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A B S T R A C T   

Near infrared (NIR) spectroscopy is widely used for non-destructive prediction of fruit traits. Common traits such 
as dry matter (DM) and soluble solids contents (SSC) can be predicted with reliable accuracy. However, the main 
problem with NIR spectroscopy is that a model developed on one batch may not perform very well when tested 
on other batches. Reasons for that are the physical, chemical and environmental differences between the ex-
periments performed in different batches. To deal with these issues, approaches such as variables selection, 
dynamic orthogonal projection (DOP) and transfer component analysis (TCA) can be used. However, the tech-
niques are known but it is rarely possible for a new user or non-specialist to implement them in the practical 
situations. To overcome this limitation, for the first time, a graphical user interface-based toolbox (FRUITNIR- 
GUI) for basic chemometric data processing (regression and variable selection) is developed and presented. The 
GUI allows performing model adaption and maintenance in the context of multi-batch NIR spectroscopic ex-
periments related to fruit. Furthermore, a case-study demonstrating its effectiveness in correcting for seasonality 
when predicting DM in apples is presented. The toolbox provides a push-button approach to build chemometric 
models of varying complexity for the characterization of fruit quality. Moreover, approaches such as variable 
selection and batch correction with DOP and TCA can improve the model performances on new batches. 
FRUITNIR-GUI can be freely downloaded at https://github.com/puneetmishra2/FRUITNIR and run using the 
password “welovenirs” (without quotation marks).   

1. Introduction 

Near-infrared (NIR) spectroscopy is the most popular non- 
destructive sensing approach for rapid assessment of fruit properties 
(Nicolai et al., 2007; Sun et al., 2020). Indeed, NIR spectroscopy is based 
on the vibrational combinations and overtones of several fundamental 
bonds such as OH, NH and CH which can be correlated to fruit properties 
(Mishra et al., 2017, 2020a). Among the various properties, DM and SSC 
are widely explored for deciding on optimum harvest dates and in fruit 
sorting lines (Mishra et al., 2021; Sun et al., 2020; Walsh et al., 2020a). 

NIR spectroscopy is widely used for the estimation of fruit properties; 
however, a major challenge with the technique is related to the 

inaccuracy of models when a relevant variability related to batch effects 
is present in the data (Nicolai et al., 2007; Sun et al., 2020). Indeed, NIR 
users often complain that the models do not perform well when used on 
data collected on fruit harvested in a different season, that a new in-
strument may require a new calibration or that temperature affects the 
predictions. In the domain of NIR spectroscopy, these problems are well 
known and can arise because of a wide range of physical, chemical and 
environmental factors (Zeaiter et al., 2006). Differences in the spectro-
scopic signatures can also derive from instrumental characteristics, such 
as temperature variations due to long use of the infrared light source or 
degradation in sensor detectivity. Approaches such as variable selection, 
batch effect correction with techniques such as dynamic orthogonal 
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projection (DOP) (Zeaiter et al., 2006) and transfer component analysis 
(TCA) (Pan et al., 2011) can improve the predictive performances of 
models when used on a new batch (Mishra et al., 2020b). 

However, here it should be stressed that, although several ap-
proaches to correct for the differences between the batches are available 
(Mishra et al., 2020b), it is rarely possible for a new user or 
non-specialist to implement these techniques in practical situations. 
Indeed, several scientific toolboxes are freely available for the chemo-
metric analysis of multivariate data (Daszykowski et al., 2007; Mishra 
et al., 2020c; Mobaraki and Amigo, 2018), but none of them are capable 
to cope with the challenges related to batch effects when characterizing 
fruit quality. To deal with this issue, the present work provides a 
graphical user interface-based toolbox (FRUITNIR-GUI) for basic che-
mometric processing (regression and variable selection), with the pos-
sibility of performing model adaption and maintenance, so as to be 
applicable to multi-batch NIR spectroscopic experiments related to fresh 
fruit. Furthermore, a case-study is presented demonstrating its effec-
tiveness in correcting for seasonality when predicting DM in apples. 

2. Material and methods 

2.1. Software description 

The FRUITNIR-GUI was built utilising the application builder in 
MATLAB version 2018b (The Mathworks, Natick, MA, USA). All the 
functions included in the toolbox are either built-in in the programming 
environment or codes developed in-house. The application can be 
downloaded and installed in MATLAB (preferred versions: 2018b or 
more recent), can be run through the ‘.mlapp’ files in the MATLAB 
command line or can be used as a stand-alone executable. If users do not 
have a MATLAB version recent enough (from 2018b onwards), it is 
recommended to install the free MATLAB runtime tool and run the app 
as standalone. All the executables and MATLAB functions can be 
downloaded from (https://github.com/puneetmishra2/FRUITNIR). In 
the GitHub repository, the standalone toolbox executable files can be 
downloaded as ‘FRUITNIR.zip’(https://github.com/puneetmishra2/ 
FRUITNIR/raw/master/FRUITNIR.zip) and the function for running 
the tools in command line as ‘Fruitnir_functions.zip’. The dataset corre-
sponding to the case-study discussed in this article can be obtained from 
the publisher of original data set (Teh et al., 2020). All the files are 
available at the link (https://github.com/puneetmishra2/FRUITNIR). 
To run the toolbox from the command line, users should use the toolbox 
folder as the current folder and type T1 on the command line, so to start 
the main graphical user interface. The users should input the password: 
‘welovenirs’ (without quote marks) and click run. Then, users can load 
data and run the analysis. The GUI supports. csv, .xlsx and. mat data 
formats. A summary of the software architecture is presented in Fig. 1. 

The toolbox has options for loading data, three levels of pre-processing, 
i.e. smoothing, scatter correction and normalisation, and differentiation. 
Additionally, the toolbox has options for partial least-squares (PLS) 
regression, covariate selection (CovSel) for variable selection, model 
maintenance by dynamic orthogonal projections (DOP) and domain 
adaption with transfer component analysis (TCA). For performance 
comparison of models two different statistical parameters are integrated 
in the GUI i.e. coefficient of determination of prediction (R2

P) (Eq. 1), 
and the root mean squared error of prediction error (RMSEP) (Eq. 2). 

R2
P = r(y, ŷ)2 (1)  

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (Y − Ŷ )2

n

√

(2)  

Where, r is the correlation coefficient, Y is the expected value, Ŷ is the 
predicted values and n is the total number of samples. 

2.2. Dataset for demonstrating the use of FRUITNIR-GUI 

The demonstration of the GUI was performed on a desktop computer 
equipped with a 3.60 GHz Intel® Xeon® W-2133 processor (Intel Cor-
poration, Santa Clara, CA) and 64 GB RAM, running Microsoft Windows 
10 operating system (Microsoft Inc., Redmond, WA) at 64-bit and 
MATLAB 2018b (The Mathworks, Natick, MA). To demonstrate the 
functionality of the GUI, a dataset related to the prediction of DM in 
apples harvested in two different seasons was used (Teh et al., 2020). As 
explained in the original work (Teh et al., 2020), the NIR and DM 
measurements were carried out in 2015 and 2016 and involved assess-
ment of 2252 fruits from 58 accessions at three orchard sites of Wash-
ington State University apple breeding program (WABP). The 58 
accessions included 34 WABP apple selections and five commercial 
cultivars (i.e., Cripps Pink, Fuji, Gala, Golden Delicious and Honeycrisp). 
As explained in the original work (Teh et al., 2020), fruits were stored at 
2 ◦C for two months. After storage, the samples were stabilized for a 
week at room temperature (25 ◦C) and five apples were randomly 
selected for NIR measurements. NIR spectra were acquired using F-750 
Produce Quality Meter (Felix Instruments, Camas, WA, USA). As 
explained in the original work (Teh et al., 2020), the DM measurements 
were done by sampling and dehydrating a cylindrical core in a food 
dehydrator. More specific details on the dataset are summarized in 
Table 1. In this study, since the aim of the methods implemented in the 
toolbox is to reduce/eliminate the experimental variability ascribable to 
the batch effect, the models were built on data from year 2015 (training 
set) and were tested on year 2016 data. However, since one of the 
techniques implemented in the toolbox (DOP) requires some data from 
the new batches to perform the correction, and in order to avoid any 

Fig. 1. A summary of the methods available in the toolbox.  
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over optimism due to the use of the same set of samples for model 
selection/optimization and for validation, the year 2016 data were 
further split into two subsets: ~20 % of the 2016 data, selected by the 
Kennard-Stone algorithm, were chosen as the subset to be used to 
calculate the DOP correction while the remaining ~80 % were left 
completely out to constitute the external test set. 

2.3. Software architecture and brief mathematical background of the 
techniques available 

2.3.1. Pre-processing techniques 
Data pre-processing is a major step to clean and homogenise the data 

prior to data analysis (Mishra et al., 2020d, Mishra et al., 2020e). When 
pre-processing spectral data, multiple steps, such as smoothing, scatter 
correction and normalisation or differentiation, may be involved. In the 
FRUITNIR-GUI, several common pre-processing methods are available. 

2.3.1.1. Smoothing operations. In the GUI, several techniques are pro-
vided for performing the spectral smoothing. Three window-based 
smoothing techniques, i.e., Savitzky-Golay (SAVGOL) (Savitzky and 
Golay, 1964), moving average and moving polynomial are provided. 
Two data decomposition and reconstruction techniques, i.e., principal 
components reconstruction and independent components reconstruc-
tion are also provided. All the smoothing methods are implemented 
using the codes presented in (Roger et al., 2020). 

2.3.1.2. Scatter correction, baseline correction and normalisation. Multi-
variate data, and especially spectral data, suffer from a range of physical 
and chemical effects leading to non-zero baselines, additive and multi-
plicative effects. These effects also need to be corrected prior to data 
analysis and this often requires some sort of normalisation. In the 
toolbox, the users may select several scatter correction and spectral 
normalisation techniques, including detrending, offset correction, mul-
tiplicative scatter correction (Isaksson and Næs, 1988), spline correc-
tion, asymmetric least-squares (AsLS) correction (Boelens et al., 2004), 
standard normal variates (SNV) (Barnes et al., 1989), variable sorting for 
normalisation (VSN) (Rabatel et al., 2020), probabilistic quotient nor-
malisation (PQN) (Dong et al., 2011), robust normal variates (RNV) 
(Guo et al., 1999), log transform, autoscaling, 1st derivative, 2nd de-
rivative (Savitzky and Golay, 1964), min-max, norm, range and max 
correction. All the correction and normalisation methods are imple-
mented using the codes presented in (Roger et al., 2020). Smoothing 
should be performed before baseline correction and normalisations, as 
these techniques can be affected by high-frequency noise. 

2.3.1.3. Derivatives. Derivatives are used to reveal the underlying peaks 
(Savitzky and Golay, 1964). FRUITNIR-GUI allows to calculate 1st or 
2nd derivatives with pre-defined settings, or to select a specific order of 
the derivative (together with setting custom values for the 
meta-parameters, e.g., the degree of the interpolating polynomial and 
the data point window, if using the Savitzky-Golay algorithm) as a 3rd 
pre-processing step. The algorithms for this operation are implemented 
by means of an in-house code ((Roger et al., 2020)). 

2.3.2. Partial least-squares regression 
PLS regression is a common chemometric technique for calibration 

problems involving NIR spectroscopic data (Wold et al., 2001). In 

particular, PLS deals with the multi-collinearity in the multivariate 
signal by projecting the data onto a subspace of latent variables (LVs) 
and compressing the relevant information in the X block into a few 
orthogonal scores, which are extracted so to have maximum covariance 
with the response(s). This guarantees at the same time that the scores are 
explanatory (i.e., provide a “good summary”) of the variance in X, and 
that they are relevant for predicting the response(s) Y. A more detailed 
description of the method can be found in (Geladi and Kowalski, 1986; 
Wold et al., 2001). In the GUI, PLS models are calculated by means of the 
MATLAB’s ‘plsregress’, which has been integrated with a function per-
forming a 10-fold cross validation procedure approach is integrated for 
the selection of the optimal model complexity (number of LVs defining 
the subspace for data projection). 

2.3.3. Covariate selection 
Covariance selection (CovSel) is a popular chemometric technique 

for filtering (selecting) important variables (Roger et al., 2011) in the 
context of predictive modeling (regression or classification). In CovSel, 
variable selection is accomplished by iterating two steps: (i) the X-var-
iable having maximum covariance with the response(s) is selected; (ii) 
both the predictor and the response matrices are orthogonalized with 
respect to the selected variable. These two steps are repeated until a 
pre-defined criterion is met: one possibility is to inspect the plot of the 
explained variation as a function of the number of selected variables and 
choose the complexity corresponding to a clear inflection point in the 
graph; another options, which is the most commonly used, is to retain 
the number of variables which leads to the minimum root mean square 
error in a cross-validation procedure. In the toolbox, CovSel is imple-
mented by means of an in-house code (Roger et al., 2011). In particular, 
once the variables are selected as described above, the final calibration 
model is built using multiple linear regression (MLR), through the 
built-in MATLAB function ‘fitlm’. 

2.3.4. Dynamic orthogonal projection 
Dynamic orthogonal projection (DOP) is a model maintenance 

method developed to deal with physical, chemical and environmental 
affects in spectroscopic modelling (Zeaiter et al., 2006). The approach is 
based on the correction of the calibration dataset based on the new 
reference measurements performed in different physical, chemical and 
environmental conditions. The correction is performed using orthogonal 
projections based on the subspace defined by the difference of the 
calibration spectra and the new condition spectra. Let rbe a set of 
samples measured in the new conditions. Let Yr be the reference values 
and Xr the measured spectra of these samples. The DOP method starts by 
estimating virtual standards, i.e., the spectra X∗

r that should have been 
measured in correspondence with Yr, if the calibration conditions had 
not varied. This is accomplished by means of linear combinations of the 
original calibration data matrix, whose coefficients are calculated using 
kernels centred on Yr values. Once the virtual standards are prepared 
then the difference spectra between Xr and X∗

r are calculated. The 
orthogonal basis for the difference spectra is estimated by singular value 
decomposition (SVD) and finally, the original spectra are projected 
orthogonally to that basis. This removes the external influences from the 
spectra and then the model recalibrated on these data becomes insen-
sitive to the differences (physical, chemical and environmental condi-
tions). In the GUI, DOP is implemented by means of an in-house function 
(Mishra et al., 2020b); once the data are corrected, then a PLS regression 

Table 1 
Description of near-infrared (NIR) and dry matter (DM) for apple dataset. The data for optimizing the dynamic orthogonal projection (DOP) were selected from test 
data using the Kennard -Stone algorithm.  

Dataset 
Spectral range (nm) Training Optimizing DOP Testing  

NIR DM (mean ± std) NIR DM (mean ± std) NIR DM (mean ± std) 

Apple season correction 729− 975 1219 × 83 15.46 ± 1.49 207 × 83 15.66 ± 2.20 800 × 83 15.51 ± 1.84  
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model is built as described previously. 

2.3.5. Transfer component analysis 
TCA applies when data that are expected to have very similar/ 

identical variability, instead show differences in their statistical distri-
butions (Pan et al., 2011). For instance, in the case of NIR spectroscopy, 
it can happen that, if spectra are collected on two different instruments, 
or at two different temperatures or, again, during two different seasons, 
the corresponding variance-covariance matrices will be different as well. 
TCA aims at finding a latent feature space that minimizes the difference 
between the distributions resulting from the two data sets, at the same 
time preserving as much as possible of their respective original variance. 
In particular, TCA embeds the data from both sources into a shared low 
dimensional latent space using a nonlinear mapping, defined implicitly 
by a kernel matrix. In the toolbox, TCA is implemented as explained in 
(Pan et al., 2011), and once the data from both sources (both batches in 
the case of NIR applications) are projected onto their common feature 
space, then standard PLS regression modeling is performed as already 
described. In the toolbox, TCA is implemented as described in the 
original publication (Pan et al., 2011) by means of the functions 
developed by Yan (2020). 

2.3.6. Data loading and pre-processing to the GUI 
The FRUITNIR-GUI provides the possibility to load two sets of data 

together. The two datasets can be either a training/test set pair, or they 
can be data from two seasons, two temperature conditions or two in-
struments. The GUI for loading the dataset is shown in Fig. 2. The first 
step is to select the type of file to be loaded. There are currently three file 
type options, namely. csv, .xlsx and. mat formats; this choice is based on 
their being among the most popular data output formats in many NIR 
spectrometers or, in the case of. mat, to allow MATLAB users to directly 
input their data. Once the data are loaded, the three pre-processing 
drop-down menus can be used for smoothing, scatter correction and 
differentiation. It is recommended to follow these steps while loading 
data: first load the calibration dataset, select the pre-processing strategy 
and apply it and then load the test dataset; then, the same pre-processing 
will be applied to the test dataset automatically, once it is loaded. There 
are four processing options provided in the toolbox, i.e., standard PLS 

regression, CovSel variable selection, DOP or TCA approaches for the 
correction of batch effects. When the values of the response variables for 
the test set are not available, then only TCA can be used for batch effect 
correction, as it is an unsupervised strategy. On the other hand, when 
DOP is used to remove the batch effects, the second matrix to be loaded 
should be the tuning set needed for performing the correction: in such 
cases, the final test set for model validation can be loaded in a subse-
quent interface, specifically called by the DOP routine. Once the data are 
loaded, the user can choose the method from among the four options 
available through the pop-up menu shown in Fig. 2, and then perform 
the analysis by pressing the RUN button. In any situation, if the user 
decides to restart the GUI then the ‘Restart’ button can be used. 

3. Results and discussion 

3.1. Partial least-square regression 

PLS analysis allows selecting the optimal number of LVs based on 
cross-validation. The optimization of the model complexity utilizes plots 
of the explained variance and of the mean squared error (MSE: the mean 
of the squared residuals, i.e., differences between measured and pre-
dicted response) as a function of the number of LVs (Fig. 3). The in-
flection point in Fig. 3 was used to decide on the number of LVs to be 
retained in the final model. In the case-study presented, 6 LVs were 
chosen to build the final model. The results of calibration and test are 
shown in Fig. 4. PLS regression attained a R2

P of 0.90 with the error 
(RMSEP: The root mean squared error of prediction) of 0.80 % (Fig. 4B). 
The error was higher compared to those attained with the calibration set 
(Fig. 4A), indicating that a batch effect might be present and could have 
affected the application of the PLS model when tested on data from a 
new season. Similar model failure was also highlighted in some recent 
studies such as in relation to prediction of DM and SSC in pear fruit 
under different storage conditions, where the standard PLS regression 
model attained high error (Mishra et al., 2021). Similarly, standard PLS 
regression models have been reported to lead to high RMSEP in the 
prediction of DM in mango fruit of different seasons (Mishra and 
Nikzad-Langerodi, 2020; Mishra et al., 2020b). Previous results and the 
results obtained in the present study suggest that PLS alone is not 

Fig. 2. GUI for loading and pre-processing datasets. Two different batches can be loaded through the same interface. Prior to loading second batch, batch 1 should be 
pre-processed with the desired pre-processing. The same pre-processing will automatically be applied to the second batch data when its loaded. 
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capable in dealing with the batch effects. Hence, in the following sec-
tions, the benefits resulting from the use of the GUI for correcting the 
batch effects will be illustrated, and the outcomes will be compared to 
the performances of standard PLS regression modeling. 

3.2. Selecting variables with CovSel 

Variable selection allows to generalize the model performance by 
retaining key variables that relate the most with the property of interest. 
Fig. 5 shows the results of CovSel analysis performed on the apple 
dataset. Fig. 5A shows the 20 variables selected by CovSel, most of 

Fig. 3. Error plots for selection of latent variables (LVs). (A). Explained variance in response variables as a function of the number of LVs, and (B). Mean squared 
error (MSE: the mean of the squared residuals, i.e., differences between measured and predicted response) as function of the number of LVs. 

Fig. 4. Partial least-squares (PLS) regression for dry matter (DM %) prediction in apples. Calibration set (A) and test set (B). R2
c: Coefficient of determination for 

calibration set, R2
p: coefficient of determination for test set, RMSEC: root mean squared error of calibration, and RMSEP: root mean squared error of prediction. 

Fig. 5. Results of covariate selection (CovSel) and calibration for dry matter (DM %) prediction in apples. (A). Selected variables (vertical red lines), (B). calibration 
set, and (C). test set. R2c: Coefficient of determination for calibration set, R2p: coefficient of determination for test set, RMSEC: root mean squared error of calibration, 
and RMSEP: root mean squared error of prediction (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article). 
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which are related to the 3rd overtones of OH bonds, indicative of the 
moisture in the fresh fruit (Walsh et al., 2020b). Fig. 5B shows the results 
of calibration using the 20 selected variables and Fig. 5C shows the 
predictions of the calibrated model on the test set. The results indicate 
that CovSel variable selection reduced the RMSEP by 18 %, respectively, 
compared to the standard PLS regression modelling, suggesting that 
variable selection could be an approach to optimize prediction models. 
The results were in accordance with a recent study related to prediction 
of DM and SSC in new batch of pear fruit, where the model based on 
selected variable outperformed the standard PLS regression by attaining 
low RMSEP (Mishra et al., 2021). Variable selection maintains the model 
generalizability by retaining the key variables that are highly correlated 
with the property of interest; in other words, variable selection sim-
plifies the models by leaving out the variables not necessarily related to 
the property of interest (Mehmood et al., 2012, 2020). 

3.3. Model maintenance with dynamic orthogonal projections 

The results of PLS cross-validation after the DOP correction are 
shown in Fig. 6. Both the explained variance and MSE were plotted as 
the function of the number of LVs to select the optimal complexity for 
calibrating the final model (Fig. 6). Compared to the cross-validation of 
the standard PLS regression (Fig. 3), DOP correction before the PLS 
regression gave an MSE inflexion point at same number of LVs, i.e. 6. A 
reason for this is the removal of the non-relevant information (external 
influences) by the DOP step prior to PLS calibration. The results of PLS 
modeling on DOP-corrected data, presented in Fig. 7, show that the 
RMSEP was reduced by 29 %, compared to standard PLS regression, 
suggesting that DOP may be highly beneficial for correcting unwanted 
effects in multi-batch data. In comparison to the CovSel variable selec-
tion approach, the DOP step attained 12 % lower RMSEP. The im-
provements with the DOP approach were in accordance with a recent 
study related to the use of DOP for improved prediction of DM in mango 
and olive fruit under various external effects such as temperature, in-
strument change and seasonal differences correction (Mishra et al., 
2020b). However, a major limitation of DOP approach in comparison to 
variable selection and domain adaption techniques is that DOP requires 
new sample measurements to estimate the external influences in order to 
remove them (Zeaiter et al., 2006). 

3.4. Domain adaption with transfer component analysis 

The results of PLS regression modeling on TCA-corrected data 
(Fig. 8) show that the RMSEP reduced by 16 %, respectively, compared 
to standard PLS regression. In comparison to PLS regression, TCA seems 

to be effective to correct for unwanted variability in multi-batch data 
when no reference measurements are available from the new batch. The 
improvements with the TCA approach were in accordance with a recent 
study related to the use of TCA for improved prediction of DM in mango 
and olive fruit under various external effects such as temperature, in-
strument change and seasonal differences correction (Mishra et al., 
2020b). With respect to DOP correction, the performances of TCA were 
worse in terms of RMSEP; however, TCA leads to a higher R2 and it 
required only 3 LVs compared to the 5 required by DOP. In comparison 
to the variable selection with CovSel, TCA performed worse. 

4. Conclusion 

In the present work, a GUI has been presented for chemometric 
modelling of NIR spectra of fruit. Specific algorithms for correcting the 
batch effect were integrated. The GUI was demonstrated with a real- 
world dataset related to the prediction of DM in apple fruit. The re-
sults showed that the GUI can perform tasks such as PLS regression, 
variable selection and batch effect correction using either DOP or TCA 
methods. The results reported indicate that approaches such as variable 
selection and batch effect corrections with DOP and TCA can improve 
the performance of models built on NIR spectra collected in multi-batch 
experiments. The best performance in terms of lowest RMSEP was ob-
tained with the DOP approach, followed by variable selection with 
CovSel and then TCA. However, a main drawback of the DOP approach 
is that it requires reference measurements from the new batch to model 
and remove the external influence. On the other hand, the main benefit 
of variable selection and TCA approaches is that they work without the 
need of any new reference measurements. In a practical scenario, it is 
recommended that the user exploit this GUI to compare multiple ap-
proaches to model NIR data, and, eventually, decide on the best 
approach for their specific challenges. The analysis presented in this 
article can be replicated by following the steps illustrated in the paper. 
The use of the GUI is not limited just to fruit but can be extended to all 
cases where the chemometric modelling methods presented here are 
required. 
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