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Remote control of greenhouse cucumber production 
with artificial intelligence – results from the first 
international autonomous challenge 

A. Elingsa, I. Righini, H.F. de Zwart, S. Hemming and A. Petropoulou 
Wageningen University & Research, Greenhouse Horticulture, Droevendaalsesteeg 1, 6708 PB Wageningen, The 
Netherlands. 

Abstract 
There is a need for remote greenhouse management. As farms become larger, the 

crop manager has difficulties monitoring all details of the various compartments. Also, 
finding skilled staff becomes more difficult and distant management of a crop 
production system requires new sensing technologies. At Wageningen UR Greenhouse 
Horticulture a competition on ‘autonomous greenhouses’ has been organized, in which 
Artificial Intelligence (largely) replaced human skills in greenhouse operation. The 
purpose was to test in this proof-of-principle the functionality of the approach, while 
improving production, product quality and resource use efficiency. Five multi-
disciplinary international teams participated. A reference compartment was operated 
by growers. Each team had available a 96 m2 greenhouse compartment to grow 
remotely a cucumber crop (‘Hi-Power’) from August to December 2018. Visiting the 
compartment was not permitted so all decisions were based on sensor output and 
observations on crop development and harvest. Compartments were equipped with 
standard actuators for climate control and fertigation, and some teams installed 
additional sensors. Teams decided on plant and stem density in advance. They remotely 
determined the continuously varying control setpoints, using AI algorithms, and 
provided instructions for leaf and fruit pruning on a weekly basis. Pest and disease 
management was WUR’s responsibility and was no part of the challenge. All AI-
algorithms classified light and CO2 as the most determinant production factors. The 
winning team, which had invested most in light, scored best on production at the cost 
of some resource use efficiencies. The winning AI-algorithm also out-performed the 
reference. Total fresh yield was closely associated with total number of fruits m-2, which 
is an aggregate of stem density and fruit pruning strategy. 

Keywords: artificial intelligence, remote greenhouse management, crop growth and 
development, cucumber 

INTRODUCTION 
Greenhouse production systems are well-suited to produce fresh fruits and vegetables, 

achieving high production levels and resource use efficiencies (e.g., light, nutrients, water). 
Although the area of greenhouse production is increasing world-wide (Rabobank, 2019), the 
greenhouse industry encounters difficulties finding enough skilled crop production managers 
(Brain, 2018). And as farm size increases, monitoring all details of several greenhouse 
compartments becomes more demanding. A modern high-tech greenhouse is equipped with 
active control of actuators (e.g., heating, lighting, irrigation) to create a favorable growing 
climate. A grower determines the climate, irrigation and crop management strategies and 
defines the setpoints for all climate and irrigation parameters. Actuators are operated based 
on the setpoints, and sensors give feedback on measured data for the control loop. Process 
computers control actuators based on the setpoints. 

To increase automated control, various dynamic greenhouse climate and crop models 
have been developed (e.g., López-Cruz et al., 2018) and have been used to automatically 
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determine setpoints and advice, or take over decision making by the grower. If models are 
connected to sensors and actuators, the models can be controlled by automated algorithms 
(e.g., Elings et al., 2004). Another way to partially take over grower’s decision making is to use 
machine learning algorithms for greenhouse climate control (Martin-Clouaire et al., 1993). 
However, to our knowledge machine learning has not been used autonomously during a 
longer period in greenhouse management resulting in yield levels comparable to commercial 
practice. 

To combine the use of modern artificial intelligence (AI) algorithms and greenhouse 
climate, irrigation, and crop growth control, an international challenge on “autonomous 
greenhouses” was conducted in 2018 at the research greenhouses of Wageningen University 
and Research Greenhouse Horticulture in cooperation with five multi-disciplinary 
international teams. The experiment was set-up with the goal of benchmarking the use of 
state-of-the-art AI algorithms for cucumber production. Existing commercial greenhouse 
equipment (actuators), standard sensors for measurement and control, and a standard 
commercial process computer were combined with the latest AI technology in order to 
maximize net profit and minimize resource use, while controlling greenhouse crop growing 
remotely. Cucumber was chosen as demonstration crop, as the effects of changes in settings 
can be observed in 1 to 2 weeks from harvested fruits. The goal of this paper is to describe the 
different crop management approaches taken by the teams, the results concerning production 
and light use efficiency and explain production differences on the basis of underlying 
physiological processes. 

MATERIALS AND METHODS 

Experimental set-up 
The experiments were conducted in six identical greenhouse compartments that were 

equipped with standard actuators, also available in commercial high-tech greenhouses: two 
pipe heating systems, continuous roof ventilation, anti-thrips netting, inside moveable 
screens, high-pressure-sodium artificial lighting system, a fogging system, and CO2 supply. 
Plants were grown in rockwool substrate cubes and placed on rockwool substrate slabs; the 
plant-substrate system was then located on hanging gutters. Irrigation water and nutrients 
were supplied with drippers operated by a valve. 

Five teams (Sonoma, iGrow, deep_greens, The Croperators, AiCU) could remotely 
control the actuators based on their own AI algorithm. A sixth greenhouse compartment was 
controlled by Dutch growers and served as a reference. Team deep_greens is excluded in the 
analysis in this paper, as there were technical and irrigation problems for some time. 

Setpoints were sent via a digital interface (LetsGrow.com) to a central climate process 
computer (IISI, Hoogendoorn, The Netherlands), which then operated the actuators. The 
composition, EC, and pH of the nutrient solutions were determined by the teams. Standard 
sensors continuously measured data on outside and inside environment, heating power used, 
on-off lamp status, CO2 dosage, screen position, irrigation supply, and amount, EC and pH of 
the drain. Inside PAR sum, heating energy used, electricity used, CO2 dosage, and water 
consumption were calculated. Measured and calculated data were provided to the teams via 
a digital interface. Both control setpoints and data were exchanged at a 5-min-interval. Some 
teams placed additional sensors at the start of the experiment. 

Cucumbers seedlings ‘Hi-Power’ (Nunhems/Bayer) were sown on 20 July 2018, in 
rockwool cubes and were transplanted to the greenhouse compartments on 14 August 2018. 
The crop was grown in a high-wire growing system. Plant and stem densities had to be chosen 
by the teams before the start, resulting in values between 2.6 and 3.6 stems m-2 (Table 1). First 
harvest was on 6 September 2018, and the last harvest was scheduled for all teams on 7 
December 2018. Based on this last harvest date, the date of topping (removal of head of the 
crop) had to be chosen by the teams and differed from 19 to 26 November 2018. Crop 
protection was the responsibility of WUR and was not part of the challenge. 

Teams weekly sent instruction for fruit and leaf pruning in the top of the canopy to the 
greenhouse workers. Fruit pruning strategies ranged from a stable procedure of 50% fruit 
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removal for the whole cropping period to a more variable strategy. With respect to leaf 
pruning, the majority of the teams decided not to prune or to prune a small fraction of leaves 
(33%). One team used a deviating strategy of removing 50% of the leaves throughout the 
whole cropping (Table 1). As a standard procedure applied to all crops, greenhouse workers 
removed leaves below last harvested fruits, unless instructed differently. 

Table 1. A number of experimental details. 

Team 
Plant 

density 
(# m-2) 

Stem 
density 
(# m-1) 

Date of 
topping 

Fruits 
retained 
(fraction) 

Leaves 
retained 
(fraction) 

IGrow 2.6 2.6 20/11 0.5-0.67 0.5-1 
Reference 2.5 2.5 9/11 0.5 1 
AiCU 1.8 3.6 26/11 0.5-0.67 0.67-1 
Sonoma 1.65 3.3 20/11 0.5 1 
Croperators 1.6 3.2 19/11 0.33-0.67 0.67-1 

Three harvest quality categories were distinguished (A: >375 g and no defects, B: 300-
374 g or defects e.g., shape, color, others, C: <300 g per fruit). Harvest data such as fruit 
number and weight (# m-2 and kg m-2 per quality category A-C) were measured manually by 
the workers. Crop related parameters such as stem elongation (cm per week), fruit growth 
period (d per fruit), leaf formation rate (# per stem per week), and cumulative number of 
leaves (# per stem) were also measured. Instructions by teams and data measured by workers 
were exchanged via the digital interface. 

Each team developed their own AI algorithms, which varied between supervised, 
unsupervised, and reinforcement machine learning. In order to use AI techniques, training 
data are essential. Since training data with a wide variation for the described application are 
scarce, an artificial training data set was created using the broadly validated dynamic 
greenhouse climate model KASPRO (De Zwart, 1996) and the cucumber crop model INTKAM 
(Marcelis, 1994; Marcelis et al., 2009) that was modified for a high-wire cucumber crop. The 
artificial data set was provided to the teams before the start of the experiment. 

The AI-based operation of the different greenhouse compartments by different teams 
resulted in different cropping, climate, and irrigation strategies, and different yields and 
resource use efficiencies. In order to properly analyze and compare the different approaches, 
the above-mentioned combination of greenhouse climate and cucumber simulation models, 
was used. The combined model assumes adequate supply of water and nutrients and does not 
simulate the presence and effects of pests and diseases. The KASPRO model computes the 
greenhouse climate as a function of outside weather conditions and greenhouse climate 
control settings. The model processes these settings by a control algorithm comparable to the 
ones used. The model takes full account of the limitations of real greenhouses, which means, 
for instance, that a CO2 dosing setpoint of 800 ppm is simply not met in sunny periods when 
the vents are wide open. The computed greenhouse climate is then fed to INTKAM, which 
computes the daily gross photosynthesis from the sum of hourly photosynthesis-rates. The 
hourly values are the result of light-intensity, temperature, CO2-concentration, and relative air 
humidity in combination with the dynamically-simulated crop architecture (in particular leaf 
area index). After subtracting maintenance costs, the daily amount of assimilates is 
partitioned over the growing organs (roots, stem, leaves, and fruits) on the basis of their 
relative potential growth rates. Next, dry matter fraction and fresh organ weights are 
computed, and finally the harvest moment of individual fruits is determined on the basis of, 
among others, fruit weight. 

Physiological analysis 
The of different control strategies in the final production could be determined with 

these models. First, the combined model was used to calculate yield of each of the 
compartments, while using the actually applied crop density, fruit and leaf pruning strategy, 
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and the realized lighting and climate (temperature and CO2) setpoints in that compartment as 
model inputs. The calculated fresh yield was compared with the realized yield in the same 
greenhouse compartment to validate the models. Then, for each greenhouse compartment, 
model calculations were carried out applying the cropping strategy of other teams to predict 
the changes in yield while maintaining the original lighting and climate strategy. In another 
step, original cropping and CO2 strategies were applied in combination with the lighting 
strategy of the other teams, and original cropping and lighting strategies were applied in 
combination with the CO2 strategy of the other teams. Interactions of cropping, lighting, and 
climate strategies were not calculated. The simulations of the swapping strategies represent 
the yield retrieved prior to topping, to eliminate the effect of early topping dates selected by 
some of the teams. Further details are given in Hemming et al. (2019). 

RESULTS 
The combined KASPRO-INTKAM simulation model adequately simulated crop growth 

and development, when stem density and fruit and leaf removal were made model input 
(Table 2). We focus on presentation of simulated results to ensure a fair analysis. 

Table 2. Simulated values of seasonal gross assimilation, maintenance respiration, crop 
growth, dry matter partitioning to the fruits, and dry and fresh fruit weight (the latter 
also for realized values). 

Team 
Gross ass. 
(g CO2 m-2) 

Maint. resp. 
(g CH2O 

m-2) 

Crop 
growth 
(g m-2) 

Dry 
matter 
part. 

(-) 

Dry 
fruit 

weight 
(kg m-2) 

Fresh 
fruit 

weight 
(kg m-2) 

Fresh 
fruit 

weight 
(kg m-2) 

Simulated Realized 
IGrow 4378 521 1880 0.554 1.140 36.0 34.3 
Reference 4376 515 1868 0.550 1.120 34.5 34.6 
AiCU 4086 446 1800 0.533 0.995 32.0 29.5 
Sonoma 5003 598 2162 0.557 1.286 41.1 38.7 
Croperators 4785 524 2101 0.537 1.233 37.9 35.4 

Team Sonoma achieved highest seasonal gross assimilation with 5003 g m-2, followed 
by team Croperators and IGrow, while the Reference growers obtained a seasonal gross 
assimilation of 4376 g m-2 (Table 2). Team AiCU obtained lowest seasonal gross assimilation 
of 4086 g m-2. Differences in temperature and organ weights caused differences in 
maintenance rate, with team Sonoma also here being the highest and team AiCU being the 
lowest with 598 and 446 g CH2O, respectively, during the cultivation season. The combined 
effects of gross assimilation and maintenance respiration results in net CH2O production, 
which, after correction for growth respiration leads to total crop growth rate. This showed 
again a similar ranking as for gross assimilation. There were some small differences in dry 
matter partitioning to the fruits, which had an overall average value of 54.6% (this is on the 
basis of total weight, including root weight). The overall effect was that team Sonoma achieved 
highest fresh production with 41.1 kg m-2, followed by teams Croperators and IGrow, while 
Reference growers obtained a fresh production of 34.5 kg m-2. Team AiCU obtained lowest 
fresh production of 32.0 kg m-2. 

Marcelis (1994) related development rate to air temperature and radiation, however, in 
a recent research on the same cultivar ‘Hi-Power’, Elings and Janse (2020) related 
development rate to air temperature alone. A higher air temperature leads to a higher 
development rate and more nodes per stem. Node number varied between 99 and 106 per 
stem (Table 3). In combination with number of stems per plant and number of plants m-2, this 
resulted in 260 to 356 nodes m-2 on a seasonal basis. Each team had its own fruit removal 
strategy, and each crop suffered from some abortion, indicating that the carrying capacity of 
the crop was not enough to bring all fruits to maturity. In other words: more fruit removal 
should have been applied given the growing conditions. As a result, the number of harvested 
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fruits of team Sonoma was highest with 97 fruits m-2 during the season. The number of fruits 
m-2 is closely related to the cumulative harvest, as fruits were harvested at approximately the 
same weight. This decision was taken by the greenhouse staff, and the teams had no say in 
this. The relation between the number of fruits maintained and the number of aborted fruits 
is given in Figure 1. In general, the more fruits are maintained, the more fruits abort, unless 
the right amounts of light and CO2 are given. This are wasted resources that go at the cost of 
final production. 

Table 3. Simulated values of some crop characters that describe fruit dynamics. 

Team 
Average air 
temperature 

(°C) 
Nodes 
(# m-2) 

Nodes 
(# stem-1) 

Aborted 
fruits 
(# m-2) 

Harvested 
fruit 

(# m-2) 

Average fresh 
fruit weight 

(g) 
IGrow 23.06 106 276 42 85.8 420 
Reference 22.63 104 260 15 81.25 424 
AiCU 21.61 99 356 54 81 396 
Sonoma 22.99 105 347 28 97.35 422 
Croperators 22.17 102 326 16 91.2 416 

 

Figure 1. The number of aborted fruits related to the number of maintained fruits. Source: 
Hemming et al. (2019). 

The causes of production differences are summarized in Figure 2. The crop 
management and CO2 strategies of team AiCU were most effective The high number of fruits 
showed less abortion under different conditions, and the CO2 levels of AiCU were 2nd highest 
(in spite of what the smoothed data in Figure 8 of Hemming et al. (2019) suggest). The lighting 
strategy of team Sonoma was most effective., and proved to be the most dominating effect. 
Application of the crop management strategy of team AiCU to the crops of teams Igrow, 
Reference growers, Sonoma and Croperators caused a fresh yield increase of 3, 10, 1 and 3%, 
respectively. The 10% yield increase for Reference growers was largely explained by the 
higher stem density (3.6 vs. 2.5 stems m-2) and higher number of harvested fruits (90 vs. 81 
fruits m-2). For team Igrow, which also had a relatively low stem density (2.6 stems-2), this 
effect was counterbalanced by the reduced fruit weight (420 vs. 404 g). Application of the CO2 
management strategy of team AiCU to the crops of teams Igrow, Reference growers, Sonoma 
and Croperators caused a fresh yield increase of 2, 1, 2 and 0%, respectively. The CO2 effect 
therefore was much smaller than the effects of crop management and lighting. Although we 
did not analyze this in-depth, it is obvious that the effects of light dominated the growth and 
production. Application of the lighting strategy of team Sonoma to the crops of teams Igrow, 
Reference growers and AiCU resulted in substantial higher productions. Only for team 
Croperators the simulated production was lower, as their seasonal light sum was higher than 
that of team Sonoma. 
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Figure 2. Simulated production per team (greyscale bars), and production using the 
cropping (1st bar), lighting (2nd bar), or CO2 (3rd bar) strategy of each of the other 
teams. Solid lines within the greyscale bars indicate lower production than realized 
by the team, whereas the top colorless bars represent higher predicted production. 
E.g., team iGrow realized a yield of approximately 36 kg m-2; with the lighting 
strategy of Sonoma (but same climate and cropping strategy) it could have realized 
approximately 40 kg m-2, while with the lighting strategy of AiCU, yield would have 
been approximately 33 kg m-2. Source: Hemming et al. (2019). 

Light use efficiency, defined as the weight of dry or fresh fruit weight produced per 
quantity of light above the crop, was highest for Sonoma growers, who achieved high yields 
because of the use of a relatively large amount of assimilation light (Table 4). In contrast, lower 
use of light resulted in lower yields and lower LUE. This illustrates the fact that in a high-tech 
environment, resources are most efficiently used if high input levels result in high yields. 

Table 4. Simulated and realized values of light use efficiency. 

Team LUE simulated dry 
harvest (g mol-1) 

LUE simulated fresh 
harvest (g mol-1) 

LUE realized fresh 
harvest (g mol-1) 

IGrow 0.703 22.21 21.17 
Reference 0.690 21.23 21.32 
AiCU 0.640 20.62 18.98 
Sonoma 0.715 22.88 21.53 
Croperators 0.677 20.83 19.43 

DISCUSSION 
Crop photosynthesis is determined by the amount of intercepted photosynthetically 

active radiation, which is the energy source, and the level of air CO2 concentration, which is 
the carbon source (Farquhar et al., 1980). Both factors interact (Qian et al., 2012), with minor 
roles for temperature and air humidity under normal conditions. Teams that maximized light 
and CO2, achieved highest production. Under the experimental conditions, the effect of light 
dominated the effect of CO2. Teams iGrow, AiCu and Reference growers would have reached 
higher yields under the supplemental lighting used of teams Sonoma or Croperators, while 
team Sonoma would have reached only slighter higher yields at higher CO2 dosages. This does 
not mean, however, that under other climate and crop management conditions, the situation 
would have been the same. Other outside weather conditions will for example influence the 
ventilation regime and consequently air CO2 concentration. 

Analysis of underlying physiological processes (Table 2) shows that the combined 
effects of light and CO2 on gross assimilation dominate, and that effects on maintenance 



 
 

 75 

respiration, which are dominated by temperature, play a minor role. Dry matter partitioning, 
which follows from potential fruit growth rate relative to potential crop growth rate, varied 
only a little and neither influenced the ranking of the teams. 

In the Netherlands, cucumber fruits are harvested at approximately 400 g. This implies 
that maximizing the number of fruits is important to achieve high yields. The mechanisms for 
this (apart from creating conducive growing conditions) are: variation in plant density and 
stems plant-1, leaf removal to ensure the optimum leaf area to intercept light (Elings and Janse, 
2020), and fruit removal to ensure that just enough fruits develop. Development of too few 
fruits will obviously result in relatively low yields, while development of too many fruits will 
result in fruit abortion due to the lack of assimilates to sustain growth of all fruits (Marcelis, 
1993) and loss of assimilates that already have been invested in these fruits. Moreover, fruit 
abortion normally goes along with un-even distribution of fruits over stem height, causing 
further yield reduction and variation of production over time. In this experiment, none of the 
teams succeeded in completely avoiding abortion (Table 3). The winning team, Sonoma, 
combined a relatively high number of fruits maintained with a relatively low number of 
aborted fruits, resulting in the highest number of harvested fruits. This was combined with 
the 2nd highest average fruit weight. 

Greenhouse production is the result of complex interactions between physical, 
chemical, and biological processes (van Straten et al., 2000). Crop response to environmental 
conditions can vary from seconds (e.g., photosynthesis) to weeks (e.g., harvest), which makes 
optimization of the environmental conditions difficult. Growers base their decisions on their 
intimate knowledge of crop performance in response to the environment, and if possible on 
market demands. Optimal control strategies can assist growers in this. Optimal control refers 
to a control strategy that maximizes a goal function (van Straten et al., 2000). Dynamic 
modeling can play an important role in determination of the set points and crop management 
practices. This was demonstrated in the experiment described here, in which 5 teams that did 
not have physical access to the greenhouse successfully managed cucumber crops, utilizing 
different AI algorithms. 
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