table A4 reports the results of estimating the cost
function in a Cobb-Douglas form, excluding climate variables. The coefficients from that estimation
are the ones used in the simulation exercise for Sim3. All the results presented in the tables below
are based on estimations that do not include any fixed effects, and therefore should be compared
against Column A in Table 4. The exception is Table A4, in which provincial dummies are used, and
so the coefficients from that table should be compared to Column B of Table 4. We do not report the
coefficients for treatment technologies in the tables below for brevity considerations.

In Table A1, columns (A1) through (A5) correspond to the following functional forms:

eTVC = e
α0+

∑
i
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·

∏
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Table A1. Different functional form specifications.

Variable\Model (1) (2) (3) (4) (5)

Investment (βI) 0.518 (0.133) 0.006 (0.003) 0.011 (0.005) 0.273 (0.069) 0.287 (0.070)
Capacity (βC) 1.168 (0.327) 0.056 (0.026) 0.199 (0.039) 0.523 (0.166) 0.504 (0.169)
Volume (βV) −0.276 (0.293) −0.004 (0.028) −0.078 (0.042) −0.050 (0.149) −0.034 (0.150)
Tenure (βY) −0.231 (0.166) 0.009 (0.009) −0.014 (0.013) 0.120 (0.083) 0.002 (0.007)

Quality Parameters
BOD Influent (βQIn ) 0.313 (0.152) 0.001 (0.001) 0.001 (0.001) 0.170 (0.078) 0.186 (0.078)
BOD Effluent (βQOut ) −0.147 (0.124) 0.001 (0.007) −0.003 (0.010) −0.014 (0.063) −0.023 (0.063)

Climate Indicators
Hist. Mean Temp. (βpst

tmpav
) −0.485 (0.441) 0.008 (0.030) −0.017 (0.045) 0.004 (0.026) 0.002 (0.026)

Hist. Intra-Ann. Temp. Var. (βpst
tmpvar

) 0.053 (0.265) 0.006 (0.003) 0.003 (0.004) 0.004 (0.002) 0.004 (0.002)
Mean Temp. Ratio (βrat

tmpav
) −0.128 (2.845) −1.517 (1.446) −1.279 (2.132) −0.765 (1.201) −0.53 (1.207)

Intra-Ann. Temp Var. Ratio (βrat
tmpvar

) 1.620 (1.609) 1.798 (0.905) 2.031 (1.335) 2.782 (0.814) 2.305 (0.771)

Constant Term −0.190 (2.164) −1.044 (2.190) 0.425 (3.230) −4.438 (1.891) −4.035 (1.883)

Adjusted R2 0.599 0.506 0.675 0.650 0.646
Ramsey (3,142) 16.099 12.231 1.150 1.879 1.751

Notes: Values in parenthesis are estimated standard errors.

Table A2. Cost function estimation results using different sampling weights.

Variable\Model (1) a,c (2) b,c (3) a,d (4) b,d

Investment (βI) 0.231 (0.081) 0.275 (0.066) 0.259 (0.066) 0.232 (0.083)
Capacity (βC) 0.481 (0.224) 0.464 (0.201) 0.497 (0.19) 0.486 (0.214)
Volume (βV) −0.022 (0.200) −0.040 (0.181) −0.054 (0.172) −0.066 (0.192)
Tenure (βY) 0.042 (0.118) 0.046 (0.107) 0.095 (0.109) 0.102 (0.132)

Quality Parameters
BOD Influent (βQIn ) 0.097 (0.115) 0.119 (0.105) 0.139 (0.105) 0.108 (0.119)
BOD Effluent (βQOut ) −0.015 (0.064) −0.015 (0.058) −0.039 (0.051) −0.035 (0.061)

Climate Indicators
Hist. Mean Temp. (βpst

tmpav
) 0.120 (0.200) 0.103 (0.196) 0.173 (0.194) 0.137 (0.242)

Hist. Intra-Ann. Temp. Var. (βpst
tmpvar

) 0.456 (0.099) 0.401 (0.092) 0.471 (0.105) 0.459 (0.109)
Mean Temp. Ratio (βrat

tmpav
) −0.149 (1.415) −0.005 (1.469) −0.257 (1.168) 0.171 (1.715)

Intra-Ann. Temp Var. Ratio (βrat
tmpvar

) 2.326 (1.29) 2.436 (1.134) 1.907 (1.055) 2.650 (1.183)

Constant Term −3.693 (0.773) −3.609 (0.757) −4.251 (0.748) −3.851 (0.905)

Adjusted R2 0.649 0.650 0.685 0.634

Notes: Values in parenthesis are estimated standard errors.; a Calculation of weights is based on information from
[36]; b Calculation of weights is based on information from [35]; c Calculation of weights is based on number of
represented plants in the industry; d Calculation of weights is based on the share of treatment technologies in total
capacity of the industry.
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Table A3. Instrumental variables regression for identifying endogeneity, different estimation methods.

Variable\Model 2SLS GMM

Investment (βI) 0.265 (0.066) 0.267 (0.058)
Capacity (βC) 0.564 (0.158) 0.557 (0.168)
Volume (βV) −0.091 (0.142) −0.085 (0.159)
Tenure (βY) 0.076 (0.081) 0.073 (0.095)

Quality Parameters
BOD Influent (βQIn ) 0.173 (0.081) 0.175 (0.098)
BOD Effluent (βQOut ) −0.049 (0.129) −0.048 (0.115)

Climate Indicators
Hist. Mean Temp. (βpst

tmpav
) 0.088 (0.212) 0.087 (0.165)

Hist. Intra-Ann. Temp. Var. (βpst
tmpvar

) 0.383 (0.133) 0.379 (0.099)
Mean Temp. Ratio (βrat

tmpav
) −0.728 (1.371) −0.714 (1.017)

Intra-Ann. Temp Var. Ratio (βrat
tmpvar

) 2.174 (0.777) 2.175 (0.953)

Constant Term −3.769 (1.039) −3.762 (0.694)

Endogeneity Test (H0: Variable is Exogenous)
Durbin score (2SLS)/GMM C (GMM): χ2(1) 0.029 0.034

Wu-Hausman (2SLS): F(1,144) 0.025

Overidentification (H0: No Overidentification)
Sargan score (2SLS)/ Hansen’s J (GMM): χ2(1) 0.020 0.029

Basmann (2SLS): χ2(1) 0.017

Adjusted R2 0.659 0.659

Notes: Values in parenthesis are estimated standard errors.

Table A4. Constant elasticity functional form without climate variables (used for sim3).

Variable\Model Coefficients

Investment (βI)
0.148

(0.068)

Capacity (βC) 0.715
(0.164)

Volume (βV) −0.109
(0.143)

Tenure (βY) −0.063
(0.079)

Quality Parameters

BOD Influent (βQIn ) 0.177
(0.078)

BOD Effluent (βQOut )
−0.044
(0.063)

Constant Term −1.348
(0.565)

Adjusted R2 0.714

Notes: Values in parenthesis are estimated standard errors.



Water 2020, 12, 3272 24 of 31

Appendix B Observed and Predicted Climate in China
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