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A B S T R A C T   

Accurate estimates of root zone soil moisture (RZSM) at relevant spatio-temporal scales are essential for many 
agricultural and hydrological applications. Applications of machine learning (ML) techniques to estimate root 
zone soil moisture are limited compared to commonly used process-based models based on flow and transport 
equations in the vadose zone. However, data-driven ML techniques present unique opportunities to develop 
quantitative models without having assumptions on the processes operating within the system being investi
gated. In this study, the Random Forest (RF) ensemble learning algorithm, is tested to demonstrate the capa
bilities and advantages of ML for RZSM estimation. Interpolation and extrapolation of RZSM on a daily timescale 
was carried out using RF over a small agricultural catchment from 2016 to 2018 using in situ measurements. 
Results show that RF predictions have slightly higher accuracy for interpolation and similar accuracy for 
extrapolation in comparison with RZSM simulated from a process-based model combined with data assimilation. 
RF predictions for extreme wet and dry conditions were, however, less accurate. This was inferred to be due to 
infrequent sampling of such conditions that led to poor learning in the trained RF model and to incomplete 
representation of relevant subsurface processes at the study sites in the RF covariates. Since RF does not depend 
on parameters required to estimate subsurface water flow, it is more advantageous than a process-based model in 
data-poor regions where soil hydraulic parameters are incomplete or missing, especially when the primary goal is 
only the estimation of soil moisture states.   

1. Introduction 

Root zone soil moisture (RZSM) is an important environmental 
variable that impacts hydrological processes relevant for agriculture and 
climate-related studies. It is one of the main drivers for agricultural 
productivity (Rigden et al., 2020) and serves as an indicator for crop 
water stress, which is valuable for drought monitoring (Bolten et al., 
2009). Outside the hydrological cycle, RZSM dynamics play a role in 
quantifying soil carbon fluxes (e.g. Kurc and Small, 2007). 

Accurate estimates of RZSM are necessary in order to have a better 
understanding of agricultural and environmental processes it controls. 
Direct RZSM measurements can be obtained from in situ sensors 
installed along the soil profile or at specific depths (Vereecken et al., 
2008; Dobriyal et al., 2012). Achieving distributed spatial measure
ments of RZSM can be a challenge because installation of sensors at the 
subsurface can be a tedious task and are likely to disturb the soil 

properties. It has become relatively common to extract RZSM from 
surface soil moisture (SSM), which may be in situ or satellite-derived 
(Ulaby et al., 1996), since they are more easily obtained. Satellite- 
derived SSM has the advantage of providing spatially distributed soil 
moisture while in situ measurements offer higher temporal frequency 
(second or minutes) compared to satellites, which only provide snap
shots at regular time intervals (days or weeks). 

Analytical solutions are applied in cases when direct RZSM mea
surements are lacking or insufficient. These methods are based on 
theoretical or empirical relations between environmental variables 
controlling RZSM state. Arguably, the most common approach is to 
apply process-based hydrological models which are based on conceptual 
understanding of the system (e.g. Cordova and Bras, 1981; Porporato 
et al., 2004. These models employ numerical solutions of flow and 
transport equations in unsaturated porous media (Feddes et al., 1988). 
Information on soil hydraulic properties, either measured directly or 
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from pedo-transfer functions (Schaap et al., 2001; Van Looy et al., 
2017), are required to estimate water movement across a chosen flow 
domain. It may be necessary to optimize soil hydraulic parameters, for 
instance using inverse modeling (e.g. Ritter et al., 2003), in order to 
improve model simulation accuracy. The prevailing meteorological 
conditions, as well as variables that describe vegetation growth, are 
necessary to determine the amount of water entering and exiting a given 
flow domain. In the last couple of decades, data assimilation methods 
have been applied to improve process-based model estimates (Houser 
et al., 1998; Pezij et al., 2019), which may take advantage of satellite- 
derived SSM information. 

Data driven methods to estimate RZSM include time series analysis 
(TSA) and machine learning (ML) techniques. These methods aim to 
extract knowledge by evaluating patterns or variability in that data and 
further stimulate actions that are dictated by the data. In the context of 
RZSM estimation, data-driven methods implicitly incorporate and 
evaluate all the interacting processes that produced a given RZSM state. 
TSA methods, such as the application of an exponential filter (Wagner 
et al., 1999; Albergel et al., 2008), a cumulative distribution function 
(cdf-matching, Gao et al., 2019; Zhuang et al., 2020), or transfer- 
functions (Pezij et al., 2020) primarily utilize surface soil moisture 
data to derive a functional relation with RZSM. However, calibration of 
functional parameters may be necessary each time it is applied to a 
different study area in order to obtain high accuracy. ML algorithms 
build mathematical models based on training sets and covariates to 
extract information from data. Furthermore, they are tuned to handle 
diverse and large volumes of data sets, which may be relevant for large 
scale studies or for operational (water) management. In hydrology and 
climate studies, advances in ML techniques have been applied pre
dominately for prediction and forecasting of environmental variables (e. 
g. Shiri et al., 2017; Ali et al., 2019; Kratzert et al., 2019), sensitivity or 
optimization of model parameters (e.g. Spear et al., 2020; Teweldebrhan 
et al., 2020), and uncertainty estimation (e.g. Shrestha et al., 2009; 
Kayastha et al., 2014). Application of ML in soil hydrology have also 
started to gain attention in the last couple of decades. For instance, ML 
techniques have been applied to estimate model-derived RZSM using 
Artificial Neural Networks (Kornelsen and Coulibaly, 2014) or satellite- 
derive SSM using Support Vector Machines (Ahmad et al., 2010). 
Furthermore, ML allows up- or downscaling of soil moisture obtained 
from satellite data (Srivastava et al., 2013; Zhang et al., 2017). Com
parison of ML models have been made for forecasting of soil moisture 
using values at discrete soil moisture depths (Prasad et al., 2018) or soil 
layers (Matei et al., 2017) at regional scales. Interestingly, SSM has also 

been estimated from in situ measurements of soil moisture at deeper 
layers using ML (Coopersmith et al., 2016). In a comparison study, 
Karandish and Šimnek (2016) showed that ML may provide a useful 
alternative to process-based models using limited input data. ML has 
recently been applied to optimize soil hydraulic parameters such as the 
saturated hydraulic conductivity (Araya and Ghezzehei, 2019). Shiri 
et al. (2020) showed that ML, specifically Random Forest (RF), can 
accurately simulate subsurface wetting fronts due to drip irrigation in 
agricultural areas. 

In this study, the main goal is to demonstrate the applicability of 
Random Forest (RF), an ensemble ML model, to estimate RZSM within a 
agricultural small catchment. Among the advantages of RF outlined by 
Tyralis et al. (2019) is that it produces consistent predictions and it re
duces the variance without increasing the bias of the predictions. 
Furthermore, RF was selected among the multitude of ML models 
available in order to balance prediction accuracy with interpretability of 
the results with respect to the input variables. This is facilitated by 
investigation of the variable importance list which enumerates the 
covariates with the greatest influence on RF prediction accuracy. Other 
ML models, especially deep learning methods, have succeeded in 
achieving high prediction accuracies but is still challenged by inter
pretability and ease of relating results to model covariates (Montavon 
et al., 2018; Reichstein et al., 2019). So far, there are still limited studies 
applying RF in soil hydrology, particularly in estimations of RZSM. 
Applying such a data-driven method will ensure that all the processes 
operating in the system under study are incorporated in the predictive 
RF model developed. In addition, there has been proliferation of RZSM 
in situ measurements in the last couple of decades from various soil 
moisture monitoring networks worldwide (e.g. International Soil Mois
ture Network (ISMN, Dorigo et al., 2011) which provides an excellent 
opportunity to capitalize on ML techniques. In this study, an almost 
three year long dataset of daily measurements in agricultural fields were 
used for RF modeling in two ways: 1) interpolation at randomly selected 
points within the time series and 2) extrapolation of future RZSM state 
based on past values. A comparison is then made between the RF results 
and a process-based model in order to assess the capabilities of a data- 
driven method. A pore-flow model with data assimilation via direct 
insertion of in situ measurements was applied to simulate RZSM at the 
study sites. 

2. Materials and methods 

As an overview, Random Forest (RF) was applied for interpolation 

Fig. 1. Flowchart for comparison of data-driven modeling using Random Forest and process-based modeling in Hydrus-1D combined with data assimilation.  
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and extrapolation of root zone soil moisture (RZSM) within a small 
catchment. For comparison of results, RZSM were also simulated using a 
process-based (PB) pore-flow model which was combined with data 
assimilation. For both methods, steps to optimize model (hyper) pa
rameters were applied to improve model performance and to allow 
objective comparison of the results. Briefly, a selection of 

hyperparameters were tuned for RF while the soil hydraulic parameters 
were optimized via inverse modeling for PB. Data assimilation via direct 
insertion of in situ measurements was further applied to improve PB 
model results. The succeeding sections describe in detail the datasets 
used and methods applied while a summary is shown in Fig. 1. 

2.1. Raam soil moisture network 

The Raam catchment is located in the southeastern portion of the 
Netherlands which holds mostly sandy soils. A total of 15 operational 
soil moisture stations are distributed across the whole catchment 
(Fig. 2). At each station, soil moisture and temperature sensors (Decagon 
EC-H20 5TM) were installed at 5, 10, 20, 40, and 80 cm depths and 
measurements were recorded every 15 min. The soil moisture stations 
were located in agricultural fields, which are the characteristic land 
cover type within the catchment area. The most common crop type at 
the stations is grass, followed by corn, potato, sugar beet, and other 
vegetable crops (Table S1). A more detailed description of the Raam soil 
moisture network is provided in Benninga et al. (2018). 

Measurements down to 40 cm depth were integrated over a 60 cm 
averaging depth to calculate root zone soil moisture (Fig. 3). This was 
chosen in order to have a uniform root zone across the study sites which 
have varying crop types. For grass fields, the active root zone may only 
be up to 20 cm because of its shallow rooting system while for crops such 
as corn or potato, the root zone can extend beyond 1 m. Nevertheless, 
the depth used for the analysis generally captures the active root zone 
for the crops at the study sites. Furthermore, the methods applied in this 
study could also be customized for other depths that would suitably 
represent the root zone depths. Root zone soil moisture θrz is given by: 

θrz =

∑n
j=1θjΔzj

z
(1) 

Fig. 2. Site characteristics. Top left map shows the location of the Raam catchment (red area) and soil moisture stations (black dots). The covariates for Random 
Forest are shown, including meteorological data, Leaf area index (LAI), and soil hydraulic group from BOFEK2012. The images shown are snapshots of the datasets on 
July 3, 2016, except for BOFEK2012. 

Fig. 3. Schematic diagram of installation setup at each station. Root zone soil 
moisture is calculated as the zone-weighted depth-average values based on the 
measurements and associated soil thicknesses (see Eq. (1)). For each mea
surement depth (5, 10, 20, and 40 cm), its associated soil thickness is based on 
the midway distance between two adjacent measurement points. 
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where θj (in m3 m− 3) is the volumetric water content for measurement 
depth j (cm), Δzj (cm) is the thickness of soil associated with the mea
surement depth, and z (cm) is the total averaging depth. Measurements 
from all 15 stations starting from April 2016 up to December 2018 (33 
months) were used for the analysis. The daily mean values from the 15 
min data were calculated in order to match the resolution of acquired 
meteorological datasets. Compared to the soil hydraulic parameters 

based on BOdemFysische EenhedenKaart (BOFEK2012, Wosten et al., 
2013), which is a map of soil hydro-physical properties for the 
Netherlands, root zone soil moisture calculated using Eq. (1) did not 
reach the residual water content (θr) value averaged across the study 
sites. However, root zone soil moisture were found to reach and, for 
some stations, go beyond the average saturated water content θs based 
on BOFEK2012 (Fig. 4). 

Fig. 4. Boxplots showing the distribution of root zone soil moisture (θrz) across the study sites. The average saturated (θs) and residual water contents (θr) of soils 
(from BOFEK2012) at the sites are indicated for comparison. 

Fig. 5. Schematic diagram for Random Forest (RF). Regression trees are built based on a large number of bootstrap samples. Each tree is built by splitting the datasets 
at each node using randomly selected candidate variables and ends when the stopping criterion is reached. The average estimate from the regression trees is the final 
RF prediction. Using the full conditional distribution of estimates from all the trees, prediction interval between 2.5th and 97.5th percentiles quantify the un
certainties in the RF model. 
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2.2. Random Forest regression 

Random Forest (RF) is an ensemble-learning algorithm that com
bines the concepts of decision trees and bagging (Fig. 5, Breiman, 2001). 
Decision trees (DT), either for classification or regression, partition the 
variable space using a set of hierarchical rules such that the dataset are 
grouped recursively based on similar instances. A set of covariates 
(continuous or categorical variables) are used for recursively splitting 
the values of the variable of interest, which results in multiple parent 
and child nodes that resemble a tree-like structure. Splitting at each 
node involves random selection of candidate variables from the total 
number of covariates, referred to as the mtry parameter. The DT will 
evaluate each candidate to find the optimal split that maximizes the 
‘purity’ which results in the largest decrease in the impurity at each child 
node. In this case, the estimated response variance for regression trees 
was used as a measure for impurity (Wright and Ziegler, 2015). RF 
creates diverse DTs to avoid highly correlated predictors by growing 
them from different subsets of the training data through a procedure 
called bagging. Often a large number of trees are created, and is referred 
to as the ntree parameter. Bagging, an abbreviation for ‘bootstrap ag
gregation’, is a technique for generating multiple training data by 
resampling with replacement of the original training set. This means 
that some data may be used more than once in the training, while others 
might never be used. For each bootstrap sample, a regression DT gen
erates multiple parent and child nodes until the stopping criterion is 
reached. In this case, when the value for the minimum node size (min. 
node size) parameter is achieved. After all the trees are grown, the RF 
regression predictor is the mean from all the predictions from each in
dividual tree. More detailed description of RF methods and parameters 
are given in Breiman (2001) and Hastie et al. (2009). 

Estimation of RZSM using RF was implemented in two ways: 1) 
interpolation of randomly selected points within the whole time series 
data, and 2) extrapolation of ‘future’ RZSM based on ‘past’ values. For 
each method, a single RF model was built based on the combined 
measurements from all 15 soil moisture stations in the Raam. For RF 
interpolation, random samples were obtained from the daily time series 
data at each station. For RF extrapolation, the length of the time series at 
each station was first split based on the sampling proportion used. The 
first part of the time series was selected for training and constitutes the 
“past” data, while the remaining was used for model validation and 
constitutes the “future” data. Proportions of 50% up to 80% (with in
crements of 10%) of the daily time series measurements at each station 
were used to generate the samples from each station. These were then 
combined into one training set for building each RF model. The value of 
the ntree parameter was made proportional to the samples in each 
training set, and was set to a tenth of the amount of each training set. 

This corresponded to 600, 700, 900 and 1000 trees for interpolation and 
600, 800, 900, 1100 trees extrapolation for each training set (50%, 60%, 
70%, 80% of total measurements). Optimization of RF models were 
carried out by tuning mtry and min. node size parameters for each 
training set proportion tested. 

2.2.1. Hyperparameter optimization 
The RF model was tuned in order to select the combination of the 

hyperparameters mtry and min. node size that would yield the highest 
accuracy. Hyperparameters are parameters that need to be set prior to 
training a model and defines the configuration of the regression trees. 
Their values directly control the behaviour of the learning algorithm and 
have a significant effect on the performance of the model being trained. 
Other RF model parameters that are not tuned will simply ‘learn’ on 
their own during model training. The values for mtry will dictate split
ting of RZSM values at the nodes of the regression tree while the mini
mum number of elements per node (min. node size) will serve as a 
stopping criterion in building the regression trees. We tested values of 
mtry from 1 to 25 and min. node size of 5,10, 20, and 30. A total of 100 
combinations of hyperparameters (mtry and min. node size) were tested 
for each of the four training set proportions (50% to 80%) in the tuning 
phase. A 10-fold cross-validation (CV) scheme was applied to the 
training set in tuning the hyperparameters. This meant that the training 
set was split and for each k-fold, a 10th of the training set served as the 
test sample while the remaining is used for creating the regression trees. 
For each k-fold, the test sample contains randomly chosen points from 
the total training set that has not yet been included as a test sample 
before in previous folds. The mean root mean square error (RMSE) 
computed for each hyperparameter combination in the 10-fold CV 
scheme were compared to assess model performance (i.e. 100 RMSE’s). 
Aside from having a separate validation set, a CV scheme is a preventive 
measure for model overfitting (Lever et al., 2016). 

RMSE’s were examined further to select the final RF model as the one 
with highest accuracy (‘best model’) might also be computationally 
expensive. Therefore, we compared the model with the best RMSE to 
another one that has a faster computation time but comparable RMSE as 
a ‘tradeoff’ to evaluate a simpler model without sacrificing accuracy. 
RMSE’s were first ranked from lowest to highest and then a pairwise 
elimination process was applied by evaluating the improvement in 
RMSE. The final ‘tradeoff’ model was selected once a < 1% improve
ment in RMSE was found. 

2.2.2. Random Forest covariates 
Covariates or the set of predictor variables used to build RF regres

sion trees include information on meteorological conditions, soil prop
erties, land cover and vegetation characteristics at each site (Fig. 2 and 

Table 1 
Covariates used for training the Random Forest model.  

Meteorological Vegetation Soil 

Symbol Description Symbol Description Symbol Description 
RG Ave. Wind speed LAI Leaf Area Index VWC5 Soil moisture at 5 cm 
Q Radiation LAI_lag 1-day lag VWC_lag 1-day lag 
rd Rainfall Crop.grass 

Crop type (dummy) 

VWC_lag3 3-day lag 
SQ Sun Hours Crop.corn VWC_lag40 40-day lag 
TN Min. Temp Crop.potato BOFEK.305 

BOFEK2012  
codes (dummy) 

TX Max. Temp Crop.sugarbeet BOFEK.304 
UG Relative Humidity Crop.wheat BOFEK.311 

EV24 Evapo- transpiration Crop.onion BOFEK.409 
RG_lag 

1-day lag 

Crop.fennel BOFEK.317 
Q_lag Crop.beans BOFEK.309 
rd_lag Crop.lettuce BOFEK.312 
SQ_lag     
TN_lag   
TX_lag   
UG_lag   
E24_lag   

DOY Day of year    
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Table 1). Daily meteorological data from 36 KNMI (Royal Dutch Mete
orological Institute) stations distributed within the entire Netherlands 
were interpolated to produce a 5 x 5 km gridded image in order to 
extract daily values at the location of each soil moisture station. Spatial 
estimates of the values at each KNMI station were obtained using a Thin 
Plate Splines interpolation (Sluiter, 2012). Temperature, wind speed, 
relative humidity, sun hours, potential evapotranspiration and radiation 
were selected among the total meteorological datasets available, as 
these were also the input variables in the process-based model applied in 
this study. They are, therefore, indicative of surface processes that in
fluence the RZSM state. Gridded values of daily rainfall measurements 
with a 1 x 1 km pixel size were obtained directly from KNMI. Ordinary 
kriging was applied to around 300 measurement locations of rain gauges 
distributed across the Netherlands to produce the rainfall maps (Soe
nario et al., 2010). Leaf area index (LAI) from an 8-day MODIS com
posite with 500 m resolution was used to capture vegetation 
characteristics over the study sites. The values for days in between LAI 
measurements were linearly interpolated to obtain daily estimates. Both 
crop type and soil hydro-physical groups were also included as cate
gorical covariates. The former is based on field observations while the 
latter was obtained from BOFEK2012. Fig. 2 indicates the BOFEK2012 
codes for the soils within the Raam network only. Further description of 
each code is given in Wosten et al. (2013). These two categorical vari
ables are re-coded into dummy or indicator variables for the RF 
regression. The categorical variables are transformed into a dichoto
mous (1 or 0) representation of its presence or absence for each data 
point. For example, the categorical variable “Crop” with a type “Corn”, a 
value of 1 is assigned for measurements having the said crop, and 0 for 
measurements with another crop type. 

The current soil moisture state is inevitably affected by its past values 
and past meteorological conditions. The so-called soil moisture memory 
(or persistence) has been widely investigated because of its importance 
in climate-related studies (e.g. Koster and Suarez, 2001). Therefore, 
lagged values were also calculated for meteorological and soil moisture 
datasets in order to incorporate past information in the RF model. This 
may be useful especially for forecasting where only past information is 
available. For surface soil moisture and meteorological datasets, values 
with a lag of 1 day were obtained. Additional lagged surface soil mois
ture values of 3 and 40 days were also calculated based on findings of 
soil moisture memory studies at global (McColl et al., 2017) and con
tinental (European, Orth and Seneviratne, 2012) scale, respectively. A 
total of 39 covariates were used for the RF models (Table 1). 

2.2.3. RF prediction intervals 
Uncertainties in RF estimates are defined based on the 95% predic

tion interval (PI) obtained using quantile regression forest (qRF, Fig. 5). 
The idea behind qRF is that instead of recording the mean value of 
response variables from the trees, all responses for each tree are recor
ded (Meinshausen, 2006). This allows not only for the estimation of the 
conditional mean but also a good approximation of the full conditional 
distribution. PIs were defined using quantile regression based on the 
chosen quantiles (α’s). For a given random variable, the conditional 
distribution function F(y|X = x) is given by the probability that, for X =

x,Y is smaller than y. For a continuous distribution function, the 
α-quantile (Qα(x)) specifies a value such that the probability of x being 
smaller than Qα(x) is, for a given random variable X = x, exactly equal 
to α. A 95% PI (I95) for the RZSM estimates is based on 2.5% and 97.5% 
quantiles ([Q.025(x),Q.975(x)]). 

2.2.4. Variable importance 
Variable importance from the RF models determined using a per

mutation method (Wright and Ziegler, 2015). Rankings for covariates 
were based on the mean decrease in model accuracy after shuffling or 
randomly permuting the values of a predictor Xi, where i = 1…n for 
each of the covariates used. By permuting the values of Xi, its association 
with the response variable Y (i.e. RZSM) is broken. Therefore, if the 

predictor Xi is associated with the response Y, a substantial decrease in 
accuracy is expected after prediction using the permuted and remaining 
non-permuted variables. 

2.3. Process-based modelling with data assimilation 

A soil water balance model was carried out to simulate one- 
dimensional daily RZSM at the study sites. In a water balance model, 
mass and energy fluxes over time and/or space are calculated to esti
mate soil moisture along the profile. We assumed that soil water 
movement would be restricted along the vertical dimension since the 
study sites are generally characterized by homogeneously textured soils 
and the terrain at the study sites is generally flat [e.g.][for modeling 
unsaturated flow in the Netherlands] (De Laat, 1980). The vertical water 
flow in unsaturated porous media is solved numerically using Richard’s 
equation: 

∂θ
∂t

=
∂

∂Z

[

K(h)
(

∂h
∂Z

+ 1
)]

− S (2)  

where t is the time (days), θ is the volumetric water content (cm3 cm− 3), 
h is the soil water pressure head (cm), Z is the spatial coordinate (cm) 
defined as positive upward, K(h) is the unsaturated hydraulic conduc
tivity function (cm d− 1) and S is a sink term representing water uptake 
by plant roots (cm d− 1). K(h) is derived from a water retention curve, 
given by van Genuchten (1980): 

θ(h) =
θs − θr

[1 + (αh)n
]
m, h⩽0 (3)  

K(h) = KsSl
e(1 − (1 − Sl/m

e )
m
)

2

m = 1 −
1
n

Se =
θ − θr

θs − θr

(4)  

where θr and θs denote residual and saturated volumetric water contents 
(cm3 cm− 3), respectively; α (cm− 1) and n (–) are fitting parameters of 
soil water characteristic curve; Ks is the saturated hydraulic conductivity 
(cm d− 1); l (–) is the pore connectivity parameter; and Se (–) is the 
relative saturation. 

2.3.1. Inverse modeling for parameter optimization 
The soil water balance was carried in two parts using Hydrus-1D 

software (Simunek et al., 2005). The first part involved optimization 
of soil parameters describing the shape of the water retention curve (θs,

θr,α,n) and hydraulic conductivity curve (Ks, l) using inverse modeling. 
We initially carried out simulations using soil hydraulic parameters 
available from (BOFEK2012, Wosten et al., 2013), but found the results 
to be unsatisfactory. Optimization of soil hydraulic parameters was 
based on Marquardt–Levenberg parameter estimation method (Mar
quardt, 1963) as implemented in Hydrus-1D, using soil water content 
measurements. The soil domain considered is 1 m to cover depths 
similar to the measurements stations. A variable atmospheric condition, 
based on rainfall and evaportranspiration, was set as the upper bound
ary conditions while a free drainage condition was set as the lower 
boundary conditions. Daily meteorological datasets from KNMI, as 
described in Section 2.2.2, were used for the upper boundary conditions. 
Initial conditions for the inverse modeling were set to the pressure head 
at field capacity with the assumption that the soil is close to saturation 
the start of a year when the simulations commenced. In addition, sim
ulations from January until April, just before the start of the in situ 
measurements, were part of the spin-up period for the model. A single 
porosity van Genuchten – Mualem model without hysteresis was used 
for the simulation. The flow domain was subdivided based on the 
number of soil layers present in BOFEK2012 (Table S2). For instance, 
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station RM02 was subdivided into two layers while RM15 has only one 
layer in the flow domain. Simunek et al. (2005) provides more detailed 
information regarding the theory, methods and default parameters in 
H1D software. Subsequently, the second part was the forward modeling 
to estimate soil water content using the optimized set of soil hydraulic 
parameters. Observation points within the flow domain were selected at 
the same depths as the in situ measurement points. Furthermore, depth- 
averaged zone-weighted root zone soil moisture was calculated in a 
similar manner as the in situ values. 

2.3.2. Sequential data assimilation 
Data-assimilation is an often applied method to improve the accu

racy of hydrological modelling using up-to-date measurements. The goal 
of data assimilation is to combine measurements and modelling efforts 
into an optimal state estimate of the variable of interest (Reichle, 2008). 
The difference between machine-learning and data-assimilation is that 
the latter depends on a dynamical model of the system, in this case H1D. 
To show the added-value of the machine-learning method, we show an 
application of data-assimilation with the modelling instrument used in 
this study. We recognize that data-assimilation should use information 
on uncertainties in both observations and modelling efforts, for which 
sequential methods such as the Ensemble Kalman Filter can be used 
(Evensen, 2009; Houtekamer and Mitchell, 1998; Pezij et al., 2019). 
However, in this study we only focus on a simple data-assimilation 
method, which is relatively easy implemented. Houser et al. (1998) 
and Heathman et al. (2003) showed the value of direction insertion for 
soil moisture modelling. Therefore, we applied a direct insertion data- 
assimilation method to update the soil moisture state. 

We applied direction insertion by replacing the model state by the in 
situ measurements for every 20-day interval over the whole simulation 

period which covered two years. Measurements along the entire soil 
profile were used. At the end of each 20-day period, the model state was 
replaced by the soil profile provided by the in situ measurements. The 
model was subsequently run for the next 20-day period. The said 
assimilation interval was tested as it approximated the revisit times of 
some microwave satellites (e.g. Radarsat-2 or ALOS PALSAR-2) which 
have been assimilated into process-based models in the past. The days 
when data were assimilated were excluded for model evaluation. 

3. Results and discussions 

3.1. Random Forest model tuning 

The RF models generated using different training sets indicate that 
the highest and lowest RMSEs are based on 50% and 80% of the total 
data for interpolation and 80% and 60% of the total data for extrapo
lation (Fig. 6a and b). However, a 50% training set performed relatively 
well in both cases based on in very minimal decrease in the RF model 
performance; RMSEs are only 0.002 m3 m− 3 and 0.0003 m3 m− 3 higher 
than those obtained using 80% and 60% training proportion for inter
polation and extrapolation, respectively. Furthermore, the runtime is 
fastest with a 50% training set, decreasing the computation time of the 
best performing model by at least 44% (e.g. from 25 to 14 min for 
extrapolation). This aspect is of importance for machine learning tech
niques, especially as the volume of datasets become larger. Therefore, 
we selected the RF model from a 50% training set for further evaluation 
of the hyperparameter tuning results. Using the 50% training automat
ically meant that ntree = 600 was implemented in the RF models, for 
both interpolation and extrapolation. 

A comparison of the results obtained from the tuning process using 

Fig. 6. Accuracy metrics and RF model specifications for different training sets tested.  
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50% training set is given in Fig. 7. The RMSEs are observed to expo
nentially decrease with increasing mtry values, which is combined with a 
consistent increase in accuracy with smaller min. node size (Fig. 7a and 
e). For both interpolation and extrapolation, a large mtry and a small 
min. node size resulted in the best RF model based on RMSEs (Fig. 7c and 
g). This is somewhat expected because the homogeneity of elements at 
each node is higher when the min. node size value is kept smaller. In 
addition, the largest mtry costs the most computing time, as expected. In 
contrast, the ‘tradeoff’ model with a smaller mtry value halves the 
computing time (from 25 to 10 s.) but only has a slightly lower RMSE 

Fig. 7 (bottom panel). To balance accuracy and computation time, the 
hyperparameters from the ‘tradeoff’ model were used further for model 
evaluation. 

3.1.1. Variable importance 
Based on Fig. 8, surface soil moisture (SSM), soil properties and land 

cover types have larger impacts on RF model accuracy compared to 
meteorological variables. Lagged soil moisture values appear higher on 
the list of important variables (VI) in the RF model. For both interpo
lation and extrapolation, SSM with lags of up to 40 days are still highly 

Fig. 7. Random Forest model tuning results using 50% training proportion. a&c: RMSE’s for all hyperparameter combinations. b&f: model runtimes. The ‘best’ (red 
dot) and ‘tradeoff’ (blue dot) models are highlighted. Scatterplots (c,d,g,h) with corresponding accuracy metrics show the differences between the ‘best’ and ‘tradeoff’ 
models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Variable importance from the RF models.Only the top 20 VI’s are listed for presentation purposes. The description of the variables are provided in Table 1.  
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relevant in estimating RZSM. Temperature appears to have the most 
important effects on RF model performance among all the meteorolog
ical covariates included. Since soil moisture is directly influenced by 
precipitation, it is surprising that current and antecedent rainfall did not 
rank higher in the VI list. Rather, the impact of precipitation on the RF 
model may be included within the SSM variables (VWC5 and 
VWC5_lag), which ranked highest in the VI list. Within the Raam 
catchment, meteorological conditions among the Raam stations were 
found to be similar due to its small areal coverage (Fig. 9). Since RF 
capitalizes differences or unique values in the covariates to separate 
RZSM into groups in building the regression trees, meteorological var
iables over the stations may have been less able to differentiate between 
RZSM among different stations based on the single RF model trained (i.e. 
one each for interpolation and extrapolation). We hypothesize that the 
influence of meteorological conditions may also be encapsulated within 
the DOY variable, which represents effects of seasonal changes on RZSM. 
The combination of DOY and temperature may have been adequate for 
the RF models to estimated RZSM in the Raam catchment. The results 
obtained, however, do not imply that meteorological variables are not 
important controls for RZSM. In this case, meteorological variability 
over the Raam catchment were secondary to variability in crop types 
and soil characteristics among the stations for estimating RZSM using 
the single RF model developed. Perhaps representing all the meteoro
logical variables into one (or two) variables via dimensionality reduc
tion methods (e.g. Principal Component Reddy et al., 2020), allows for 
their impact to be interpreted collectively and may potentially result in a 
different VI ranking for a consequent RF model. 

3.2. Root zone soil moisture estimation in the Raam catchment 

The RF model performance for stations with the best and worst ac
curacy obtained from RZSM interpolation and extrapolation are given in 
Fig. 10. Results for all stations are given in the supplementary (Fig. S1 & 
Fig. S2). RF interpolations (Fig. 10a and b) for RZSM have high accuracy 
in comparison to RF extrapolations (Fig. 10c and d). However, the soil 
moisture dynamics (i.e. an increase or decrease) are still captured in the 
extrapolated values, even though soil moisture state may be over- or 
underestimated. The accuracy of Hydrus-1D (H1D) simulations are 
generally lower than RF interpolations but are comparable with RF ex
trapolations (Table 2). For instance, the values from H1D simulations 
are closer to in situ values at the station with the worst performing RF 
extrapolations (RM02). 

The results from RF generally have high R2 (> 0.75) and low RMSEs 
(> 0.06 m3 m− 3), indicating the capability of a data-driven method to 
accurately estimate RZSM. They are comparable, or may even be better 
than those from H1D simulations, which further adds weight to the 
utility of the RF model applied. Differences in accuracy between RF 
interpolation and extrapolation could be related to the impact of the 
training samples used to build each respective RF model. Higher accu
racy for RF interpolations have resulted from inclusion of most, if not all, 
of the possible RZSM conditions within the Raam catchment using the 
randomly selected training set. This may not be the case for the RF 
extrapolation model trained, which consequently contributed to lower 
accuracy in the validation set. The ‘past’ data used to build the RF 
extrapolation model may exclude some of the meteorological or soil 
moisture conditions possible in the Raam catchment. Therefore, ‘future’ 
soil moisture conditions that are not represented in the training set are 
‘unseen’ or ‘foreign’ values to the RF model, and are more likely to be 

Fig. 9. Comparison of values of temporally varying covariates among the different stations. The description of the variables are given in Table 1.  
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Fig. 10. Time series plots of Random Foredt (RF) estimates (blue +) for stations with the lowest (a and c) and highest (b and d) RMSEs, and corresponding prediction 
intervals (blue bands). H1D simulations with data assimilation are plotted as brown dotted lines. Scatteplots and accuracy metrics (right) compare model vs. in situ 
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Accuracy metrics for RF and Hydrus-1 (H1D). The range of values encountered from all 15 stations in the Raam network are reported. Except for the unitless R2, the 
metrics are expressed in m3 m− 3.   

Interpolation Extrapolation 

RF H1D RF H1D 

RMSE 0.0097–0.0313 0.0185–0.0507 0.0168–0.0621 0.0201–0.0544 
Bias − 0.0128–0.0178 − 0.0204–0.0259 − 0.0235–0.0526 − 0.0232–0.0219 

Unb. RMSE 0.0095–0.0263 0.0175–0.0506 0.0167–0.0422 0.0192–0.0542 
R2  0.7985–0.9730 0.6829–0.8652 0.6821–0.9611 0.4030–0.8443  
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Fig. 11. Hydrus-1D simulations at the stations with the lowest (top) and highest (bottom) RMSE’s based on soil hydraulic parameters from BOFEK2012 (yellow). 
Results using optimized soil hydraulic parameters (green) as well as those from data assimilation (DA) via direct insertion of in situ measurements (red) are plotted 
for comparison. Black dots represent data assimilated at every 20-day sampling interval. Scatteplots and accuracy metrics (right) compare model vs. in situ values. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Root zone soil moisture predictions from RF and H1D. a&f: Scatterplots of predicted vs. in situ root zone soil moisture. b&g: Residual scatter plots based on 
a&f. Boxplot showing the distribution of residuals for all soil moisture conditions (c&h), extreme dry (d&i), and extreme wet (e&j) conditions. Extreme conditions are 
based on the 2.5th and 97.5th percentiles (≤ 0.12 m3 m− 3 and ⩾0.38 m3 m− 3) of the total dataset distribution, respectively. 
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poorly estimated. Poor extrapolation of values outside the training set is 
a known drawback of RF and other similar ML techniques (e.g. Hengl 
et al., 2018). This can be resolved by inclusion of the full suite of soil 
moisture conditions and corresponding covariates in the training data
set. However, this may not be always possible from in situ measurements 
since not all soil moisture conditions are encountered in the field within 
a short time span (<5 years). Remote sensing is seen as an additional 
source of SSM or RZSM information provided that the spatio-temporal 
resolutions from satellite images matches the intended scale of study. 
Another potential complementary dataset are those simulated by 
process-based models, especially for extreme meteorological conditions 
that are not encountered during field measurements. Inclusion of 
extreme meteorological conditions, modeled by process-based models, 
may potentially resolve the range of soil moisture values missing from in 
situ measurements alone. However, process-based model outputs should 
also demonstrate acceptable to high accuracy levels in order to be used 
as inputs. 

For the H1D simulations, data assimilation (DA) by direct insertion 
(DI) of in situ measurements improved the root zone soil moisture es
timates. H1D simulations at the stations with the highest and lowest 
RMSE’s both show improvement after DA (Fig. 11). Simulations based 
on soil hydraulic parameters from BOFEK generally underestimated 
RZSM values for all the study sites. A substantial increase in model ac
curacy is obtained after optimizing the hydraulic parameters. Further 
improvement in the simulation accuracy were obtained after applying 
DA. Using the DI approach, model estimates are pushed towards the 
observations. However, for some stations, a large spike or drop in RZSM 
estimates are observed immediately after data was assimilated into the 
simulation. The model reverts back to the original state quite quickly, 
which could either imply a suboptimal DA sampling interval or that the 
model physics and/or parameters may not be completely adequate in 
explaining the measurements. Such effects can be mitigated by applying 
other types of DA (e.g. Ensemble Kalman Filter), which allow continuous 
estimation of model uncertainties. However, despite some limitations of 
the DI method selected, the primary goal was to demonstrate the 
improvement in model accuracy, and therefore, other (more complex) 
DA methods were not further pursued. 

3.3. Model residuals for extreme soil moisture conditions 

Residuals of the model estimates against in situ measurements from 
all stations in the Raam were further assessed to compare the model 
performance for extreme RZSM conditions. Accurate RZSM estimates of 
extremes conditions are vital in understanding the environmental im
pacts of climate or extreme climatology. In contrast to a single overall 
metric provided by RMSE or R2, residuals allow investigation of specific 
RZSM values that are poorly estimated using the two methods applied. 
The results from the residual analysis generally reflect the accuracy 
obtained for RF (both inter- and extrapolation) and H1D, as described in 
the previous section. The range of residual values are smaller for RF 
interpolation and higher for RF extrapolation (Fig. 12c and h). However, 
based on the residuals, less accurate estimates are found towards drier 
and wetter soil moisture values from both RF and H1D. 

The variability in the residuals for extreme conditions representing 
the 2.5th and 97.5th percentiles (equivalent to ≤ 0.08 m3 m− 3 and ⩾ 
0.38 m3 m− 3) from the total dataset distribution are given as boxplots in 
Fig. 12(d,e,i,j). For the two RF models, extreme dry conditions tend to be 
overestimated while extreme wet conditions tend to be underestimated, 
based on larger than zero residuals for the former and smaller than zero 
residuals in the latter. The degree of over- or underestimation is larger 
for RF extrapolation than RF interpolation. Furthermore, H1D simula
tions have smaller residuals than RF for extreme dry conditions but have 
worse estimates for extreme wet conditions. 

Since extreme conditions represent only a small proportion of the 
total dataset, the probability of being excluded from the bootstrap 
samples used for building the regression trees is higher than other 

frequently encountered soil moisture values. This may have resulted to 
poor learning of the RF model, which is clearly demonstrated in the large 
residuals for RF extrapolations of extreme dry conditions. RF extrapo
lations, with a median of 0.05 m3 m− 3, mostly overestimated extremely 
dry conditions and are worse than those from H1D simulations which 
had a median close to zero. 

Aside from the impact of the frequency of extreme conditions to the 
bootstrap samples, large residuals obtained for RF extrapolations and 
H1D (Fig. 12d,e, i, j) may be related to the covariates used in the former 
and the type of flow model applied in the latter. Since only a pore-flow 
model was applied for simulation root zone soil moisture using H1D, the 
impact of preferential flow was excluded in the analysis. Preferential 
flow paths generated by biotic activity (plant roots or animals) are likely 
to be present at the study sites. However, additional model parameters 
for incorporating preferential flow are not readily available for the study 
sites and would require separate investigation. Arguably, pore-flow 
models are still most widely implemented for practical applications of 
process-based models. Migration to a framework that routinely in
corporates preferential flow might be necessary for modelling at spa
tial–temporal scales where its impact are substantial. Similarly, 
covariates used in RF also dominantly reflect processes that are impor
tant for simulating pore-flow. As mentioned in Section 2.2.2, they were 
chosen based on the knowledge that they are inputs for the process- 
based model. Underestimation of the two RF models for extreme wet 
conditions indicates that the covariates selected may have been insuf
ficient to achieve higher accuracy for those conditions. Addition of 
covariates that directly represent or indicate the likelihood of occur
rence of preferential flow paths in the soil could potentially be beneficial 
for the RF model. However, deriving such covariates remain elusive 
since there are still theoretical and technological bottlenecks in under
standing preferential flows in soils (Guo and Lin, 2018) that hamper 
accurate quantification and representation in spatio-temporal maps with 
resolutions suitable in this study. 

3.4. Utility of data-driven methods for RZSM estimation 

Comparison for the results from RF and H1D show that both methods 
are equally able to accurately estimate RZSM, although they operate 
differently. On the one hand, process-based models determine the rate of 
water movement along the soil profile which always require soil hy
draulic properties. One the other hand, ML methods such as RF performs 
focus on patterns that allow hierarchical splitting of the dataset using 
suitable covariates. For both methods, techniques are available in order 
to optimize and improve naively implemented models that can elevate 
accuracy to acceptable levels. The question of utility for different sce
narios or applications therefore arises. In other words, what are the 
advantages/disadvantages of one over the other, and how does this 
affect model selection for a certain application? For RF, one the of the 
advantages of a data-driven method is its ability to create a single model 
that will fit very large datasets without any assumption on the system 
dynamics. An RF approach may be attractive for areas with limited in
formation on soil hydraulic properties because it can be applied using 
easily obtained meteorological and satellite-derived variables. Process- 
based models maybe applied over large areas in a spatially distributed 
manner but they need to explicitly account for heterogeneity in soil 
properties by modifying hydraulic parameters and/or the type of flow 
mechanisms expected for different parts of a study area. One common 
supplementary analysis for process-based models is to apply pedo- 
transfer functions to estimate soil hydraulic parameters from 
commonly measured soil properties such as texture and organic matter 
content. RF, however, circumvents the need to carry out this interme
diate and supplementary step by not requiring prior assumptions on the 
system dynamics, thus not anchoring its estimates on soil hydraulic 
properties. For this study, another difference between the two models 
applied is the use of SSM values in developing the RF model. Although 
theoretically, RF could be carried out excluding SSM, the results from 
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the variable importance list show that SSM is relevant for achieving 
good model performance. Satelite-derived SSM is a good alternative for 
the RF model in cases where in situ measurements are insufficient. 
Lastly, high RF accuracy for prediction of soil moisture values further 
opens opportunities for filling data gaps in highly non-linear time-series 
datasets. 

The increasing amount of available soil moisture measurements 
globally could be a resource for expanding the application of data-driven 
methods in soil hydrology. Similar to what is carried out in this study, 
creation of a single model from numerous soil moisture networks could 
potentially allow for operational RZSM prediction or forecasting at 
different spatio-temporal scales. In situations where the primary goal is 
to determine the soil moisture state, RF is a good approach as it can be 
applied based on accessible surficial datasets. However, it is not capable 
of determining the dominant processes that control the soil moisture 
state, although a hint may be provided in the important variables list 
identified by the RF model. The impact of certain processes on soil 
moisture state may be better analyzed using a process-based model. The 
context in which each method may be the better option is summarized in 
Fig. 13. 

4. Conclusions 

In this study, we demonstrated the capabilities of a data-driven 
method using Random Forest for estimating root zone soil moisture 
with high accuracy, similar to process-based models. It may be advan
tageous to apply a Random forest framework for areas with limited in
formation on soil hydraulic properties, and may circumvent the need to 
apply pedo-transfer functions. Increasing availability of soil moisture 
datasets,from in situ measurements worldwide and from satellites, 
provide opportunities in data-driven methods for large scale studies or 
operational (water) management. The results from the Random forest 
model does not explicitly elaborate on process controlling soil moisture 
state and may suffer from poor extrapolation results. It does, however, 
provide the important variables influencing the prediction accuracy 
which already hints at factors controlling soil moisture variability. 
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