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I don’t know anything, but I do know that everything is inter-
esting if you go into it deeply enough [1].

Richard Feynman

1
Introduction

Nhung Pham
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Introduction

In 1994, a panel assembled by NASA gave a definition of life as ’life is a self-
sustained chemical system capable of undergoing Darwinian evolution’[2, 3]. Before
NASA, many definitions had been proposed [3, 4]. Robert Morison (1782-1834),
an academic Anglo Scottish sinologist, lexicographer and translator, said ’Life is not
a thing or a fluid any more than heat is. What we observe are some unusual sets of objects
separated from the rest of the world by certain peculiar properties such as growth, repro-
duction, and special ways of handling energy. These objects we elect to call ’living things’
[4]. A scientist, environmentalist and futurist, James E. Lovelock (1919-), said life is
something edible, lovable, or lethal [4]. Another definition presents life as a chemical
entity that consists of bounded micro-environments in chemical disequilibrium with their
environment, capable ofmaintaining a low entropy state by energy and environment trans-
formation, and capable of information encoding and transfer [5, 6]. The most recent
one, from 2019, defines life as Life is a far-from- equilibrium self-maintaining chemical
system capable of processing, transforming and accumulating information acquired from
the environment [6]. These definitions can be formulated differently but they share
a foundation that ’life’ is self-replicating and self-maintaining [3, 6]. It means plants
and animals are examples of ’life’, but bicycles andwater, althoughnurturing ’life’, are
not ’life’ themselves. What makes the difference between ’life’ and inorganic mat-
ter? This is the key question thatmany generations of scientists have tried to answer,
fromCharles Darwin and Jean-Baptiste Lamarckwith the evolution theory to James
Watson and Francis Crick with the discovery of the double helix structure of DNA.

The study of life gave birth to a scientific discipline ’biology’. For long time,
scientists have studied nature the way James Watson and Francis Crick did. We
start with knowledge of a general phenomenon and we start breaking down the
system to pieces until we characterized the smallest component. This is called re-
ductionism which will be discussed in more details in the next section. Reduction-
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ism paradigm led researchers in biology, especially molecular biology, to discover
genes, molecules, and biological processes and to gather a tremendous amount of
data about each part of an organism. These data will continue to bloom as technol-
ogy improves. We just do not know quite well how we can ’solve life’ with these
data. This is a perfect moment to assemble these data on each part of a living sys-
tem to study interactions among these parts. This is the foundation of a holistic ap-
proach to studying biological complex systems, the so-called ’Systems biology’. It is
still uncertain whether holistic approaches, such as Systems biology, are sufficient
to enable understanding of the emergent properties of complex biological puzzles.
There is nothing certain in science but the quest for knowledge certainly never ends.

1.1 Holism and reductionism in Biology

Reductionism was first introduced in 1637 by Rene Descartes (1596-1650) in his
Discourse V as ”Method consists entirely in the order and arrangement of those things
upon which the power of the mind is to be concentrated in order to discover some truth.
And we will follow this method exactly if we reduce complex and obscure propositions
step by step to simpler ones and then try to advance by the same gradual process from the
intuitive understanding of the very simplest knowledge of all the rest”. His notion sim-
ply stated that a complex system can be studied by reducing it to more manageable
pieces, studying them and reassembling the whole from its parts (Figure 1.1.1).

The reductionist approach, therefore, focuses on describing a system as its con-
stituent parts. Reductionism allows us to draw conclusions such as ”thismutation in
aminoacyl-tRNA synthetases can lead to neurodegeneration” [7]. It is undeniable
that many ground-breaking findings could not have been made without reduction-
ist approaches. However, the reassembled data does not give rise to the whole as
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1.1. Holism and reductionism in Biology

Figure 1.1.1: Holism vs Reductionism. Automata horse model obtained
from https://www.amazon.com/Automata-Wooden-Mechanical-Miniature-
Kinetic/dp/B07KMHL622 on August 2020. Sketch of horse obtained from
http://www.clker.com/clipart-rearing-horse.html on August 2020.

we miss many interactions between these parts when separating them. This is when
holism came to light.

Much debate has been raised onwhether Aristotle is the antecedent of the holism
paradigm with his statement ”The whole is something over and above its parts and not
just the sum of them all” . The first one to give it the term ’holism’ is Smuts in 1926
in his book ’holism and evolution’, where he said ”Taking a plant or an animal as a
type of a whole, we notice the fundamental holistic characters as a unity of parts which
is so close and intense as to be more than the sum of its parts” [8]. Holism prioritizes
the study of the whole over that of the parts. Holism does not reduce the whole to
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its parts and study them. Holism had been the pillar of science until the 17th century
and faded away when biology developed [9]. But it now has reappeared and lead to
the birth of Systems biology, in which living systems are studied as a whole instead
of each part independently.

With the emergence of Systems Biology, a majority of scientists believe that re-
ductionism and holism are in fact interdependent and complementary [10–12]. A
holistic view is required to connect molecular parts learnt using reductionist ap-
proaches to higher biological phenomena. Interpreting observations from holistic
studies may require mechanistic insights gained from previous reductionistic work
or may generate hypotheses that are amenable to testing through reductionistic ap-
proaches.

As Smuts said ”The whole is in the parts and the parts are in the whole, and this syn-
thesis of whole and parts is reflected in the holistic character of the functions of the parts as
well as of the whole” , holism and reductionism should be interplayed and integrated.
Which one is useful is not the question. The question is how to combine them.

1.2 What is Systems biology?

Before Systems biology was defined, molecular biologists have been applying sys-
tem approaches to study the molecular components and logic behind the cellular
processes on a small scale. Such an example is the discovery of the feedback inhibi-
tion of amino acid biosynthesis pathways in 1975, or the discovery of lac operon, an
autonomous functioning unit consisting of different parts that together responsible
for the transport and metabolism of lactose in 1967 [13].

The term ’Systems biology’ was coined in 1968 by Mihajlo Mesarovic [14, 15].
Many publications suggest Systems biology is a holistic paradigm, a modern ap-
proach to replace reductionism [15]. Although it aims to study organisms beyond
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themolecular level, Systems biology is not exclusively holistic [10]. Systems biology
predicts systemic responses when altering individual components. In addition, Sys-
tems biology critically relies on the availability of the experimental data obtained at
the element level to assemble the whole. Reductionist approaches using in molecu-
lar and cell biology will still grow to expand our knowledge on cellular components,
the critical building blocks for future Systems biology [16, 10]. Without the reduc-
tionist approach, mechanistic insights into the phenomena described by Systems bi-
ology cannot be explained.

Many attempts have been made to define Systems biology [16]. In this thesis,
Systems biology is defined as a collection of quantitative and qualitative modelling
approaches to study living organism with the focus on the interplay of three main
networks - metabolic, regulatory, and signalling networks (Figure 1.2.1). The po-
tential of the system to regulate itself is put in a prominent and central position in
Systems biology [17]. One of themain goals of Systems biology is to test the consis-
tency between our understanding of complex biological processes and the observed
experimental data [18].

1.3 Genome-scale constraint-based metabolic models

(GEMs)

The fate of any living organisms critically relies on nutrient availability and on the
environmental conditions they are in. Living organisms uptake nutrients from the
environment and convert them into energy and essential building blocks to sustain
growth. This conversion process is termed metabolism. Ideally, when describing
what is going on in the cell, one would need to quantify all the metabolic changes
over time in the cell because regulation ofmetabolism is a keymechanism to control
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Figure 1.2.1: Phenotypes result from the interconnection of the signalling,
regulatory and metabolic networks.
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cell growth and death [19]. The changes in the cell rely on the rate of matter con-
version. The rates at which nutrients are converted are called fluxes. These fluxes are
metabolic reaction rates and are greatly affected by enzyme activity andmetabolites
concentration. This information is not yet available for all reactions that form the
whole metabolic network, and it is likely that it will never be. Therefore, most of the
modelling techniques that require kinetic parameters can only be used to describe
small networks. Genome-scale constraint-based metabolic modelling (GEM) is an
approach that balances the detail level and the scale it covers [20]. This type ofmod-
els describes the metabolic network based on topology and fluxes. Despite the lack
of kinetic information, this approach provides a quantitative tool to study the flux
distribution underlying the condition specific phenotype. GEM is a comprehensive
collection of known metabolic functions in the organism of interest.

Building a GEM is a tedious process requiring intensive manual curation [21].
Briefly, the construction process starts with the identification ofmetabolic functions
from the genome of the organism in question. These functions are represented as
chemical reactions giving raise to a network of metabolic processes. The metabolic
network is represented in a form of a stoichiometic matrix which includes metabo-
lites and reactions that produce and consume them. Functional genome annotation
is still facing many challenges, hence missing functions in the annotate genome are
expected. Thenetwork resulting frommissing annotations is thus incomplete. These
missing annotations result in so-called gaps that need to be solved in a subsequent
stage of the reconstruction process. In the next step, the model is validated by veri-
fying to what extent it reflects experimental data. At this stage themodel is ready for
the desired simulation.

There is always a limit on nutrient uptake, for example the uptake rate of glucose,
resulting in bounds (or constrains) for fluxes for all reactions in the metabolism. At
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exponential growth, the turn-over rates ofmetabolites are faster than cell growth and
division, which means all intracellular metabolites will be produced and consumed
at the same rates [22] and there will be no net accumulation or depletion, leading
to a steady-state. This steady-state and the constraints form the core of the network
analysis approach for genome-scale constraint-based metabolic models. One com-
mon technique to simulate GEMs is Flux Balance Analysis (FBA) (Figure 1.3.1).
FBA is a quantitative prediction method that only requires a GEM, growth condi-
tion (i.e. availability of substrates ), and an objective function (i.e. biomass syn-
thesis) as input [22]. The system is assumed at a steady state. The stoichiometric
mass-balance yields a system of linear equations, describing all fluxes within the sys-
tem. The system in thismethod is usually underdetermined since there aremore un-
knowns (fluxes) than equations (reactions). Such an underdetermined system gives
a vastness of possible results. Metabolism is limited by several constraints which in
practice will decrease the size of the solution space, that is the set of fluxes that are
compatible with the imposed constraints. There are three types of constraints that
canbe added toGEMs [22]. Thefirst one is thermodynamic constraints, which limit
certain reactions to be irreversible. The second type of constraints relates to enzyme
capacities, which restricts the upper limit of reaction rates, so-called upper bounds
of certain reactions. The last type of constraints are environmental limitations. Due
to the limited availability of nutrients in the environment and the limited availabil-
ity of the cell to uptake them, this type of constraints will determine the upper and
lower bound of certain reactions, for instance the reactions for the uptake of carbon
sources.
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1.3. Genome-scale constraint-based metabolic models (GEMs)

Figure 1.3.1: Key concepts in GEMs. Figure was adapted from [23]

The objective function in GEMs represents the desired phenotype that the mod-
elerwants to optimize. Possible objective functions inGEMare to optimize biomass
or ATP production, substrate consumption, and the redox potential [24]. Themost
commonly used objective function in GEMs is tomaximize growth or biomass syn-
thesis. This is also best to describe reality since cells have been selected by evolution
for an optimal growth [25]. In a real cell, new biomass is created through a multi-
tude of different processes that produce all molecules that needed for cell growth.
In GEMs, biomass synthesis reaction is an artificial reaction which consumes the
molecules and energy necessary for building new cells in an experimentally mea-
sured stoichiometric ratio [26].

GEMs can be used for several applications: (i)- GEMS are an excellent tailor-
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madeknowledgebase for the target organism. GEMcontains state-of-the-art knowl-
edge about the metabolism in the target organism; (ii)- GEMs provide a simulation
platform to quickly scan through the metabolic capacities of the target organism;
(iii)- GEMS are an excellent tool to calculate maximum theoretical yields of native
and non-native pathways; (iv)- Platform for contextualizing ’omics’ data and study-
ing internal fluxes which are difficult to study otherwise; (v)- Guidingmetabolic en-
gineering [27]. GEMs can predict phenotypes such as the production of metabo-
lites, change in the growth rate or cell death when perturbing the internal environ-
ment for instance, genetic modification or external environment for instance the
change of growth media. They have been used for industrial and medical applica-
tions owning to their power inhypothesis-drivendiscovery and in guidingmetabolic
engineering [28, 29]. Such successful applications are its recent use to triple the
hyaluronan yield in Lactococcus lactis [30] or to improve antibiotic production in
Actinomycetes [31].

However, GEMs are not accurate for processes with non-linear relationships.
When regulation and signalling networks control the process, the model gives dis-
crepancies with observation. Besides, the constraints in GEMs usually represents
estimated ranges of fluxes and sometime due to the lack of data many of internal
fluxes are left unbounded. This results in a huge solution space with many alterna-
tive solutions that can be biologically unfeasible [32].

1.4 Synthetic biology and Design Built Test Learn (DBTL)

cycles

Synthetic biology is an application of science, technology and engineering to facilitate
and accelerate the design, manufacture and/or modification of genetic materials in living
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organisms such as microbes [33].
Microbes have been employed to produce chemicals for more than thousands

of years with significant impact for instance the introduction of beverages, cheeses,
bread, pickled foods and vinegar in the ancient time [34]. These early applications
were mainly done without understanding how microbes arose [34]. The discovery
of fermentation process by Louis Pasteur has revolutionized the use ofmicrobes and
made microbiology a distinct field [34]. Some of the significant examples are the
production of lactic acid in high quantity [35], citric acidAspergilus niger [35] or the
establish of acetone-butanol-ethanol fermentation from Clostridium acetobutylicum
at industrial scale in 1916 [36].

These early processes employedmicrobeswhen theywere notwell-characterized.
Since then, with the development of high-throughput technology, our understand-
ing about microorganism have been expanded significantly lead together metabolic
engineering. In recent years numerous examples ofmicrobial cell factories havebeen
established for many targets from biofuels to chemicals such as amino acids, vita-
mins, and organic acids [37–39].

Nowadays, the emergeof Synthetic biologyholds thepromise to revolutionise the
production of natural and non-natural bioproducts [40–42]. First successful indus-
trial applications have reported, being some noteworthy examples the production
and commercialization of semi-synthetic artemisinin, an antimalarial drug precur-
sor from Saccharomyces cerevisiae [43] and biofuel precusor 1,4-butanediol from Es-
cherichia coli [44]. Thedevelopment ofmodel design andprediction in Systems biol-
ogy combined with advanced tools in Synthetic biology have the potential to allow
large-scale modification and reprogramming non-model organisms [45–47]. This
will enable expanding the list of potential microbial factories and bioproducts that
can be brought to themarket, contributing thereby to shift a petrochemical-based to
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a more bio-based economy.
The Design - Build - Test - Learn (DBTL) cycle provides a framework for the de-

velopment of tailor-mademicrobes and speedup the innovationprocess. TheDBTL
cycle is a recursive loop used to obtain a design that satisfies the desired specifica-
tions (Figure 1.4.1). It is a framework that helps systematize bioengineering and
increase its efficacy and generalizability. It usually takes more than one DBTL cycle
to achieve the desired product [48].

Figure 1.4.1: DBTL cycles

DBTL cycle has been used successfully in many processes such as in shorting the
time for the market release of antimalarial drugs, the semi-synthetic Artemisinin in
less than a decade making the re-engineering yeast strain the most profitable in the
market [43, 49, 50]. DBTL cycle is shown to be also useful in plant engineering as
demonstrated by the recent success in synthesis and accumulation of energy-dense
plant storage lipids in vegetative tissues such as root, leaves and stems [50].
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A successful DBTL cycle depends on four criteria: the speed, productivity, qual-
ity of each step and the number of cycles to obtain the final product. How to speed
up, to improve each step and to link individual cycles to make a consistent solution
is, therefore, a bottleneck [51]. To this end, it is crucial to ensure there are appro-
priate tools and methods that can be integrated into this workflow [52, 48, 53]. To
address this problem in bio-engineering an automated workflow has been suggested
[54]. The workflow allows quick prototyping and optimization of synthetic path-
ways in a targetmicrobial chassis. Being a cycle, theDBTLworkflow can technically
start anywhere in the four steps of the design-build-test-learn sequence. Most often,
when starting a new project, the workflow starts by assembling all available knowl-
edge on the process at stake (molecular and physiological data, process information,
etc.) and use it as input for the Design phase where pathway design tools are used
to design pathways for a product of interest. These pathways are ranked and in silico
screened for promising candidates. Thenext step is to Build theDNAconstructs fol-
lowed by the Test phase where all candidate pathways are tested with different con-
figurations. In the next step, the Learn phase, statistical tools and machine learning
(amongother) are used to select the best configuration. Theoutput is then subjected
to a refined Design for further optimization in the next cycle. The final outputs of
this recursive loop are optimal pathways and genetic constructs aiming to produce
the target compound(s) in the microbial chassis.

1.5 Thesis objective and outline

Theobjectives of this thesis are to deployGEMs for selectedmicrobial cell factories,
to evaluate key technical limitations of GEMs and to propose possible solutions to
overcome these.

One of the most used applications of GEMs is their use towards understanding

16



1

Introduction

themetabolismof theorganism in consideration. InChapter2 I constructed aGEM
for Cutaneotrichosporon oleaginosus to model its lipid production. C. oleaginosus is
a fast-growing oleaginous yeast that can grow in a wide range of low-cost carbon
sources. I constructed a GEM to increase our understanding of this yeast and pro-
vide a knowledge base for further industrial use.

Living organisms are minuscule chemical factories where carbon in different
forms is converted to thousands of valuable compounds. Producing chemicals from
living cells has been considered a sustainable approach to life. However, biosynthe-
sis of many natural compounds is still limited due to the lack of efficient synthesis
routes. As a showcase of how GEMs can assist in designing pathways for chemi-
cal production in microbes, in Chapter 3 I deployed GEMs to design pathways for
cis,cis-muconic acids, anisole, aniline, 3-methylmalate and geranic acid production
in Pseudomonas putida in the context of implementation of DBTL cycles.

A critical step in constructingGEMs is tomanually curate them by integrating in-
formation from independent (organism-specific) sources to provide a comprehen-
sive representation of what is presently known about the metabolism of the mod-
elled organism. Combining this precious information from individual GEMs to
make a consensus model of the organism is essential. Using models from different
species as a foundation to construct a new model can help to avoid repeating the
same time-consumingmanual curation step. In addition, GEMs need to be updated
continuously since new knowledge is coming in short order. However, such simple
tasks cannot be done easily due to a simple reason: inconsistent namespace. GEMs
constructed for different organisms by different researchers often use different nam-
ing conventions depending on which database was selected for model construction.
While mapping between namespaces seems like the only fair solution, it involves a
high risk of mismatch and may invalidate the model. I evaluated this problem and
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proposed solutions to overcome them inChapter 4.
The lack of accurate functional annotations often renders GEMs incomplete, giv-

ing rise tomissing reactions, the so-called ‘gaps’ in the network. Gap-filling becomes
important during model construction not only to make a functional model but also
to generate new knowledge on protein function. To assist gap-filling, many algo-
rithms have been published. To be able to use GEMs effectively, these methods
should allow themodel to be as accurate as possible, preferably also in a user-friendly
manner so that they become available to many researchers. However, gap-filling al-
gorithms vastly differ in their objectives, implementation platforms, and input data
requirements. These differences imply a variety in their usability and accuracy. In
Chapter 5 I conducted an extensive evaluation of these algorithms from a user’s per-
spective.

Finally, in Chapter 6 I will discuss the two main limitations, namely the lack of
standard in namespace and gap-filling tools in a broader context. Other limitations
and recommendations to improve them will also be discussed inChapter 6.
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Genome-scale metabolic modelling underscores the potential of Cutaneotrichosporon
oleaginosus ATCC 20509 as a cell factory for biofuel production

abstract

Cutaneotrichosporon oleaginosus ATCC 20509 is a fast-growing oleaginous basid-
iomycete yeast that is able to grow in awide range of low-cost carbon sources includ-
ing crude glycerol, a byproduct of biodiesel production. When glycerol is used as a
carbon source, this yeast can accumulatemore than 50% lipids (w/w)with high con-
centrations of mono-unsaturated fatty acids. To increase our understanding of this
yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated
genome was used to build a genome-scale, constraint-based metabolic model con-
taining 1553 reactions involving 1373 metabolites in 11 compartments. A new de-
scription of the biomass synthesis reaction was introduced to account for massive
lipid accumulation in conditions with high carbon to nitrogen (C/N) ratio in the
media. This condition-specific biomass objective function is shown to better predict
conditionswith high lipid accumulation using glucose, fructose, sucrose, xylose, and
glycerol as sole carbon source. Contributing to the economic viability of biodiesel
as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol
waste streams in lipids as a potential bioenergy source. Performance simulations are
essential to identify optimal production conditions and to develop and fine tune a
cost-effective production process. Our model suggests ATP-citrate lyase as a possi-
ble target to further improve lipid production.
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oleaginosus ATCC 20509 as a cell factory for biofuel production

2.1 Introduction

Microbial lipids produced by oleaginous yeasts are promising sources for oleochem-
ical replacements of hazardous petrochemicals in fuels and chemicals [55, 56]. For
the establishment of an economical bio-based utilization, cost-effective production
is key. Of the fewer than 30 known oleaginous yeasts, the top five most studied
species are Yarrowia lipolytica, Rhodotorula glutinis, Rhodosporidium toruloides, Cu-
taneotrichosporon oleaginous, and Lipomyces starkeyi [55]. The profile of lipids and
fatty acids produced by these yeasts varies but, under natural conditions they can,
on average, accumulate lipids up to 40 % of their weight [57, 58]. A lipid content of
up to 70% can be obtained if in the presence of a carbon source, an essential nutrient
is depleted [58]. Under such conditions, excess carbon will be re-routed to storage
compounds, being lipids in oleaginous yeasts [59, 57]. Nitrogen limitation, often
referred to as a high C/N ratio has been shown to be the most efficient inducer of
such lipid accumulation [58].

As inputmaterials are oneof themain contributors to production cost [60], for an
economically feasible process, a natural capacity for high lipid biosynthesis may not
be enough. Oleaginous yeasts are able to use a range of alternative sugars for lipid
production (Table 2.1.1). Among them,C. oleaginosus appears to be one of themost
accommodating and is able to grow in a wide range of industrially interesting opera-
tional conditions such as in foodwaste andmunicipalwastewater streams [61], whey
permeate [62], office paper production waste streams [63, 64], spent yeast lysate
frombrewery industry and crude glycerol frombiodiesel production [65, 66]. Lipid
productionby this yeast hasbeen studied for at least twodecades [58, 62, 67–70] and
when growing on crude glycerol,C. oleaginosus can producemore lipid content than
many other yeast, microalgae or mold (Table 2.1.1). Owing to these advantages, C.
oleaginosus is flaggedasoneof themost cost-effective andversatile cell factories forde
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novo lipid production [55, 71]. Especially when the inexpensive waste product from
biodiesel production, crude glycerol, is becoming abundantly available, this organ-
ism could play a major role in further upcycling of the biodiesel process, as lipids
derived fromC. oleaginosus grown on glycerol have high concentrations of monoun-
saturated fatty acids (MUFA) [72]. MUFAs are excellent biodiesel components due
to their low temperature fluidity and oxidative stability [72].

Table 2.1.1: Lipid yields obtained by oleaginous yeasts.

Organism Yield* Carbon source Reference
Yarrowia lipolytica 0.27 Glucose [73]
Yarrowia lipolytica 0.10 Crude glycerol [74]
Rhodosporidium toruloides 0.29 Lignocellulosic hydrolysates [75]
Rhodotorula glutinis 0.18 Molasses [76]
Lipomyces starkeyi 0.24 Glucose [77]
Cutaneotrichosporon oleaginosus 0.22 Glucose [78]
Cutaneotrichosporon oleaginosus 0.29 Whey permeate [62]
Cutaneotrichosporon oleaginosus 0.27 Crude glycerol [72]
*g-lipid/g-substrate

C. oleaginosus is a basidiomycete yeast of the Tremellomycetes class and recently
added to the Cutaneotrichosporon genus [79]. Taxonomically, it has been reclassi-
fied and renamed several times as Apiotrichum curvatum, Cryptococcus curvatus, Tri-
chosporon cutaneum,Trichosporon oleaginosus, andCutaneotrichosporon curvatum [65,
66]. In this study, we will refer to it as Cutaneotrichosporon oleaginosus ATCC20509
[80, 81]. Theyeast canmetabolize awide rangeof oligo- andmonomeric sugars such
as cellobiose, xylose, sucrose, lactose, and glucose [82]. Xylose is efficiently metab-
olized via the phosphoketolase pathway and partly via the pentose phosphate path-
way [65, 83]. Both pathways produce pyruvate as intermediate for furthermetabolic
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processes [65].
Despite many efforts spent on studying this yeast, its use for the production of

lipids is still far from optimized [55, 64, 84]. Recently, a response surface method
was used to design experiments to optimally explore the relationship between the
carbon to nitrogen ratio in the medium and lipid production and to guide the de-
sign of optimal production media for C. oleaginosus ATCC20509 [85]. However,
the translation from genotype to (selected) phenotype [i.e. lipid production], is
typically a multi-factorial process depending on the growthmedium, culture condi-
tions, strain specificity and the interplay among these factors. Hence, a predictive
constraint-based, genome-scale model of metabolism (GEM), along with genetic
accessibility tools [86] will provide new avenues towards reaching the full potential
of C. oleaginosus ATCC 20509 as a lipid producer [65].

By drawing upon a thorough functional re-annotation of its genome, we
have built a GEM for C. oleaginosus ATCC 20509. The model is named
iNP636_Coleaginosus_ATCC20509, expanding the usual naming convention for
GEMs [87] by including information on the organism considered to enhance recog-
nition. Subsequently, the model was used to investigate optimal lipid production in
glycerol.

2.2 Results andDiscussion

2.2.1 Annotation

One of the major bottlenecks in eukaryotic genome annotation is the identification
of exon-intron boundaries. In this regard, transcriptome data can provide a good
basis for predicting introns. We therefore collected transcriptomedata (RNAseq) of
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C. oleaginosusATCC20509 from two conditions and used it to structurally annotate
genome sequence MATS00000000.1 of C. oleaginosus ATCC 20509 [88].

BRAKER1 [89] predicted 7861 protein coding genes. Of these, 7474 genes are
directly supported by RNAseq with more than 50 read counts per million (CPM).
Among the protein-coding genes, 5621 proteins with functional protein domains
(Pfam release 31) and 2358 with a full unique Enzyme Commission (EC) number
could be predicted. A summary is provided in Table 2.2.1. A complete annotation is
provided in Additional file 1.

2.2.2 Lipid synthesis pathways

C. oleaginosus ATCC 20509 metabolizes sugars by using standard central metabolic
pathways including glycolysis, pentose phosphate pathway and the citric acid (TCA)
cycle. The yeast metabolizes xylose via the phosphoketolase pathway and partly via
thepentosephosphate pathway [65, 83]. Thesepathwaysprovide theprecursors and
energy required for lipid biosynthesis. Lipid biosynthesis can be divided into three
steps: formation of fatty acids, synthesis of triacylglyceride (TAG), and synthesis of
phospholipids (Figure 2.2.1).

Formation of fatty acids

In yeasts, fatty acids can derive from either a de novo synthesis pathway or from hy-
drolysis of complex lipids and delipidation of proteins, and from hydrolysis of ex-
ternal fatty acids sources [90]. De novo fatty acid synthesis generally occurs in the
cytosol [58], and in some cases, in the mitochondrion [91]. This produces satu-
rated fatty acids of up to 16C atoms while further elongation and desaturation takes
place in the endoplasmic reticulum (ER) [58, 92]. The process is catalyzed by the
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Figure 2.2.1: Lipid synthesis pathway in C.oleaginosus ATCC 20509. 1agpg - 1-
Acyl-sn-glycero-3-phosphoglycerol; 2OG - 2-Oxoglutarate; acald - acetaldehyde;
accoa - acetyl-CoA; aconC - cis-Aconitate; acp - acyl carrier protein; c8:0acp -
octanoyl acyl carrier protein; c10:0acp - decanoyl acyl carrier protein; c12:0acp
- dodecanoyl acyl carrier protein; c14:0acp - tetradecanoyl acyl carrier protein;
c16:0acp - Hexadecanoyl acyl carrier protein; c16:0coa - Hexadecanoyl-coa;
c18:0coa - Octadecanoyl-coa; c18:1coa - oleoyl-CoA ; c18:2coa - linoleoyl
coA; cdpdag - CDP-Diacylglycerol; cdpea - CDP-ethanolamine; cdpchol -
CDP-choline; coa - coenzyme A; dag - diacylglycerol; g3p - glyceraldehyde 3-
phosphate; oaa - oxaloacetate; IsoCit - Isocitrate; malacp - malonyl acyl carrier
protein; malcoa - malonyl-CoA; pa - phosphatidate; pc - phosphatidylcholine;
pe - phosphatidylethanolamine; ps - phosphatidylserine; ser - serine; tag - tria-
cylglycerol. 25
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multi-enzyme fatty acid synthetase complex (FAS) [58]. We found multiple genes,
g2870.t1, g5734.t1, g570.t1 and g5733.t1, that together encode this enzyme com-
plex in C. oleaginosus ATCC 20509. The overall process of fatty acid synthesis in C.
oleaginosus ATCC 20509 (Figure 2.2.1) can be simplified as follows:

• ATP- citrate lyase (ACL). Citrate + ATP→ oxaloacetate + acetyl-CoA +
ADP + Pi

• Acetyl-CoACarboxylase (ACC). acetyl-coA+CO2 +ATP→malonyl-CoA
+ ADP + Pi

• Fatty acid synthetase (FAS). acetyl-CoA + 7 malonyl-CoA + 14 NADPH +
14 H+→ palmityl-CoA + 14 NADP+ + 7 CoA + 7 CO2

For the formation of unsaturated fatty acids (C16:1, C18:1, and C18:2) a fatty acid
desaturase is required [93]. A single gene, g3345.t1, was predicted to encode this
enzyme in C. oleaginosus ATCC 20509.

Synthesis of triacylglyceride and phospholipids

Like other oleaginous yeast, the process of triacylglyceride (TAG) synthesis in C.
oleaginosus ATCC 20509 also starts with the formation of phosphatidic acid (Pt-
dOH) from glycerol-3-phosphate either through the glycerol-3-phosphate or the di-
hydroxyacetone phosphate pathway [91, 94] (Figure 2.2.1). PtdOH is subsequently
converted to diglyceride which later with the addition of one acyl-coa becomes tri-
acylglyceride.

The main phospholipids in C. oleaginosus ATCC 20509 are phosphatidylcholine,
phosphatidylethanolamine , and phosphatidylserine [95]. They are synthesized
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from the CDP-diacylglycerol (CDP-DAG) and the Kennedy (or CDP-choline)
pathways [96, 92] (Figure 2.2.1).

We provide more details of the reconstructed C. oleaginosus lipid synthesis path-
way in Additional file 2.

2.2.3 Features of the Model

The GEM for C. oleaginosus was constructed using the well-curated GEM iNL895
[97] of the oleaginous model organism Y. lipolytica as template. A template based
approach is often more efficient than starting from scratch however, as the use
of a template could limit the scope of the specific GEM, we did an in depth C.
oleaginosus specific curation of the here important target pathways, i.e. the fatty
acid and lipid synthesis. Of the 895 genes underlying the Y. lipolytica model, de
novo genome annotation followed by manual curation led to the identification of
636 orthologs genes in C. oleaginosus ATCC 20509 that were used to generate the
iNP636_Coleaginosus_ATCC20509GEM. A full list of orthologs is provided in Ad-
ditional file 3. Both models cover the central carbon and lipid metabolism but, ac-
counting for the differences in lipid and fatty acid profiles in these two organisms,
in lipid formation there are differences in the number of isoenzymes involved. A
comparison of enzymes involved lipid metabolism of C. oleaginosus ATCC20509, Y.
lipolytica and the non-oleaginous model yeast, Saccharomyces cerevisiae is shown in
Table 2.2.2.

Compared to S. cerevisiae there are few differences. S. cerevisiae lacks an ATP-
citrate lyase and does not have the gene encoding for a Δ12 Fatty acid desaturase,
which introduces the second double bond in the biosynthesis of 18:3 fatty acids. In
S. cerevisiae, acetyl-CoA is produced from Acetyl-coenzyme A synthetase encoded
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Table 2.2.1: Genome annotation results for Cutaneotrichosporon oleaginosus
ATCC 20509.

Annotation features Results
Genome size (Mbp) 19.86
No. of protein coding genes 7861
Protein length (median no. of amino acids) 409
Gene length (median bp) 1708
Transcript length (median bp) 2460
No. of genes with intron 6891
Proteins with at least one functional domain assigned 5621
No. of predicted (partial) EC’s 627
No. of predicted (full) unique EC’s 1072
Proteins with a predicted (full) EC’s 1778

by two distinct genes ACS1 and ACS2 representing the ”aerobic” and ”anaerobic”
forms of acetyl-coenzyme A synthetase, respectively [99]. In C. oleaginosus ATCC
20509 and Y. lipolytica, there is only one acetyl-coA synthase gene, similar to ACS2
in S.cerevisiae. After curation, the final GEM (iNP636_Coleaginosus_ATCC20509)
contains 1553 reactions, 1373 metabolites, 636 genes, and 11 compartments: cy-
toplasm, Golgi apparatus, cell envelope, endoplasmic reticulum, mitochondrion,
nucleus, peroxisome, vacuolar membrane, vacuole, lipid particle, representing lipid
droplets, and extracellular (Table 2.2.3 and Figure 2.2.2).

Biomass synthesis reaction

The biomass synthesis reaction included in the model represents the formation of
the main building blocks required for growth of the target organism [100, 101].
Application of growth-limiting nutrients, however, may induce large variations
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Table 2.2.2: Enzymes involved in lipid metabolism in Saccharomyces cere-
visiae model, iNL800 [98], Yarrow lipolytica model, iNL895 [97] and Cutaneotri-
chosporon oleaginosus ATCC 20509 model, iNP636_Coleaginosus_ATCC20509
(this study). Y indicates the presence of the enzyme-encoding gene, (-) indi-
cates the absence of the enzyme-encoding gene. Number of isoenzymes is indi-
cated in brackets.

EC Function S.cerevisiae
(iNL800)

Y. lipolytica
(iNL895)

C. oleaginosus
ATCC 20509

EC 6.2.1.1 Acetyl-coenzyme A synthetase 1 Y - -
EC 6.2.1.1 Acetyl-coenzyme A synthetase 2 Y Y Y
EC 1.3.1.9 Fatty acid synthase subunit beta Y Y (2) Y
EC 2.3.1.86 Fatty acid synthase subunit alpha Y Y (2) Y
EC 2.7.7.41 Phosphatidate cytidylyltransferase Y Y (2) Y
EC 2.7.8.11 CDP-diacylglycerol–inositol 3-phosphatidyltransferase Y Y Y
EC 2.7.8.8 CDP-diacylglycerol–serine O-phosphatidyltransferase Y Y Y
EC 2.7.1.30 Glycerol kinase Y Y Y (2)
EC 1.1.1.8 Glycerol-3-phosphate dehydrogenase (NAD(+)) Y (2) Y Y (2)
EC 2.3.1.51 Probable 1-acyl-sn-glycerol-3-phosphate acyltransferase Y Y (2) Y
EC 2.3.1.20 Diacylglycerol O-acyltransferase Y Y Y
EC 2.3.1.158 Phospholipid:diacylglycerol acyltransferase Y Y Y
EC 3.1.1.3 Triacylglycerol lipase Y (3) Y (2) Y (2)
EC 2.3.1.26 Acyl-CoA:sterol acyltransferase Y Y Y
EC 1.14.19.1 Acyl-CoA desaturase Y Y Y
EC 1.14.19.6 Δ12 Fatty acid desaturase - Y Y
EC 1.3.3.6 Acyl-coenzyme A oxidase Y Y (3) Y
EC 2.3.1.16 3-ketoacyl-CoA thiolase, peroxisomal Y Y Y (2)
EC 2.3.3.8 ATP-citrate lyase, subunit a - Y Y
EC 2.3.3.8 ATP-citrate lyase, subunit b - Y Y
EC 1.1.1.38 NAD-dependent malic enzyme, mitochondrial Y Y Y
EC 6.4.1.2 Acetyl-CoA carboxylase Y Y Y
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Table 2.2.3: Characteristics of iNP636_Coleaginosus_ATCC20509 model.
Unique metabolites indicate species regardless of compartment.

Categories Features
Total reactions 1553
Gene associated reactions 1142 (84%)
Exchange reactions 189
Transport reactions 486
Metabolic reactions 878
Total metabolites 1373
Unique metabolites 786
Genes 636
Compartments 11

Figure 2.2.2: Distribution of (A) metabolites and (B) reactions among com-
partments in iNP636_Coleaginosus_ATCC20509. Orphan reactions are exchange
reactions, transport reactions, spontaneous reactions and reactions with no as-
sociated catalyzing genes. c- cytosol, ce- cell envelope, e- extracellular, g- Golgi,
l-lipid particle, m-mitochondrion, n-nucleus, r-endoplasmic recticulum, v- vac-
uole, vm- vaculor membrane, x-peroxisome.
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in biomass composition. Model flux distributions can be very sensitive to such
changes, compromising the predictive accuracy of the metabolic model [101].

The biomass composition ofC. oleaginosusATCC20509was shown to vary along
with the C/N ratio in the medium [62, 85, 102], as in nitrogen limiting conditions
excess carbon is converted in lipids.

Experimental data show an increase in lipid content with increasing C/N ratio
[85] until a maximum is observed at C/N ratio of 120 g/g (Figure 2.2.3). The link
between lipid content and C/N ratio can be approximated by a quadratic relation-
ship, as shown in Figure 2.2.3.

Figure 2.2.3: Lipid content in C. oleaginosus ATCC 20509 dry cell weight
(DCW) at different C/N ratio. In-vitro data was obtained from [85]. Fitting
line corresponds to y = −0.002 ∗ x2 + 0.59 ∗ x + 1.9

In addition to lipids, the biomass content of protein and carbohydrate also varies
with the C/N ratio [102]. Here we model weight fraction of biomass that corre-
sponds to carbohydrates, proteins and total lipids in the biomass using:

0.11biomassCarbohydrate + biomassProtein + biomasstotalLipid + 0.05biomassother

= biomass
(2.1)

The remaining 5%of the biomassweight is assigned toRNA,DNA,minerals and co-
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factor content. As these representminor quantities in the biomass, their coefficients
are assumed to be constant. Upon nitrogen starvation, the yeast cells start accumu-
lating intracellular sugars [102] as short-term energy storage [65, 103]. These intra-
cellular sugars will be then converted to long-term energy storage in form of lipid
droplet [102]. Furthermore, nitrogen depletion leads to a decrease in protein con-
tent as proteins are used as nitrogen source. No changes in carbohydrate profile in
the cell wall under nutrient shortage conditions has been reported [65]. Therefore,
we assume that nitrogen depletion will lead to a maximum carbohydrate content in
the cell and excess carbonwill be rerouted for lipid synthesis. Data from [62] at a rel-
atively low C/N ratio (2.8) suggest 11% as a reasonable and conservative estimate
for this weight fraction. Combining this expression and the relationship in Figure
2.2.3, a biomass synthesis reaction for nitrogen starvation can be dynamically built
for any C/N ratio (Additional file 4).

The amount of lipids in the biomass reaction varies along with the C/N ratio,
however the lipid composition does not change. TAGs still make up 90 % of to-
tal lipid in C. oleaginosus ATCC 20509 [58] and phospholipids for the remaining
10% [58]. The phosholipids, phosphatidylserine, phosphatidylethanolamine and
phosphatidylcholine are added with equal weights. Finally, the fatty acid content
of lipids (25 % hexadecanoic (C16:0), 10 % octadecanoic acid (C18:0), 57 % oleic
acid (C18:1), and 7 % linoleic acid (C18:2) [59, 58]) can also considered to be sta-
ble.
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2.2.4 Lipid production and growth in C. oleaginosus ATCC 20509

Effect of the C/N ratio on lipid production

We compared simulation results from our model,
iNP636_Coleaginosus_ATCC20509, with simulations obtained from the re-
sponse surface method [85] using either a fixed standard or a condition specific
biomass objective function. The results are presented in Figure 2.2.4.

When the condition-specific biomass objective function is applied (Figure
2.2.4B) GEM predictions are better aligned with predictions obtained with the re-
sponse surfacemethod in [85] (Figure 2.2.4A) underpinning the crucial role of high
C/N ratios in lipid production.

Effect of the carbon source on lipid production and growth

Carbon sources have been shown to have different effects on growth and lipid pro-
duction in oleaginous yeast [55, 62]. C. oleaginosus ATCC 20509 is able to grow on
glycerol, sucrose, glucose, fructose, ethanol or xylose as sole carbon source [65, 85]
and in silico growth was evaluated on these sources (Figure 2.2.5).

Overall, except for ethanol, growth was predicted in all tested carbon sources. In
our in silico experiment, uptake rates were adjusted for each carbon source to guar-
antee the same C-mol was provided. On all tested carbon sources, the model pre-
dicted favorable growth in rich nutrient-conditions. Comparable growth rates were
obtained in sucrose, glucose, fructose and xylose (Figure 2.2.5). Lower growth rate
was obtained for glycerol while no growth was obtained when ethanol was used as
sole carbon source.
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Figure 2.2.4: Simulations of impact of C/N ratio on lipid production by C.
oleaginosus ATCC 20509. Gluscose is used as a carbon source as in the response
method in [85] for (B) and (C).

A: Simulation using the surface response model [85],
B: A comparison of lipid production at a fixed N concentration at 0.3 (g/l)
between surface response method in [85] and iNP636_Coleaginosus_ATCC20509
using a standard biomass (static) and condition-specific (dynamic) biomass.
C: iNP636_Coleaginosus_ATCC20509 simulation using the proposed
condition-specific biomass objective function,
D: iNP636_Coleaginosus_ATCC20509 simulation using a standard biomass
objective function.
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Figure 2.2.5: In− silico growth rate when using different carbon sources. X and
Y axis start from 0.1. The color bars indicate growth rate (h−1).

Effects of 5-carbon sugars, i.e. xylose, 6-carbon sugars, i.e. glucose and fructose,
and of sucrose on growth in C. oleaginosus ATCC 20509 have been studied exten-
sively, and results varies among these studies. According to [85], comparing fruc-
tose, glucose, xylose and sucrose, C. oleaginosus ATCC 20509 grows the fastest in
fructose, the slowest in sucrose while there is no significant difference between glu-
cose or xylose. According to [86] xylose is favored over glucose for biomass gen-
eration. These differences can be due to various factors such as pH, temperature,
oxygen, dilution rate, and fermentation modes across experiments. When growing
in different fermentation modes, i.e. batch, fed batch, and continuous fermentation,
the microorganisms are subjected to differences in environment, substrate availabil-
ity and by-product concentration [104]. In addition, different carbon sources may
havedifferent uptake rates. These factors can result in different growth rates, biomass
and by-product accumulation. In this study, we simulated the process in continuous
fermentation and assumed the same uptake rate for all carbon sources.
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As for growth, a similar trend was predicted for lipid production on different car-
bon sources (Figure 2.2.6). For all tested carbon sources, the model predicted high-
est lipid production at high C/N ratios. Model prediction for lipid production in
glycerol is noticeably different from that of other carbon sources. This is consistent
with findings in [105] who reported a maximum growth rate and lipid production
ofC. oleaginosusATCC 20509 on glycerol in a fed-batch fermentationmode at 16g/l
glycerol and 0.27g/l NH4Cl, corresponding to a C/N ratio of 100 mol/mol.

Figure 2.2.6: In − silico lipid production rate when using different carbon
sources. X and Y axis started from 0.1. The color bars indicate lipid production
rate (mmol · g−1

DCW · h−1).

The model predicted the highest lipid production rate in sucrose, glucose, fruc-
tose, and xylose. Glycerol gave lower lipid production rate. Similar to growth, lit-
erature also captured contrasting findings on lipid production on different carbon
sources. Across various carbon sources, xylose was found the most suitable sugar
source for lipid yield in batch and chemostat cultures [82]. On the other hand, a
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lower lipid production on xylose compared to glucose were reported in other stud-
ies [85, 106]. This disagreement between studies can be due to influence of other
factors such as temperature, oxygen and fermentation mode [65].

Acetyl-CoA source for lipid production in C. oleaginosus ATCC 20509

Lipid synthesis requires a constant supplement of fatty acid and fatty acid synthe-
sis in turn requires a continuous supplement of acetyl-CoA [92]. In non-oleaginous
yeast such as Saccharomyces cerevisiae, the main source of acetyl-CoA is from the lig-
ation of acetate and coenzyme A by acetyl-coA synthase [92]. While, oleaginous
yeast such as Y. lipolytica, do not have the gene encoding for acetyl-CoA synthase
[92].

The main source for acetyl-CoA in oleaginous yeast is believed to be from
the cleavage of citrate to release acetyl-CoA and oxaloacetate in the cytosol by
ATP:citrate lyase [92]. It implies that there is a continuous export of citrate from
the mitochondria to the cytosol. Our model with the assumed chemostat cultiva-
tion also predicts this. The flux of the citrate transport reaction increases positively
with ATP:citrate lyase whose flux also increases sharply after passing C/N ratio of
10 g/g (Figure 2.2.7). Fluxes through acetyl-coA pool and lipid synthesis reaction
also surged after passing the same C/N ratio (Figure 2.2.7). The large standard de-
viations in Figure 2.2.7 represent alternative flux distributions that are compatible
with the set constraints. This variability reflects both themetabolic flexibility of this
organismand the lackof sufficient data to fully constrain themodel, a commonprob-
lem in GEM model analysis.

As reported in [107], after passing the critical C/N of 11 g/g, when the nitro-
gen concentration is limiting further growth, the yeast starts to accumulate more
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Figure 2.2.7: In − silico flux analysis of acetyl-CoA source for lipid synthesis.
The citrate transport from mitochondria to cytosol and ATP-citrate lyase which
catalyzes the reaction ATP + citrate + Coenzyme-A → acetyl-CoA + oxaloac-
etate + Pi + ADP in cytosol follow the red Y-scale; acyl-coA production (an
artificial reaction represents acyl-coA Pool in the model); and lipid synthesis (an
exchange reaction of lipid) follow the blue Y-scale. Bars indicate the standard
errors of means of fluxes through each reaction. The C/N (g/g) refers to the
ratio between the uptake rates of carbon and ntirogen sources.
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lipid. In order to sustain cellular functioning, the cell degrades AMP to inosine
monophosphate and ammonium ions [92, 57]. A decreased AMP concentration
in turn down-regulates the activity of isocitrate dehydrogenase [92, 108, 109, 57].
This enzyme converts citrate to isocitrate. Its down-regulation, therefore, leads to
the accumulation of citrate in mitochondria. Accumulated citrate is then exported
to cytosolwhere it is hydrolysed to acetyl-CoAandoxaloacetate byATP:citrate lyase
[92, 57]. This process provides more acetyl-CoA for fatty acid synthesis which fur-
ther enhances lipid production in the cell [57]. Although FBA analysis does not
account for regulation, the same trend was observed in our simulations, that clearly
indicate the association between increased flux through ATP:citrate lyase reaction
and lipid production (Figure 2.2.7). Furthermore, model simulations show no al-
ternative lipid production pathway as in-silico growth is inhibited when simulating a
knock out of this enzyme. Our model suggests ATP-citrate lyase as the main source
for acetyl-CoA suggesting that overexpression of ATP-citrate lyase can help to fur-
ther improve lipid production. This strategy has been successfully implemented in
Y. lipolytica [110].

Lipid metabolism regulation

The effect of nitrogen limitation on lipid production was studied by analyzing the
effect of theC/N ratio on (i) the in-silico flux distribution and (ii) the transcriptional
landscape of C. oleaginosus ATCC 20509 grown on glycerol.

(i) in-silico flux distribution: We tested lipid production at different C/N
ratios while keeping the carbon concentration constant at either 16, 24 or 32 g/g
DCW (Figure 2.2.8) as for the same C/N ratio the absolute amount of carbon sup-
plied has been shown to greatly affect lipid production [62]. The model predicted
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that for the higher C/N ratios, more carbon is required to sustain lipid production.
With 16 g/g DCW carbon no lipid could be produced at a C/N ratio of 240 (g/g).
Likewise, with 24g carbon, no lipid formation was predicted at a C/N ratio of 300
(g/g). Only with 32 g/g DCW carbon, lipid accumulated at the complete range of
C/N ratio’s tested.

Figure 2.2.8: In − silico flux changes in C. oleaginosus ATCC 20509 at different
C/N ratio with (A) 16g carbon; (B) 24g carbon; (C) 32g carbon using glyc-
erol as a sole carbon source. A C/N ratio of 6 g/g was used as reference point
to calculate Zscore for each C/N ratio. The C/N (g/g) refers to the ratio be-
tween the uptake rates of carbon and nitrogen sources. Zscore > 0 indicates
an increase in flux compare to that at reference point; Zscore < 0 indicates a
decrease in flux compare to that at reference point. PPP - Pentose Phosphate
Pathway; AAs metabolism - Amino acids metabolism. Each dot in the graph
represents a reaction in the corresponding pathway.

For the three tested carbon concentrations, the same trends in flux distribution
were obtained (Figure 2.2.8). When increasing C/N ratio, a majority of reactions
in TCA and PPP have their fluxes increased. This could be due to the high de-
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mand of reducing power, i.e. NADPH, of lipid production. Fluxes through glycol-
ysis are greatly diverse when changing glycerol concentration. Reactions related to
glucose catabolism such as hexokinase (D-glucose:ATP) and glucose-6-phosphate
isomerase (PGI) have their fluxes reduced. Down regulation of PGI was reported
to lead to the accumulation of intracellular sugar which is later converted to lipid
in the nitrogen-depletion stage [102]. Downstream reactions in glycolysis such as
6-phosphofructo-2-kinase, pyruvate kinase and acetyl-CoA synthetase have their
fluxes increased. Upregulation of these enzymes can be a result from a high demand
of precursors for lipid accumulation.

As already mentioned in [111] we also observed flux fluctuations in amino acid
metabolism (Figure 2.2.8). Fluxes through enzymes in amino acid degradation
pathways, i.e. argininosuccinate lyase, L-hydroxyproline dehydrogenase (NAD),
and L-glutamate 5-semialdehyde dehydratase increase at a high C/N ratio. This is
expected since amino acid degradation provides an alternative source for nitrogen
upon limitation. Reactions in amino acids synthesis such as glutamine synthetase
and ornithine decarboxylase, on the other hand, had their fluxes reduced.

(ii) Nitrogen limitation induced transcriptional changes: RNAseq
data was obtained from C. oleaginosus ATCC 20509 when growing in a glycerol
medium with initial C/N (g/g) ratio of 28 and 2.8 respectively. Nitrogen is sig-
nificantly depleted at the time of sampling (Table 2.4.1). There were 7272 genes
expressed in high C/N ratio medium and 7246 genes expressed in low C/N ratio
medium (> 50 Counts Per Million). When comparing low C/N ratio to high C/N
ratio medium, 75 genes were found to be up-regulated and 26 were down-regulated
(see Additional file 5). Interestingly, the majority of these genes code for unknown
protein functions. No genes involved in primary metabolism were found to have
significant different expression level in either low or high C/N ratio.
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In response to nitrogen starvation the gene expression levels of many genes in
the lipid synthesis pathway were reported to fluctuate in Y. lipolytica [112], in con-
trast Kerhoven E.J. et al [111] reported no significant change in transcription level
of these genes under nitrogen limitation. Using xylose as carbon source the Acetyl-
CoA carboxylase (ACC) gene was found to be upregulated in Trichosporon oleagi-
nosus strain IBC0246 under nitrogen limitation [113] and the same authors also
reported significant upregulation of fatty acid synthetase (FAS1 and FAS2), malic
enzyme and ATP-citrate lyase (ACL) under these conditions.

In our case, upon growth in glycerol, RNAseq analysis showed no difference
in transcription level of genes involved in lipid synthesis pathway in C. oleaginosus
ATCC 20509. The model however, was able to predict lipid production at differ-
ent C/N ratio qualitatively consistent with experimental data. This suggests that in
glycerol C. oleaginosus ATCC 20509 lipid metabolism is not regulated at the tran-
scriptional level. Pathway flux is controlled by simultaneous multisite modulation
through action on a number of enzymes [114]. This suggests that other regula-
tory effects, such as regulation of translation or allosteric effects may dominate in
C. oleaginosus. In Lipomyees starkeyi, an oleaginous yeast, and Aspergillus niger, a cit-
ric producing yeast, ATP:citrate lyase, the key enzyme in lipid synthesis is controlled
by the energy charge and fatty acid acyl CoA esters [115]. While humanATP:citrate
lyase activity has been reported to be regulated by in-vitro allosteric effects via phos-
phorylation [116]. Little is know on the regulation of this enzyme in C. oleaginosus.

2.3 Conclusions

In this study, we introduced the first GEM for C. oleaginosus ATCC 20509 and
as such iNP636_Coleaginosus_ATCC20509 represents a valuable platform to inte-
grate, interpret and combinemany decades of experimental efforts since its first iso-
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lation from a dairy farm in 1978 [117, 67]. The model gave qualitative predictions
at different C sources consistent with experimental data, highlighted the lipid pro-
duction lifestyle of C. oleaginosus ATCC 20509 and pinpointed ATP-citrate lyase as
a target to further improve lipid production. Analysis of RNAseq revealed that lipid
production inC. oleaginosusATCC20509 in glycerol does not appear to be regulated
at the transcriptional level.

C. oleaginosus is known to have a great potential for lipid production due to its
efficient growth on inexpensive carbon sources such as glycerol. Our simulations
show that its potential has not yet been fully explored and can be optimized further.
The predictive accuracy of iNP636_Coleaginosus_ATCC20509 renders its great po-
tential for future studies to guide metabolic engineering for the production of high
value industrial compounds such as polyunsaturated plant-like fatty acids.

2.4 Materials andMethods

2.4.1 C. oleaginosus ATCC 20509 experimental data collection

The strain was cultivated in the same basal medium as described in [62] except for
the glycerol and NH Cl concentration which was adapted in order to achieve the
chosen C/N ratio. A C/N ratio of 28 was obtained by adding 16 g/l glycerol and 1
g/l NH Cl (medium A), while in other sample, 8 g/l glycerol and 5 g/l NH Cl was
added tomake aC/Nratio of 2.8 (mediumB).TheC/Nratioswere taken from[62],
which shows C. oleaginosus grows at a C/N ratio of less than 5, and lipid production
for a ratio between 20 and 40 carbon / nitrogen.

Two biological replicates for each condition were inoculated from a freshly pre-
pared YPD-agar plate in 50 ml of YPD medium and grown O/N in a 100 ml Er-
lemeyer flask at 30 0 C and 225 rpm. The culture was divided in two 25 ml portions
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and centrifuged (10 min. 300 rpm) to collect the cells. The cell pellets were resus-
pended in 30 ml medium A or medium B. 4 ml of the resuspended cells was used to
start duplicate cultures in medium A and B which were incubated for 18 hours at 30
0C and 225 rpm. Each culture was divided in two equal portions and the cells were
harvested by centrifugation and the wet pellet frozen in liquid and used for RNA
extraction.

Wemeasured the concentration of glycerol and NH4Cl in the medium at the ini-
tial condition and at the sampling point (Table 2.4.1). Glycerol and NH4Cl were
measured with HPLC analysis and NH4 chemical analysis, respectively.

Table 2.4.1: Glycerol and NH4Cl levels obtained from HPLC analysis & NH4
chemical analysis

OD 650 glycerol (g/L) NH4Cl (g/L) C/N (mol/mol) CDW* (mg/ 50 ml)
T=0h T=18h T=0h T=18h T=0h T=18h T = 18h

A1 2.75 12.2 20.5 11.3 1.1 0.022 896 404
A2 2.9 11.8 20.5 11.4 1.1 0.015 1325 365
B1 2.8 10.4 10.2 1.6 4.7 2.9 0.96 445
B2 2.85 10.4 10.2 2.5 4.7 3.6 1.2 445
* Cell dry weight

2.4.2 RNA extraction procedure

RNA was extracted using an acidic hot phenol extraction procedure. Briefly, the
cell pellet was ground in liquid nitrogen and mixed with 4 volumes of pre-warmed
(600C) phenol + extraction buffer (1% SDS, 10 mM EDTA, 0,2 M NaAc (pH 5))
after this 2 volumes of chloroform were added and mixed thoroughly. After cen-
trifugation the buffer layer was washed once with chloroform. RNA was precip-
itated from the buffer layer by adding 8 M LiCl to and end concentration of 2M.
After centrifugation the pellet was washed once with 2M LiCl and twice with 70%
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ethanol. The remaining pellet was resuspended in RNase free water. Total RNA ex-
tract, RNA sequencing, and RNAseq data processing were performed as described
in [62]. Samples were sequenced by NovoGene using Total RNA.

2.4.3 RNAseq analysis

Raw read counts in two C/N ratios, 2.8 and 28 (mol C/mol N), were obtained
with the RNA-seq aligner STAR (v2.6.0b) [118] using the parameter “–quantMode
GeneCounts”, the public genome sequence MATS00000000.1 of C. oleaginosus
ATCC 20509 and the GTF file obtained from BRAKER1. Read count data were
then analyzed using DESeq2 [119] to identify genes that have different expression
when changing the C/N ratio. Two biological replicates for each condition were
provided. The statistical significance of gene expression differences was evaluated
using a false discovery rate (FDR) < 0.05 and | log2 (fold change)| ≥ log2 1.5 as a
threshold.

2.4.4 Genome sequence

The genome sequence MATS00000000.1 from Cutaneotrichosporon oleaginosus
ATCC 20509 reported by [88] was annotated and used to build the model. The
genome sequence has 19.86 Mbp and a GC content of 60.7%.

2.4.5 Genome annotation

Unsupervised RNA-Seq-based gene prediction of C. oleaginosus ATCC 20509 was
performed with BRAKER1 v1.10 [89] in combination withHISAT2 (v2.1.0) [120]
using all the RNAseq datasets combined.
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The genome, predicted gene structures and their proteins sequences were di-
rectly stored in the SAPP semantic (RDF) database [121] using the GBOL ontol-
ogy [122]. Protein signature prediction was done with a standalone version of In-
terProScan v5.24.64.0 [123] using the default databases. EnzDP [124] was used to
assign EC numbers to Proteins. This is with a confidence score cut-off of 0.2. Both
tools were used in direct interaction with the previous mentioned SAPP database.

2.4.6 Construction of iNP636_Coleaginosus_ATCC20509 model

Software environment

The model was read, modified and analyzed in MATLAB (version R2015b) [125],
using COBRA toolbox 3.0 [23] and GLPK [126] as a linear solver.

Construction of the draft model

A draft model was constructed using the scaffold-based method described in [97].
A GEM of Y. lipolytica , considered as a model for oleaginous organism [92, 56]
was chosen as a reference scaffold. There are 5 published models for Y. lipolytica
iNL895 [97], iYL619 [127], iMK735 [128], iYALI4 [111], iYLI647 [129]. Y. lipoly-
tica iNL895model [97]was used as a scaffold because it contains themost reactions
and genes and was also constructed based on the Saccharomyces cerevisiae model,
iIN800 [98] which was specialized for lipid synthesis.

To find ortholog proteins from Y. lipolytica to C. oleaginosus ATCC 20509, the
enzyme-coding-genes obtained from Y. lipolytica iNL895 model were functionally
annotated in the samemanner asC. oleaginosusATCC20509 and stored in the SAPP
database. A combination of the protein signatures, ECprediction, BLAST andman-
ual curation was used to find the orthologues.
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If an ortholog gene was found in C. oleaginosus ATCC20509 , the associate re-
action in the scaffold iNL895 was kept. In addition, exchange and non-enzymatic
transport reactions for the medium were kept. Spontaneous and growth essential
orphan reactions from the scaffold were also preserved. This step resulted in a draft
model for further curation.

Curation of the draft model

In order to build a working GEM the draft model expanded and refined in the fol-
lowing manner:

The lipid synthesis pathwaywas curatedbasedonKEGG[130], literature [92,
58, 59, 57] as well as experimental data in [62, 105].

(i)

The centralmetabolic network, including glycolysis, pentose phosphate path-
way and TCA cycle were manually curated based on literature [131, 132].

(ii)

Growth associated maintenance energy (GAM) was adopted from Y. lipolyt-
ica model, iNL895. Non-growth associated maintenance energy in C. oleagi-
nosus ATCC 20509 is known to be relatively low in comparison with other
yeasts [62], in the model this value was set as 1 mmol · g−1

DCW · h−1.

(iii)
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The draft model was further curated by removing gaps, irrelevant reactions
and infeasible energy production cycles. Method described in [133] was em-
ployed to identify infeasible energy production cycles in ourmodel. In short,
we added energy dissipation reactions for ATP, CTP, GTP, UTP, NADH,
NADPH, FADH2 and proton with unconstrained bounds. Fluxes through
all network reactions, except the addedenergydissipation reactionswere con-
strained to range [-1,1] for reversible and [0,1] for irreversible reactions. No
uptake nutrients were allowed. Each energy dissipation reaction was maxi-
mized to identify the presence of infeasible loops.

(iv)

Development of a condition specific biomass function

The four major macro-molecules of living cells are proteins, carbohydrates, nucleic
acids and lipids [134]. The ratio between them are assumed to be different in dif-
ferent conditions. We assumed lipid, protein and carbohydrate makeup 95 % of the
cell dryweight. Depending on theC/N ratio in themedium, the ratio between them
will vary. Nucleic acids and other cofactors and mineral only make up a small frac-
tion of the biomass, and kept constant. Using data from literature, we parametrized
the relationship between the biomass and carbohydrates, proteins and lipids under
nitrogen starvation using:

0.11biomassCarbohydrate + biomassProtein + biomasstotalLipid + 0.05biomassother

= biomass
(2.2)

This assumes that under nitrogen starvation, 11% of the cellular biomass corre-
sponds to carbohydrates, 5% to nucleic acids and other components and the remain-
ing fraction correspond toproteins and total lipids. Weused the experimental data in
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[85] to model the C/N ratio in the media and lipid accumulation using a quadratic
regression (Figure 2.2.3) with a correlation coefficient of 0.98. This enables the es-
timation of the contribution of lipids wTL to the biomass. For this, C and N up-
take rates were used to compute the ratio between both components as we assumed
a simulation scenario (chemostat) where not net accumulation of either one hap-
pens. Using this approach, we can generate specific biomass reaction at any C/N
ratio using carbon source and nitrogen source uptake rates as the sole inputs. De-
tails regarding components and their coefficients in the biomass reaction at normal
condition, i.e. when there is no nitrogen depletion, can be found in (Additional file
6). Finally, the biomass equation was standardized to have a molecular weight of
1 · g/mmol.

The main lipid building-blocks are fatty acid residues. The majority of fatty acid
inC. oleaginosusATCC 20509 is oleic acid (C18:1) [58, 59]. When growing on glu-
cose, the composition of main fatty acids in C. oleaginosus ATCC 20509 are 25 %
hexadecanoic (C16:0), 10 % octadecanoic acid (C18:0), 57 % oleic acid (C18:1),
and 7 % linoleic acid (C18:2) [59, 58]. As specific information about each fatty acid
in lipid molecules is not available for C. oleaginosus ATCC 20509, in the model, an
artificial acyl-CoA pool for lipid synthesis was formulated. A reaction representing
the acyl-CoA pool was introduced:

0.24952C16:0 + 0.096712C18:0 + 0.55233C18:1 + 0.067963C18:2

→Acyl− CoApool

Coefficients of fatty acids in the acyl-CoA pool reaction represent their weight
percentages in the lipid of C. oleaginosus ATCC 20509 according to data in [59, 58].
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Growth simulation

Model accuracy was validated using flux balance analysis (FBA) implemented
in COBRA Toolbox 2.0.6 [135] in MATLAB environment. Minimum defined
mediumwas used. Unlimited uptake rates ofCO ,H O,H+, O , Iron2+, phosphate,
potassium, sodium, sulphate, andNH were allowed. This entailed setting the lower
bounds of the corresponding exchange reactions to -1000, as we used the usual con-
vention of writing the exchange reactions in such way that production corresponds
to positive fluxes and consumption to negative ones. These constraints were kept for
all simulations.

The gold standard validation technique in GEMs is to compare model prediction
to experimental data. In-silico growth simulation in the presence of different carbon
sources was carried out, for this uptake rate of the corresponding carbon source was
constrained to -10 mmol · g−1

DCW · h−1. Biomass reaction with experimentally deter-
mined content at nitrogen abundant condition was used.

2.4.7 Investigation of lipid synthesis in C. oleaginosus ATCC 20509

Simulations of growth and lipid production

We conducted in-silico experiments to assess the effect of C/N ratio on lipid pro-
duction in C. oleaginosus ATCC 20509. To compare our prediction with simulation
from the response surface method [85], we mimic the experimental set up in [85].

To generate different C/N ratios, C mmol and N mmol were calculated from the
data in [85] where nitrogen was set up in the range of [0.1:0.01:0.8] g, carbon was
in [1.5 : 0.05 : 8.5] g with urea and glucose as nitrogen and carbon source, respec-
tively. We assumed a constant uptake of carbon and nitrogen. As reported in [107]
after passing a critical C/N of 12.83 (mol/mol) or 11 (g/g) the biomass reaches the
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maximum value of 0.20 h−1. Thus, to simulate lipid production we fixed the growth
rate for subsequent optimizations. If the in-silico growth rate at the tested C/N ra-
tio was higher than 0.2 h−1, we fixed the biomass lower bound and upper bounds to
[0.2·0.9, 0.2]. For growth rates smaller than0.2h−1, wefixed thebiomass to themax-
imal predicted values at the corresponding C/N ratio. A specific biomass reaction
for eachC/Nratiowasused. Lipid formationhappenswhen the cellwas subjected to
sudden depletion of other nutrients such as nitrogen after growing maximally [59].
To mimic this process, in our simulation, biomass function was constrained to the
set values and exchange reaction of lipid bodywasmaximized. Wedid not constraint
biomass when simulating for growth.

To study effects of different carbon sources on growth and lipid production, lower
bound and upper bound of each exchange reaction for glucose, fructose, xylose,
sucrose, ethanol and glycerol was constraint in each study. To generate different
C/N ratio the uptake rate was increased gradually in the range of -[0.1: 5: 100]
mmol · g−1

DCW · h−1 for carbon source and of -[0.1 : 1: 10] mmol · g−1
DCW · h−1 for

nitrogen.

Sampling the solution space when shifting C/N ratio

To study how flux distribution change when changing C/N ratio, we sampled the
solution space at steady state for eachC/N ratio. Based on [107, 85] we selected the
C/N ratio as [6,8,10, 12,24,30,36,48,60,90,120,180,240]. To study the effect of car-
bon concentration on lipid synthesis we simulated lipid production at 3 different C
(g) as [16,24,32] for the sameC/N range. Minimalmediumwas used. The solution
space at steady-state for each C/N ratio when optimizing for lipid production with
constrained biomass (see section ”Simulations of growth and lipid production”)was
sampled using gpSampler [136] implemented in COBRA toolbox 2.0.6 [135]. The
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sample was taken for 5000 sample points with no bias, ”maxtime” was 10 minutes,
”maxsteps” was set to 1010 and 1 thread was used. Sampling results were analyzed as
described in [137]. In short, means and standard deviations were calculated from
the sampling results to obtain Zscores for each reaction in the central metabolic net-
work. A C/N ratio of 6 (g/g) was used as the reference point to calculate Zscores
for fluxes in other C/N ratio.

To study themain source of acetyl-coA for lipid synthesis inC. oleaginosusATCC
20509, we sampled the solution space at steady state for each C/N ratio. The C/N
ratio data from experiment in [107] were used for the simulation. To mimic their
experimental set up, uptake rate of nitrogen, in form of urea, was fixed at -25 mmol ·
g−1
DCW · h−1. Carbon was gradually increased to generate the desired C/N ratio.

Additional Files

Additional files of this work can be found online at
https://www.researchsquare.com/article/rs-26414/v1
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abstract

Advances in metabolic engineering and synthetic biology make microbial produc-
tion a promising alternative over chemical synthesis. However, long innovation
time, unfamiliarity with new biocatalysts, costly scale-up and non-flexible industrial
set up hamper the shift from petro-based to bio-based chemical production. Path-
ways design and ranking are critical steps to facilitate the biosynthesis production
because any pathway design coming downstream in the pipeline will be customized
for the chosenpathways. Speedingup thedesignphase saves time and effort for engi-
neering phases. In this study, we used a combination of tools based on retrosynthesis
and genome-scale, constraint-based metabolic models to design biosynthesis path-
ways for five different classes of compounds of industrial interest: cis,cis-muconic
acid, aniline, anisole, geranic acid, and 3-methylmalate in Pseudomonas putida. We
established a general, systematic workflow to rank these pathways based on thermo-
dynamic feasibility, enzyme sequence availability, and maximum theoretical yield.
Using our approach, we discovered pathways that have not been accounted for be-
fore to produce these compounds. We illustrate this in detail for cis,cis-muconic
acid, awell-characterised platformchemical forwhichwe identified 2 fully newpath-
ways despite of the wealth of information previously available. We have thus shown
here a successful approach to quickly design and select potential chemical produc-
tion pathways by combining systematically retrosynthesis and genome-scale mod-
els.
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3.1 Introduction

Chemicals play an undeniable significant role in our life. These compounds are
primarily synthesized relying on petrochemical feedstocks. Although efficient, this
petro-based approach is considered unsustainable and raises lots of environmental
issues. On the quest for a more sustainable production approach, microbial cell fac-
tories are gaining attention. The biobased chemical production is considered more
sustainable due to the use of available renewable biomass instead of fossil resources
[138, 139]. In addition, this approach also produce less greenhouse gas and oper-
ate at mild conditions such as low temperature and pressure [138, 139]. Using mi-
crobes for chemical production also bring other advantages such as:(i)-microorgan-
ism can grow low-cost on renewable biomass which can be waste products, hence a
stable production cost is ensured [140]; (ii)- microbes produce high yields of valu-
able chemicals with less byproduct [141]; (iii)-the flexible of the microbial systems
allows the production of a wider range of chemicals that may not be possible or are
difficult to make chemically [140].

Microbes have been employed to produce chemicals for more than thousands
of years with significant impact for instance the introduction of beverages, cheeses,
bread, pickled foods and vinegar in the ancient time [34]. These early applications
were mainly done without understanding how microbes arose [34]. The discovery
of fermentation process by Louis Pasteur has revolutionized the use ofmicrobes and
mademicrobiology a distinct field [34]. The oldest industrial application of fermen-
tation was to produce lactic acid in high quantity from fermentedmilk in 1841 [35].
Themicrobe that carried out this fermentation was later characterized as lactic yeast
in 1858 [35]. A few years later, in 1893 the first industrial process to produce citric
acid from fungi, which is recently known as Aspergilus niger, was established [35].
Another significant achievement of chemical production from microbes was the es-
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tablish of acetone-butanol-ethanol fermentation from Clostridium acetobutylicum at
industrial scale in 1916 [36]. This process was developed by the chemistWeizmann
who became the first president of Israel some years later [34].

These early processes employedmicrobeswhen theywere notwell-characterized.
In recent years numerous examples of microbial cell factories have been established
for many targets. Recent thorough reviews feature an extensive metabolic map with
various pathways for the production of more than 435 chemicals andmaterials [38]
andcellulosic ethanol, the second-generationbioethanol [39]. Manychemicals such
as amino acids, vitamins, organic acids, andother compoundshavebeen successfully
produced from microbes at commercial scale [37].

Still we have not reached the maximum potential of microbes and the shift from
petro-based synthetic chemical to bio-based production is incredibly moderate
[48, 42]. Long innovation time, costly scale-up, and non-flexible industrial set up
make it difficult to implement conceptual laboratory research to actual industrial
production [140, 42]. The majority of natural compounds of interest fall into four
main groups: alkaloids, flavonoids, terpenoids, and polypeptides [142]. Choosing
a target for chemical production involves the consideration of various aspects in re-
lation to techno-economic and life cycle analysis such as operation cost, product
estimated price, and environmental impact [142]. Establishing a new chemical is ex-
pensive and difficult, implementation of biosynthesis of natural compounds is still
limited to only standard groups of compounds such as alcohols, organic acids, and
amino acids [143, 37].

In order to connect research and industry, there is a need for a product-
independent standardized workflow that can shorten the innovation time and re-
duce the implementation cost. This is the core of the design-build-test-learn
(DBTL) paradigm in synthetic biology, an iteration cycle to design production
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strategies that fit implementation requirements [144]. This cycle has long been ap-
plied in engineeringbut has just recently adopted in synthetic biology [145, 146, 54].
An automatic workflow has been suggested to optimize the cycle [54]. The work-
flow allows quick prototyping and optimization of synthetic pathways in a target
microbial chassis. The process starts with the Design of pathways for the biosynthe-
sis of the product of interest. These pathways are ranked and screened for promis-
ing candidates. The next step is to Build the DNA constructs followed by the Test
phase where all candidate pathways are tested with different configurations. In the
next step, the Learn phase, statistical analysis andmachine learningmethods are de-
ployed to select the best configuration. Then the cycle is iterated for further opti-
mization. The final output of this recursive loop is optimum pathways and plasmid
constructs to produce the target chemical in a micro-host of choice.

Designing routes to produce the chemical compound of interest is the first step in
the biosynthesis approach. It is usually done manually based on expert knowledge
or literature. This restricts the number of pathways one can find and is even harder
to design pathways for less-studied compounds. Many computationalmethods have
therefore been developed to allow the exploration of a bigger knowledge pool and
hence ensure higher chances to find production routes. These techniques employ
different algorithms to predict pathways such as graph topology [147], stoichiomet-
ricmatrix [148]or retrosynthetic search [149]. The later approach, retrosynthesis, is
unique cause it is basedonmolecular signatures of substrates andproducts to predict
enzyme promiscuity, a new substrate for the known enzyme hereafter new reactions
and pathways. Retrosynthesis approach has been used in chemistry for ages but very
recent in pathway design. Its unique prediction ability allows the discovery of new
knowledge, hence ismore suitablewhenfinding newpathways forwell-studied com-
pounds or designing pathway for uncommon or even non-natural chemicals.
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The retrosynthesis approach can predict numerous potential pathways. We
wanted to study the performance of retrosynthesis methods to identify pathways
for natural compounds. To asset the validity of themethod, we include well-studied
compounds to serve as positive control. To expand our exploration over standard
compounds of interest, in addition to the well-known chemical, we also selected
compounds that have little literature about their biosynthesis production. In this
study, we aimed to design pathways for cis,cis-muconic acid, geranic acid, anisole,
aniline, and 3-methylmalate (Table 3.1.1). Cis,cis-muconic acid, a six-carbondiacid,
is of great interest because it can be converted to adipic acid, an important indus-
trial platform chemical for the synthesis of various plastics and polymers. Many
biosynthesis pathways and patents such as anthranilte [150], shikimate [151], 2,3-
dihydroxybenzoic [152], phenol [153], tyrosine [153] and chorismate pathway
[154] have been introduced. Nevertheless, it is still mainly produced chemically
from benzoate which is not a sustainable feedstock.

Target PubChem CID Class Application
Cis,cis-muconic acid 5280518 Alkaloid Precursor for plastic and polymers

Anisole 7519 Alkaloids Agriculture, consumer &
pharmaceutical products

Aniline 6115 Alkaloids Agriculture & consumer-use products

3-methylmalate 558882 Polyketides Cosmetics, pharmaceutical products &
biodegradable plastics

Geranic acid 5275520 Terpenoids Agriculture

Table 3.1.1: Target chemicals for pathway design

Anisole, a monomethoxybenzene, is a plant metabolite that has been widely used
in industry and healthcare as precursors for fragrances, insect pheromones, and
pharmaceuticals [155]. Research has been done for isolating -anisoles related com-
pounds such as brominated phenols and anisoles from natural sources, i.e. marine
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worms [156, 157], algae [158] and sponges [159]. Yet no effort has been spent in
implementing biosynthesis of anisole, it is still mainly produced chemically by alky-
lation of phenol with methanol [160].

Aniline is the simplest aromatic amine with a phenyl group attached to an amino
group. The chemical is commercially important for making a wide variety of prod-
ucts such as polyurethane foam, agricultural chemicals, synthetic dyes, antioxidants,
stabilizers for the rubber industry, herbicides, varnishes, and explosives [161]. The
oldest way to produce aniline was from the distillation of indigo, a natural blue sub-
stance extracted from plants [162]. Nowadays, aniline is mainly produced chemi-
cally by the reduction of nitrobenzene and the amination of phenol with ammonia
[163].

3-methylmalate - also known as 3-methylmalic acid or 2-Hydroxy-3- methylsuc-
cinate, is classified as amember of the hydroxy fatty acids. Due to their unique prop-
erties, hydroxy fatty acids are excellent materials for many applications from cos-
metics, pharmaceutical products to precursors for plastics and the unique family of
biodegradable plastic, polyhydroxyalkanoates [164, 165]. However, the production
of hydroxy fatty acids is difficult and expensive [164]. The limitation in chemical cat-
alysts tomakehydroxylationof fatty acids [166] and the lackof a low-cost biosynthe-
sis pathway for hydroxy fatty acids make their commercial production unavailable
[167]. Although some attempts to make biosynthesis production of hydroxy fatty
acids was introduced but mainly from the conversion of vegetable oils that strongly
depend on oil crops [167].

Geranic acid is a plant terpenoids with strong inhibitory activity against
pathogenic fungi [168]. Geranic acid has been successfully produced in maize by
cloning a geraniol synthase. In 2014, the first de novo biosynthesis of geranic acid in
P. putida was reported. This pathway involves the introduction of a truncated geran-
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iol synthase (GES) from Ocimum basilicum and the complete mevalonate pathway
from Myxococcus xanthus [169].

The next step after pathway design is to rank these pathways and find enzymes
that catalyze reactions in these pathways. Although pathway design has been studied
intensively, only a few studies has focused on the pathway ranking [170, 171]. In this
study we aim to establish a systematic pathway design and evaluation to integrate
into the DBTL cycle. We will combine retrosynthesis and genome-scale models to
design and enumerate pathways.

Genome-scalemodel is a comprehensivemetabolic knowledgebase of a target or-
ganism. These models are linear, constraint-based models that enables simulating
metabolism at steady-state [21]. They have been used to guide metabolic engineer-
ing and to serve as platform for contextualizing ’Omics’ data [27, 28]. In the con-
text of pathway ranking, GEMs are excellent tools to calculatemaximum theoretical
yields of native and non-native pathways [172].

Thenext step is to select enzymes for reactions in the productionpathways. Selen-
zyme is a unique tool for this task as it allows to search for enzymes for reactions that
are not in the database [173].This is feasible because Selenzyme bases on SMARTS
reaction rule to mine for enzymes that can act on the same reaction centers.

Selecting suitable hosts for chemical production is also an essential element to fa-
cilitate the biosynthesis of chemicals. Over the traditional workhorses such as Es-
cherichia coli and Saccharomyces cerevisiae, Pseudomonas putida emerges as a more
suitable host for chemical production due to their outstanding solvent tolerant ca-
pacitywhile producing fewer or no by-product [174]. Thebiocatalysis withP. putida
in organic systems make downstream product removal simpler cause hydrophobic
compounds can be directly isolated [175–177]. P. putida is also certified as HV1
which means the bacteria is safe to work with [178]. Due to these advantages, we
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employed P. putida as production chassis for cis,cis-muconic acid, anisole, aniline,
geranic acid, and 3-methylmalate.

In this study we employed a retrosynthesis tool, RetroPath2.0 [179] to design
pathways. RetroPath2.0 can design pathways, yet, identifying the best candidates
are not covered in the algorithm. In this study, we establish a general ranking sys-
tem based on pathway capabilities such as maximum theoretical yield and thermo-
dynamic feasibility using genome-scale metabolic model to extract meaningful out-
put from the numerous results obtained from RetroPath2.0.

3.2 Results

In this work, we designed biosynthesis pathways for five compounds, cis,cis-
muconic acid, aniline, anisole, geranic acid, and 3-methylmalate. The workflow is
summarised in Figure 3.2.1. In the first step, RetroPath2.0 was used to design pos-
sible routes of metabolic conversions from internal metabolites to products. Here
GEM was used as a knowledge base to provide the known metabolic pool of the
target organism, in our case P. putida. In the second step, pathways resulted from
RetroPath2.0 was added to two existing high quality GEMS of P. putida, namely
iJP962 and ijN1411, to select pathways that producehigh theoretical yields. Selected
routes will be converted in biochemical feasible pathways through enzyme selection
in the next step. In the final step, selected pathways will be checked for thermody-
namic feasibility using eQuilibrator. Note that the rankingmethodwe proposedwill
discover already existing solutions. These are deliberately included to serve as a pos-
itive control.
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3.2.1 RetroPath2.0 and the required input

The required input for RetroPath2.0 is International Chemical Identifiers (InChI)
of internal metabolites in the target organism, a so-called sink metabolites. In this
study, we obtained InChI structures for 792 out of 1390 unique metabolites in
iJN1411 due to the presence of many organism specific compounds such as mem-
brane lipids or fatty acids with hydrocarbon tails of specific carbon numbers that are
not identified in public databases. Although we can only map 56.9% of metabolites
in the P. putida model iJN1411, RetroPath2.0 was able to find pathways with the
input we provided.

Using RetroPath2.0, pathway enumerator rp2path, an algorithm to enumerate
RetroPath2.0 output into pathways and a ranking system based on pathway length,
theoretical yield, the availability of enzymes and thermodynamic feasibility which
is the max-min driving force of the whole pathway, we designed a total of 16 syn-
thetic pathways for five compounds cis,cis-muconic acid, aniline, anisole, geranic
acid, and 3-methylmalate in P. putida. These pathways are depicted in Figure 3.2.1
and an overview is provided in Table 3.2.2, that also includes model estimates of
maximal theoretical yield on glucose. Selected candidate genes associated to the en-
zymes are provided in Table 3.2.3.
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Table 3.2.1: The number of pathways predicted after each step in the design-
ing and ranking workflow

Figure 3.2.1: Predicted pathways for biosynthesis of target compounds in P.
putida from glucose. For cis,cis- muconic acid, only novel pathways are in-
cluded. 23dhb-2,3-dihydroxybenzoate
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Table 3.2.2: In-silico design for production of cis,cis-muconic acids, aniline,
geranic acid, anisole, and 3-methylmalate by P.putida. EC numbers are included
to characterize the corresponding enzymes in the reaction steps. The first com-
pound in each pathway is found in the metabolic pool of P. putida. Glucose is
used as substrate in all pathways. ⇒ indicates reactions that are already in P.
putida

Targets
Pathways & EC numbers

Theoretical yield
(mol P/mol glc)

References

Cis,cis-muconic acid
protocatechual (pca)⇒ 1.14.12.10⇒ catechol⇒ target 0.81 [180], in P. putida [181]

4-hydroxybenzoate→ 4.1.1.61→ phenol→
1.14.13.7→ catechol⇒ target

0.7 [153]

chorismate→ salicylate synthase→ salicylate→
1.14.13.1→ catechol⇒ target

0.65 in E. coli [151], patent [154]

2-aminobenzoate→ 1.14.13.35→ 2,3-dihydroxybenzoate→
4.1.1.46→ catechol⇒ target

0.64 This study

4 (or 2)-aminobenzote→ 4.1.1.24→ aniline→
1.14.-→ catechol⇒ target

0.62 This study

chorismate→ salicylate synthase→ salicylate→
4.1.1.91→ phenol (+ o2)→ 1.14.13.7→ catechol⇒ target

0.54 [153]

2-aminobenzoate→ 1.14.12.1→ catechol⇒ target 0.17 [150]
benzoate⇒ 1.14.12.10⇒ catechol⇒ target 0.14 [182], in P. putida [181]

Aniline
4 (or 2)-aminobenzote→ 4.1.1.24→ target 0.68 This study, patent [183]

Geranic acid
Geranyl diphosphate→ 4.2.3.25→ (3S) – linalool→
5.4.4.4→ geraniol→ 1.1.1.347→ geranial→ 1.2.1.86→ target

0.42 This study

Geranyl diphosphate→ 3.1.7.3→ geraniol→
1.1.1.347→ geranial→ 1.2.1.86→ target

0.42 This study

Anisole
L_tyrosine→ 4.1.99.2→ phenol→ 2.1.1.25→ target 0.55 This study

4-hydroxybenzoate→ 4.1.1.61→ phenol→ 2.1.1.25→ target 0.55 This study
Chorismate→ salicylate synthetase→ salicylate→
4.1.1.91→ phenol→ 2.1.1.25→ target

0.55 This study

3-methylmalate
Pyr + acetyl-coA→ 2.3.1.182→Citramalic acid→
4.2.1.35→ 2- methylbut-2-enedioic acid→ 4.2.1.35→ target

1.25 This study

L-glutamate→ 5.4.99.1→ 2- aminomethylsuccinic acid→
4.3.1.2→ 2-methylbut-2- enedioic acid→ 4.2.1.35→ target

1.19 This study
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Table 3.2.3: Enzymes and selected candidate genes for the designed pathways

Enzymes Genes Organism References
Cis,cis-muconic acid and Aniline

1.14.12.10 benC Pseudomonas Putida KT2440 [181]
4.1.1.61 edcC Escherichia coli O157:H7 [184]
1.14.13.7 phKLMNOP pseudomonas stutzeri OX1 [153]
1.14.13.1 catA Pseudomonas putida KT2440 [153]
1.14.13.35 – Aspergillus niger [185]

– Trichosporon cutaneum [186]
4.1.1.46 GenBank: AM270011.1 Aspergillus niger [187]
4.1.1.24 GenBank: EEQ92869.1 Ochrobactrum intermedium LMG 3301 NCBI

GenBank: ACO02919.1 Brucella melitensis ATCC 23457 NCBI
GenBank: EEH13339.1 Brucella ceti str. Cudo 7 NCBI
GenBank: EEP61496.1 Brucella abortus str. 2308 A NCBI

1.14.- tdnQ, tdnA1, tdnA2, tdnB, and tdnR Pseudomonas putida mt-2 (UCC22) [188]
4.1.1.91 Sdc Trichosporon moniliiforme WU-0401 [189]

Salicylate synthase mbtl Mycobacterium tuberculosis H37Rv [190]
1.14.12.1 paantABC Pseudomonas aeruginosa [150]

Geranic acid
4.2.3.25 TPS14 Arabidopsis thaliana [191]
5.4.4.4 Ldi Castellaniella defragrans [192]

1.1.1.347 geoA Castellaniella defragrans [193]
1.2.1.86 geoB Castellaniella defragrans [193]
3.1.7.3 GES Ocimum basilicum [194]
Anisole
4.1.99.2 tpl Erwinia herbicola [195]
2.1.1.25 – Mammal [196]

3-methylmalate
2.3.1.182 cimA Sulfolobus acidocaldarius [197]
4.2.1.35 leuC MJ0499 and I Methanocaldococcus jannaschii [198]
5.4.99.1 glmE and glmS Clostridium cochlearium [199]
4.3.1.2 mal rrnAC0687 Haloarcula marismortui [200]

3.2.2 Muconic acid

RetroPath2.0 predicted a total of 150 pathways describing 72 different reactions and
62 different compounds that produce cis,cis-muconic acid from glucose. They were
divided into 4 pathways of length 2, 14 of length 3, and 132 of length 4.
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54 out of 150 pathways produce higher than 30 % of theoretical yields on glucose
when adding toboth genome-scalemodels ofP. putida iJP962 and iJN1411. Of these
54 pathways, 17 have known enzymes that catalyze all reactions in the conversion
route. 8 pathways are thermodynamic feasible in the next step. Using these three
criteria, namely theoretical yields, known enzyme available and thermodynamic fea-
sible, we selected eight pathways to produce cis,cis-muconic acid inP. putida (Tables
3.2.1 and 3.2.2). Among them, six pathways have been reported in literature and im-
plemented in either P. putida or E. coli, while the remaining two pathways have not
been reported before (Table 3.2.2).

All predicted pathways converge to same last step where catechol is converted to
cis,cis-muconic acid. This has been reported in all natural and synthesis pathways
for cis,cis-muconic acid production and is also patented in [201]. In P. putida this
reaction is catalysed by the action of catechol 1,2-dioxygenase encoded by the gene
PP3713.

In the previous step catechol is produced fromeither protocatechual, phenol, sali-
cylate, 2,3-dihydroxybenzoate, aniline, 2-aminobenzoate, or benzoate (Table 3.2.2).
These compounds either has already been produced in P. putida or can be produced
in P. putida by introducing heterologous genes when growing on glucose (Table
3.2.2). Production of catechol fromprotocatechual was predicted from themodel to
give the highest cis,cis-muconic acid yield on glucose, 0.81 (mol product/ mol glu-
cose). This is similar to findings in [181] for P. putida. This is the first biosynthesis
pathway discovered to produce cis,cis-muconic acid [180]. Production of catechol
from phenol was predicted to give the second highest yield with 0.70 (mol product/
mol glucose). Phenol has been reported as an effective substrate for catechol and
later muconic acid in [153]. In this study, phenol is produced by the action of en-
zyme 4-hydroxybenzoate decarboxylase (4.1.1.61) encoding by edcC in E. coli (Ta-
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ble 3.2.3). The other effective substrate for catechol is benzoate [202]. This pathway
has been implemented in E. coli and P. putida [181]. Benzoate is supplemented as
substrate in themedium. Cis,cis-muconic acid producing from chorismate gives the
third highest yield. This pathway has been patented and implemented in E. coli with
16.3% in-vitro yield [151]. In P. putida chorismate is produced from pyruvate and
4-hydroxybenzoate by the action of probable chorismate pyruvate-lyase encoded by
PP5317. The other two pathways via aniline and 2,3-dihydroxybenzoate are novel
and have not reported in literature.

[new pathway 1] 4-aminobenzoate -> aniline -> catechol:
In this pathway 4-aminobenzoate is catalyzed by aminobenzoate decarboxylase

EC 4.1.1.24 to produce aniline. Aniline is then degraded to catechol. The degra-
dation of aniline to catechol is the first step in the aromatic degradation pathway
in many bacteria [203]. Pseudomonas putida KT2440 does not have genes in this
pathway but Pseudomonas putida UCC22 [188] and Pseudomonas sp. AW-2 [204]
are known to possess genes to degrade aniline via the meta-cleavage pathway. This
multistep reaction is catalyzedby three enzymes, glutamine synthetase (GS)-like en-
zyme, glutamine amidotransferase like enzyme, and an aniline dioxygenase [203].
Five genes in a plasmid: tdnQ, tdnA1, tdnA2, tdnB,and tdnR have been shown to be
essential for the conversion of aniline to catechol in P. putida [188].

Production of cis,cis-muconic acid from the degradation of aromatic compounds
such as benzoate, phenol, salicylate, and benzene has been widely discussed in [205,
151, 153]. However, degradation of aniline to produce cis,cis-muconic acid has not
been reported.

[new pathway 2] 2-aminobenzoate -> 2,3-dihydroxybenzoate -> catechol:
The last step in this pathway has been mentioned in [152] in which 2,3-
dihydroxybenzoate is converted to catechol by the action of 2,3-dihydroxybenzoate
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carboxy-lyase EC 4.1.1.46. 2,3-dihydroxybenzoate has been reported to be pro-
duced from isochorismate in E. coli [152]. However, the production of 2,3-
dihydroxybenzoate from 2-aminobenzoate has not been used in the production
pathway of cis,cis-muconic acid. This can be done by cloning an anthranilate 3-
monooxygenase (deaminating) (1.14.13.35), an iron protein from Aspergillus niger
[185] or a flavoprotein (FAD) from the yeast Trichosporon cutaneum [186]. How-
ever, these enzymes have no known protein sequences.

3.2.3 Aniline

RetroPath2.0 predicted two pathways to produce aniline (Table 3.2.1). Of these,
only one is thermodynamic feasible with a yield of 0.66 (mol product/mol glu-
cose). This pathway is the first step in the above described pathway for the pro-
duction of cis,cis-muconic acid. Only one reaction, the conversion of either 4 or
2-aminobenzoate, to aniline is needed to produce aniline in P. putida. This reac-
tion is catalyzed by the action of enzyme aminobenzoate decarboxylase EC4.1.1.24.
Many species inBrucella family have been validated to encode for this enzyme. They
are GenBank: EEQ92869.1 from Ochrobactrum intermedium LMG 3301, GenBank:
ACO02919.1 from Brucella melitensis ATCC 23457, GenBank: EEH13339.1 from
Brucella ceti str. Cudo, and GenBank: EEP61496.1 from Brucella abortus str2308 A.
This pathway has not been reported in scientific literature but has been patented in
[183].

3.2.4 Geranic acid

Four pathways for the production of this compoundwere predicted byRetroPath2.0
(Table 3.2.1). After manual inspection of thermodynamic feasibility and enzyme
availability, two of them, of lengths 3 and 4 respectively, were selected, both with
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the same predicted yield of 0.42 (mol product/ mol glucose). These two pathways
are similar in the last two steps where geraniol is converted to geranial by geraniol
dehydrogenase EC 1.1.1.347 encoded by geoA from Castellaniella defragrans [193]
(Table 3.2.2 and 3.2.3). Geranoil is then converted to geranic acid by geranial dehy-
drogenase EC 1.2.1.86 encoded by geoB from Castellaniella defragrans [193].

In the three-step pathway, geraniol is produced from geranyl diphosphate by the
action of enzyme monoterpenyl-diphosphatase EC 3.1.7.3 encoded by GES in the
plant Ocimum basilicum (Sweet basil) [194]. GES has been successfully expressed
in P. putida to produce geranic acid [169].

In the four-step pathway, instead of going from geranyl diphosphate to geran-
iol, there is an intermediate step to (3S)-linalool. This is feasible due to two en-
zymes S-linalool synthase EC 4.2.3.25 which converts geranyl diphosphate to (3S)-
linalool and geraniol isomerase EC 5.4.4.4 which converts (3S)-linalool to geraniol.
S-linalool synthase is encoded by TPS14 from Arabidopsis thaliana [191]. Geraniol
isomerase is encoded by Ldi from Castellaniella defragrans [192].

3.2.5 Anisole

Of 150 pathways predicted from RetroPath2.0 for Anisole synthesis, 89 pathways
generated non-zero yield when added to the genome-scale model of P. putida
iJN1411. No pathway leads to the production of 3-methylmalate when adding
to iJP962 because the sink metabolites were obtained from iJN1411. Thermody-
namic feasibility and enzyme availability screening eliminated a majority of path-
ways. Only three pathways qualified for further inspection (Table 3.2.1). All of
them give a similar yield of 0.55 mol product/ mol glucose. These predicted path-
ways share the last step where anisole is formed from phenol by the action of phe-
nol O-methyltransferase EC 2.1.1.25. The enzyme has been studied since 1968
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[196]. It has been known to be in mammals such as human [206], yet there is no
known coding-sequence available for phenol O-methyltransferase. Using SeleEn-
zyme, we found another enzyme, eugenol O-methyltransferase EC 2.1.1.146, en-
coded by gene EOMT1 from Ocimum basilicum [207] that can possess promiscuity
on phenol. The enzyme transfers methyl group from S-adenosyl-L-methionine to
a hydroxyl group on the benzene ring of isoeugenol to produce isomethyleugenol
(Figure 3.2.2B). Our target enzyme, phenol O-methyltransferase EC 2.1.1.25, also
transfers themethyl group from S-adenosyl-L-methionine to the hydroxyl group on
the benzene ring of phenol (Figure 3.2.2A). Since the reaction centers and cofactors
used by these two enzymes are similar, Selenzyme predicted that EC 2.1.1.146 can
have promiscuity on phenol to produce anisole.

Figure 3.2.2: Phenol o-methyltransferase (A) and Isoeugenol o-
methyltransferase (B) both transfer methyl group from S-adenosyl-L-methionine
to the hydroxyl group on a benzene ring, hence we hypothesize that isoeugenol
o-methyltransferase can also act on phenol to convert it to anisole.
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These three pathways differ in the phenol generation step. In the first path-
way, phenol is produced from L-tyrosine by the action of tyrosine phenol-lyase, EC
4.1.99.2. The enzyme is found in many organisms. In this study we selected one
gene tpl from Erwinia herbicola because it had been successfully implemented in E.
coli [195]. In the second pathway, phenol is produced from4-hydroxybenzoate by 4-
hydroxybenzoate decarboxylase, EC 4.1.1.61. The enzyme can be encoded in many
organisms. In this study we chose gene from E. coli edcC [184]. In the last path-
way, phenol is produced from salicylate by the action of salicylate decarboxylase,
EC 4.1.1.91. Gene sdc from Cutaneotrichosporon moniliiforme (Yeast) (Trichosporon
moniliiforme) [189] is known to encode salicylate decarboxylase. Salicylate is in turn
produced from chorismate by salicylate synthetase. There is only one gene known
to encode salicylate synthetase which ismbtl fromMycobacterium tuberculosis [190].

3.2.6 3-methylmalate

Of the 52 pathways predicted by RetroPath2.0, 15 pathways produce 3-
methylmalate in the model iJN1411 (Table 3.2.1). No pathway leads to the
production of 3-methylmalate when adding to iJP962 because the sink metabolites
were obtained from iJN1411. Among these 15 pathways, four of them have known
enzymes and only two are thermodynamically feasible. In these two pathways,
3-methylmalate was produced from 2-methylbut-2-enedioic acid by the action of
enzyme (R)-2-methylmalate dehydratase EC 4.2.1.35 (Table 3.2.2). The enzyme
has two subunits which are encoded by leuC and leuD from Methanocaldococcus
jannaschii (strains ATCC 43067 / DSM 2661/ JAL-1 / JCM 10045 / NBRC
100440) [198] (Table 3.2.3).

In the first pathway, the same enzyme, (R)-2-methylmalate dehydratase EC
4.2.1.35, also works on citramalate to produce 2-methylbut-2-enedioic acid.

71



33

3.3. Discussion

Citramalate is produced from pyruvate and acetyl-coA by the action of (R)-
citramalate synthase EC 2.3.1.182. This enzyme is encoded by cimA from Sul-
folobus acidocaldarius [197]. In the second pathway, l-glutamate is converted to 2-
aminomethylsuccinic acid by glutamate mutase EC 5.4.99.1, a 2-subunit enzyme
found inClostridium tetanomorphum encoded byGlutamatemutase epsilon and sigma
subunit, glmE and glmS [199]. 2-aminomethylsuccinic acid is then catalyzed by 3-
methylaspartase EC 4.3.1.2 to produce 2-methylbut-2-enedioic acid. The enzyme is
known to synthesis frommal rrnAC0687 fromHaloarculamarismortui (strainATCC
43049 /DSM3752/ JCM8966/VKMB-1809) orCHY_0484orCHY_0582 from
Carboxydothermus hydrogenoformans [200].

3.3 Discussion

In this work, we used a combination of tools based on retrosynthesis and genome-
scale metabolic models to design biosynthesis pathways for five compounds, cis,cis-
muconic acid, aniline, anisole, geranic acid, and3-methylmalate. Todesignpathways
we employed RetroPath2.0 which was developed explicitly for this purpose. It uses
generalized reaction rules and to some extend enzymepromiscuity to look for differ-
ent substrates for the same enzyme. Like this, new reactions and hence pathways can
be predicted. RetroPath2.0 requires the International Chemical Identifiers (InChI)
of all metabolites in the host organism as input. Although InChI is classified as an
international standard identifier, generating them is labour intensive as it cannot be
automatized. The inconsistent namespace of the metabolites in genome-scale mod-
els and the use of general names in these models makes it difficult to map with pub-
lic databases that provide InChI structures. For instance, cis,cis-muconic acid, and
muconate are two states of the same chemical. In microbes such as P. putida, cis,cis-
muconic acid exists in its reduced form, muconate. This is also applied for most of
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other acids, for instance, succinic acid, an important intermediate in TCA cycle is
found in its anion form as succinate in the cell. Since these compounds and their
reduced forms are one hydrogen different, their InChI structures are also slightly
different. However, these two forms of metabolites are often considered as one in
genome-scale models. It may imply mismatch and redox imbalance if many com-
pounds are used in the incorrect forms. As we observed in this study, RetroPath2.0
suggested many reactions just to produce hydrogen and water. Introducing these
pathways into GEMs will generate extra energy and lead to high unrealistic theoret-
ical yields. Water and hydrogen are basic components that already in P. putida if not
all microbes. These reactions need to be removed from RetroPath2.0’s result.

The use of inconsistent and ambiguous namespaces for metabolites is a well-
known source of complaints. We demonstrated in our paper [208] how ambiguity
and inconsistency can hamper the use of GEMs. To reduce the risk of mismatch
whenmapping between namespaces, we also suggested as a good practice, genome-
scale models should include InChI for metabolites to avoid ambiguity. This is not
yet common for GEMs. We provided in this study, the updated model of P. putida
iJN1411-InChI with InChI for metabolites.

While RetroPath2.0 allows the exploration in a bigger search space, it is certainly
a challenge to extract meaningful candidates from the numerous output it produces.
Pathway selection is one important challenge thatneeds tobe addressed inmetabolic
engineering. Many general criteria have been proposed such as pathway length,
the number of interventions, thermodynamic, and theoretical yield [209, 171]. To
shorten the tedious innovation process, we need a quick system to eliminate infeasi-
ble pathways, yet ensure no promising pathways are discarded during the screening
step. In this study, weprioritize pathways that: (i) have high theoretical yield for eco-
nomic values, (ii) involve knownenzymes to limit the risk of synthesizing and testing
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new enzymes and (iii) are thermodynamic feasible. With this system, we identified
all known and patented pathways for cis,cis-muconic acid from RetroPath2.0 out-
put. This shown that the criteria and ranking system we proposed although simple,
it is effective, sufficient and reliable.

In addition to these criteria, toxicity of intermediate metabolites is also impor-
tant for pathway design since they can hamper cell survival and growth [209]. The
toxicity of metabolites can be obtained from experimental data or can be estimated
based on structure-activity relationship models [210, 209, 211]. In this study we
did not include the toxicity since P. putida has shown to have high tolerance to-
wards toxic compounds [212, 213, 169, 214]. Its tolerance has been tested toward
various compounds, for instance aromatic compounds such as phenol [215] and p-
hydroxybenzoate [216], o-cresol [217],monoterpenoid such as geranic acids [169],
or aniline and catechol [218, 219].

Cis,cis-muconic acid has been studied extensively, yet, we found two new path-
ways to produce it with competitive maximum theoretical yield when comparing to
the most effective pathways that have been reported. Our ability to discover new
designs is certainly not at its limit, using the traditional expert-based approach will
constraint us from expanding our knowledge, especially when designing pathways
for obscure compounds.

To demonstrate the simple yet effective approach to design pathway for
less-studied compounds, we employed RetroPath2.0 for anisole, aniline, 3-
methylmalate, and geranic acid. Little to no effort has been spent on developing
pathways for these compounds, to the best of our knowledge, except for geranic acid
and aniline, we are the first to propose pathways to synthesize them in microbes.

All the pathways we found for the five target compounds require a few metabolic
conversions from central carbon metabolites. They all shared common precursors

74



33

Design of pathways for chemical production in Pseudomonas Putida KT 2440

such as phosphoneolpyruvate and chorismate and many interchangeable precur-
sors, for example, 4-aminobenzoate can lead to both aniline, cis,cis-muconic acid,
and anisole. While geranic acid and 3-methylmalate both have the same important
precursors such as acetyl-coA. Although there are many more different networks in
metabolism, we can already employ central carbon metabolism to produce many
compounds of interest. This allows the use of general precursors over-producers to
increase the yield of diverse targets.

Many enzymes in production pathways predicted for anisole, 3-methylmalate,
geranic acid are fromplants. This is expectedbecause these compounds are plant ter-
penoids. They are produced in plants in small quantities. These enzymes are known
in literature but no pathway was reported for the production of these compounds
in microbes. The pathways we predicted used plant enzymes, transferring them to
microbes can imply high risk with the post-translational modification that microbes
do not possess. Nevertheless, adapting plant pathways in microbes is not new, and
has been done before with great success [220–222].

In this work, our aim was to speed up the pathway design and selection phase to
save time and efforts for the downstream optimization steps. We provided a show-
case of how automatic pathway designing tool such as RetroPath2.0, a general rank-
ing system with the help of genome-scale models can be effectively used in the con-
text of design-test-build-learn cycles. Using these tools, pathway design can be done
in a quick and more standardized fashion.
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3.4 Methods

3.4.1 In-silico pathway prediction

In this study we used RetroPath2.0 [179] to design pathways for cis,cis-muconic
acid, aniline, anisole, geranic acid and 3-methylmalate. RetroPath2.0 is an auto-
mated open-source workflow implemented in KNIME [223]. The tool allows users
to design biosynthetic routes to connect metabolites in a known chassis to the de-
sired target using retrosynthesis and enzyme promiscuity rules. In metabolic engi-
neering, in a forwardmannermetabolites in the chassis strain is the source, the target
compound is a so-called sink. This is reversible in a reversemanner. InRetroPath2.0,
source is the target chemical one wishes to produce and sink is the metabolites in a
known chassis host.

RetroRules was obtained from https://retrorules.org/dl on Sep 2019. The input
configuration is set up for a maximum pathway length of 4 steps and diameter at 16
bonds around the reaction center. rp2path were then used to enumerate pathways
from RetroPath2.0 output. This list was used in the next step - pathway ranking.

3.4.2 Models and InChI

To design and rank pathways, the two most comprehensive models for P. putida,
iJP962 [224] and iJN1411 [225] were used. RetroPath2.0 required the Interna-
tional Chemical Identifier code (InChI) [226] as input. To generate the InChI
list, BiGG [227] identifiers of unique metabolites in iJN1411 were translated to
KEGG [130] by mapping with MetaNetX/MNXref [228]. KEGG identifiers were
in turn mapped to wikidata [229] to extract InChI structure. The metabolites left
unmapped after the first step, were mapped using the Chemical Translation Ser-
vice (http://cts.fiehnlab.ucdavis.edu/batch), a web-based tool that allows the con-
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version between chemical identifiers [230].

3.4.3 Pathway ranking

Pathways predicted by RetroPath2.0 were added to the genome-scale model of P.
putida, iJP962 and iJN1411 to calculate the maximum theoretical yield. Flux bal-
ance analysis was used to optimize product formation from glucose while constraint
biomass to 10 % of the maximum growth rate. Pathways that give non-zero pro-
duction rate in either model were further checked for available enzyme coding se-
quences in the second step. This probability to retrieve enzyme sequences for a re-
action were computed in RetroPath2.0 as ’scores’ [179]. High scores implied a high
penalty for enzyme sequence availability. Reactions with high scores were there-
fore removed. The remaining pathways were checked for their thermodynamic fea-
sibility using eQuilibrator [231] at pH 7.0 and the default concentration range of
1μM − 10mM. eQuilibrator received pathways in an SBtab file as input and calcu-
lated the feasibility of the pathway by Max-min Driving Force (MDF) [232]. Path-
ways with negative MDF were not feasible and discarded. If no candidate pathway
was found after this step, Selenzyme [173]was used to findpromiscuous alternatives
that act on the same reaction centers for pathwayswith unknownenzymes in the sec-
ond step. The thermodynamic feasibility of new candidateswas then computed. The
final list was manually inspected to identify gene sequences. Enzyme-coding-gene
sequences were retrieved from UniProt [233]. We selected gene sequences with a
high score on UniProt which means they are manually curated with experimental
functional tests.
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abstract

Genome scalemetabolicmodels (GEMs) aremanually curated repositories describ-
ing the metabolic capabilities of an organism. GEMs have been successfully used in
different research areas, ranging from systemsmedicine to biotechnology. However,
the different naming conventions (namespaces) of databases used to build GEMs
limitmodel reusability and prevent the integration of existingmodels. This problem
is known in the GEM community but its extent has not been analyzed in depth. In
this study, we investigate the name ambiguity and themultiplicity of non-systematic
identifiers and we highlight the (in)consistency in their use in eleven biochemical
databases of biochemical reactions and the problems that arise when mapping be-
tween different namespaces and databases. We found that such inconsistencies can
be as high as 83.1%, thus emphasizing theneed for strategies todealwith these issues.
Currently, manual verification of themappings appears to be the only solution to re-
move inconsistencies when combining models. Finally, we discuss several possible
approaches to facilitate (future) unambiguous mapping.
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4.1 Introduction

Genome scale metabolic models (GEMs) combine available metabolic knowledge
of an organism in a consistent and structured way that allows prediction and simula-
tion of metabolic phenotypes [234]. GEMs have been successfully used in different
research areas, ranging from biotechnology to systems medicine, often resulting in
new insights onmetabolic processes in living organisms [235–238]. GEMsmay dif-
fer in content and scope, and can contain anything froma fewhundred to a few thou-
sand reactions andmetabolites. However, the structure of themodel remains similar
regardless of the application: themain components aremetabolites, metabolic reac-
tions, enzymes and the corresponding encoding genes.

Theconstructionof aGEMincludes threemain steps [21, 239]. First, the genome
of the organism considered is functionally annotated in order to identify enzymes
and the associated reactions and metabolites. Second, the list of enzymes and reac-
tions is converted into a mathematical model, a so-called draft model, in the form
of a stoichiometric matrix to which constraints are added to account for reaction
reversibility and uptake and secretion of metabolites. Last, the model is manually
curated using experimental data (such as growth data), information from literature
and/ or expert knowledge. Manual curation involves human workload and entails
the verification of each reaction in the model and its corresponding constraints,
which is a very time-consuming task. Tools and pipelines (such as, for example,
the SEED [240], Pathway Tools [241], and the Raven toolbox [242]) have been
developed to automatize the annotation, draft the reconstruction and to aid high-
throughput creation of genome scale draft models [243].

The tools for automated draft reconstruction rely on biochemical databases that
areused tofind reactions associated to the enzymes identified in the genome through
annotation. In general, different tools use different databases. For instance: the
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SEEDuses its own naming system [240], PathwayTools [241] usesMetaCyc [244],
and Raven [242] uses KEGG [245]. Every database uses its own namespace which
is a particular set of identifiers (such as numerical tags or names) formetabolites and
reactions: becauseof this, it canhappen that the samemetabolites and reactionshave
different naming conventions when different tools are used to generate draftGEMs.
To complicate the matter further, researchers often tend to use their own naming
conventions such as custom abbreviations for metabolites or consecutive number-
ing for metabolites and reactions and this adds up to the observed heterogeneity
of names and identifiers found in GEMs available in the literature [246]: the use
of unique identifiers, independent from the particular databases used, such as InchI
[247, 226], or references to interlink different namespaces, have been suggested as
an essential and fundamental part of GEM [248] but this is seldom implemented.

GEMs aremanually curated knowledge repositories integrating information from
independent (organism-specific) sources and thereby provide a comprehensive rep-
resentation of what is presently known about the metabolism of the modelled or-
ganism. There is often the need to combine the information stored in individual
GEMs to arrive to a consensus metabolic model for a given organism [249, 250].
The use of different namespaces limits the reusability of a GEM and often makes it
impossible, or extremely laborious, to combine two GEMs. Further, it often ham-
pers model expansion, which is the addition of new reactions and/or metabolites
to an existing model because if different namespaces are used the same metabolite
can be added many times with different names and, as a consequence, considered
as different chemical entities which can, in the worst case, invalidate the model. In
principle, differentGEMs can be combined into a communitymodel (partially) rep-
resenting the different organisms present in a microbial community, with the aim
of modelling community metabolic interactions such as cross feeding or substrate
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competition [251].
Since mapping manually different namespaces is highly laborious and practically

unfeasible for large models [249], the only viable solution to integrate different
GEMs has often been to rebuild de novo the required models [252, 253]. However,
while this approach leads tomodels that can be easily combined, it causes the loss of
all the expert knowledge introduced in the manual curation process.

Naive direct comparison of names using string algorithms is often insufficient
[254] and to help mapping among different namespaces in a more systematic way
tools for consensus model generation and for automatic translation have been in-
troduced [255, 250], together with databases like MNXRef from MetaNetX [256]
and MetRxn [257], developed to provide cross-linking among the identifiers in the
namespaces of different databases.

As a matter of fact, mapping different namespaces using metabolite or reaction
identifiers is not a trivial task because researchers often refer to compounds with
many different names and abbreviations and the namespaces reflect this (Figure
1A). Often in GEMs different chemical entities (like, for instance, citrate and cit-
ric acid) are used as exchangeable names and may end up in databases like BIGG
(which harvest reactions which have been used in metabolic modelling) resulting
in imprecise, misleading and sometimes incorrect synonyms. Similarly, GEMs are
often built featuring reactions using generic compound classes (such as ’Lipids’ or
’Protein’). When these are included in GEMs databases they cause the same com-
pound to be linked to different identifiers.

Internal database inconsistency is also often caused by ambiguous abbreviations,
with the same shorthand used for different compound (Figure 1B). To make the
matter worse, the same abbreviation can refer to different compounds in different
databases (see Figure 1C).
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A

B

C

Figure 4.1.1: Overview of namespace mapping problems. (A) The same chem-
ical entities (colored nodes) link to different names (colorless nodes) in different
namespaces: names in namespace A may link to different chemical entities in
namespace B; (B) Example of inconsistency within the same namespace: the
same name links to different chemical compounds; (C) Example of inconsistency
between different namespaces: the same name links to different compounds in
different databases. Chemical entities are represented with colored nodes, names
are represented with colorless nodes
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The problems deriving from the inconsistency and the ambiguity in the names-
paces of reaction databases used to build GEMs have beenmentioned before [258–
261] and are a well-known source of complaints in themodelling community. How-
ever, since the extent of the namespace mapping problem has not been so far ana-
lyzed in depth, we investigate the level of inconsistency and ambiguity encountered
when i) mapping metabolites within a database and ii) mapping metabolites be-
tween two databases. To this task, we analyzed and compared naming and iden-
tifier conventions in eleven biochemical databases commonly used for metabolic
modelling andmetabolomics data analysis. Similar research has been done for small
molecule databases that have been used in pharmaceutical research but did not con-
sider databases used formetabolicmodelling [262]. With thisworkwe aimat raising
awareness on this problem within the modelling community; provide a framework
for evaluating when (or whether) GEMs and databases can be combined, suggest
practices for dealing with this issue on the short term and outline a strategy for a
long term solution.

4.2 Results

To avoid ambiguity, we explicitly define the specific terms used in this study as fol-
lows:

• Identifier (ID): Identifiers are strings of alpha-numeric characters used to
identify uniquely a metabolite or a reaction in a database. Examples are
C00001 in KEGG or ATPM in BIGG.

• Name: Here we use name to refer not only to the chemical name, but also
to the set of aliases, synonyms and abbreviations that are often included in
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a database as other names of the compound. For instance the KEGG ID
C00001 is associated to the name ’water’.

• Multiplicity: describes the case on which a single ID is linked to multiple
names. For instance, The KEGG ID C00001 is associated to the names ’wa-
ter’ and ’H20’; therefore we state that this ID has a multiplicity of 2.

• Ambiguous. TheMerriam-Webster dictionary defines ambiguous (second en-
try) as ’capable of being understood in two or more possible senses or ways’.
Here, we use ambiguous (and its derivatives) to refer to the case on which
the same name links to more than one ID in the same database. An exam-
ple is shown in Figure 4.1.1 B, where the name ’H’ links to the MetaCyc IDs
’PROTON’ and ’HIS’, associated to ’hydrogen ion’ and ’L-histidine’, respec-
tively.

• Consistency: We use consistency (and its derivatives like consistent) to refer
tomappings onwhich amolecular entity ismapped to itself. It follows that in-
consistency is used to indicate a mapping or a database on which a molecular
entity is associated to a different one.

We have analyzed eleven biochemical databases for their consistency and we
have performed pairwise comparisons to investigate the degree of inter-database
consistency. These databases were chosen for this study, primarily, because they
were integrated in MetaNetX which facilitates data retrieval. Many of them
(BiGG, KEGG, SEED, HMDB, ChEBI andMetaCyc) are commonly often used for
metabolic model reconstruction [246, 263]; HMDB is the reference database for
metabolomics studies.
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4.2.1 Mappings within the same database

Name ambiguity

We calculated the average number of IDs per compound name for each of the eleven
databases: results are summarized in Table 4.2.1.

Table 4.2.1: Ambiguity in biochemical database: number of compound names
associated to more than one identifier (ID.) s.d. stands for standard deviation.
Blue boxes are used to highlight highest numbers.

Database #Name
Average number of IDs per name
± s.d.

% Ambiguous
names

# Ambiguous
names

Highest number
of IDs per name

BiGG 5102 1.0141 ± 0.126 1.31 67 3
ChEBI 388505 1.3846 ± 1.52 14.8 57497 413
enviPath 11648 1.0804 ± 0.325 7.38 860 10
HMDB 101101 1.0377 ± 3.865 1.67 1686 921
KEGG 59682 1.1461 ± 0.422 13.3 7936 16
LIPIDMAPS 77457 1.0113 ± 0.33 0.62 478 63
MetaCyc 55823 1.0058 ± 0.103 0.5 279 13
Reactome 6972 1.7902 ± 2.458 29.43 2052 34
SABIO-RK 11475 1.0008 ± 0.031 0.07 8 3
SEED 47410 1.0108 ± 0.106 1.06 503 4
SLM 1218750 1.0782 ± 0.321 6.72 81894 9

WithChEBI andReactome as exceptions, inmost databases the average ID num-
ber is around 1: however there is a low consistency. Reactome has the lowest consis-
tency: nearly 30% of compounds are associated withmore than one ID, metabolites
with generic descriptive names like ’secretory granule lumen proteins’, ’secretory
granule membrane proteins’, and ’ficolin-rich granule lumen proteins’ associate to
34 different IDs; there are also more specific names, like ’hydron’, ’water’ and ’ATP’
associated to 21, 14 and 11 IDs, respectively. In the latter cases the cause is that dif-
ferent IDs are used to indicate the samemetabolite in different subcellular compart-
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ments, although they all get assigned to the same name, for example the ID 5278291
indicates water in the cytoplasm while water in extracellular compartment is identi-
fied as 109276.

Overall, the most ambiguous metabolite name is ’lecithin’, which is associated to
921 different IDs in the Human Metabolome database (HMDB). In this database,
the most ambiguous names are general compound classes such as ’diacylglycerol’,
’PPP’ and ’pyridin-3-ylboronic acid’.

Theoverall consistency ofHMDB is very high, as only 1.7%of names are linked to
multiple IDs, followed byChEBI andKEGG,where 14.8% and 13.3% of namesmap
tomultiple IDs; also inChEBI ’lecithin’ is themost ambiguous compound, linked to
413 IDs; other ambiguous names are, again, generic names such as ’Diglyceride’, ’Di-
acylglycerol’, ’Triglyceride’ and ’Triacylglycerol’ (see Figure 4.2.1A). Also in KEGG
the most ambiguous names refer to generic compounds like ’DS-18’ with 16 corre-
sponding IDs. Furthermore this compound shares ID with ’Chondroitin 4-sulfate’
which is a sulfated glycosaminoglycan while DS-18 generally refers to glycan, which
further complicates metabolite characterization, as shown in Figure 4.2.1 B.

EnviPath and SLM databases have also relatively low consistency with 7% names
being ambiguous. SLM is the largest database considered (> 1.2 × 106 en-
tries) and the most ambiguous name refers to ’Triacylglycerol’. In enviPath the
most ambiguous compound is ’compound 0044249’, with SMILES representation
CC1=CC=C(C=C1O)O that corresponds to 4-methyl-1,3-benzenediol. In this
database,manymetabolites are renamedwith numbers, i.e. ’P06’,’M320I23’, or ’com-
pound 869’, which makes it cumbersome to the human user to identify them.

Other databases, namely, SABIO-RK,MetaCyc andLIPIDMAPS are highly con-
sistent, with SABIO-RK containing only 8 metabolites with ambiguous names.

88



44

Consistency, inconsistency, and ambiguity of metabolite names in biochemical databases
used for genome-scale metabolic modelling

A
B

C D

Figure 4.2.1: Intra database consistency. Edges indicate a link between a
metabolite name and a database ID. Database name has been added to the
ID (denoted as database names followed by ’:’, i.e. kegg:C00228). (A) Exam-
ples of metabolite names associated with multiple IDs in ChEBI. (A) Examples
of metabolite names associated with multiple IDs in KEGG . (C) Examples of
metabolite IDs associated with multiple names in Reactome. (D) Examples of
metabolite IDs associated with multiple names in LIPID MAPS.

ID multiplicity and use of synonyms

In an effort to increase readability of entries in the database, often multiple names
are linked to the same ID, i.e. IDs have a multiplicity larger than 1. Note that multi-
plicity is different from ambiguity as defined at the start of the Results section. Mul-
tiplicity increases human readability and is beneficial, as long as the alias, names and
synonyms describe the same metabolite. Table 4.2.2 presents the average ID multi-
plicity for the eleven databases considered.
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Table 4.2.2: ID multiplicity in each database: number of IDs in each database,
average number of names per ID (average multiplicity), percentage and number
of IDs that associate to more than one name, and highest number of names an
ID links to; s.d. stands for standard deviation. Blue boxes are used to highlight
highest numbers.

Database #ID Averagemultiplicity
± s.d.

% of IDs with
multiplicity >1

# of IDs with
multiplicity >1

Highest multiplicity
in database

BiGG 5174 1.0 ± 0.0 0.0 0 1
ChEBI 123835 4.344 ± 3.588 97.74 121034 57
enviPath 12306 1.0226 ± 0.229 1.6 197 10
HMDB 43179 2.4297 ± 0.512 99.71 43052 8
KEGG 40256 1.6991 ± 1.231 38.93 15671 31
LIPIDMAPS 40772 3.9213 ± 0.962 100.0 40772 23
MetaCyc 17159 3.2722 ± 1.984 99.75 17116 98
Reactome 5344 2.3355 ± 16.65 47.46 2536 1106
SABIO-RK 7683 1.4947 ± 1.193 24.17 1857 21
SEED 27693 1.7305 ± 1.311 39.83 11031 28
SLM 505004 2.602 ± 0.611 99.87 504333 9

BiGG is the only exception to this rule. Every metabolite identifier is associated
to one and only one metabolite name, but, as shown in Table 4.2.1, the contrary
does not hold true. BiGG is the smallest database here considered (with only 5102
metabolite names and 5174metabolite IDs), although it should be stressed that this
database has been built by integrating reactions andmetabolites appearing in several
published and manually curated genome-scale metabolic networks.

All other databases have some extent of multiplicity: in ChEBI, HMDB, Meta-
cyc, SLM and LIPID MAPS nearly 100% of IDs are linked to more than 1 name.
The use of multiple names is intended to increase usability of the database. How-
ever, inconsistencies might arise when ambiguous names are linked to IDs with
high multiplicity, as illustrated in Figure 4.2.1 C and D. This can result in errors
and mismatches when identifying compounds. A most extreme case is Reactome
identifier reactome:5278291 which is linked to 1106 difference names (see Fig-
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Table 4.2.3: Example of compound names and IDs with high ambiguity and
multiplicity.

Metabolite name # Associate IDs Metabolite ID # Associated names
lecithin 922 reactome:5278291 1106
diacylglycerol 812 reactome:1131511 266
Lecithin 417 reactome:1236709 266
Diglyceride 317 reactome:1132345 180
Diacylglycerol 317 reactome:1132084 155
Triacylglycerol 106 reactome:1132304 140
Triglyceride 103 reactome:5278409 123
PPP 66 reactome:5278317 107
Cer[NS] 63 metacyc:PARATHION 98

ure 4.2.1C), among them ’H2O’, ’water’, ’phys-ent-participant60981’ and ’phys-ent-
participant63109’. The latter two names are linked to identifiers pointing to ’diphos-
phate’ and ’pyruvate’, which means that within this database is possible to map ’wa-
ter’ to ’pyruvate’. Other striking examples can be found in Table 4.2.3. When map-
ping with these compounds extra care needs to be taken.

Database mapping to IDs from MNXRef

MNXRef is a common namespace derived fromMetaNetX and has been developed
to combine namespaces from multiple databases and provides links between com-
pounds (and identifiers) from different databases, the overarching goal is to enable
bringing together GEMs.

We found that, each of the IDs in the 11 databases link to a MNXRef ID, how-
ever, as shown in Table 4.2.4, one MNXRef ID can connect to several IDs within a
database resulting in a multiplicity larger than 1. This happens, for instance, when
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MetaNetX associates one ID to several compound synonyms. This might be due to
conscious modelling-specific decisions. For instance, it would make sense to com-
bine citrate/citric acid identifiers indifferent databases todealwithprotonation state
differences. Thus linking several IDs to the same MNXRef ID addresses the multi-
plicity present in the database. However, this also generates errors if the ID links
to ambiguous names. The most striking case is observed when mapping Reactome
andMetaNetX: 2058MetaNetX IDs are associated to Reactome IDs and 41.93% of
them link to more than one Reactome ID.

Table 4.2.4: Number of IDs (#ID) in each database, number of MNXRef IDs
(#MNXRef ID) linking to each database, multiplicity of MNXRef IDs when
mapping to IDs in the corresponding database, and average and highest number
of MNXRef ID per database ID; s.d. stands for standard deviation. Blue boxes
are used to highlight highest numbers, while red boxes are for lowest numbers.

Database #ID #MNXRef ID
average #ID perMNXRef ID
± s.d.

% of IDs with
multiplicity >1

# of IDs with
multiplicity >1

Highest ID
multiplicity >1

BiGG 5174 5062 1.0221 ± 0.165 1.96 99 4
ChEBI 123835 96746 1.28 ± 1.005 11.93 11541 30
enviPath 12306 11087 1.1099 ± 0.44 8.14 902 9
HMDB 43179 42354 1.0195 ± 0.176 1.63 691 12
KEGG 40256 37722 1.0672 ± 0.293 6.14 2316 12
LIPIDMAPS 40772 40546 1.0056 ± 0.083 0.51 207 6
MetaCyc 17159 16985 1.0102 ± 0.115 0.9 153 5
Reactome 5344 2058 2.5967 ± 3.895 41.93 863 34
SABIO-RK 7683 7512 1.0228 ± 0.154 2.2 165 3
SEED 27693 26894 1.0297 ± 0.181 2.79 749 4
SLM 505004 504881 1.0002 ± 0.016 0.02 119 3

4.2.2 Namespace mapping between databases

To study namespace consistency between databases, we performed a pairwise map-
ping of the 11 databases. We performed the mapping using both the names in the
corresponding database and MNXRef identifiers.
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Mapping between databases using metabolite names

Table 4.2.5 shows the results of pairwise database mapping using metabolite names.
Here, we map IDs in the databases using associated names. The databases have dif-
ferentmetabolite coverages, for instance SLM contains 1218750 names while BiGG
only 5102, this is because some are specific for a certain class of compounds (like
SLM for lipids) while others aim to be comprehensive and do not describe all com-
pound classes in exhaustive details (like HMDB for lipids). The difference in cover-
age andmultiplicity of names associated to IDs (previously presented in Table 4.2.1
andTable 4.2.2) can cause themapping between two databases not to be symmetric
as evident from Table 4.2.5 .

In all comparisons, the fraction of compounds sharing the same name is rather
limited. Overall, except for mapping from SEED to KEGG and ChEBI with 60.1
% and 57.2% overlap, respectively, all databases have less than 50% of compound
names in common. The namespace of ChEBI has the largest overlap with other
namespaces: around 40% towards MetaCyc, Reactome, and KEGG can be mapped
to ChEBI. The namespaces of SLM, enviPath, and LIPID MAPS have the smallest
overlap with other namespaces, which is most likely because these are very specific
databases. The low ratios in Table 4.2.5, indicate that mapping using string algo-
rithms is not effective since trivial differences in the names (such as the use of un-
derscore and hyphen) can results in mismatches.

Ambiguous naming, i.e. one name associated to more than one ID, can result in
mapping inconsistencies where one ID in the first database, getsmapped tomultiple
IDs in the second database. The fraction of non-univocal mappings is indicated in
Table 4.2.6. Hence, although 40.2% of the Reactome IDs can be mapped to ChEBI
(see Table 4.2.5 ), 81.3% of the successfully mapped Reactome IDs are ambiguously
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mapped to multiple ChEBI IDs.
In some cases, more than 50% of the mappings are non-unique. The highest

fractions of non unique ID mapping occurs when mapping to ChEBI, although
when mapping from ChEBI to the other databases, this fraction reduces signifi-
cantly. When considering Reactome, both mappings to and from this database lead
to relatively high number of non-univocal assignments. SLM and SABIO-RK have
a significant low ambiguity whenmapping from other databases, although as shown
in Table 4.2.5, only a small fraction in these databases can be mapped from other
databases.

Table 4.2.6: Percentage of IDs in the database in the column that get mapped
to more than one ID in the database in the corresponding row using database
names as a bridge. Blue boxes are used to highlight highest numbers. While red
boxes indicate lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPIDMAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG – 2.9 1.3 3.0 3.6 3.2 1.4 0.6 2.9 2.7 1.6
ChEBI 76.3 – 67.0 38.1 38.3 34.3 58.7 81.3 78.7 37.3 26.9

enviPath 6.3 6.5 – 8.2 6.1 0.0 0.0 12.2 7.7 4.6 0.0
HMDB 10.7 11.5 6.8 – 7.3 4.3 13.2 22.8 12.8 7.4 0.7
KEGG 17.0 15.2 11.1 28.5 – 10.2 18.5 34.5 19.6 12.4 33.3

LIPIDMAPS 8.7 9.8 1.9 1.8 3.2 – 4.2 13.2 4.5 3.2 0.8
MetaCyc 0.5 3.9 0.0 2.5 3.9 2.0 – 6.0 4.1 1.5 0.6
Reactome 42.3 41.4 51.2 49.0 51.4 24.4 38.9 – 49.5 43.2 47.9

SABIO-RK 0.0 4.5 0.0 0.0 3.8 1.0 3.8 2.2 – 3.3 1.8
SEED 3.0 6.0 0.9 2.0 2.4 2.2 3.1 8.9 5.3 – 1.7
SLM 7.3 37.2 25.0 12.3 18.1 22.3 10.4 24.4 20.5 9.5 –

Mapping between databases using MNXRef ID

Another approach to map IDs from different databases is to use
MetaNetX/MNXRef as a bridge. Table 4.2.7 shows the fraction of IDs in
each database pair that can be mapped through MetaNetX/MNXRef. Again the
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differences in coverage between the databases cause this table to be non-symmetric.
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Figure 4.2.2: Comparison of number of mapping between the two approaches:
The x axis shows the mapping resulted using MNXRef ID as a bridge; the y
axis shows the number of mapping via name. Each red dot indicates mapping
between a pair of database, diagonal points (in blue) indicate mapping from the
database to itself. Mapping results from/to SLM are not shown in the plot as
the number of matches outside the range considered.

Figure 4.2.2 shows that mapping via MNXRef ID results in more identified map-
pings than the previous approach that used names. Nevertheless, the overall map is
alsonot high. Noneof testeddatabasesmapshigher than70%either toor fromother
databases. The highestmatch is 67.7%whenmappingMetaCyc to SEED. SEED can
bemapped fairly well fromBiGG,Reactome andKEGGwithmore than 40%match.
Note that these are all databases specialized in reactions and metabolic pathways.
There is almost no overlap between SEED and SLM, the latter specialized in lipids.
Databases with overall good match are ChEBI, KEGG and MetaCyc. Among them,
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Figure 4.2.3: Visualization of the inter database inconsistency. An ID from
BiGG (in yellow) can link to many other IDs in CheBI (red) when using
MetaNetX ID (green) for the mapping.

ChEBI has the highest overlap with other databases. Almost 50 % of IDs in SEED,
Reactome,MetaCyc, KEGG, SABIO-RKandBiGGcanbemapped toChEBI.How-
ever, there is not so much overlap when mapping enviPath (12.8%), LIPID MAPS
(13.5%) and especially SLM (0.8%) to ChEBI. The remaining databases have a sig-
nificant low overlap percentage whenmapping via IDs. Especially SLM, there is just
a minor part of the database that can be mapped to other databases.

This approach also results in instances of one ID from the first database associated
to more than one ID in the target database, an example is provided in Figure 4.2.3
and Table 4.2.8 summarizes the identified cases.
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Table 4.2.8: Percentage of IDs in the database in the column that get mapped
to more than one ID in the database in the corresponding row using database
MetaNetX as a bridge. Blue boxes are used to highlight highest numbers. While
red boxes indicate lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPIDMAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG – 3.9 5.2 3.5 3.9 3.2 4.0 3.8 4.5 3.2 2.7
ChEBI 83.1 – 56.2 39.7 36.4 37.8 64.7 76.8 72.2 39.4 27.8

enviPath 9.9 10.6 – 12.0 8.1 8.4 7.6 14.2 11.1 8.1 8.7
HMDB 19.1 6.8 12.6 – 9.3 5.1 12.7 26.4 17.2 9.7 1.6
KEGG 15.0 10.0 11.0 22.1 – 8.4 9.6 19.7 17.5 11.2 14.7

LIPIDMAPS 10.5 2.8 6.0 2.5 4.5 – 4.6 14.5 7.0 4.2 0.5
MetaCyc 3.6 1.4 3.4 2.1 1.7 0.9 – 4.3 2.8 1.1 0.5
Reactome 42.7 33.3 45.0 32.4 37.1 28.9 36.7 – 41.7 37.2 35.0

SABIO-RK 8.1 4.7 5.6 6.1 5.3 3.8 5.6 9.2 – 5.1 4.7
SEED 8.4 3.5 4.2 4.6 3.7 3.6 5.7 12.1 9.5 – 5.1
SLM 5.0 1.1 0.0 0.2 5.6 0.4 2.7 6.0 5.1 3.2 –

Name ambiguity and non-unique ID mapping between databases can lead to
inconsistencies (different metabolites being considered to be equivalent) and in-
cluded as such in the metabolic model. Table 4.2.9 lists some illustrative examples.
These examples show that automatic mapping (manual mapping is impossible for
large scale models) of compounds between or within databases can lead to intro-
duction of unrealistic reactions that can potentially reduce the accuracy of the pre-
dictions of the model.
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Table 4.2.9: Examples of mapping inconsistencies

Abbreviation Database IDs inDatabase MetaNetX ID Compound(s)

suc MetaCyc SUC MNXM25 succinate
suc Reactome 188980 MNXM167 sucrose

H MetaCyc PROTON MNXM1 proton
H MetaCyc HIS MNXM134 L-histidine

tmp BiGG tmp MNXM87343 TMP
tmp ChEBI 10529 MNXM257 Thymidine monophosphate
tmp KEGG C01081 MNXM662 Thiamine monophosphate
tmp MetaCyc CPD-610 MNXM88031 cyclo-triphosphoric acid

PPP Reactome 1475054 MNXM3109 triphosphate ion
PPP MetaCyc 2-PHENYL-2-1-PIPERDINYLPROPANE MNXM150634 2-phenyl-2-1piperdinylpropane

4.3 Discussion

GEMs aim to be comprehensive representations of themetabolismof one organism.
They are often built based on more than one database. As explained, the initial step
of model constructions is typically automated model drafting. Tool selection will
determine which name space the model is associated to. For instance, modelSEED
uses SEED as a reference reaction database while Pathway Tools uses MetaCyc. In
the next step in themodel building process - manual curation - gap filling is possibly
the most important task. Tools for gap-filling often systematically explore the GEM
to identify possible gaps [264], Othermethods rely on additional experimental data
such asmeasuredmetabolites to identify the gaps [265]. In this step, researchersmay
use different sources and databases to identify reactions and associatedmetabolites.
Errors might arise due to inconsistencies in this mapping.

A second application of GEMs is the integration and contextualization of ’omics’
data such as transcriptomics, proteomics, metabolomics and/or fluxomics data.
These applications often require a mapping of metabolite identifiers to match the
namespace of the model and that of the database that has been used in the data gen-
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eration process. Both applications may imply potential problem(s) caused by am-
biguous names or identifiers.

Among the eleven explored databases, KEGG, BiGG, ChEBI, MetaCyc, HMDB
and SEED are the most commonly used in metabolic modeling. We calculated the
ambiguity of names and the multiplicity of non-systematic identifiers within and
between eleven databases. Within the same database, the percentage of identifiers
with multiplicity larger than one varies from 0 % to 100 %, whereas the ambiguity
of names ranges from 0.07 % to 29.4 %. When mapping between databases, these
ambiguities andmultiplicities lead to larger inconsistencies, and this agree with pre-
vious observations regarding small molecules databases [262, 266]. The inconsis-
tencies when mapping using metabolite names range from 0 % to 81.2 %. Similar
results are obtainedwhilemapping viaMNXRef ID, between databases, as the num-
ber of inconsistencies varies from 0 % to 83 %, however on average better results
are obtained. Mapping with the databases with the highest number of ambiguous
names also results in higher number of inconsistencies thanwhenmapping between
other databases. Among the eleven tested databases, Reactome, HMDB, ChEBI,
and KEGG are those that show the highest intra- and inter-database ambiguity.

Most of the ambiguous names are associated to general compounds such as tria-
cylglycerol, glycan or protein. These names and IDs represent classes of compounds
rather than metabolites with defined structures and are included in metabolic mod-
els as they have a clear biological interpretation. However, care should be taken
when introducing them in databases and these names should not be included in the
list of synonyms for specific compounds, as mentioned in [266]. Using abbrevia-
tions to refer to compounds is also highly ambiguous as the same abbreviations can
represent different compounds in the same or in different databases.

Our findings show that compound names or IDs cannot be clearly mapped au-
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tomatically. Even if we use non-ambiguous identifiers, many mappings are still in-
consistent because they can link to ambiguous names. MetaNetX solved some of
the issues as shown in Table 4.2.9. However, not all compounds in the eleven tested
databases can be mapped with MNXRef. Mapping from MetaCyc to SEED, SEED
toChEBI, and SEED to KEGGusingMNXRef give the highest number of matches,
but still only around 60 % of compounds matched. Other databases show much
lower coverage.

In order to usemetaNetX/MNXRef ID tomap compounds in aGEM, thenames-
pace of the model needs to be related to at least one of the eleven databases consid-
ered. However, many models uses custom made naming conventions [267]. For
these models, mapping through name is the only option.

Ambiguous namespaces also hamper the (re)use of models from different re-
search labs or organisms. Due to a low level of interoperability, in practice it is impos-
sible to directly comparemodels, as metabolites can hardly be cross-mapped, which
in turn makes it impossible to compare reactions in both models, see examples in
Table 4.2.9. Nevertheless, comparingmodels is important and necessary: it helps to
reduce the time to build models for closely related species; to combine efforts from
different research groups that study the same organism; and to study the metabolic
differences between different organisms. In addition, microbial communities are
notoriously difficult to characterize. While transcriptomics and proteomics mea-
surements can be associated (to a great extent) to the originating microorganism,
it is not possible to do this for metabolites. Therefore, there is a need for models
that can help combine both types of measurements. As a result, there are on-going
efforts to define modelling frameworks, based on combining GEMs of individual
organisms, to characterize the behaviour of the community [268, 269, 252, 253].
Enabling unambiguous mapping will be required to take full advantage of these on-
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going developments.
Below we have enumerated a number of recommendations that may increase the

level of interoperability of GEMs, facilitating unambiguous mapping

• Limit the use of aliases, i.e. compound classes or abbreviations, as synonyms
in databases. These aliases increase human readability, but should be clearly
distinguished from names and synonyms in the databases and should not be
used for mapping.

• In the context of metabolic modelling it is frequent and desirable to use
compound classes to identify generic compounds [259]. Compounds like
’biomass’ or ’lipid’ are often used in GEMs; this does not affect the use of
themodel, except when predicting or simulating the production (of a specific
component)of generic compounds, i.e.when ’lipids’ are themain focusof the
model. In fact, it is often better to use generic compoundswhenever a specific
compound is not needed, as they can be universal. For instance, ’biomass’ has
been used as a standard among themodelling community as an artificial com-
pound that represents the growth objective of the cell [270, 248]. Another
reason is that often the precise identity of the compounds is not needed and
there is a lack of experimental data for their characterization. Therefore, when
using generic compounds, it is desirable to add extensive annotation to the
model to clearly state which compounds they represent and for which pur-
pose they are used in the model. These generic compounds are among the
most ambiguous entities in the eleven analyzed databases and we therefore
advise to exclude them from any automatic mapping process.

• Avoidusinghighly ambiguousnames as the sole descriptionof the compound
in themodel. When referring to these compounds, clear annotation needs to
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be included to prevent mismatches and inconsistencies.

• In addition to human-readable identifiers and database-dependent identi-
fiers, include database-identifiers, such as InChI [247, 226], whenever pos-
sible for compounds with defined structures. Using InChI can help to fully
automate the mapping [259]. However, it should be taken into account that
mismatches and errors can also happen because identifiers can also link to
incorrect InChI as shown in [271, 266, 260].

• Modelmapping only based onmetabolite information can imply certainmis-
match due to differences in namespaces, even if systematic identifiers were
used. Hence, different mapping strategies, i.e. mapping through encoding
genes and network topology [250], should be used to complement name or
identifier based mapping.

• GEMs also need to have a unique standard annotation so that they generate
the same output even when different tools are used for the simulation. Neal
et al. [272] suggest that semantic annotation can help to store and combine
models, but these models need to stick to a unique standard annotation for-
mat.

Simply deciding a standard database/identifier/annotation to represent metabo-
lites inmodels will also not help to improve the situation, as they will limit the avail-
able model construction tools. Nevertheless, while increasing the level of interoper-
ability none of the presented approaches above can by itself ensure automatedmap-
ping without errors. Different approaches need to be combined when translating
between namespaces. Manual curation is still required, at least for compounds with
highly ambiguous names.
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We did analyse the (in)consistency of databases (commonly) used in metabolic
modelling but we did not analyse the (in)consistency of GEMs built using differ-
ent databases. However, since every metabolite in a GEM is usually associated with
at least one identifier from biochemical databases such as KEGG, BiGG, SEED or
MetaCyc, every GEM can be considered as a small subset of the identifiers and
names from those database(s). Hence, the ambiguity of the compound names in
GEMs can be considered to be equivalent the ambiguity of the compound names in
the tested databases. Moreover, it should be noted that some databases (like BIGG)
aggregate compounds names used in deposited GEMs and thus mapping of these
databases against other databases provide anoverall, directmeasure of the ambiguity
of the compound names in GEMs. In addition to solving mapping inconsistencies,
GEMnamespace translation can be further improved by using tools that analyse the
consistency of the generated models [19].

Finally, our analysis has some limitations. It should be noted that the list of in-
consistencies provided represents just an upper bound to the number of possible
errors when changing namespaces. We have only studied non-systematic identifier
and names. We did not use structure data such as MOL files, we cannot evaluate
how many of the consistent mappings are actually correct. We have not included
such information in our analysis because it is not often found in metabolic mod-
els. In any case, the inconsistencies here described pertain automatic mapping and
most (or all) of them should be fixable upon manual curation. Comparing names
between databases is not trivial due to heterogeneity issues: our approach may be
over simplified, which may reflect in the results shown. It should be noted that in
some databases, synonyms are clearly differentiated, in this case, the inconsistency
will not arise. However in many databases considered in this study, synonyms are
not well distinguished. For instance H in MetaCyc belong to the synonyms list of
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both proton and L-histidine. This is one of the primary causes of ambiguous map-
ping. In addition, MetaNetX data that was downloaded at the moment of conduct-
ing this study contained data from the originating databases that was produced in
2017 and some in 2016 (see section 4.4 for more detail). As databases change over
time, a similar analysis with themost recent database updatesmight lead to different
results. Stat Roma pristina nomine, nomina nuda tenemus.

4.4 Methods

4.4.1 Data collection and preprocessing

Data about compound identifiers and synonyms were downloaded from
MetaNetX[256]. MetaNetX is a repository of GEMs and biochemical path-
ways. It contains entries from some of the most relevant databases that have been
used in GEMs construction and simulation such as KEGG, BiGG , MetaCyc and
SEED [273]. The platform (http://www.metanetx.org/) allows access to these
databases as well as provides tools to map/translate them. In this study, The
chem_xref.tsv file was downloaded from the MetaNetX website on 31st October,
2018. In the following, we provide a brief description of the content of these
databases.

Biochemical, Genetic and Genomic models (BiGG) [274] is a knowledge
database of genome scale metabolic models (GEMs). Currently, it contains 85
high-quality, manually curated GEMs, 24311 reactions, and 7339 metabolites (data
retrieved on 30th, Nov, 2018 from http://bigg.ucsd.edu/). In BiGG, the metabo-
lite is identified as the abbreviation of its name. For example, ’10fthf ’ for 10-
Formyltetrahydrofolate. MetaNetX obtained data from BiGG on 2017/04/11.

Model SEED [275] is a platform to construct GEMs that uses its own database
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for metabolites and reactions. This database combines information from KEGG
and existing metabolic models in a non-redundant set of reactions. In this database,
metabolite identifiers start with “cpd” and followed by a 5 digits number. For ex-
ample, D-Glucose-1-Phosphate is cpd00089. Thedatabase can be downloaded from
https://github.com/ModelSEED/ModelSEEDDatabase/tree/master/Biochemistry.
MetaNetX obtained data from SEED on 2017/04/13.

ChEBI [276]. (http://www.ebi.ac.uk/chebi/aboutChebiForward.do) is a
database of Chemical Entities of Biological Interest [276] and is a repository for
small chemical compounds. In ChEBI, metabolites are named by 5 digit numbers.
For example, Alpha-D-glucose-1-phosphate(2-) is 58601. File can be downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/. ChEBI
data in MetaNetX are from the release version 150.

enviPath [277]. (https://envipath.org/). Is a database to store and predict
the microbial biotransformation of organic environmental contaminants. Data in
MetaNetX were downloaded on 2017/04/12.

HMDB [278]. (http://www.hmdb.ca). Is a comprehensive and curated collec-
tion of human metabolite and human metabolism data. Data in MetaNetX was ob-
tained on 2017/04/12.

KEGG [245]. (http://www.KEGG.jp). The Kyoto Encyclopedia of Genes and
Genomes is a resource that provides information about pathways and reactions in
organisms. InKEGG,metabolites startedwith a letter ‘C’ (compound) and followed
by 5 digit numbers. For example, D-Glucose-1-Phosphate is identified as C00103.
Data in MetaNetX were obtained on 2017/04/12.

LIPID MAPS [279]. (http://www.lipidmaps.org). Is a database that contains
structures and annotations of biologically relevant lipids. Data in MetaNetX were
obtained on 2017/04/13.
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MetaCyc [244]. (http://metacyc.org). Is a curated database of
metabolic pathways. All data in MetaCyc are experimentally validated.
The metabolite is identified by its full name. For example, D-glucose-1-
Phosphate is D-glucose-1-phosphate. The database can be downloaded here
http://bioinformatics.ai.sri.com/ptools/flatfile-format.html. Data in MetaNetX
were obtained on 2017/04/13.

Reactome [280]. (http://www.reactome.org). Is a curated and peer-reviewed
database of human biological processes. Data in MetaNetX were obtained on
2017/04/13.

SABIO-RK [281]. (http://sabiork.h-its.org/). Is a database containing compre-
hensive information about biochemical reactions and their kinetic properties. Data
in MetaNetX were obtained on 2016/05/27.

SwissLipids (SLM) [282] (http://www.swisslipids.org/) contains curated data
about lipid structures and metabolism. Data in MetaNetX were obtained on
2017/04/13.

The original data file was modified prior to analyzing. The modification includes
the removal of the description part, of IDs starting by bigg:M as they are not real
compound ID in BiGG, and the removal of ’biomass’ compounds. Data from
MetaNetX were organized in four columns in this order: compound ID in original
database with database indicator in front, for example bigg:10fthf, corresponding
compound IDs in MetaNetX, evidence and description (name).

4.4.2 Intra-database analysis

For intra-database consistency analysis, the first, the second and the last column of
the MetaNetX data file were used for mapping. Name ambiguity was calculated as
the number of ID each name links to. Similarly, the namemultiplicity of each IDwas
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calculated as the number of names it refers to.

4.4.3 Inter-database analysis

We mapped compound IDs between databases. A direct map between IDs in the
database is not possible. The tested databases use different system for compound
identifiers. For instance, in KEGG, the compound ID is a capital ’C’ following by a
5 digit numbers, i.e. ’C00002’ for ATP. In contrast, in BiGG, the compound is iden-
tified as abbreviation of its name, for example, ’atp’ for ATP. Therefore, to map from
one ID in database 1 to other ID in database 2, we used either the associated com-
pound name or the associatedMNXRef ID.That is also whatMNXRef is meant for,
as a link between databases.

Mappings via name were done by link from name to name in one database to the
other. We first identified all compound names from one database, i.e. database A.
From this list, we counted the number of IDs in the second database, i.e. database
B, that link to each name in the database A. It means in this case, we did not use any
string processing algorithm, .i.e processing case sensitive, underscore, or brackets,
the name was mapped as exact match. Ambiguous names were treated as normal
name in the database. In otherwords, we did not distinguish ambiguous names from
un-ambiguous names from the mapping.
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abstract

Microbes have been increasingly used to provide solutions for global healthcare,
agricultural and environmental challenges. Development ofmicrobial factories is of-
ten a costly, time-consuming and uncertain process, and is best done with the assis-
tanceofmathematicalmodeling. Genome-scale, constraint-basedmetabolicmodels
(GEMs) are among the most common methods to explore microbial metabolism,
as they provide a comprehensive metabolic repository of an organism that enables
simulating impact of geneticmodifications. However, the lack of accurate functional
annotations often renders such models incomplete, giving rise to missing reactions
in the network (‘gaps’). Hence, gap-filling is an essential step inmodel development.
Thus far, 18 algorithms have been published to assist in the gap-filling process. Their
usability and accuracy vary widely due to differences in their objectives, implemen-
tation platforms, and input data. Hence, we carried an extensive review and eval-
uation of these algorithms from a user’s perspective. We found that a majority of
the tools do not have workable implementations available. From those for which
an implementation is readily available, we selected SMILEY, FASTGAPFILL and
Meneco to further investigate their performances. As for recall and precision, SMI-
LEY is the best among three algorithms for small-scale degradation. When applied
to highly degraded networks, all three algorithms perform poorly. Gap-filling algo-
rithms could be great resource to improve a GEM but are hardly used in modelling
as they are hampered by the lack of workable implementations and inconsistencies
between themodel namespace and the required reference databases. In order to im-
prove the situation, there should be workable implementation for these algorithms
and the inconsistency between the model namespace and the required reference
databases need to be solved.
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5.1 Introduction

Microorganisms are minuscule chemical factories that have the ability to naturally
produce a wide range of valuable compounds. Producing chemicals from these
living cells has been considered an alternative sustainable approach over the tradi-
tion petro-based chemical production due to the use of available renewable biomass
[139, 283]. Using microbes for chemical production also bring various advantages
such as a stable production cost due to the use of low-cost renewable biomass as sub-
strate [140], the production of less byproduct [141], and the production of a wider
range of chemical due to the flexible of the microbial systems [140].

Microorganismshave been employed to produce chemicals from the ancient time
with significant impact for instance the introduction of beverages, cheeses, bread,
pickled foods and vinegar [34]. These early processes employed microbes when
they were not well-characterized. Nowadays, advances in genetic sequencing and
high-throughput technologies have fostered the development of Synthetic biology
and Systems biology [284] leading to the establishment of numerous examples of
microbial cell factories for many targets such as chemicals, materials [37, 38] and
biofuels [39].

Synthetic biology is an application of science, technology and engineering to facili-
tate and accelerate the design, manufacture and/or modification of genetic materials in
living organisms such as microbes [33]. Systems biology is a collection of quantita-
tive and qualitativemodelling approaches to study living organism as a whole [284].
Mathematical modelling in Systems biology is an essential part in Synthetic biol-
ogy to guide rational design and to predict outcomes of potential genetic and envi-
ronmental implementations [45, 285]. One of the most common used modelling
techniques in metabolic engineering is genome-scale metabolic modeling (GEM),
a linear, constraint-based model that enables simulating metabolism at steady-state.
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It contains a comprehensive inventory of metabolic reactions that are predicted or
known to occur in an organism. GEMs have been shown to be useful for industrial
and medical applications owning to their power in hypothesis driven discovery and
in guiding metabolic engineering [28, 29].

Model organisms such as Escherichia coli and Saccharomyces cerevisiae have been
extensively researched and thoroughly curated models are available [286, 287].
However, there is a plethora of microorganis ms that have great potential for ap-
plications and are not as well characterized. Oleaginous yeasts such as Cutaneotri-
chosporon oleaginosus and Yarrow lipolytica can accumulate at least 50 % lipid in their
biomass, implying great potential for lipid production[288]. Other promising or-
ganisms are bacteria with high solvent tolerance or redox potential, such as Pseu-
domonas putida [289], or prokaryotes that can thrive in extreme conditions such as
thermophiles and acidophiles that can produce chemicals with higher productivity
and lower maintenance cost [290].

Affordable sequencing technologies and easy-to-use pipelines for genome anno-
tation such as SAPP [291], Prokka [292] or DFAST [293] have largely expanded
the interest in non-model organisms. This leads to a concomitant increased inter-
est in building GEMs and in deploying modeling tools for such microbes. In ad-
dition, there is a growing interest in modelling microbial communities, enabled by
the availability ofmetagenomics/metatranscriptomics technology [294, 295]. Thus
users need to have good modelling strategies to design the possible interventions.

The construction of GEMs critically depends on the identification of metabolic
functions encoded in the genome of the organism in question. During model con-
struction intensive manual curation is required to remove gaps in the network. Gap
is missing reactions to either produce or consume a metabolite, the metabolite be-
comes a dead-end. Reactions involve dead-endmetabolites will not be able to carry
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flux, a so-called block reactions. It violates the steady state assumption of the sim-
ulation techniques used in GEMS, which requires metabolites to be produced and
consumed in equal amounts. As a result, the model is rendered unable to simulate
the network.

The causes for gaps are twofold. First, the organism is indeedmissing the enzyme
for the reaction [296]. For instance,Akkermansia muciniphila one of themost abun-
dantmucosal bacteria in humans is threonine auxotroph, a consequence of the adap-
tation in the mucosal environment where threonine is abundant [297]. The organ-
ism in this case does not possess genes to encode enzymes for threonine synthesis.
This is represented in themodel as amissing reaction toproduce threonine, although
it is consumed in biomass and protein synthesis reactions. This renders the model
unable to simulate growth unless threonine is in silico supplemented to themedium,
correctly reproducing the auxotrophy of this organism. These are biological gaps
and they should not be filled. Instead, this gap will be solved by entailing identifi-
cation of additional biological mechanism, such as enabling threonine uptake from
the environment in the case of Akkermansia muciniphila.

The second cause of gaps is due to the limitation in our knowledge, a so-called
knowledge gaps resulting from missing annotation. This type of gap needs to be
solved to allow fluxes through the network. These knowledge gaps are targets for
gap-filling. GEM has well-defined scope, and is an open system by itself. In this
study, we do not consider metabolite whose production or consumption is in net-
works outside the scope of the model as gap.

Gap-filling is the process of finding reactions to connect dead-end metabolites
to the network to allow flux through the objective function. The gap-filling process
starts with the identification of candidate reactions to restore network connectiv-
ity. In this step a list of reactions are generated without genomic evidence. In the
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manual curation step candidate genes encoding enzymes for suggested reactions are
identified. Reactions added to the model for which no genome evidence is found
are termed orphan reactions. These reactions can be either spontaneous or have un-
known enzyme-encoding-genes.

The identification of gaps depends on the objective function of the model, very
often the biomass synthesis reaction. It decides the scope of a GEM. Any inconsis-
tency between model simulation and observation may relate to the objective func-
tion, whether the model capture correctly all pathways that make up this function.
For instance if the objective function of a model is designed to specifically account
for different types of membrane lipids then it might end up showing gaps on mem-
brane lipid synthesis pathways, whereas amodelwith an objective function that only
contain a generic type of lipids will not have these gaps. In addition, the identifi-
cation of gaps also depends on growth phenotypes of the organism in question in
the selected medium. Gaps are difference between simulation in rich media and
minimum media. When the model is simulated in rich media where microbes are
supplied with external biomass precursors, pathways for energy generation and co-
factor regeneration will be checked while simulating in minimum media GEM is
more challenged exposing possible gaps. In this case, beside energy and co-factor
generation pathways, pathways for synthesis of biomass precursors are also checked.

A typical GEM often contains from a few hundred to few thousands reactions.
During its construction there are usually a few to dozens of dead-end metabolites
renderingmanual gap-filling inmany cases impractical. To address this issue, various
algorithms have been published to assist gap-filling. Pan andReed [298] divide gap-
filling algorithms in two broad categories: reaction addition algorithms and gene as-
signment algorithms. Reaction addition algorithms identify gaps and then suggest
changes in themodel content to fill them. In this category, the list of suggested candi-
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dates are orphan reactions that need to be manually assigned enzyme-coding-genes
for. In the second category, gene assignment algorithms attempt to match reactions
with gene sequences. In this study we define gap-filling algorithms as reaction ad-
dition algorithms. These algorithms apply the same principle, they aim to facilitate
flux to produce a target phenotype, most often biomass production, by adding as
low number of reactions as possible from a reference database. Themain differences
among these algorithms are how they identify gaps, for instance purely based on net-
work topology or also based on stoichiometric balance. Another difference among
these gap-filling tools is the database where they draw candidate reactions from.

Algorithms explicitly designed for gap-filling have been introduced either as
stand-alone tools or as built-in functions in automatic reconstruction tools such as
ModelSEED [299], CoreCo [300], Pathway Tools [301], RAVEN Toolbox [302],
CarveMe [303] and AureMe [304]. Some of these algorithms have been tested
and compared in previous reviews. Latendresse and Karp [305] evaluated the per-
formance of the two modes of the gap-filler implemented in the Pathway Tools
MetaFlux sofware [306]. They randomly deleted flux-carrying reactions from the
EcoCyc-20.0-GEMof Escherichia coli [307], and assessed how accurately the model
was restored after gap-filling, usingMetaCyc [244] as reference database. They used
two different solvers (CPLEX and SCIP) and reported precision and recall statis-
tics for each gap-filling variant. They found that in the most accurate variant, 13% of
the gap-filled reactions were incorrect and 39% of the gap-filled reactions were not
found. In this case, the gap-filler was designed to be used in Pathway Tools and was
tested on a model that was built from the MetaCyc library.

More generic stand-alone tools have been designed for gap-filling since 2006
[298]. Most of them aremainly based on network topology either in bottom-up and
top-down manner. In bottom-up approach the network is enriched until the objec-
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tive is achieved, i.e. GapFill [308] andFASTGAPFILL [309]. Top-down starts from
adding all reactions and eliminate each of them iteratively, i.e. Christian et al [310]
and MIRAGE [311]. Despite the continuous publication of these algorithms, they
are not independent, many of them are built based on or as a modification of previ-
ous published algorithms. For instance, GrowMatch [312] and SMILEY [313] used
GapFill [308] as foundation. BoostGAPFILL [314] can be used to produce input
for FASTGAPFILL. While likelihood-based gap filling workflows [315] employed
part of the ProbAnnoWeb/ProbAnnoPy algorithm [316].

A few gap-filling tools have been reviewed and tested. Oyetunde et al. [314] used
random deletion approach to test their algorithm, BOOSTGAPFILL. They intro-
duced artificial gaps on several models and compared the performance of BOOST-
GAPFILL against previously developed algorithms, FASTGAPFILL and Grow-
Match, using GapFind [308] to calculate the number of gaps before and after gap-
filling. The reference database in their study is KEGG [130]. Their results on
BOOSTGAPFILL show more than 60% precision and recall which is double that
of other tested algorithms.

When Prigent et al. [317] introducedMeneco they generated 3600 randomly de-
graded networks of metabolic model iJR904 of E. coli, at different degrees of degra-
dation, and tested their algorithm on each, with MetaCyc as the database of candi-
date reactions. Their results show that Meneco was able to find essential reactions
missing in networks at high degradation rates.

New gap-filling algorithms have been continuously developed and many of them
have not yet reviewed and evaluated. The highly interdisciplinary nature of GEM
development brings together computational scientists, mathematicians, physicians
and molecular biologists in the same field. Since more researchers have been using
GEMs [318], in this study we aim to give an extensive review and evaluation of the
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performance and the practical usability of recently published stand-alone gap-filling
tools for all users. We do not cover gap-filling algorithms embedded inmodel recon-
struction tools sincemany of them use the same algorithms as stand-alone tools and
they do not allow gap-filling without building the model from scratch.

5.2 Overview of gap-filling algorithms

Growth phenotypes either in one ormultiple conditions depending on the intended
purpose of modelling are the basic required input for all gap-filling algorithms. Ad-
ditionally, some algorithms also require experimental data such as gene expression
data, gene essentiality data, ormetabolic fluxdata. In this study, wehavedividedgap-
filling algorithms into two groups based on their required inputs: algorithms that
only require growth data and those that need additional experimental data. Beside
these two groups, there are other approaches such as machine learning techniques
that are not classified as gap-filling algorithms but have been used for gap-filling in
GEMs.

5.2.1 Gap-filling algorithms requiring only growth data

SMILEY (2006) [313] The algorithm poses a mixed-integer linear programming
(MILP) problem reconciling experimental observations and in-silico simulations of
growth on minimal media. It aims to find a minimum set of reactions from a uni-
versal database, KEGG, to add to the GEM to rescue in-silico false negative growth
predictions. Wewere not able to find an implementation of this algorithm. Yet, there
is a very similar gapfilling implementation [319] inCOBRApy toolbox, we therefore
considered this as SMILEY algorithm.

GapFind/GapFill (2007) [308] These MILP algorithms identifies metabolites
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that cannot be produced or consumed (GapFind) and searches for candidate reac-
tions fromMetaCyc database to connect the gaps to the network (GapFill) either by
reversing reaction direction, adding reaction from other organism, adding exchange
reactions or adding intracellular transport reactions.

Christian et al (2009)[310] The algorithm uses a similar approach to that of
GapFill and SMILEY [313]. First all reactions in a reference database are added to
the draft network. Each of these new reactions is removed to check for their essen-
tiality to produce the target metabolites. Non-essential reactions are removed and
the remaining reactions form the gap-filling set.

FASTGAPFILL (2014) [320] The first algorithm that computes near minimal
set of added reactions for compartmentalized models. While other gap-filling al-
gorithms focus on facilitate flux to simulate a desire phenotype, i.e. biomass pro-
duction, the objective of FASTGAPFILL is to unblock as many gaps as possible.
Hence, FASTGAPFILL does not guarantee the smallest solution size of additional
reactions. The algorithm implements FASTCOREalgorithm [320] to expand a core
subset of the network with reactions from a universal database (KEGG) until all
dead-end metabolites in the model are eliminated. The price is that the solution set
will contain transport and exchange reactions.

Likelihood-based gap filling workflows (2014) [315] The algorithm predicts
alternative functions for genes by calculating their likelihood scores based on se-
quence homology. Maximum-likelihood pathways for gap-filling are found by solv-
ing an MILP problem. This approach is genome-specific cause it provides reaction
for gap-filling with gene-protein-reaction association information and confidence
scores for each suggestion. It is available via API or command-line web interface as
part of theDOESystemsBiologyKnowledgebase (KBase), an automatedmetabolic
network reconstruction framework [321].
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DEF (2016) [322]The algorithm mimics the endosymbiosis event in microbes.
In this process, mitochondria, a predecessor of prokaryotes capable of aerobic res-
piration, was engulfed by primitive eukaryotes unable to consume oxygen. As a re-
sult, the eukaryote adopts themost efficient pathways to consumeoxygen. Similarly,
DEF solves a linear programming (LP) problem that looks for reactions in an exter-
nal database to maximize the consumption or production of dead-end metabolites
in the original model.

BoostGAPFILL (2016) [314] The algorithm leverages machine learning and
constraint-based methods to find reactions for gap-filling. The incomplete stoichio-
metric matrix of a constraint-based model, a subject for gap-fill, is converted to an
incomplete adjacency matrix A. This adjacency matrix A is completed using matrix
factorization. An integer least square optimization is used to select reactions from
the universal database of choice that best match the completed A.This step resulted
in a ranking of all reactions. This ranking set can be used as the database input for
FASTGAPFILL inmode 2 inBoostGAPFILL.Or it can be used for gap-filling based
on network topology with or without extra biological constraints in mode 1 and 3,
respectively.

Meneco (2017) [317] or Metabolic Network Completion is a topological gap-
filling approach that allows stoichiometric constraints to be violated and does not
rely on phenotypic or taxonomic information. This approach is specially designed
for new, less-studied organism whose experimental data is scarce.

Hybrid Metabolic Network Completion (2017) [323] The algorithm com-
bines answer set programming with linear stoichiometry constraints for network
completion. By doing this, it avoids self-activated cycles resulting from flux balance
based method. It is claimed to offer a better solution for restoring highly degraded
models.
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ProbAnnoWeb/ProbAnnoPy (2018) [316] ProbAnnoWeb/ProbAnnoPy first
rank the reaction for gap-fill based on likelihoods of gene functions. Similar to
likelihood-based gap filling workflows, these functions are based on sequence ho-
mology with a trusted annotation database. The rank organism-specific reactions
are next subjected for gap-filling candidates. In this way, reaction databases for gap-
filling in the likelihood-based approach is customized for the specific organism in
question.

OptFill (2020) [324] The most recent gap-filling algorithm, a Novel
Optimization-Based Tool to Automate Infeasible Cycle-Free Gapfilling of
Genome-ScaleMetabolicModels, aims to remove thermodynamic infeasible cycles
in GEM. This whole model gap-filling algorithm identifies a minimum number of
reactions to connect as many metabolites to the network as possible while avoiding
introducing thermodynamic infeasible cycles.

5.2.2 Gap-filling algorithms requiring experimental data

OMNI (OptimalMetabolic Network Identification) (2006) [325] Is the first al-
gorithm proposed for gap-filling in GEMs. The algorithm poses a bilevel MILP to
find the optimal reaction set tomatch in-vivo and in-silicometabolic flux data. In this
case, the outer optimization problem is to find reactions to add to the model, while
the inner problem finds flux distributions for the optimal solution for a particular
model structure.

GrowMatch (2009) [312] An optimization-based framework that predicts re-
actions to suppress or to restore growth to match with experimental observations.
This algorithm uses in-vitro determined gene essentiality data to identify incorrect
model predictions. When the model predicts growth while no-growth is observed
in-vitro (false positives), the algorithm poses a bilevel optimization problem to sup-
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press growth. In this case, the outer problem minimizes biomass formation with
a pre-defined number of reactions to suppress while the inner problem maximizes
biomass formation when redirecting metabolic fluxes to biomass precursors, up-
take and ATP maintenance. For in-silico non growth and growth in-vitro mismatch,
the algorithm based on network topology to find reactions from an external multi-
organism database such as MetaCyc to connect with the network in the model.

MIRAGE (2012) [311] MetabolIc Reconstruction via functionAl GEnomics
(MIRAGE) identifies gaps by integrating metabolic flux analysis and functional ge-
nomics data. MIRAGE use a two-step procedure where functional genomics data
is used in the first step to calculate the probability of adding a reaction from a refer-
ence database of choice into themodel. Enzymes’ phylogenetic profiles and gene ex-
pression profile of the target organism are used in this step to calculate phylogenetic
weight of each reaction in the reference database. In this manner, MIRAGE also in-
cludes gene assignment in the gap-filling procedure. In the second step, metabolic
flux analysis is used to identify the set of high-weight gap-filling reaction whose ad-
dition will restore the desire phenotype.

GlobalFit (2016) [326]While other gap-filling algorithms fill gaps per each con-
dition iteratively, GlobalFit reformulated theMILPproblem to a bi-level linear prob-
lem to look for a single global optimal network tomatch in-silico prediction to all ex-
perimental observations simultaneously. In addition to a global set of changes, it also
suggests subsets of solutions to solve false positive prediction per each observation.
GlobalFit is integrated with the sybil [327] toolbox for constraint-based analyses.

SONEC (2016) [328] SOrting by NEtwork Completion (SONEC) approach
fills in network gaps based on analysing bins of contigs from metagenomics sam-
ples. The algorithm aims to complete metabolic networks in a microbes commu-
nity. Fragments frommetagenomics samples can bemapped tometabolic functions,
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this results in various metabolic networks representing different species. The unas-
signed sequence fragments will be assigned to the network such that it can eliminate
as many as dead-end metabolite as possible. This means it will be assigned to a net-
work that have the highest connectivity scores of metabolites. These connectivity
scores indicate the number of dead-end metabolites that can be consumed or pro-
duced in the parent network with the addition of the unassigned reaction.

GAUGE(2017)[329] The algorithm finds gaps based on co-expression data of
genes. Inconsistency between in-vitro coupled gene expression and in-silico flux cou-
pled reactions indicate missing reactions in the network. GAUGE aims to iden-
tify the minimum set of reactions to match coupled gene expression observations
and flux couple reaction predictions by solving an MILP problem. However, the
algorithm only works on the subset of the model where reactions have clear gene-
protein-association.

EnsembleFBA (2017) [330] The algorithm aims to limit the bias of gap-filling
order in which the end network when gap-filling model for growth on glucose and
then sucrose, for instance, is different from that when gap-filling for growth on su-
crose first and then on glucose. EnsembleFBA was developed based on FASTGAP-
FILL and FastGapFilling algorithms. It then compiles individual networks resulted
from gap-filled for each growthmediumwith a random order into an ensemble net-
work.

5.2.3 Other techniques

There are many other algorithms that do not suggest candidates for gap-filling but
can support gap-detection and gap-filling procedures. Recently, Martyushenko and
Almaas [331] (2019) published ErrorTracer. As implied in its name, ErroTracer al-
lows to identify inconsistencies, classify them and inspect their origins. However,
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the algorithm does not suggest candidate reactions for gap-filling. Another older
technique,Model-enable gene search (MEGS) [332] is a combination of computa-
tional and experimental approaches to identify gaps by functional genomics analysis
and to assign genes to reactions to fill them. Another approach that combines com-
putational andexperimental power to identify gaps andgap-filling candidates is from
[333]. Theauthors usedGEMs to identify unconnectedmodules in thenetwork and
validate their essentiality in the lab.

Many machine learning techniques such as naïve Bayes, decision trees, and
logistic regression have been used for pathway prediction [334, 335] and can
also be used for gap-filling. Recently, Medlock and Papin [336] published a
framework for guiding model refinement using machine learning called automated
metabolic model ensemble-driven elimination of uncertainty with statistical learn-
ing (AMMEDEUS).AMMEDEUSusedunsupervised learning to identify inconsis-
tentbetween in-silico and in-vitroobservation. Supervised learning is thenperformed
to suggest modification to reconcile model prediction and experimental data.

5.3 Results

5.3.1 Usability evaluation

In this study we evaluated gap-filling algorithms from a user’s perspective. Hence,
we focus on the usability of these tools without the need of writing code. It means
they are implemented either as a web portal, a command-line tool or a graphical user
interface. As shown in Table 5.3.1, except for GrowMatch, Christian et al [310] and
hybridMetabolicNetworkCompletion algorithms, all others have accessible imple-
mentation. They are obtainable either from the supplementary files in the original
papers or from code repositories such as github, e.g. OMNI and MIRAGE, or are
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available as web applications e.g. DEF and Prob AnnoWeb or as built-in packages in
commonused toolboxes such asCOBRAe.g. FASTGAPFILL andBoostGAPFILL.

The next important criterion is if they are easy to install. Whether it is easy or
difficult to install a software critically depends on user’s experience. This can be
subjective for gap-filling algorithms since target audiences of these tools are mostly
in GEMs community with diverse backgrounds ranging from computer science to
biology. Therefore, to establish a common ground for evaluation, we considered
most used platforms in GEMs community such asMATLAB, PYTHON and R and
solvers such as Gurobi, GPLK and CPLEX are easy to obtain for gap-filling algo-
rithms users. We graded the user friendliness of an installation based on how many
dependencies the algorithm in question required and how easy it was to get these
dependencies. Algorithms with additional dependencies will therefore be consid-
ered to be more tedious to install. Most of the algorithms that we tested in this
study do not required extra packages or compilers, with the exception of OMNI,
GapFind/GapFill andOptFill that require GAMS. Similar toMATLAB, GAMS is a
programming language and an optimization tools [337]. It has been used in GEMs
community but not as commonly as MATLAB. MATLAB is more wide-spread in
many other disciplines while GAMS is more specialized and has a narrower user
community. This is evident by the high number of users for toolboxs using MAT-
LAB such as COBRA toolbox [338]. In addition, it is more difficult to get access to
GAMS than MATLAB even for academic users.

Upon installation, we tested if these algorithms are easy to run which mean they
have clear documentation and can be executedwithout errors. Our first attemptwas
to reproduce the results in the original publications using example data and codes
provided along with the algorithms or if they have a tutorial. With the exception
of SMILEY, FASTGAPFILL, Meneco and ProbAnnoWeb/ProAnnoPy, other algo-
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rithms are not well-documented. Some do not provide clear instruction on what
parameters they require or how to format input data. Among algorithms with avail-
able implementation, FASTGAPFILL, BoostGAPFILL and GAUGE required de-
bugging in order to run them. These algorithms are implemented and used some
functions in COBRA toolbox, their errors mainly cause by the incompatible issues
with the new updates in this toolbox.

We also tested if these gap-filling algorithms are well-maintained which mean if
they are up-to-date and/or have an active technical support community. Most of
the algorithms published earlier are not maintained. They have the last commit date
around the time their original papers were published. ProbAnnoWeb/ProbAnnoPy
is the only one have active updates. SMILEY, FASTGAPFILL andLikelihood-based
gap filling workflows although are not updated frequently but they have active com-
munities for technical support.

In addition, namespace requirement is also an important criterium that decides
the usuability of an algorithm. If there is mismatch in namespace between model
and that gap-filling algorithm requires, users will need to translate the namespace in
the model. This will imply errors as we indicated in our study [208]. Among tested
gap-filling algorithms, FASTGAPFILL andDEF require themodel to havemetabo-
lites and reactions in KEGG namespace. Likelihood-based gap filling workflows,
EnsembleFBA, and ProbAnnoWeb/ProbAnnoPy require ModelSEED namespace.
All other gap-filling algorithms do not require metabolite and reaction identifiers in
the model to follow a specific format.
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5.3.2 Performance evaluation

In order to evaluate the performance of gap-filling algorithms, we used an approach
similar to the one described in [314] with some modification. Shortly, we started
with a reference GEM that can grow onminimummediumwith glucose as sole car-
bon source when simulated with flux balance analysis. In this GEM, we introduced
artificial gaps by randomly removing 1, 5, 10, and 100 essential reactions, that is re-
actions whose deletion will prevent growth. Escherichia coli GEM, iML1515 and
Saccharomyces cerevisiae GEM, iMM904 were chosen to represent single and multi-
compartment models. Degradedmodels were then subjected to gap-filling with the
selected algorithms. The gap-filling sets of reactions suggested by the gap-filling al-
gorithms were compared to the deletion set to calculate recall and precision. We
repeated the experiment 100 times for each model and each algorithm.

The basic required inputs for all gap-filling algorithms are a subject for gap-filling,
i.e. a GEM, a reaction database to draw gap-filling candidates from, i.e. BiGG [339],
KEGG [130] or MetaCyc [340] and growth phenotype(s) depending on the in-
tended purpose of modelling. Some algorithms also require extra inputs such as in-
vitrofluxdataor in-vitrogene expressiondata (Table 5.3.1). Toconduct performance
evaluationof gap-filling algorithms, weonly chose those that donot require in-house
codes or heavy debugging and do not require in- vitro data as input since we intend
them to be usable for all users. Of 18 algorithms only SMILEY, FASTGAPFILL and
Meneco suite our requirements.

The overall accuracy and precision of the three algorithms fulfilling our usability
criteria on E. coli and S.cerevisiae GEMS (iML1511 and iMM940 respectively) with
deletions of sizes 1, 5, 10 and 100 are reported in Table 5.3.2.

Overall, all algorithms that could be tested perform better on the single compart-
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Model Deletion
size

Mean addition
size± std Running time (minutes) Feasible (%) Recall (%) Precision (%)

SMILEY
E. coli 1 1.04± 0.2 37.7± 32.9 85 73 70

5 5.04± 0.2 184.6± 241.6 22 83 82
10 - - 0 - -
100 - - 0 - -

S. cerevisiae 1 1.03± 0.2 22± 11.1 38 70 70
5 - - 0 - -
10 - - 0 - -
100 - - 0 - -

FASTGAPFILL
E. coli 1 366.4± 75.6 20.8± 5.7 / 2.8± 1.0 96 0 0

5 387.6± 15.8 30.9± 11.9/ 4.2± 2.3 100 0 0
10 388.9± 21.1 28.8± 13.9 / 3.03± 1.6 100 0 0
100 366.4± 75.6 20.8± 5.7/2.7± 1.0 96 0 0

S. cerevisiae 1 463.4± 14 41.1±12.3/ 503.1± 251.2 100 0 0
5 479.3± 15.5 56.8± 20.7/ 541.8± 377.4 100 0 0
10 479.3± 15.5 56.8± 20.7/541.8± 377.4 100 0 0
100 562.6± 63.3 136.1±50.8/342.3±211.9 99 0 0

Meneco
E. coli 1 2.0± 0.0 0.5± 0.1 100 0 0

5 2.05± 0.2 0.9± 0.4 57 0 0
10 2.16± 0.4 1.1± 0.3 26 0.4 0.19
100 6.03± 1.5 1.5± 0.5 31 3 48

S. cerevisiae 1 - - 0 - -
5 - - 0 - -
10 1.0± 0.0 1.1± 0.1 3 0 0
100 1.0± 0.0 1.0± 0.1 7 0 0

Table 5.3.2: Performance evaluation results. Feasible represents the number
of experiments for which the gap-filling algorithm could find results. Recall and
precision were calculated over the total feasible experiments. FASTGAPFILL
includes two steps: gap-fill preparation and gap-fill. Running time for each step
for this algorithm is listed in the table as time for preparation/ time for gap-fill.

ment model, E. coli, than on the multi-compartment model, S. cerevisiae. Although
bothmodels have a similar number of reactions (2712 inE. colimodel and 1577 in S.
cerevisiaemodel), the yeastmodel is more complex with 8 compartments whereasE.
coli model only has 2 compartments. SMILEY had the highest precision and recall,
more than 70 % of reactions were correctly recovered. It works best for small degree
of network degradation. Meneco gave slightly better performance at large scale dele-
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tions than the other algorithms, but overall precision and recall are very poor for all
experiments. FASTGAPFILL did not recover any reactions that we removed. This
is partly due to the inconsistencies in the namespace between themodel andKEGG.
Although the namespacewas translated, there are variousmetabolites that cannot be
mapped and still in KEGG namespace. It means FASTGAPFILL suggests reactions
in different namespace, as a result they look different from our deletion set.

The solution size of FASTGAPFILL is several orders ofmagnitude larger than our
removed reaction set and is comparable among different deletion sizes. SMILEY,
on the other hand tends to give the same number of reactions for gap-filling as the
size of the removed set of reactions. Finally, Meneco gives smaller solution size than
removed set size.

On a remote server with a 2x Intel(R) Xeon(R) CPU E5-2650 v4, 256 G of ran-
dom access memories operating under Ubuntu 16.04.6, Meneco is the fastest algo-
rithm, its running time is in seconds. SMILEY took longer to complete a gap-fill
cycle, its running time is in the order of minutes and proportional to the degrada-
tion level. Of the three algorithms tested, FASTGAPFILL is the one that needs the
most time to fill gaps. It took hours for the models we tested, and the running time
increased proportionally to the degradation level. The preparation times for FAST-
GAPFILL are independent of the deletion size. This step conducts the addition of
all reactions from KEGG to the model, this is similar for all degradation degrees.
FASTGAPFILL is slower than SMILEY andMeneco because it aims to solve all the
gaps in the model, unlike Meneco and SMILEY whose objective is to only fill gaps
that can rescue growth.
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5.4 Discussion

In this study, we reviewed gap-filling algorithms and evaluated the performance
of SMILEY, FASTGAPFILL and Meneco algorithms. Regarding recall and pre-
cision, SMILEY performs best for small-scale degradation. For highly degraded
networks, all three algorithms have a marginal performance. These algorithms are
implemented in different platforms and used different dependencies. In addition,
each algorithmuses different reactiondatabases for candidate reactions, for instance,
FASTGAPFILL use KEGGwhile SMILEY andMeneco uses user-defined database,
in our study it is BiGG.Differences in performancemay not arise from the algorithm
themselves but from the implementation and database they use. We usedmodels in
BiGG namespace as subjects for gap-filling. Every reaction we removed from the
BiGG models should be in the BiGG database, this could explain the higher recall
and precision from SMILEY. From this perspective, KEGG simply worsens the sig-
nal to noise ratio of available reactions. We did not find high quality GEM in KEGG
namespace to test FASTGAPFILL and our evaluation therefore can be biased. Sim-
ilar studies also capture low precision and recall from FASTGAPFILL [314]. Al-
though having low performance in accuracy metrics, candidate reactions proposed
by FASTGAPFILL provide a multitude of potential directions for discovery. These
reactions can represent the organism’s potential metabolism that has not yet been
experimentally confirmed. Of course, in many cases these reactions are just simply
resulted from themismatch in namespace between reference database andGEM for
gap-fill. In either case, the objective reconciliation technique used by SMILEY and
Meneco performed better at predictions of essential reactions needed for the desire
phenotype, while the topological expansion technique used by FASTGAPFILL is
more suitable for discovery of unknown metabolism.

Of 18 gap-filling algorithms, we only evaluated three due to the different required
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inputs, implemented platforms, and availability of these tools. In other studies
[314, 317, 305], also only a few gap-filling algorithms could be evaluated. Most of
these gap-filling algorithms do not have workable implementations publicly avail-
able. When publishing an algorithm, authors should provide off-the-shelf codes to
ensure reproducibility.

Writing and optimizing code to execute such algorithms are time consuming task
and end-users of these algorithms should not be expected to make their own in-
house codes to use them. In addition, an executable implementation is also useful
to check if the algorithm solve what they claim prior to their publication. Unfortu-
nately, it seems this is not yet a common practice in GEM community evident by
the lack of workable implementation of the gap-filling algorithms that we reviewed.
Similar trend was reported for other algorithms used in GEMs such as construction
tools [341] andoptimizing algorithms [342]. Besidehaving ready-to-use implemen-
tation, a golden rule should be established to test new algorithms before publishing
them. Similar to tools used for dynamic models, these tools can be tested using the
same standard model, database and platform [343]. This will prevent the bias when
comparing their performance.

Gap-filling algorithms have certain limitations. Many algorithms try to find min-
imum set of reaction to complete the network without considering genomics evi-
dence. These reactions are plausible hypotheses that still need to be validated /man-
ually curated. In such cases where organism specific data such as fluxes and gene ex-
pression profile are available, it is better to use algorithms that can integrate them. In
addition, smallest solution set make manual inspection easy but it is not necessary
the most biological relevant solution. While algorithms that aim to solve as many
gaps as possible can run into over-fitting problem. In addition, many algorithms im-
pose time or size constraint on the solution set, theywill stop searching after one or a
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user-defined number of solution is/are found. This will limit the change to find bio-
logical relevant solution. Except for GrowMatch and GlobalFit, other gap-filling al-
gorithms cannot address false positive simulation where the model predicts growth
while the organism do not grow in vitro.

Gap-filling has not been used very extensively in the past [296], the situation re-
mains the same 10 years later. This is shown by the lack of technical support com-
munity for these algorithms. This is due to the cumbersome of applying these algo-
rithms such as the lackof executable implementation, unclear input data, andnames-
pace inconsistencies betweenGEM for gap-fill and reference databases. Most of the
toolswe evaluated are still in prototype or beta version. In order to get themost from
these gap-filling algorithms, it is necessary to optimize them.

Nowadays, the use of GEMs for metabolic network analysis becomes more
popular [318], for example the increase interest in using GEMs for analyzing
metabolomic data [344] and for constructing microbe community models [345,
346]. This bring together scientists from a diversity background. Usability is one
of the most important factor determining software quality [347]. Regardless of dif-
ferences in programming experience among users, a functionality and usability tool
is still the most desirable.

Despite these limitation, one cannot deny the potential of these gap-filling algo-
rithms in assisting us to fill in the metabolic puzzle. This is evidenced by the con-
tinuous growing number of publication for gap-filling algorithms since 2006. With
a foreseeable explosion of organism specific data, those algorithms that do gap-fill
accounting for genetic and metabolic properties such as GrowMatch and GAUGE
will become handy. Pure network topology gap-filling algorithms also have their
own strength such as lower computational cost, relatively easy to use and modify.
Depend on what type of data and resource available and the namespace the model
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is in, each of these gap-filling algorithms will have their own advantages.

5.5 Methods

5.5.1 Usability performance

We evaluated the usability of gap-filling tools based on 6 criteria: model namespace,
accessible, well-documented, well-maintained, easy to install and easy to run.

• Model namespace. If the algorithm requires the model to be gap-filled to be
in a certain namespace.

• Accessible. If there is command line interface, graphical user interface and/
or web browsers to implement the algorithm

• Well-documented. If the algorithm comes with a clear documentation high-
lighting the required input format, the expectedbehaviorof the functions, and
how to configure and execute them.

• Well-maintained. If the algorithm is updated or has active technical support

• Easy to install. If it is tedious to get all the required dependencies for the al-
gorithm

• Easy to run. If the algorithm can be executed without debugging using the
example dataset from the publication.
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5.5.2 Performance evaluation

Selection of algorithms and software environment

In this studywe chose algorithms that are accessible, ease touse, no required custom-
made input, i.e. metagenomics or gene expression data. Three algorithms were thus
tested: FASTGAPFILL [309] implemented in COBRA Toolbox version 2.20.1 on
MATLAB 2017b, SMILEY implemented in COBRApy as gapfiller in Python 3.5,
and Meneco implemented as a Python package in Python 3.5. IBM CPLEX was
used as solver for LP and MILP problems. These algorithms were run on a remote
server with a 2x Intel(R) Xeon(R) CPU E5-2650 v4, 256 G of random access mem-
ories operating under Ubuntu 16.04.6.

Selection of models and reference databases

GEMs of Escherichia coli and Saccharomyces cerevisiae were chosen to represent
single-compartment andmulti-compartment models. BiGGwas chosen as a model
source because its models are manually curated and of sufficient quality to be used
as references. In BiGG, iML1515 is the most comprehensive up-to-date model
for E.coli with high accuracy for gene essentiality and cover wide range of carbon
metabolism [29]. While iMM904 is among the most studied model for S. cerevisiae
available in BiGG, it has been used as template to build GEMs for other organisms.

For FASTGAPFILL, we used the default reference database, KEGG and the de-
fault dictionary to translate BiGG to KEGG. For Meneco and SMILEY, universal
reactions from BiGG was used as reference database.
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Selection of metrics for algorithm evaluation

Follow [348] we also chose two metrics, recall and precision to evaluate algorithms
performance

• Sensitivity or recall: the total number of correct positive results that were re-
trieved. Recall = TP/(TP + FN) a high recall rate can help to reduce the
potential of missing correct reactions

• Accuracy or precision: thenumber of positive results that actually are positive
instances Precision = TP/(TP+ FP) the higher precision themore likely we
will get the right reaction

Where
TP: the number of reaction that are identical with what has been removed.
FN: the number of reaction that has been removed but was not recovered
FP: the number of reaction that suggested from the algorithms but not in the re-

moved list

Evaluation workflow

We applied the same in-silico experiments on all algorithms. The workflow is based
on previous evaluations [305, 314, 333]with somemodification. Shortly, we started
with a reference GEM that can grow on default mediumwith glucose as sole carbon
source when simulated with flux balance analysis. Original setup from the model
were used, we did not impose extra constraints on them.

In the first step, we introduced artificial gaps in the model by deleting essential
reaction(s) set A. Random deletions were made by choosing a specified number of
randomly selected reactions from the organism’s essential reaction pool (excluding
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exchange, transport, orphan and non-essential reactions). Essential reactions are
those whose removal lead to growth rate falls under 1e-06. We conducted experi-
ments for 1, 5, 10 and 100 reaction deletions for 100 replicates each.

In the second step, we applied gap filling algorithms on the degraded model. The
gap filling tool predicts a set of added reactions to fill themodel; this set of reactions
is the solution set, A’. Using the removed set A and the solution A’, we calculated
precision and recall.

Integer threshold for SMILEYwas set to the default value, 1e-06 for E. colimodel
and 1e-09 for S. cerevisae model. The incompatible between the new updated ver-
sion of COBRA Toolbox and FASTGAPFILL raised errors when running the code.
Debugging is provided in the supplementary.

To escape infinite run from solvingMILP problem, we impose time constraint on
our experiment. If an experimentdoesnot return gap-fill resultwithin twoweeks, we
will consider it as infeasible. In addition, Meneco and FASTGAPFILL also return
infeasible error when they do not find result for a test case.
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It has been 31 years since the first genome-scale constraint-based model (GEM)
was introduced in 1989. Until 2019, 6239 organisms in all domains of life have had
their GEMs constructed [29]. Of these, 180 organisms have well-curated GEMs
that are used for different purposes [29]. GEMs have been applied successfully in
many applications especially in guiding metabolic engineering and contextualizing
’Omics’ data. However, these models also have limitations. The aim of this thesis is
to deployGEMs formicrobial cell factories and evaluate their main technical limita-
tions.

GEMs were deployed as a knowledge-base in Chapters 2 and 3. In Chap-
ter 2, I constructed the GEM for Cutaneotrischoporon oleaginosus to study its lipid
metabolism and its potential for biofuel production. In Chapter 3, I employed
GEMs in the context of the design-built-test-learn cycle to design and rank pathways
for chemical production in Pseudomonas putida.

While constructing and using GEMs in Chapters 2 and 3, two main problems
have recurred. Thefirst problem is theuseof inconsistentnamespaces amongGEMs.
InChapter 2, a GEM was built following a scaffold-based approach. Yarrow lipolyt-
ica was chosen as a reference template and there were five published GEMs for this
reference organism. It was difficult to compare the content of these GEMs because
each had different identifiers for metabolites and reactions. The scope of the con-
structed GEM for C. oleaginosus could be further expanded if the model were to be
incorporate information from all available GEMs for the reference organism. How-
ever, this task was prevented due to the use of different namespaces and the lack of
efficient mapping methods to link these namespaces. In Chapter 3, two GEMs of
P. putida were used to design and rank pathways for chemical production. Although
the twoGEMs describe themetabolism of the samemicrobe, comparisons between
them were hampered by the lack of interoperability, in particular in their respective
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namespaces. In addition, the pathway design tool, RetroPath2.0, used inChapter 3
requires InChI structures or keys for allmetabolites in the target host. This task could
not be fully achieved because iJP962 uses a custom-made namespace that cannot be
fully mapped to InChI keys. In addition, only 56.9% of metabolites in iJN1411, the
other P. putida model used in that chapter, could be linked to InChI identiers. The
use of different namespaces in GEMs was a well-known problem in the community,
yet how effective the mapping and the risk of introducing mismatch when translat-
ing namespaces had not been evaluated before. To that end I evaluated in Chapter
4 the mapping efficiency among 11 databases commonly used for building GEMs.

The second problem that has emerged relates to the efficiency of gap-filling tools.
GEM construction is an intensive and time-consuming process because manual
work is required to curate and remove gaps in the network. Although many tools
have been developed to assist in gap-filling, at that point I could not use any of these
published tools due to three main reasons: many described tools were not avail-
able, tools that were available were not workable because of unclear documentation
and/or operational errors, workable tools were not efficient or require models to be
in a specific namespace. Therefore, gap-filling for the GEM inChapter 2wasmanu-
ally conducted. Thepurpose of the pathwaydesign inChapter3 also alignswith that
of the gap-filling algorithms as pathway design can be seen as a problem of restoring
the connectivity in the network, yet none of these algorithms could be readily used
for this task. Although some papers have noticed the lack of workable gap-filling
algorithms [314], their performance had not been evaluated. To that end, inChap-
ter 5 I made an extensive review and evaluation on the performance of stand-alone
algorithms for gap-filling.

The findings of the individual works have been discussed in the previous chapters
(Chapter 2, 3, 4, 5). Across these chapters, three significant themes stood out: 1)
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the lack of standards in namespaces, tool development, and guidelines for model
evaluation, 2) the need to improve models and computational tools, for instance to
account for uncertainty in the biomass synthesis reaction or to improve gap-filling
algorithms, and 3) the potential contribution of GEMs to the DBTL cycle. More
in-depth discussion of each of these themes will be provided in this chapter.

6.1 The lack of standards in GEMs

6.1.1 The lack of standards in the namespaces used to develop GEMs

As I demonstrated in Chapter 4, GEMs built by different research groups or from
different construction tools have their metabolites and reactions in different names-
paces. I highlighted in the Chapter 4 how an inconsistent namespace can lead to
mismatches when mapping to another namespace. This is a well-known issue in the
community, yet a unify standard is still lacking [246, 349, 350, 338].

Currently, GEMs do not have a common namespace because of three main rea-
sons. First, different construction tools generateGEMs in different namespaces. For
instance, GEMs constructed from the SEED will be in the SEED namespace [240],
GEMsbuilt usingPathwayTools [241]will be in theMetaCyc namespace [244] and
GEMs fromRaven [242]will be in theKEGG[245]. It is difficult to convert them to
a commonnamespace as there is no efficientmapping systemandnot allmetabolites
can be accurately converted to one database. Currently, there are eleven databases
frequently used for GEMs. Each of them has different coverage. For example, BiGG
[328] is a curated albeit small database and does not cover all metabolites in the
metabolism. KEGG is a non-curated database for more general biological processes
[130]. MetaCyc is for experimentally validated pathways [340]. ChEBI is for small
chemical compounds [276]. HMDB is for humanmetabolites [278]. LIPIDMAPS
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[279] and SwissLipids [282]mainly contains lipids. There are overlaps among these
databases but not all of themare covered in eachother. InChapter4, I demonstrated
that we can only map a maximum of 60% of a database to any other database. Each
database has their own advantages and coverage, therefore it is infeasible to decide
on one standard namespace among these 11 databases forGEMs. This has also been
noticed in themetabolomics community as there is currently no single database that
can cover all metabolomes [344].

The second reason for GEMs not having a common namespace and sometimes
even using a custom-made namespace is the presence of specific compounds such
as tautomers and/or polymers that are not identified or complicated to identify in
standard databases [351, 338].

The third reason for the lack of a common namespace is that the choice of names-
pace does not influence the prediction ability of GEMs. When GEMs are used
within their intended scopes, the most important requirement for GEMs is to cor-
rectly reflect the intended objective of themodellers. As a result, previous published
procedure focuses more on model performance rather than their namespace. This
is reflected by the publication of GEMs in different namespace or even a majority
in custom-made namespace [246]. Nowadays, with the increase demands on (i)
building microbe community models [345, 346], consensus or community mod-
els [352, 353]; (ii) using existing GEMs as templates for constructing new GEMs
[97]; (iii) facilitating the use of tools [338] and (iv) using GEMs as platform for
metabolomics analysis [344], GEMs annotation and reusability get more attention
and are recently stressed [350, 338].

In this thesis, I highlighted that the lack of standardization in namespace for
GEMs is a real problem that needs to be addressed. This issue prevents the use of
tools, for instance gap-filling tools presented in Chapters 2 and 5; It prevents the
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comparison and combination of GEMs, for example to compare template GEMs in
Chapter 2 or GEMs for P. putida inChapter 3; It prevents the mapping of parame-
ters important to evaluate and to useGEMs such as InChI identifiers for pathway de-
sign inChapter 3 and mass, charge or metabolite formulas for checking stoichiom-
etry consistency and mass balances.

At the moment, MetaNetX is a community bridge that has been developed to
reconcile namespaces in GEMs [354]. However, I demonstrated in Chapter 4 that
this approach is not yet efficient. First, not all metabolites can be mapped from one
namespace to the other via names or via MetaNetX identifiers. Second, there is a
high degree of inconsistency when mapping between namespace due to the ambi-
guity of names and themultiplicity of identifiers. Thefindings fromChapter4 imply
that we need a standard for namespaces and a more efficient mapping system.

The standard should be to have GEMs in a namespace that can be mapped. This
would imply the use of identifiers from published databases and no custom-made
namespace should be used. For specific metabolites that are not identified in pub-
lic databases, new identifiers need to be assigned to them. In this context, the use of
FAIR identifierswill help to reduce ambiguity. TheFAIRprinciple aims tomakedata
’Findable’, ’Accessible’, ’Interoperable’, and ’Reusable’ [355]. A global unique iden-
tifier for each research object is the main foundation of FAIR [356]. This approach
of making FAIR identifiers for metabolites has been adopted by the metabolomics
community [344].

In order to improve the correctness of mapping, we need to get back to the root
of the problem and answer the question about the reasons for the inconsistent map-
ping. Although previous studies have suggested that internal ambiguity is low and
solving this will only solve part of the inconsistent problem [357], our findings in
Chapter 4 agree with earlier analysis on public databases [358] that the problem is
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rooted in the internal inconsistency of each database. As shown in Chapter 4, the
majority of identifiers link to multiple names in the same database. Multiplicity in
this case increases human readability and is beneficial, as long as the alias, names, and
synonyms describe the same metabolite. However, there are many cases on which
alias referring to classes are incorrectly categorised as names. For instance, most of
the compounds that have high ambiguity and multiplicity are general compounds
such as triacylglyceride and compounds with many tautomers such as urate. These
are compounds that have different side chains and/or structures in different organ-
ism and/or conditions. They are usually present in databases as spaceholders until
more specific knowledge is obtained [21]. Generic names such as triacylglyceride
are correct to describe the general storage lipid with no specific fatty acid chains. As
I discussed inChapter 4, general compounds are often used inGEMs. This does not
affect the use of themodel, except when predicting or simulating the production (of
a specific component) of generic compounds, i.e., when ’lipids’ are themain focus of
the model. It is even desirable to use generic compounds in GEMs whenever a spe-
cific compound is not needed or not known since they can be universal. However,
triacylglyceride should not be included as name for 1-Palmitoyl-2-palmitoleoyl-3-
arachidonyl-glycerol (ChEBI:89764)where the three fatty acid chains are clearly in-
dicated as C16:0, C16:1 and C20:0 since triacylglycerides with different fatty acid
tails will have different molecular masses. In most of the databases I tested, these
two compounds are linked together and the terms are considered synonyms.

Another example of the incorrect use of alias is the use of the Event and Physi-
calEntity as synonyms in Reactome. These tags indicate the biological processes or
pathways that metabolites participate in [359]. As indicated in Chapter 4, in Re-
actome it is possible to link H2O to diphosphate via phys-ent-participant63109 or
to pyruvate via phys-ent-participant60981. This happens because these metabolites
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participate in the same reaction and hence, they share the same phys-ent-participant
tags. However, in the database, these tags are classed as synonym for name of the
metabolite. This creates incorrect links between these entities.

These are examples when links to wrong names will increase the probability of
introducing mismatches. Since many databases integrate data from other databases,
such internal errors will proliferate in the new database. Such errors were noticed
to propagate from PubChem into other databases [358]. In agreement with [358],
I suggest to pay attention to the removal of internal inconsistency to prevent such
errors from amplifying.

Many databases have been improving their consistency. ChemSpider combined
a roboticized cleansing approach and manual curation of their data by the curation
team and users [360]. ChEBI has also made efforts to develop automatic tools such
as a new text mining corpus to improve manual data curation [361]. In agreement
with earlier studies [358, 357], our observations in Chapter 2 also suggested that
mapping without manual curation implies high risk of mismatch. Yet this is not the
most efficient approach [357]. Detailed study has shown that manual curation has
resolved only a small part of the inconsistency in ChemSpider [357]. As for ChEBI,
our analysis in Chapter 4 shows that this database still has inconsistencies. Given
the high number of metabolites and the ambiguity of their names and structures in
databases, it will take time until databases solve all their inconsistencies. A less opti-
mistic view predicts that this task will hardly be achieved [351].

We cannot wait until public databases are fixed. Since no single database can
be used as a source of standard identifiers for GEMs, we need to create a standard
one for GEMs. Similar approach has been done in other communities such as the
Chemical Validiation and Standardisation Platform of the Royal Society of Chem-
istry [351] or the MetaboLights database of the metabolomics community [344].
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To prevent redundancy, BiGG can be improved to become the community stan-
dard for GEMs. We cannot yet use BiGG identifiers for all GEMs since the database
coverage is not sufficient. However, BiGG is a good candidate as a standard names-
pace for GEMs in the future since BiGG identifiers are human-readable and the
database has been specially curated for GEMs [330, 338]. Many high quality GEMs
and newly published GEMs have been converting their models to this namespace
[225, 362, 363, 349, 364, 365].

Beside non-systematic identifiers, structure identifiers should also be used to re-
duce ambiguity. These identifiers represent the chemical structures in a form usable
by computers [266]. MOL, IUPACname, SMILEs and InChI are examples of struc-
ture identifiers. Among them, InChI is considered as the most consistent source of
identifiers [247, 266, 344].

In conclusion, to improve the reusability of GEMs, I propose to focus on three
tasks. One task is to curate and expand the BiGG database with InChI identifiers.
Since new GEMs have been published in different namespaces, without an efficient
automaticmapping system, it is normal that the database has not yet covered all data
in all published GEMs. BiGG has been recently updated [339]. Yet, the database
only covers 108 GEMs, while there are at least 180 organisms with well-curated
GEMspublisheduntil 2019 [29]. I highly suggest continuing to expand thedatabase
by introducing new published GEMs and new metabolites from these GEMs into
the database. In this sense, the use of FAIR identifiers should be adopted in BiGG.

Another task is to continue curatingMetaNetX.TheMetaNetX has been consid-
ered as a community translation service [354, 302, 29] andhas been used in commu-
nity tools such as Memote [350] and RetroPath2.0 [179]. By improving upon the
current standard, theMetaNetX, we can prevent the introduction of redundant sys-
tems. This database just has had a significant update by removing inconsistency and
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including InChI identifiers for compounds (data retrieved on 26 Sep 2020). How-
ever, there are still inconsistencies in the database. For instance, urate from BiGG
can be mapped to 19 identifiers in ChEBI via MNXM441 in MetaNetX (Chapter
4) (data was retrieved again on 26 Sep 2020). Many of these 19 identifiers refer to
urate’s tautomers instead of urate itself. Curation to eliminate incorrect links from
suchmetaboliteswithhighdegreeof ambiguity andmultiplicity fromMetaNetXcan
help to reduce the inconsistent mapping.

However, even for systematic identifiers such as those from InChI, there are still
inconsistencies, they are just not as high as that in non-systematic identifiers [366].
This is due to the inconsistency and limitation in the way chemicals are described
in structure files such as v2000 molfiles [367] and how these files are read by struc-
ture reading tools [366, 351]. As databases continuously integrate data from other
sources and eachdatabase uses their own standardization rules to structure and store
their data [351, 357], I agree with these authors that no matter how much effort has
been spent and will be spent for data curation, there will always be inconsistencies
that cannot be fixed.

Hence, another key task is to develop amore sophisticatedmapping system that is
not solely base on names, identifiers or even structure identifiers [351]. For GEMs,
it should also be based on the context of the metabolites such as network topology
and genes encoding associated reactions [250].

These propositions may not fully solve the inconsistent mapping problem. As
many efforts have been spent on this topic, not only formetabolic databases but also
other public databases such as databases for smallmolecules [358, 368, 357] and pri-
mary nucleotide databases [369]. The problemmay bemore complicated thanwhat
I suggested. We should not underestimate the influence of inconsistent namespaces
onmodel’s accuracy. A subtlemismatch can changemodel predictions andnot all in-
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correct matches can be identified in the model. As the current system is not enough
to use as standard, I emphasize the need to develop standard andmethods to recon-
cile the namespace in GEMs.

6.1.2 The lack of standards in tool development for GEMs

The development and application of GEM continues to grow rapidly and has been
used in both fundamental and applied research relevant to biotechnology, micro-
biology and medicine. Its highly interdisciplinary nature brings together computa-
tional scientists, mathematicians, physicians and molecular biologists into the same
field. Each field player brings different advantages for different tasks.

To improveGEMs and their uses, fluid and effective communication between the
aforementioned classes of scientists is essential. There is often a knowledge gap be-
tween tool development and end users. Tool developers do not consider the variety
background of the would be end-users. While end-users are often not aware of new
tool developments [338]. As I have shown inChapter 5, most of the tools to assist
in gap-filling do not have workable implementation platforms and require advanced
debugging skills prior to use. Theend-users of these tools are often scientistswho are
more focused in analysing themetabolic processes rather than debugging ormaking
computational tool. As a result, these tools end up beingwastedwithout a user-base.

This situation of tools being difficult to use is not limited to gap-filling. GEMcon-
struction tools [341] and optimization tools [342] are also often poorlymaintained,
not user-friendly andoftenmiss codes to implement the algorithm. This is a problem
because unnecessary time needs to be spent in reinventing the wheel (by recoding
the published algorithms) or to manually conduct a task that could be automated
such as the gap-filling step in Chapter 2. Gap-filling in newly published GEMs in
2020 were also done either completely manually in [362–364, 370, 365] or partly
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manually in combination with tools such as FASTGAPFILL [349].
Efforts to make computational tools more user friendly have been noticed [23,

371]. One of the community projects that aim to make tools available and user-
friendly is the openCOBRA project (https://opencobra.github.io/). The platform
is an open-source community repository for scripts and tools that have been pub-
lished for metabolic models [23, 338]. In this platform all the tools come with
documentation, tutorials and a forum for users to discuss, update and report bugs.
The COBRA Toolbox was first developed in MATLAB [23] and later expanded to
Python [371]. Nowadays, the project integrates with C, FORTRAN, Julia, Perl and
Python code, as well as pre-compiled binary files [23]. However, the repository
still mainly consists of tools in the COBRA Toolbox (MATLAB) and COBRApy
(python) since these toolboxes are themost used in the community [338]. There are
manymore simulation tools that have been developed and are not in the repository.
For instance, except for SMILEY, FASTGAPFILL, BoostGAPFILL and GAUGE,
all other gap-filling algorithms tested inChapter 5 are not on theCOBRAgithub, or
the newly published tools such as FastMM [372], a toolbox to customize GEMs or
GAPSPLIT [373], a sampling tool are distributed separately on individual githubs.

As more researchers have been using GEMs [318], it is urgent for the field to cre-
ate and adhere to standards in publishing tools tomake them accessible to everyone.
To this end, beside functionality, tool development for GEMs needs to focus on the
end-users and satisfy two important criteria: (i) accessibility, as tools need to be
provided for public use; and (ii) user-friendliness, as tools need to be easy to install
and well-documented.

In addition, GEM users are often clustered into small communities [338]. This
makes it difficult forGEMusers and tool developers to keep trackof the introduction
of new tools and advances in the field [338], because they have to integrate their so-

150



66

General discussion

lutions andwork on common code-bases. This would improve if all these tools were
gathered into a commonplatform forGEMswhere everyone can contribute. A good
example for such a platform is the openCOBRA project. It will be a good practice
for authors to deposit their codes in the same platform such as the COBRA github
before it is published. A similar practice has already been implemented for sharing
models before their papers are published. In the author submission guidelines in
many journals from the EMBO press, Public Library of Science (PLoS), Royal So-
ciety of Chemistry (RSC), BioMed Central (BMC), ScienceDirect and FEBS Pub-
lishers model submission to BioModels have been included [374, 375, 338].

Furthermore, recoding published algorithms should be encouraged. The reward
system of openCOBRAproject is an excellent example. In this project, contribution
on tool refinement is rewarded as the co-author in the publication on the project
update [23]. This is a good example of community contribution tomake tools avail-
able. However, this is not widely known, encouragement to contribute on tool re-
finements need to spread wider to raise awareness.

6.1.3 A guideline to evaluate the correctness of a GEM

Thediversity of tools and resources forGEMconstruction resulted in the differences
amongmodel representations suggesting an assorted variety inmodel quality. There
is thus a need for a concrete answer on how to evaluate the correctness of a GEM.
First and foremost, GEMs are just models. General criteria that make good models
can therefore be applied to GEMs, as follows:

• Traceable. GEMs are primarily based on genome-derived functional an-
notations and on biochemical knowledge of the target organism. Devia-
tions between model predictions and in-vitro observations can result from
errors and missing or outdated information in the model. Hence, GEMs
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are updated continuously by adopting up-to-date experimental information
on gene-protein-reaction associations and cell growth under genetic or en-
vironmental perturbations. They are also updated by solving inconsistencies
such as incorrect functional genome annotations and different database iden-
tifiers for the samemetabolite. As a good practice for biologicalmodels, high-
quality GEMs should reveal data provenance and reason behind these up-
dates [376].

• Truthful. Any entities, i.e. reactions and metabolites, in GEMs need to have
valid evidence or strong arguments for their presence in the model [21].

• Simple. Modelling is used to simplify the complexity of reality, it ismore flexi-
ble and easier to understand and implementwhen themodel is simpler [377].
Hence GEMs should also be simple enough to only cover the necessary net-
works that give rise to the objective function.

• Flexible. This criterion is to grade how easy the model can be adapted for
other purposes [377]. GEMs are organism specific and often built for a spe-
cific purpose but they can serve as good reference templates for constructing
GEMs of other related organisms [97] or for simulating different objectives
[378]. Hence, GEMs should be able to allow the expansion of the metabolic
network to cover other objective function if desired.

Various tools such as Memote [350], Gsmodutils [379], and BiGG [380] have
been published to assist in GEM quality assurance. Among them, Memote is con-
sidered as the community standard for evaluating the model completeness [225,
338, 363]. The tool is a framework where new features are added and curated by
the community. The tool also provides version control system where data prove-
nance is recorded. It aims to promote a standard model annotation such as to have
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identifiers for metabolites and reactions in the same way as they are represented in
standard databases such as BiGG, KEGG and ChEBI. It also requires the GEM to
have database-independent identifiers such as InChI for metabolites [350].

Memote grading system focuses on twomain tests: model annotation andmodel
performance. In the model annotation test, Memote grades the stoichiometry con-
sistency, mass-charge balance of the reactions and the use of standard identifiers for
metabolites, reactions and genes. In themodel performance test, Memote performs
basic simulations to validate biomass production and energy generation. In these
tests, Memote translates the model namespace based on an internal mapping via
MetaNetX [354] to calculate features such as mass balance and to recognize the re-
actions by keywords such as ’biomass’ or ’ATP’.

Memote is a good example of a community effort toward standard. The use of
Memotewill help tonormalize the consistency amongmodels because it encourages
modellers to use standard namespaces. Memote also provide version control and
provenance. Thiswill help tokeep trackofmodelmodification. In addition,Memote
provides an easy to use platform to quickly check model quality. This is good in
assisting paper reviewing process. Memote should be encouraged to use to couple
with the publication of new GEMs. Some new published GEMs have included the
test in their models [364, 225].

However, Memote depends a lot on the mapping of model namespace via
MetaNetX for their tests such as to retrieve mass and charge information, to find
biomass, energy and nutrient uptake reactions. Existing models that are not in the
standard namespace cannot be correctly evaluated. Such examples are models for P.
putida. iJP962 [224] is considered a good model for P. putida because it contains a
consistent stoichiometry, correct growth rates, and complete respiratory chain that
lead to a reasonable ATP production rate [381]. However, iJP962 only scores a to-
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tal of 37% on Memote due to the use of custom-made identifiers for metabolites
and reactions. Most of the performance tests therefore were not able to carry out.
The same happen to iJN1411, another model of P. putida [382]. The model pre-
dicts correctly nutrient sources, growth rates, flux distribution and gene essentially
[382]. The model was useful to indicate the metabolic rearrangements of P. putida
when changing the carbon sources in the growth medium [383]. However, the lack
of standardize identifiers for all genes, reactions andmetabolites make it scores only
40 % on Memote. Its recent expansion version, iJN1462, which includes more links
to external databases has much higher score, a 91% on Memote [225].

At the moment most of the published GEMs do not include all identifiers from
databases recommended in Memote. Or even when they use standard namespaces,
as shown inChapter 4mapping between databases and via MetaNetX implies high
risk of mismatch due to the ambiguity of names and the multiplicity of identifiers.
Until a reliablemapping system is introduced, many of the tests onMemotemay not
be feasible or correct.

In addition,Memote still needs to improve to includemore tests on performance.
A good model annotation is necessary, but model performance is much more im-
portant. In the end, the purpose of a model is to correctly describe and predict a
phenomenon.

For models that cannot be tested in Memote, I propose a short checklist to aid
decision making in whether one should use them or not (text box 6.1.3). I have
identified the minimal requirements after analysing template models for construct-
ing aGEM forC. oleaginous inChapter 2. I suggest to include these tests inMemote
to get a more complete evaluation system.
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The checklist for existing GEMs

Model format (one hour)

□ Reaction formulation

□ Biomass

□ Reaction boundaries

□ GAM and NGAM

Model performance (one day)

□ Basic FBA tests (growth on known carbon sources and conditions)

□ No growth in the absence of carbon, nitrogen, energy sources and/or
other essential nutrient sources

□ No matter production in the absence of carbon, nitrogen, energy
sources and/or other essential nutrient sources

□ No energy production in the absence of electron donors and/ or elec-
tron acceptors

□ Reasonable ATP yield with 1 mol carbon sources

The checklist focuses on the model format and performance.
Model format

• Reaction formulation (especially for macromolecules such as lipid and pro-
tein). Natural fatty acids often have an unbranched and even-numbered
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chain of 4 to 28 carbon atoms [384]. Fatty acid compositions can vary be-
tween organisms and between conditions but they often consist of a diversity
of carbon lengths. Proteins are macro-molecules composed of amino acid
residues. However, in some GEMs, proteins and lipids are formulated by us-
ing a generic end product (i.e. glycine→ protein or oleic acid→ fatty acid).
This simplification is introducedwhen themodeller only intends to represent
the presence of protein or lipid in the biomass. In this case, the overall energy
and carbon used in these pathways needs to be included. However, this ap-
proach is not recommended because it is easy to introduce errors regarding
the overall energy and carbonused in thewhole pathway. In addition, in some
models, H2O or hydrogen are sometimes omitted from the reactions. Proton
gradient is important for energy synthesis in the cell [385, 386]. Missing hy-
drogen orH2O in the reaction can result in inconsistent stoichiometry [387].
Their presence is therefore important in GEMs.

• Biomass. Thebiomass synthesis reaction inGEMs is an artificial reaction that
containsmmol components required tomake up one gram of dry cell weight.
In many models, the stoichiometry is, however, not correct. An assessment
carried out in 2017 tested the biomass in 64models [100]. 20 out of 64mod-
els tested, have all the components in the biomassmakeupmore than20%de-
viation from1g,with thebiggest outliers are 0.62 gramand1.44 grambiomass
inmodels for B. thetaiotaomicron and E. rectale, respectively [100]. The incor-
rect biomass has shown to have significant impact on the quantitative simu-
lation results [100]. The coefficients represent the mmol of each component
in the biomass reaction. The biomass reaction is correct if the sum of molec-
ular masses of each reactant in this reaction weighted by their coefficients in
mmol is equal to 1g. Metabolites that represents the hydrolysis of energy for
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biomass synthesis such asATPandH2O in the biomass reaction are excluded
from the calculation.

• Reaction boundaries. In GEMs, exchange reactions have special meaning.
Their lower and upper bounds indicate the possible uptake and secretion of
certain metabolites, respectively [21]. Currently, as long as it is consistent in
one model, it is not important whether the lower bound represents uptake
secretion and upper bound represents secretion or vice versa. However, to
facilitate the use of automatic tools, and to fit with model formulation where
if ametabolite is consumed it will have negative coefficient, and positive coef-
ficient if it is produced, lower bounds should represent the uptake ofmetabo-
lites and upper bounds represent the secretion of metabolites.

• GAM and NGAM. In GEMs, Growth associated maintenance (GAM) rep-
resents the energy that is spent to carry on activities related to growth such as
protein synthesis [21]. Non-growth associated maintenance (NGAM) rep-
resents the energy that is spent for activities that are unrelated to growth such
as flagella moving [21]. GAM and NGAM depend on the organism and the
simulated conditions. In GEMs, GAM is integrated into the biomass synthe-
sis reaction while NGAM is modelled as an ATP hydrolyis reaction and the
NGAM value is assigned to the lower bound of this reaction. For instance,
the lower bound of the ATP hydrolysis in E. coli and P. putidamodels are 8.39
[388] and 3.96 mmol ATP · gDCW−1 · h−1 [389], respectively, to represent
their corresponding NGAM values. However, some models fail to capture
this boundary. As a result, these models predict too high grow rates. Often,
energy spent for non-growth activities is low. These data are determined from
experimental data. Inmany cases where experimental data onmaintenance is
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not available, data from closely related species [363] or an approximate esti-
mation value would be assigned for NGAM [390].

Model performance

• Basic FBA test. As a validation of the model, a good GEM should describe
basic phenotype tests for the organism in question. The most basic test is
growth on different carbon sources.

• No growth in the absence of carbon, nitrogen, energy and /or other essential
nutrient sources such as sulfur and phosphate. All living organisms require
more than just water and oxygen to survive and grow [391, 392]. A good
GEM should not grow when the necessary carbon, nitrogen, energy, and/or
essential nutrient sources aremissing. In order to test this problem, constrain
all exchange reactions to allow no uptake and optimize for growth. If a (non-
zero) solution to this problem exists, the suggestion is that it contain a ther-
modynamic inconsistency, which can be dealt with by manually inspecting
the solution space and curating one or more reactions that carry fluxes.

• No matter production in the absence of carbon, nitrogen, energy, and/or
other essential nutrient sources. Similar to growth, all organisms require
some form of carbon and other essential nutrient sources in order to syn-
thesize matter [392]. A good GEM should not produce matter without re-
sources. In order to test this problem, constrain all exchange reactions to al-
low no uptake and optimize for each exchange reaction that represents mat-
ter secretions. If a (non-zero) solution to this problem exists, the suggestion
is that it contain a thermodynamic inconsistency, which can be dealt with by
manually inspecting the solution space and curating one or more reactions
that carry fluxes.

158



66

General discussion

• No energy production in the absence of electron donors and/or electron ac-
ceptors. To generate energy, organisms transfer electrons from an electron
donor such as glucose or light, to an electron acceptor such as oxygen or
nitrate [393]. A good GEM should not produce energy without these re-
sources. In order to test this problem, constrain all exchange reactions to al-
low no uptake and optimize for ATP synthesis reaction. If a (non-zero) solu-
tion to this problem exists, the suggestion is that it contain a thermodynamic
inconsistency, which can be dealt with by manually inspecting the solution
space and curating one or more reactions that carry fluxes.

• Reasonable ATP yield with 1 mol of carbon sources. Theoretically, in respi-
ration organisms, one molecule of glucose will yield from 30-32 molecules
of ATP [394]. During fermentation, the yield of ATP per mol of glucose is 2
mol [394]. These numbers can vary according to the environment and organ-
ism. A good GEM should not produce higher or lower than these thresholds
when testing for ATP production on glucose. A deviation from these values
indicates infeasible thermodynamic loops that need to be curated.

6.2 The need to improve models and computational tools

6.2.1 Important features for gap-filling algorithms

Besides accessibility and user-friendliness, functionality is, obviously and by default,
the most important criterion for any tool, including gap-filling algorithms. Among
the 18 gap-filling algorithms that I tested inChapter 5, SMILEY [313], FASTGAP-
FILL [320] and Meneco [317] are accessible and user-friendly. However, as shown
in Chapter 5, they performed poorly on highly degraded networks. They address
gap-filling solely based on network topology. SMILEY and Meneco only look for
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the shortest path to restore growth. Longer pathwayswithmore biological relevance
maybe neglected in this approach. In addition, these algorithms search for the gap-
filling reactions in a non-random manner in the database and stop when a solution
is found. This approach limits the diversity of the found solutions.

A good gap-filling algorithm for constructing GEMs should allow the identifica-
tionof themost biological suitable candidates. Thismeans the suggested reaction for
gap-filling should be likely to occur in the target organism. In order to find such can-
didates, gap-filling algorithms should not base solely on network topology. Some
algorithms have already tried to rank reactions in the reference database based on
functional genomics analysis. For example, likelihood-based gap filling workflows
[315] and ProbAnnoWeb/ProbAnnoPy [316] base on sequence homology to pre-
dict alternative function of genes for gap-filling candidates. MIRAGE [311] uses
functional genomics data and enzymes’ phylogenetic profiles to calculate the prob-
ability of adding a reaction from a reference database into the model.

Gap-filling algorithms should also consider the mass conservation at steady-state
assumption of GEMs. This means to assure a stoichiometric balance for the con-
sumptionandproductionofmetabolites in thenetwork. HybridMetabolicNetwork
Completion (2017) [323] has covered this problem. BoostGAPFILL [314] has also
applied flux constraints in the third mode of its action.

Furthermore, the more alternative solutions for gap-filling, the higher the proba-
bility tofinda suitable candidate to restore thenetwork. Hence, the tool should allow
random search in the reference database in order to identify more alternative com-
binations. In addition, the solution size for gap-filling should not be constrained.
Most of the gap-filling algorithms try to find the minimum number of reactions to
restore growth while the shortest pathways do not necessarily mean the most bio-
logical relevant pathways. Having gap-filling solutions with different sizes increases
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the chance to get the most biological suitable solution.
In conclusion, the best gap-filling algorithms should: do gap-filling beyond net-

work topology; cover stoichiometric balance; consider extra constraint on genetic
evidence; allow random search for candidate reactions from reference database and
do not constrain the size of the candidate sets. Currently, there is no algorithmwith
all these features.

6.2.2 Improved biomass formulation

InChapter 2, I demonstrated that model predictions are sensitive to changes in the
coefficient of components in the biomass reaction. We need to account for uncer-
tainty in this reaction because the biomass synthesis reaction is often used as objec-
tive function and is one of themost important elements in themodel. It determines
the scope of aGEM.This function is a reaction that consumes all the building blocks
and energy needed to make a new cell in a fixed experimentally determined ratio
to represent growth [21, 26]. During their lifetime, organisms adjust their biomass
composition depending on how they interact with their environment [395]. As I
demonstrated inChapter 2, the C/N ratio in the medium greatly impacts the com-
position of Cutaneotrichosporon oleaginous. At high C/N ratio, lipids can make up
to 80 % of the biomass, while during growth at low C/N ratio, the same lipids only
take 20 % of the biomass. For such large changes, the biomass synthesis reaction
needs to be flexible to reflect the fluctuation in such storage components. In GEMs,
the biomass at each condition is represented bymodifying the stoichiometric coeffi-
cient of each component in the biomass synthesis reaction. For instance, inChlamy-
domonas reinhardtiiGEM, iRC1080, three biomass synthesis reactionswithdifferent
stoichiometric coefficients for each componentswere included to represent biomass
in photoautotrophic, heterotrophic, and mixotrophic cultivation [396]. Growth
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predictions fromGEMs have shown to be sensitive to the stoichiometry coefficients
of each component in the biomass synthesis reaction [397]. In cases where the per-
turbations have great impact onbiomass composition such as the overflowof storage
metabolites, i.e. lipid and starch, constant stoichiometry coefficients in biomass syn-
thesis reaction will influence the accuracy of a simulation.

As I demonstrated inChapter 2, I introduced a newway to formulate biomass re-
actions for each C/N ratio under nitrogen depletion conditions with uptake rates of
the carbon source and nitrogen source as inputs only. This has shownmore accurate
simulation results for lipid formulation in such conditions. Thebiomass synthesis re-
action was constructed based on available experimental data on lipid production at
differentC/N ratios. The function can be customized for other organisms given that
suitable experimental data are also available. However, obtaining biomass compo-
sition for each and every change is impractical, a more feasible approach to account
for the fluctuation of biomass composition over time is to introduce uncertainty in
the biomass synthesis reaction.

Integrating uncertainty into the biomass synthesis reaction

Living cells consist of about 70 % water and 30 % chemicals [398]. In GEMs, the
biomass synthesis reaction represents 1 gram of dry cell weight [21]. Although wa-
ter is also included in this reaction, it represents the hydrolysis of ATP to generate
energy that needed for synthesize new cell [21]. The biomass synthesis reaction in
GEMs only represent the chemical part of the cell. The main chemical elements in
any living organism are C, H, O, N, S and P [399]. They are represented in the form
of four main macromolecules lipids, carbohydrates, proteins and nucleotides. A dry
biomass will contain these macromolecules and micromolecules such as vitamins
and minerals with a specific ratio.
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Since metabolites that represent growth associated maintenance (GAM) such as
ATP and H2O are not part of the 1 gram of dry cell weight, their coefficients are
included in the biomass equation as the value of GAM [21]. In GEMs, this biomass
is represented as follows:

Biomass + GAM · ADP + GAM · Pi←

a · P + b · C + c · L + d · RNA + e · DNA+

+f · Others + GAM · ATP + GAM · H2O,

(6.1)

where P, C, L, and Others represent the protein, carbohydrate, lipid, and other
mineral and micromolecules fraction, respectively and a, b, c, d, e, and f represent
their corresponding coefficients.

The accuracy of coefficients in the biomass synthesis reactions have shown to af-
fect the FBA solutions [400, 101, 401]. A robust analysis of metabolic pathways
(RAMP) has been introduced as an alternative to standard FBA to account for un-
certainty in the biomass synthesis reaction [402]. In this approach, the steady state
assumption is replaced with the probability constraints that cover means and stan-
dard errors of the in-vitro data that are used to calculate the biomass composition.
The approach allows to account for at least 0.42 % of the uncertainty. When apply-
ing onE. coliGEM, this approach has been shown to be significantlymore consistent
with experimentally determined fluxes for both aerobic and anaerobic conditions
than standard FBA [402].

Thestochasticmodel employing inRAMPdescribes the randomevents in a statis-
tical distribution such as measurement errors [403, 404]. This is suitable for count-
ing for the uncertainty in themeasurement of biomass composition in the same con-
dition. However, when growth condition is altered, i.e. changing C/N or P/N ratio
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in themedium, changes in cellular components such as the overflow of storage com-
ponents are not random and can be higher than probability uncertainty. In this case,
these changes cannot be associatedwith probability laws [404]. To account for non-
probabilistic uncertainty, each uncertain coefficient can be associated with an inter-
val number [405]. Given that each component in the biomass has a minimum and
maximum value. The biomass equation 6.2 can be written in a more general form:

Biomass + GAM · ADP + GAM · Pi←

a′ · P + b′ · C + c′ · L + d′ · RNA + e′ · DNA+

+f′ · Others + GAM · ATP + GAM · H2O,

(6.2)

where a’, b’, c’, d’, d’, e’, and f ’ are coefficients defined through intervals a′ ∈
[amin, amax], b′ ∈ [bmin, bmax], c′ ∈ [cmin, cmax], d′ ∈ [dmin, dmax], e′ ∈ [emin, emax],
and f′ ∈ [fmin, fmax] .

The optimisation problem can be rewritten as:

Maximize γ⃗ · x⃗
Subject to S · x⃗ = 0⃗

l⃗b ≤ x⃗ ≤ u⃗b

Where S is an m × n stoichiometric matrix that contains coefficients of the
metabolites in the row and the reactions they participate in in the column, x⃗ is the
flux vector, 0⃗ is a null vector ensuring steady-state, and l⃗b and u⃗b are the lower/upper
bounds for each reaction. γ⃗ is the possibilistic variable restricted by the following set
of n-row vectors:

F = {⃗c = (c1, c2, ..., cn)|li ≤ ci ≤ ui, i = 1, 2, ..., n}
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WhereF is the set of objective function coefficient vectors, c⃗= (c1, c2, ...cn), whose
i−th component is in the interval [li, ui] and represents thepossible rangeof γ. When
the problem is posed in thisway, it canbe seen as a linear programmingproblemwith
interval objective function coefficients [405, 406]. This interval linear program has
been applied to solve problems in other fields such as portfolio selection [407, 408],
resources and environmental systems management [409], management of munici-
pal solid waste [410], or chemical engineering problems [411]. Similar algorithms
can be developed as an alternative to standard FBA for simulating GEMs. This tech-
nique can be used to find the best and the worst optimum and the coefficients that
achieves them [412, 405, 413]. In addition, where in-vitro growth data is available it
can be used to find the coefficients that yield the corresponding growth rate. This is
useful to determine cellular composition when data is not available. Beside biomass
synthesis reaction, the interval coefficient reactions can also be applied on other re-
actions with uncertain coefficients such as lipid or protein synthesis reactions to cal-
culate their compositions.

6.3 GEMs in theDBTL cycles

6.3.1 GEMs in the design phase

I demonstrated in Chapter 3 how GEMs can assist the pathway design phase in
DBTL cycles applied to bioengineering projects. Two GEMs of P. putida were suc-
cessfully employed todesignnovel productionpathways for 5 chemicals. In this con-
text, GEMs provided the known metabolic pool of the target organism for pathway
design and were used to compute theoretical yields from newly predicted pathways
for pathway ranking.

The aim of biosynthesis pathway design is to connect the metabolic pools of the
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target organism with that of other organisms in order to introduce new ability into
the target organism. This is similar to restoring the network connectivity in gap-
filling algorithms that I have described in Chapter 5. The difference is that in gap-
filling procedures, an additional curation step is required to remove heterologous re-
actions/pathways from the solution. Hence gap-filling algorithms can also be used
to design pathways. However, as I demonstrated in Chapter 5, most of the gap-
filling algorithms cannot be used due to the lack of workable implementations. Al-
gorithms that have the implementations available such as SMILEY, FASTGAPFILL
and Meneco are not good for filling long pathways.

To that end, gap-filling algorithms were not used in Chapter 3. Instead,
RetroPath2.0 [179], a retrosynthesis algorithm for pathway design was employed.
RetroPath2.0 was chosen for pathway design due to its ability to apply retrosynthe-
sis rules. In this way, new reactions and thereby pathways are predicted based on
possible enzyme promiscuity. This increases the possibility to identify novel het-
erologous pathways for less-studied or non natural chemicals or to find new options
for well-studied chemicals.

At themoment, pathwaydesign and ranking usingRetroPath andGEMs is a semi-
automatic task. Metabolites in predicted pathways need to be manually mapped to
the GEM and reactions need to be curated to remove reactions that only seem to
produceH2O and hydrogen. A complete automated pathway design can be achieved
if the GEM provides the InChI structure for metabolites that can be mapped and
RetroPath produces an outcome in a similar format as GEM, i.e. a stoichiometric
matrix with reactions andmetabolites as entities. Pathways fromRetroPath can then
be added to the GEM and theoretical maximum yields can be iteratively computed.
With the current computational power andanautomatedprocess, it should takeonly
a few hours to design and rank all possible production pathways for a chemical in a

166



66

General discussion

target organism.
Beside pathway design and ranking, GEMs can also be used for other tasks in the

design phase. GEMs can be used for medium selection and optimization. For in-
stance, a GEM of the green alga Chlorella vulgaris was used to predict minimal glu-
cose and nitrate feeding rates. The model-driven feeding strategy improved 61% of
fatty acid methyl ester production and the lutein yield by 3-fold higher [414].

In addition, GEMs can also be used to predict genetic modification to improve
production performance. For example, to enhance the production of aromatic poly-
mers in E. coli, GEMs predicted to remove tyrosine and aspartate aminotransferase
genes from the previous modification strain. This strategy was employed and in-
creased the production of D-phenyllactic acid to 4.35-fold higher [415]. Another
example is the use of Yarrow lipolytica GEM to identify candidates for overexpres-
sion, knockout, and cofactor modification to increase 48 % of flux to the production
of the industrial relevant dodecanedioic acid [129].

Using GEMs in the design phase helps to reduce the required manpower and ex-
periments needed to test all the possible designs. Only the most potential in- silico
designs will be executed experimentally [416]. Despite many limitations in the ac-
curacy of simulations from GEMs, the predictive power of GEMs is certainly useful
to narrow down the vast search space of possible outcomes.

6.3.2 GEMs in the learn phase

Many metabolic engineering processes are still based on empirical results due to
the insufficient insight on the intracellular processes [417, 418]. The learn phase
in the DBTL cycles aims at generating fundamental understanding of these bio-
phenomena to improve the synthetic strain and/ or to identify bottlenecks [419,
420, 53]. In the learning processes for synthetic bioproduction, statistical tools and
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machine learning are used to translate data obtained in the test phase into general
knowledge to either improve product titer or expand to new products [421]. Recent
studies have mentioned the use of metabolic models in the learn phase [422, 421],
yet their uses are not as common as in the design phase [420, 423]. This is partly
because the learn phase is currently the weakest step in theDBTL cycle and learning
methods still need to be improved [420, 421]. In my view, GEMs can also be an im-
portant tool in the learning process. One of the main purposes of GEMs is to study
the metabolic processes in the target organism. This is consistent with the purpose
of the learn phase in the DBTL cycle in metabolic engineering.

One of the goals in the learn phase is to understand the regulation of metabolic
processes by analysing data from the test phase [420]. In this context, sampling flux
distributions from GEMs can be a powerful tool to discover such regulation [424].
For example, the comparison between flux changes in Saccharomyces cerevisiaeGEM
obtained from random sampling and transcriptomics data obtained from growth on
four different carbon sources and in five deletion mutants reveals new transcription
factors that has not been reported before [137]. In Chapter 2, I constructed the
GEM for C. oleaginosus and used it to study the lipid metabolism in the fungus. The
model serves as a knowledge-base to further explore the potential of C. oleaginosus
as a cell factory for biofuel production. Themodel was used to study transcriptomic
data obtained when the cell is cultivated in high and low C/N ratio media. It high-
lights that lipid production in these two conditions is not regulated at transcriptional
level.

Furthermore, experimental data such as ’omics’ data and parameters obtained
in the previous production process can be integrated into GEMs in order to iden-
tify possible bottlenecks impacting cell performances during fermentation. For in-
stance, GEM of CHO, the industrial cell line for biopharmaceutical products was
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constrained by exometabolomics data obtained in a fed-batch culture [417]. The
constrained GEM was then used to study the intracellular activities of the cell. The
analysis provides insight on how toxic by-products such as ammonium accumulate
in the cell line and suggests solution to reduce this accumulation, for instance by
reducing asparagine in the medium [417].

In the learnphase,GEMsare goodplatforms to integrate learningdata. Modifying
these models with such data can help to identify and predict bottleneck to improve
the next cycle.

6.4 GEMs as a platform to get closer to the comprehensive

metabolic map

Constructing a comprehensive map of metabolism could be comparable to con-
structing the world map (Figure 6.4.1). The earliest maps of the world were very
simple and sometimes incorrect. Still, this inspired adventurers to go and further
explore new places. Currently, earth maps have such a high level of detail that al-
most every small alley in the world is covered. World maps nowadays also provide
an interactive mode and even capture real-time data about traffic on the roads. The
first map creators could never have imagined how maps have evolved today.
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Figure 6.4.1: A comparison of the world and metabolic map
developments. Pictures of world maps were obtained from
https://www.amusingplanet.com/2012/11/coming-of-age-in-cartography-
evolution.html on 13rd August 2020.

Similarly, metabolic maps can be developed in the same manner. Metabolism
has been studied since the thirteenth century [425]. Yet only until 1940, the first
metabolic pathway depicting glycolysis, an essential pathway of all organisms to con-
vert glucose to energy [426, 427] was assembled. This was the result of a collection
of findings frommanyexperiments in almost 100years fromGustavEmbden(1874–
1933), Arthur Harden (1865–1940), Karl Lohman (1898–1978), Otto Fritz Mey-
erhof (1841–1951), Jakob Karol Parnas (1884–1949), and Otto Heinrich Warburg
(1883–1970) [426, 427]. Since then, many other important pathways have been
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discovered. The first comprehensive metabolic pathway chart was hand-drawn with
stencils on tracing paper by Nicholson Donald in 1955 [426]. The first printed map
was then created in 1960 indicating the integration of amino acids, carbohydrates,
lipids and other pathways [426]. This early map of metabolism is quite complete,
including all central pathways and ATP synthesis pathways with cofactors, regula-
tion, compartmentalization and other features.

Since then, scientists have been studying more pathways and more dynamic as-
pects of metabolic processes. Nowadays, the metabolic map can even allow simula-
tions. The current map also allows to zoom out for the overview of the whole net-
workor to zoom in for thedetails on eachof the component. For instance, theEscher
map is running on GEM foundation [428]. This map allows users to find the route
between metabolites and to predict what happens when modifying the network.

GEMs can serve as an early interactive metabolic map. Deviations from GEM
predictions and observations are excellent hinting tools to guide the focus of the re-
search. This new knowledge can then be integrated into the GEM and give more
details on other metabolic processes. In the quest for the comprehensive metabolic
map, GEMs will serve as a platform to integrate data, simulate metabolic modifica-
tions and query information.
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Advances in genome sequencing and high-throughput technologies have boosted
the development of Synthetic biology and Systems biology. Synthetic biology aims
to create and reprogram natural systems. Advances in Synthetic biology has facili-
tated the adoption of the Design-Build-Test-Learn cycles into metabolic engineer-
ing. TheDBTL cycles are a recursive loop that aims to optimize the development of
microbial factories in a more systematic and efficient manner. Systems biology aims
to study living organism at system level using holistic approaches. Among different
modelling tools in Systems biology, genome-scale, constraint-basedmetabolicmod-
eling is the most successful approach to study the whole metabolic network. GEM
is a comprehensive knowledge base that contains all metabolic reactions that known
to occur in a target organism. GEMs have been used in many applications to guide
metabolic engineering and contextualizing ‘omics’ data. The objective of this thesis
is to deploy GEMs for microbial cell factories and to evaluate some of their main
technical limitations.

Chapter 1 addresses reductionism and holism in life sciences, Systems biology,
genome-scale constraint-basedmetabolicmodels, Synthetic biology and the design-
build-test-learn cycle. Chapter 1 provides the background for all other chapters.

In Chapter 2 I constructed a GEM for Cutaneotrichosporon oleaginosus to model
its lipid production under a variety of conditions. C. oleaginosus is a fast-growing
oleaginous yeast that can grow in a wide range of low-cost carbon sources. I con-
structed a GEM to increase our understanding of this yeast and provide a knowl-
edge base for further industrial use. A new modelling approach was introduced to
account for changes in the biomass composition of this organism in conditions with
high carbon to nitrogen (C/N) ratio in the media. This modelling approach accu-
rately predicted high lipid accumulation using glucose, fructose, sucrose, xylose, and
glycerol as sole carbon source. The model also suggests ATP-citrate lyase as a possi-
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ble target to further improve lipid production.
Producing chemicals from living cells has been considering a sustainable ap-

proach towards a shift from petrochemical-based industries . The biosynthesis of
many natural compounds is still limited due to the lack of efficient synthesis routes
that may eventually render such a process economically viable. As a showcase of
how GEMs can assist in designing pathways for chemical production in microbes,
inChapter 3 I employedGEMs to design and evaluate pathways for cis,cis-muconic
acids, anisole, aniline, 3-methylmalate, and geranic acid production in Pseudomonas
putida in the context of the Design-Build-Test-Learn cycles. I established a gen-
eral system to rank these pathways based on thermodynamic feasibility, enzyme se-
quence availability, and maximum theoretical yield. Among the target compounds,
cis,cis-muconic acid is a well-known chemical (as an intermediate of, among other,
production of nylon), with thoroughly-characterized biosynthetic pathways. De-
spite of this, I was able to predict 2 pathways (out of a total of 8) that had not been
reported earlier. Similarly, I also predicted novel pathways for the production of
anisole, aniline, 3-methylmalate, and geranic acid.

While constructing and using GEMs in Chapters 2 and 3,I encountered two re-
curring problems. The first was the use of inconsistent namespaces among GEMs.
A critical step in constructingGEMs is tomanually curate themby integrating infor-
mation from independent (organism specific) sources to provide a comprehensive
representation of what is presently known about themetabolismof themodelled or-
ganism. Combining this precious information from individualGEMs tomake a con-
sensus model of the organism is essential. Using models from different species as a
foundation to construct a newmodel can help to avoid repeating the same time con-
suming manual curation step. In addition, GEMs need to be updated continuously
sincenewknowledge is coming in short order. However, such simple tasks cannot be
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done easily due to a simple reason: inconsistent namespaces. GEMs constructed for
different organisms by different researchers often use different naming conventions
depending on which databases were selected for model construction. While map-
ping between namespaces would seem the most logical solution, it involves a high
risk of mismatch and may invalidate the model. I evaluated the (in)consistency of
names and non-systematic identifiers used in 11 biochemical databases of biochem-
ical reactions and the problems that arise when mapping between different names-
paces and databases inChapter 4. I found that such inconsistencies can be as high as
83.1%, thus emphasizing the need for strategies to deal with these issues. Currently,
manual verification of the mappings appears to be the only solution to remove in-
consistencies when combining models.

The second problem that has arisen relates to the efficiency of gap-filling tools.
The lack of accurate functional annotations often renders GEMs incomplete, giving
rise tomissing reactions, the so-called ‘gaps’ in the network. Gap-filling becomes im-
portant during model construction not only to make a functional model but also to
generate new knowledge on protein function. To assist gap-filling, many algorithms
have been published. To be able to use GEMs effectively, these methods should al-
low themodel to be as accurate as possible, preferably also in a user-friendlymanner
so that they become available to many researchers. However, gap-filling algorithms
vastly differ in their objectives, implementation platforms, and input data require-
ments. These differences imply a variety in their usability and accuracy. InChapter
5 I conducted an extensive evaluation of these algorithms from a user’s perspective.
We found thatmost of the tools are not used due to the lack of aworkable implemen-
tation. From those for which an implementation is readily available, I selected SMI-
LEY, FASTGAPFILL and Meneco to further investigate their performances. SMI-
LEYwas the best among the three algorithms for small-scale degradation. Finally, in
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Chapter6 I discussed the three significant themes stoodout acrossChapters2, 3, 4,
51) the lackof standards innamespaces, tool development, andguidelines formodel
evaluation; 2) the need to improve models and computational tools, for instance to
account for uncertainty in the biomass synthesis reaction or to improve gap-filling
algorithms, and; 3) the potential contribution of GEMs to the DBTL cycle.

In conclusion, the work presented in this thesis illustrates how the lack of stan-
dards in GEMs can hamper their usability. GEMs have great potential in the DBTL
cycles. Standardization and improvement in GEM formulation are needed to maxi-
mize the use of these models.
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