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ARTICLE INFO ABSTRACT

Handling Editor: Morgan Cristine L.S. Knowledge of how many sampling points are needed to estimate the mean content of soil nutrients in agricultural
fields, given a precision requirement on the estimated mean, is limited. This paper describes a versatile geo-
statistical simulation approach for predicting the variance of the mean nitrate-N (NO3-N) content within an
agricultural field estimated by random sampling. In fall of 2016 sixteen agricultural fields were sampled on a
square grid to model the spatial variation of NO3-N. On twelve out of sixteen fields NO3-N showed a lognormal
distribution rather than a normal distribution. Variograms for (log-transformed) NO3-N are estimated using a
Bayesian approach, resulting in 100 vectors with possible variogram parameters per field, obtained by MCMC
sampling from the posterior distribution. Each of these variograms is used to simulate 100 maps of NO3-N,
resulting in 100 x 100 maps of NO3-N per field. Each map is used to compute the variance of the estimated
mean with stratified simple random sampling of 5,10, ...,50 points, with one point per compact geographical
stratum. For each sample size (number of sampling points) the mean, median and P90 of the uncertainty dis-
tribution are computed. Based on the medians, the sample size required for a maximum expanded measurement
uncertainty of 50% varies from < 5 to > 50. This large variation in required sample size shows the large variation
among the sixteen fields in variance of NO3-N within a field.
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1. Introduction

In a world where the demand for agricultural produce is predicted to
increase with 50% by 2050 (United Nations, 2017), the need for sub-
stantial improvements in both crop production and sustainable use of
agricultural resources is of utmost importance. Within any programme
to develop site specific management in order to increase crop yield, basic
knowledge of the fertility status on the field scale plays an important
role. Although analytical procedures for the determination of common
physical properties and chemical composition of agricultural soils have
since long been optimized and even faster and cheaper techniques e.g.
by use of NIRS-technology are up-and-coming (Nie et al., 2017), this is
not always true for the preliminary sampling of the soil. Despite
numerous studies that show the importance of sampling procedures
inspired by the specific characteristics of the measurands, improved
procedures tend to be neglected in favour of long-time practice or ease-
of-use. This results in sub optimal laboratory samples and subsequent

* Corresponding author.
E-mail address: dick.brus@wur.nl (D.J. Brus).

https://doi.org/10.1016/j.geoderma.2020.114816

analytical results (Starr et al., 1992; Clay et al., 1997; Hennart et al.,
2004).

Knowledge of NO3-N availability is paramount when designing any
plan to fulfill the crops NO3-N requirement. Alternatives to sampling
and analysis such as the use of sensor networks for use in precision
agriculture might prove their worth in future but are still far away from
becoming daily practice and come with a hefty investment (Shaw et al.,
2016). Therefore there is a need for sampling procedures that take into
account the spatial variability of nutrients as to ensure that the collected
sample is a good enough representation of the plot’s fertility status. Not
only would faulty or inaccurate assessment of the soils nitrogen level
have a direct derogatory effect on the crops quality and/or quantity, it
also tends to lead to overly use of fertiliser which then results in high
post-harvest NO3-N residues. NO3-N then leaches into ground- and
surface water causing eutrophication and poses a direct health risk in
those areas where the population is dependent on natural water for use
as drinking water, e.g. overly use of NO3-N fertilisers has been proposed
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as one of the governing factors in the occurrence of infant methemo-
globinemia (blue baby syndrome) (Kathik et al., 2011).

Sampling for NO3-N determination poses to be more challenging
when compared to other nutrients as a result of its transient nature in
soil. Not only is NO3-N highly mobile making its availability dependent
on local weather conditions and irrigation, it is also both formed and
removed by nitrification and denitrification. The speeds of these pro-
cesses is governed by local factors such as water and the presence of
organic material that promote bacterial growth (James et al., 1971). In
addition, the amount of nitrogen extracted by the crop from the soil in a
single growing season can be high: e.g. typical fertilisation advice for
potatoes is in the order of 210 kg N/ha (UGent, 2000), but can, in
extremis, reach up to 860 kg N/ha in banana plantations (Kathik et al.,
2011), whereas an ecologically safe post-harvest soil NO3-N residue
varies somewhere between 20 and 50 kg N/ha (UGent, 2000). As a result
of these fast temporal variations and the many processes by which it is
formed and removed also the spatial variability of NO3-N concentra-
tions in soil is high in comparison with other nutrients since natural or
man-made factors (e.g. tillage) that tend to homogenise have little effect
on the short-lived NO3-N.

Following the European Council Directive 91/676/EEC a.k.a. the EU
Nitrates directive (EU, 1991), member states must, among others,
identify and monitor NO3-N concentrations in waters that are suscep-
tible to NO3-N pollution. Furthermore, an action programme to reduce
water pollution by NO3-N must be established, but member states are
free when it comes to the design of such a programme. In Flanders one of
the measures is the monitoring of residual NO3-N of fields in the fall
soon after the crop is harvested, following the rationale that the risk of
NO3-N leaching is independent of the amount of fertiliser as long as it is
used by the crops before winter. This allows for more crop-friendly
fertilisation practices while still preventing NO3-N contamination.
With this approach accurate monitoring of residual NO3-N in the soil of
the agricultural fields is a prerequisite.

Numerous studies have been performed on the variation of soil NO3-
N under specific soil conditions, crops or fertilisation techniques and its
implications for sampling design (White et al., 1987; Starr et al., 1992;
Franzen et al., 2011; Kathik et al., 2011; Parmodh et al., 2011). More
detailed studies into the spatial variation of soil NO3-N report both a low
proportion of spatially structured variance with high variance at small
distances, and high temporal instability (Bogaert et al., 2000; Stenger
et al., 2002). Although these studies give important insights in the
problems faced when sampling for NO3-N, they seldom propose a
workable sampling method for use on fields for which there is only
limited or no prior knowledge on the amount and variability of available
NO3-N. Current sampling practices often use a workaround to
compensate for the high spatial variability of NO3-N in soil and the bad
reproducibility in results it induces. Mostly these workarounds consist of
limiting the sampling to part of the field instead of sampling the whole
surface of the field under study. Examples are cross- or zigzag-shaped
sampling patterns used in Flanders (VITO, 2010), sampling around a
30 m diameter circle on a homogeneous presumed part of the field in the
Belgian Walloon region (ISSEP, 2014), or limiting the sampling to a
“representative” 100 m by 100 m square on a 10 ha field in Germany
(Sachsische, 2012). The advantage and often the origins of these tech-
niques lie in their simplicity, ease of use and general applicability on the
field. The quality of the results from these procedures however are
questionable: an unknown systematic error in the results can be there as
only a part of the field is sampled, sampling locations are chosen sub-
jectively and the variance of the random error in the results cannot be
quantified.

Identifying sampling locations by their GPS-coordinates, as proposed
hereafter, might seem to complicate the process of sampling both in the
office and on the field significantly and result in a price increase. One
must however bear in mind that contemporary techniques originate
from the pre-GPS area. Nowadays the use of dedicated handheld GPS-
devices to find specific (predefined) sampling locations is
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commonplace and greatly simplifies the task.

We propose to sample the entire field by probability sampling, so
that an unbiased estimate of the mean NO3-N concentration of the field
can be obtained (de Gruijter et al., 2006). Following Brus et al. (1999)
we propose to sample fields by stratified simple random sampling, using
compact geographical strata (geostrata) of equal area. From each geo-
stratum one location is randomly selected, so that the number of geo-
strata equals the number of soil cores (sampling points). This sampling
design is prescribed by the national government of the Netherlands in
case a farmer wants to be set free from EU regulations on the application
of phosphate on agricultural fields with low phosphate levels. The
overall precision of a sampling method is increased by spreading sam-
pling points as evenly over the field as possible. Preliminary splitting up
the field in compact geostrata of equal area and randomly selecting one
sampling point from these strata largely prevents the sampling locations
from spatial clustering while at the same time ensuring that each
possible sampling location has an equal probability of ending up in the
bulked sample and thus guaranteeing a bias-free composite sample. To
save laboratory analysis costs, in the proposed sampling scheme the soil
cores collected at the sampling locations are bulked into one composite
sample and subsampled for analysis in the lab after thorough homoge-
nisation. Core diameter and sampling depth are kept identical to current
schemes: the soil is sampled in 13 mm cores up to a depth of 90 cm.

The question then is how many sampling points do we need given
some requirement on the accuracy of the estimated mean. In sampling
literature the number of selected population units (in our case sampling
points) is referred to as the sample size. In principle this question can be
answered by selecting multiple random samples with a given type
sampling design (for instance simple random sampling or stratified
simple random sampling) and a range of sample sizes from a field, to plot
the variance of the estimated mean against the sample size, and use this
plot to derive the required sample size given a maximum variance.
However, this would be too costly if we want to repeat this for a large
number of sample sizes and fields. The alternative is to collect data from
a field for modelling the spatial variation of NO3-N in that field, and to
predict the variance of the estimated mean from this model (Domburg
et al.,, 1994). In practice we are always uncertain about the model of
spatial variation. In this paper a method is worked out that accounts for
uncertainty about the variogram to predict the variance of the estimated
mean with stratified simple random sampling and a series of sample
sizes. In this method a Bayesian approach is followed to assess the un-
certainty about the variogram parameters.

The aim of this research was to collect data on the spatial variation of
NO3-N in agricultural fields, to use these data to build a model of the
spatial variation for each field, and to use these models to predict the
sampling variance of the estimated mean for the proposed random
sampling design for a range of sample sizes.

2. Theory
2.1. Predicting the sampling variance from a variogram

The sampling variance of the estimated population mean with
stratified simple random sampling is (de Gruijter et al., 2006)

. L S2
V@R = Wik, M

h=1

with L the total number of strata, Z the estimated population mean, wy,
the weight of stratum h which is equal to the relative size of stratum h :
wy = Ap/A (Ay is the area of stratum h, A is the area of the field), S,2l the
variance of the variable of interest (NO3-N) within stratum h, and ny, the
number of sampling points in stratum h. With strata of equal size so that
wyp, = 1/L, and one point per stratum (n, = 1), the sampling variance
reduces to
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Note that with the proposed sampling design described in Section 1
the sampling variance cannot be estimated from the data, because the
soil aliquots are bulked into a composite sample. The result is only one
number, the measured NO3-N content of the composite sample, used as
an estimate of the mean of the field. Even when the soil aliquots would
have been analyzed separately, an unbiased estimator of the sampling
variance is not available, because we have one point per stratum only
(n, = 1) so that we do not have estimates of the stratum variances Sﬁ.
However, the sampling variance of the estimated mean can still be
predicted from a variogram, as explained hereafter.

Given a variogram, under the assumption of a constant mean within
a stratum, the stratum variance can be predicted by the mean semi-
variance of all pairs of points within that stratum

E¢[S}] =7 3)

with E;[-] the model expectation, and 7; the mean semivariance of
stratum h. By plugging these model-based predictions of the stratum
variances in Eq. 2, a model-based prediction of the sampling variance is
obtained:

EVER ==Y 7 )

In practice 7, is approximated by discretizing a stratum by a fine
square grid, computing a matrix with distances between all pairs of
points that can be formed with these grid nodes, transforming this ma-
trix into a semivariance matrix, and averaging.

An alternative approach is to simulate with the variogram a large
number of maps with possible NO3-N concentrations, followed by
computing for each simulated map the variances of the simulated values
within the strata (S? in Eq. 2), and computing the sampling variance of
the estimated mean using Eq. 2. This results in as many sampling vari-
ances as we have simulated maps. In the case study hereafter we applied
this alternative procedure so that we obtain information about the un-
certainty of the sampling variance of the estimated mean, given a var-
iogram used in geostatistical simulation.

2.2. Bayesian approach for estimating the variogram

It is evident that we do not have perfect knowledge of the variogram
of a given sampled agricultural field. The uncertainty about the vario-
gram parameters will propagate to our uncertainty about the sampling
variance of the estimated mean. For that reason, we repeated the
simulation procedure described above, for a large number of variograms
estimated from the sample data. These variograms are obtained by a
Bayesian approach, resulting in a large sample of variogram parameters,
sampled from the posterior multivariate distribution of the variogram
parameters, rather than in a single variogram. Bayes Rule can be applied
to the problem at hand as (Gelman et al., 2013, p. 7):

f(Z|®,M)f(©|M)

F(@1z, M) ===

(5)

with @ the vector with variogram parameters, Z the available sample
data for estimating the variogram, M the variogram model type
(spherical, exponential et cetera), f(®|M) our prior belief in the pa-
rameters, given a variogram model type, specified by a probability
density function, f(Z|©, M) the likelihood function, f(Z) = [of(Z|©)d®
the probability density of the data, and f(©|Z,M) the posterior distri-
bution function, i.e. the multivariate probability density function of the
variogram parameters given the sample data and the variogram model
type.

We assumed (after a log-transform of the NO3-N data of most fields,
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see hereafter) a multivariate normal distribution for the data. For this
distribution the likelihood function is (Gelman et al., 2013, p. 578)

F(210,3) = 22 PIC| Pexpl ~ (2~ p) € (Z - ), ®

with n the number of sampling locations used for estimating the vario-
gram, u the vector with means, C the n x n matrix with variances and
covariances of the data, which is a function of the semivariogram pa-
rameters O, and |C| the determinant of the covariance matrix.

In the proposed sampling scheme the soil cores collected at the points
of the stratified random sample are bulked into a composite sample. Not
all soil cores are analyzed separately, only the single composite sample is
analyzed. This implies that the contribution of the laboratory mea-
surement error to the variance of the estimated mean is larger than when
all soil aliquots would have been analyzed separately. To quantify the
total variance of the mean estimated by the concentration of a composite
sample, we need to quantify the contribution of the sampling error and
the measurement error separately. To predict the variance of the sam-
pling error we need to estimate the variogram parameters of errorless
measurements of NO3-N. The variance of the error due to analysis of the
composite sample is then added to this pure sampling variance to obtain
the total variance.

The variogram parameters of errorless measurements of NO3-N are
obtained by adding the measurement error variances to the diagonal of
the variance-covariance matrix of errorless measurements:

C=C +E, %)

with C” the variance—covariance matrix computed with the variogram of
errorless data, and E a diagonal matrix with the measurement error
variances on the diagonal.

2.3. Markov chain Monte Carlo (MCMC) sampling

The posterior distribution function f(®|Z, M) is only fully determined
in closed-form for specific combinations of the prior probability density
function f(®|M) and the likelihood function f(Z|®|, M). For these com-
binations the posterior and prior distributions are of the same family: the
two distributions are called conjugate distributions, and the prior is
called a conjugate prior for the likelihood function.

For priors that are not conjugate with the likelihood, the posterior
distribution function can be approximated up to proportionality by
Markov chain Monte Carlo (MCMC) sampling from the posterior dis-
tribution. Various algorithms are available for this, that differ in the way
a “walk” is generated through the multivariate space spanned by the
variogram parameters. Starting from a randomly chosen vector with
initial variogram parameter values, we jump to a new “location”. The
proposed vector with new variogram parameter values is accepted with
a probability equal to:

. J(Z[O]M)f(OlM) ®
F(Z|®|, M)f (@|M)’

with @ and @, the proposed and current vector with variogram pa-

rameters, respectively.

2.4. Decomposing the variance of the sampling variance

MCMC sampling from the posterior distribution of the variogram
parameters results in a large number of vectors with possible variogram
parameters. Each vector is used to simulate a large number of maps with
possible NO3-N values, see Section 3.3. So, there are two sources of
randomness that cause variation in the sampling variance of the esti-
mated mean:
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e MCMC sampling from posterior distribution of variogram
parameters
e Geostatistical simulation of maps with a given variogram

To get insight in the contribution of these two sources of randomness
to our uncertainty about the sampling variance, the variance of the
sampling variance can be decomposed as follows

Viour(V(3) = Vaewe [E:(VE)| + Bwenc | Ve (V@) ©

The first variance component is the contribution due to uncertainty
about the variogram, the second variance component is the contribution
due to uncertainty about the variances of z (NO3-N) within the geostrata
given a variogram.

2.5. Expanded measurement uncertainty

The sampling variances of the estimated mean are calculated with a
variogram for errorless measurements of NO3-N. The soil cores are
bulked into a composite sample which is analyzed in a laboratory. The
error variance in the measured NO3-N concentration of this composite
sample is added to the sampling variance. We computed the expanded
measurement uncertainty U defined as (ISO, 1995):

2v/Via + Vi
—

U =100 10$)

with Vpg the sampling variance of the estimated mean for the proposed
stratified random design, using errorless measurements of NO3-N, Vi,
the variance of the laboratory measurement error, and z the mean of the
field. In ISO Guide 98 (ISO, 1995) the expanded measurement uncer-
tainty is defined as “a quantity defining an interval about the result of a
measurement that may be expected to encompass a large fraction of the
distribution of values that could reasonably be attributed to the meas-
urand”. Used with the multiplier 2 (the coverage factor) the expanded
measurement uncertainty encompasses approximately the 95% interval
around the measured value in which the true values can be expected to
lie.

3. Materials and methods
3.1. Data on spatial variation of NO3-N within a field

This study was limited to fields with crops not sown in rows such as
grasses, or to those crops where the inter row distance is small such as
with cereals. We expect that when crops are sown in rows and the inter
row distance is large compared to the size of a single soil sample (here a
13 mm auger), there is an extra short-distance variance component as a
result of both the fertiliser techniques and the extraction of NO3-N from
the soil by the plants. This extra source of variance then should be
accounted for in the sampling scheme, which will be object of further
study.

Based on NO3-N residues after earlier crops and the use of fertiliser
over the last year, we selected a set of fields that covers a large range of
suspected NO3-N. In total sixteen fields were sampled post harvest in the
fall of 2016 (Table 1). All fields were situated in Flanders in the region
between the city of Ghent and the German border. A summary of some
properties of the fields is given in Table 1. On each field a rectangular
part with a surface of approximately one hectare was sampled using an
approximately orthogonal grid consisting of 30 sampling points result-
ing in a distance of approximately 15 to 20 meter between adjacent
points; For fields 30 and 35 the short-distance variance was assessed by
sampling a subplot of 1 m2 on a very fine grid, with cores spaced 10 cm
apart, resulting in 100 points. Samples were collected with a hand auger
up to a depth of 90 cm, GPS-coordinates were recorded for each sample
location and each core was analysed separately.
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Table 1

Properties of the sixteen sampled fields.
Field Location Soil texture Crop
1 OLV Waver Sand Pasture
2 Leest Sandy loam Pasture
3 Putte Sand Pasture
4 Hingene Sandy loam Ryegrass
5 Leest Sandy loam Cereal
6 Oksdonk Silt loam Cereal
13 Hombeek Silt loam Pasture
14 Gontrode Silt loam Pasture
15 Melle Sand Pasture
16 Melle Sand Ryegrass
17 Melle Sand Ryegrass
18 Vilvoorde Loam Cereal
19 Millen Loam Cereal
20 Kampenhout Silt loam Cereal
30 Leest Silt loam Cereal
35 Retie Sand Ryegrass

3.2. Chemical analysis and analytical measurement error

Directly after sampling the samples were sealed in plastic bags to
avoid overmuch contact with atmospheric oxygen and stored at 5 de-
grees Celsius pending analysis. NO3-N was determined in the field moist
samples after manual subsampling and extraction with 1 M KCl
following ISO 14256, the official method for the determination of NO3-
N in Flanders. Results were calculated as kg NO3-N/ha using a standard
soil density of 1500 kg/m®. In those few cases (five samples of field 35)
where the NO3-N concentration was lower than the analytical level of
quantification (LOQ) a higher bound approach was used, the concen-
trations were set equal to the LOQ of 0.5 kg N/ha.

Besides sampling variance we have variance due to laboratory
measurement error. We used results from the laboratories quality con-
trol to estimate this variance component. Following the guidelines of
ISO 17025 and the requirements for laboratories recognised by the
Flemish government, laboratories have to analyse a reference sample
with each run. By pooling the variances of in total 184 results for the
same reference sample analysed by seven different labs we calculated
the reproducibility standard deviation to be 6,4% of the measured value.
Validation of the test by these labs show that this standard deviation is
constant over the range of the reported results.

Since reference materials have controlled homogeneity, this variance
component does not include a variance component induced by sub-
sampling the bulked sample. However regular quality control performed
by repeating the subsampling showed this variance to be negligible.

3.3. Methods

As a first step we checked the assumption that the data come from a
normal distribution, or whether a lognormal distribution is more real-
istic. This is done by making Q-Q plots, and the Shapiro-Wilk test.

For the agricultural field with an assumed normal distribution of the
NO3-N data (see Section 3.3.1) the following procedure is implemented:

1. discretize the field by a fine square grid of (about) 2000 nodes

2. stratify the field into L = 5,10, ..., 50 compact geostrata of equal
size

3. sample 100 variograms from the multivariate posterior distribu-
tion of the variogram parameters by MCMC

4. simulate with the first sampled variogram 100 maps

5. compute for the first simulated map the variance within the five
geostrata, and compute the sampling variance of the estimated
mean (Eq. 2). Repeat this for L = 10, ...,50. This results in ten
sampling variances (one per sample size)
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6. repeat step 5 for the other 99 maps. After this step we have 100
sampling variances for sample sizen =5, 100 sampling variances
for n = 10, et cetera

7. repeat steps 4-6 for the other sampled variograms. After this step
we have 100 x 100 sampling variances for n = 5, 100 sampling
variances for n = 10, et cetera

8. compute for each sample size the mean, P50 and P90 of the 100 x
100 sampling variances

9. compute the variance over the 100 sampled variograms of the
average sampling variances (averaged over the 100 maps) for a
given variogram. This is an estimate of the first variance

component Vyicmc [Eé(V@))] (Eq. 2).

10. compute the average over the 100 sampled variograms of the
variance of the sampling variance for a given variogram. This is

an estimate of the second variance component Eyjcyc [VE(V(ﬁ))}
(Eq. 2).

For the fields with an assumed lognormal distribution, we need some
extra steps. Before step 3 the natural logarithms of the NO3-N data are
computed, so that the sampled variograms of step 3 are on the log scale,
as well as the simulated maps of step 4. Before step 5 the estimated
model mean (¢ of Eq. 6, which is assumed constant throughout the field)
is added to the simulated values. The sums are backtransformed to the
original scale, before proceeding with the next steps.

We used R package spcosa (Walvoort et al., 2010) to compute the
compact geostrata of equal size. Simulation of the maps with a given
sampled variogram was done by Cholesky decomposition of the 2000 x
2000 matrix with variances and covariances computed with a given
sampled variogram (Gelman et al., 2013, p. 582).

3.3.1. MCMC sampling of variogram parameters

Further, we assumed a constant mean, and an exponential variogram
with nugget (Webster and Oliver, 2007), so that we have three vario-
gram parameters: the nugget variance, the partial sill and the distance
parameter. We used a bounded uniform prior for the inverse of the sill
(nugget + partial sill), with a lower and upper bound of 107° and 1,
respectively. A uniform prior for the inverse of the sill instead of for the
sill itself is commonly used (Gelman et al., 2013, p. 52). For the nugget-
to-sill ratio we used a bounded uniform prior with lower and upper
bound of 0 and 1, respectively. Finally, for the distance parameter we
used a bounded uniform prior with lower and upper bound of 10~¢ and
three times the maximum distance in the data set, respectively. We
assumed that the variogram parameters are independent, so that the
multivariate prior density can be computed as the product of the uni-
variate prior densities.

The posterior distribution was sampled with a Differential-Evolution
sampler (ter Braak and Vrugt, 2008). We used R package Bayesian Tools
for this (Hartig, 2018).

4. Results
4.1. Analytical results

The overall analytical results for all fields are given in Table 2. The
average NO3-N concentrations in the fields calculated as the arithmetic
mean of all measurements on a field, varied between 2.56 kg N/ha,
which is close to the reporting limit of the analytical method, and 314
kg N/ha. The latter value is about six times the amount that is considered
ecologically safe vis a vis the danger of trespassing the maximum nitrate
concentration limit of 50 mg NO3-N/1. To get an idea of the extent of the
variability of NO3-N within a field, the variability was calculated as the
coefficient of variation (CV) of all measurements made on a field. The
standard deviation ranged between 26% and 256% of the sample av-
erages. No significant correlation between the sample average and CV
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Table 2
Average, coefficient of variation (CV) and skewness of sample data for the
sixteen fields. Fields are sorted on the coefficient of variation.

Field Sample average cv Skewness
6 252 0.26 0.48
5 64.6 0.42 0.72
1 10.7 0.49 0.27
20 314 0.50 0.90
17 11.1 0.54 1.20
4 4.29 0.71 1.34
13 8.26 0.80 0.93
30 41.9 0.83 2.33
15 102 0.94 1.57
35 2.56 0.97 3.73
16 13.2 1.08 2.94
18 31.9 1.11 3.00
19 13.9 1.20 4.06
2 35.0 1.23 2.40
14 200 2.03 4.43
3 29.2 2.56 4.06

was found with a Spearman’s rank correlation test at the 5% significance
level: a high average NO3-N concentration does not go hand in hand
with a high CV.

4.2. Checking assumption of normal distribution

Based on the Q-Q plots and the Shapiro-Wilk test we assumed a
lognormal distribution for twelve out of the sixteen fields (Table 3). For
these fields the natural logarithm of the NO3-N data was used to esti-
mate the variogram on the log-scale. Only for fields 1, 5, 6 and 20 we did
not have enough evidence against a normal distribution; for these fields
we used the untransformed NO3-N data. Note that these four fields are
the fields with the smallest CV (Table 2). Fig. 1 shows the Q-Q plots for
field 17 and 6, which are used in this paper to illustrate the results for the
fields with an assumed lognormal and normal distribution, respectively.

4.3. Geographical stratification

Fig. 3 shows the compact geographical stratification for field 17 for L
=10 and 25.

4.4. MCMC sample of variogram parameters

The first twenty variograms sampled by MCMC for fields 17 and 6 are
shown in Fig. 2, 3. Table 3 shows the means and standard deviations of
the sampled marginal posterior distributions of the variogram

Table 3

Means and, between brackets, standard deviations of MCMC samples of pa-
rameters of an exponential variogram of (natural logs of) soil NO3-N for the
sixteen fields.

Field Distribution Relative nugget Sill Distance parameter

6 Normal 0.67 (0.26) 4371 (2263) 164 (151)
5 Normal 0.48 (0.27) 804 (358) 90 (89)

1 Normal 0.62 (0.30) 33.0 (16.3) 108 (98)
20 Normal 0.84 (0.15) 26378 (11869) 205 (121)
17 Lognormal 0.147 (0.147) 0.361 (0.215) 22.3(17.3)
4 Lognormal 0.426 (0.254) 0.722 (0.505) 114 (110)
13 Lognormal 0.584 (0.227) 1.13 (0.738) 160 (124)
30 Lognormal 0.081 (0.072) 0.672 (0.182) 0.515 (0.480)
15 Lognormal 0.777 (0.0755) 1.07 (0.427) 147 (103)
35 Lognormal 0.245 (0.039) 1.04 (0.269) 4.81 (3.30)
16 Lognormal 0.520 (0.235) 0.974 (0.755) 91.0 (79.1)
18 Lognormal 0.810 (0.168) 0.819 (0.284) 157 (109)
19 Lognormal 0.366 (0.212) 0.631 (0.343) 162 (107)
2 Lognormal 0.700 (0.235) 0.938 (0.448) 162 (123)
14 Lognormal 0.584 (0.253) 1.58 (0.858) 160 (106)
3 Lognormal 0.497 (0.225) 2.24 (1.16) 100 (75.7)
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Fig. 1. Q-Q plot of NO3-N in fields 17 and 6. The p-value of the Shapiro-Wilk test was 0.0028 for field 17 and 0.55 for field 6.
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Fig. 2. The first twenty sampled variogams of fields 17 and 6.
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Fig. 3. Ten and twenty-five compact geographical strata for field 17. Sampling variances are predicted for stratified simple random sampling with one point

per stratum.

parameters for all sixteen fields. The distance parameters of the vario-
grams with the additional data collected in a subplot of 1 m2 (fields 30
and 35) were considerably smaller than for the other fields. For all other
fields the average distance parameter value ranged from 22 m (field 17)
to 205 m (field 20). The relative nuggets of the variograms for field 30
were much smaller than of the other fields. For all other fields the mean
values of the relative nugget were quite large, and ranged from 0.15
(field 17) to 0.84 (field 20). The mean values of the sill of the four
variograms on the original scale ranged from 33 to 26,378, and of the

remaining variograms on the log-scale from 0.361 to 19.3. For all var-
iogram parameters the standard deviations were large, showing that we
are uncertain about all three variogram parameters for all fields,
including fields 30 and 35 with the additional fine grid data.

4.5. Predicted sampling variance of estimated mean

Sampling variances are computed for stratified simple random
sampling for sample sizes 5,10, ...,50, with one point per stratum.



S.C.K. Hofman and D.J. Brus

As an illustration Fig. 4 shows twenty simulated maps of NO3-N for
field 17, simulated with the first four sampled variograms (rows 1
through 4), and using each variogram to simulate five maps (columns a
through e). The variance of the simulated values within the L = 5, 10, ...
, 50 strata is computed, and these stratum variances are used to compute
the ten sampling variances of the estimated mean for that simulated
map. For each value of L, the rowwise averages of the sampling vari-
ances are computed (in the experiment not the average of five variances,
but of 1000 variances), as well as the rowwise variances. The variance of
the rowwise averages is an estimate of the first variance component of
Eq. 9 quantifying the uncertainty in the sampling variance of the esti-
mated mean due to uncertainty about the variogram parameters, and the
average of the rowwise variances is an estimate of the second variance
component, quantifying the uncertainty in the sampling variance of the
estimated mean due to uncertainty in the within-stratum variances of
NO3-N values simulated with a given variogram.

Fig. 5 shows for fields 17 and 6 the mean, P50 and P90 of the un-
certainty distribution of the sampling variance as a function of the
sample size. As expected, the sampling variance decreases rapidly with
the sample size. For the fields with an assumed lognormal distribution
the mean was (much) larger than the median, showing the strong pos-
itive skew of the uncertainty distribution of the sampling variance. For
five fields the mean was even larger than the P90 of the uncertainty
distribution (fields 2, 3, 13, 14 and 15). For the four fields with an
assumed normal distribution the mean and median were about equal. we

1a 1b 1c
40 -
20-
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2a 2b 2c
40 -
20 -
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40 -
20 -
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believe that with a strong positive skew of the uncertainty distribution
the median sampling variance is a more sensible and practical prediction
of the sampling variance of the estimated mean than the mean of this
uncertainty distribution. Therefore, hereafter the median is used to
derive the required sample size, as well as the P90 of the uncertainty
distribution. Especially for the fields with an assumed lognormal dis-
tribution the P90 was substantially larger than the median.

4.6. Variance contributions

Fig. 6, shows for fields 17 and 6 the contribution of uncertainty about
the variogram parameters and that of uncertainty about the variance of
NO3-N within strata given a variogram, to the total uncertainty about
the sampling variance of the estimated mean. For field 6 with an
assumed normal distribution the contribution of variogram parameter
uncertainty dominates, whereas reversely for field 17 with an assumed
lognormal distribution the contribution of the uncertainty about the
stratum variances is dominant.

4.7. Expanded measurement uncertainty

Fig. 7 shows the P50 and P90 of the expanded measurement uncer-
tainty U as a function of the sample size for fields 17 and 6. U decreases
with the sample size. For a given sample size U largely differs among the
fields. Table 4 shows U for a sample size of 15, which is the current

1d 1e
2d 2e
Nsim
150
100
3d 3e
50
0

|

0 10203040 0 10 20 30 40

Fig. 4. Twenty simulated maps of NO3-N values (Nsim) for agricultural field 17, using first four sampled variograms (rows 1 through 4). With each variogam five

simulated maps are shown (columns a through e).
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Fig. 5. Mean (black dots), P50 (red dots) and P90 (green dots) of the uncertainty distribution of the sampling variance of estimated mean for fields 17 and 6. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Contribution of uncertainty about the variogram parameters (red dots) and of uncertainty about the variance of NO3-N within strata given a variogram (black
dots), to the total uncertainty about the sampling variance of the estimated mean, for fields 17 and 6. For field 17 a lognormal distribution is assumed, for field 6 a
normal distribution is assumed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. P50 (red dots) and P90 (green dots) of expanded measurement uncertainty. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

sample size in Flanders. With this sample size U is larger than 50% for six
fields at P50 and for 11 fields at P90.

4.8. Required sample size

Table 5 shows the sample sizes based on the P50 and P90 of the
uncertainty distribution of the sampling variance required for a
maximum of the expanded measurement uncertainty of 50%. Based on
the median (P50) of the empirical uncertainty distribution of U, for five
agricultural fields less than five sampling points are needed to achieve
an expanded measurement uncertainty of 50%, and for one field we
need more than 50 points. If we use P90, somewhat larger sample sizes
are required for a maximum U of 50%.

4.9. Stratification effect

We also computed the sampling variance of the estimated mean for

simple random sampling, i.e. no stratification. This is straightforward: in
step 4 of the procedure described in Section 3.3 the variance of the
simulated values within the entire field is computed, instead of the
variances within the strata. Eq. 2 still can be used to compute the
sampling variance, by setting L equal to 1. By comparing the sampling
variance of the estimated means with stratified simple random sampling
and simple random sampling at an equal number of sampling points we
get insight in the stratification effect. For most fields the stratification
effect, quantified by the ratio of the variance with simple random
sampling to the variance with stratified simple random sampling at an
equal sample size, was small but not irrelevant (Fig. 8). This was ex-
pected, given the limited spatial structure of NO3-N (large relative
nugget, small range) for most fields. It increases with the sample size.
For fields 17, 19 and 4, the top three curves in Fig. 8, the stratification
effect was considerable. For these fields the gain in precision increased
to 1.79, 1.48 and 1.37, respectively. NO3-N on these fields showed
relatively strong spatial structure, a relatively small relative nugget in



S.C.K. Hofman and D.J. Brus

Table 4

Expanded measurement uncertainty for
stratified simple random sampling of 15
points (1 point per geostratum).

Field P50 Po0
6 17.6 18.9
5 21.5 24.6
1 26.4 30.2
20 26.7 34.4
17 26.3 42.6
4 41.3 78.2
13 60.1 139
30 75.4 131
15 62.4 135
16 41.0 66.1
18 47.8 83.3
35 118 175
19 29.3 54.3
2 429 91.8
14 62.8 133
3 53.7 202
Table 5

Sample sizes required for a maximum
expanded measurement uncertainty of
50%, based on the P50 and P90 of the un-
certainty distribution of U.

Field P50 P90
6 <5 <5
5 <5 <5
1 <5 6

20 <5 8

17 <5 12

4 11 36
13 23 > 50
30 36 > 50
15 24 > 50
16 10 27
18 14 44
35 > 50 > 50
19 6 18

2 12 > 50
14 25 > 50
3 18 > 50

Stratification effect

10 20 30 40 50
Sample size
Fig. 8. Stratification effect. Red lines are for the fields with assumed normal

distribution. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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combination with a large effective range (Table 3). At a sample size of
25, for nine of the fields the stratification effect was 1.10 or larger,
implying that at least 10% less samples are needed with stratified
sampling to obtain the same precision as with simple random sampling.

5. Discussion

Both Fig. 2 and the standard deviations of the MCMC samples in
Table 3 clearly show that we were quite uncertain about the variogram
parameters. For the fields with a normal distribution, uncertainty about
the variogam parameters contributed stronger to the total uncertainty
about the variance of the estimated mean, than uncertainty about the
spatial variance within strata given a variogram. So for these fields
narrowing down our uncertainty about the variogram by collecting
more data with a well-designed sample, would help to narrow down our
uncertainty about the sampling variance of the estimated mean. For
reliable estimation of the variogram using the method-of-moments
150-225 point observations are needed (Webster and Oliver, 1992);
with maximum likelihood estimation of the variogram fewer observa-
tions are required (Lark, 2000). However, for the fields with a lognormal
distribution the contribution of the uncertainty about the variance
within strata given a variogram was much stronger. So even when we
would have perfect knowledge of the variogram, for fields with a
lognormal distribution considerable uncertainty remains about the
sampling variance of the estimated mean.

Various modelling assumptions are made to compute the required
sample sizes. We assumed a constant mean, g in Eq. 6. In cases where
NO3-N shows a spatial trend or is related to a covariate of which a map is
available, a model with a spatially varying mean can be more realistic.
We expect that the predicted sampling variance using a non-stationary
model will not differ much from the variance obtained with a model
with a constant mean: the variance of the simulated NO3-N values
within the strata will not differ much.

Secondly, we either assumed a normal or a lognormal distribution for
the data. For field 20 the Q-Q plot showed some deviation of the normal
distribution, but the p-value of the Shapiro-Wilk test was only margin-
ally smaller than 0.05, so we decided to assume a normal distribution for
this field. We also computed the required sample size with a lognormal
distribution. The required sample sizes were equal to those with the
normal distribution. However, for other fields there were large differ-
ences in required sample sizes for the two distributions. For instance, for
field 4 the required sample sizes computed with a normal distribution
were 6 and 9 based on the P50 and P90 of the uncertainty distribution,
respectively, which were both substantially smaller than with the
lognormal distribution, being 11 and 36, respectively. This shows how
important it is to check carefully the type of distribution.

The proposed simulation approach for predicting the variance of the
estimated mean is versatile. It can also be used for other random sam-
pling designs, such as systematic random sampling, cluster random
sampling, two-stage random sampling et cetera. For stratified simple
random sampling the sampling variance of the estimated mean for a
given simulated map can be computed from the variances of the simu-
lated values within the strata (Eq. 1). However, for some other sampling
designs the sampling variance must be approximated by simulating a
large number of samples with the sampling design under study, and
using each sample to estimate the mean. The simulation approach is also
versatile with respect to the distribution. Other transformations can be
tried, for instance the square root transformation, or the normal score
transform (Goovaerts, 1997).

To predict the sampling variance for the proposed sampling design
prior knowledge of the stratum variances is required. As shown in this
paper these stratum variances can be derived from an a priori variogram.
In practice, we often do not have data from which we can estimate the
variogram of the field under study. For the sixteen fields sampled in this
study the variograms were largely different, so using an average vario-
gram to predict the sampling variance of the estimated mean is not a
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good option. For most fields, most MCMC variograms showed large
relative nuggets and/or small ranges, indicating weak spatial structure.
The gain in precision due to the stratification was for most fields rather
small (Fig. 8). Therefore, to predict the variance for unsampled fields we
propose to assume that the NO3-N concentrations shows no spatial
structure, i.e. to postulate a pure nugget variogram. We then require a
prior estimate of the variance within the entire field (nugget variance)
only. The sampling variance of the estimated mean can then be pre-
dicted by dividing this prior estimate of the within-field variance
through the sample size. If a lognormal distribution is assumed, a prior
estimate of the variance on the log scale as well as of the mean is
required. The variance on the original scale can then be approximated
by the variance on the log scale multiplied by the square of the mean.
This results in a conservative (safe) estimate of the required sample size:
if in reality there is spatial structure, the required sample size will be
smaller.

The question is how to obtain this prior estimate of the within-field
variance. In this study we found that the coefficient of variation
largely differed among the sixteen fields (Table 2) so prior knowledge of
the mean NO3-N concentration of a field is of little use for guessing the
standard deviation within that field. How to obtain an estimate of the
standard deviation (variance) of NO3-N within unsampled fields will be
subject of further study. Even in case no usable correlation can be found
between the standard deviation within a field and field properties such
as cropping history, soil texture or fertilisation practice, knowledge of
the variation among agricultural fields of the within-field standard de-
viation of NO3-N in fall can be used to derive a worst-case sampling
design.

6. Conclusions

The proposed methodology for predicting the sampling variance of
the mean estimated by stratified simple random sample, using an esti-
mated variogram is a versatile approach, and takes into account un-
certainty about the variogram parameters, as well as uncertainty about
the spatial variance of NO3-N within strata for a given variogram. For
most fields a lognormal distribution of NO3-N was more realistic than a
normal distribution. For the fields with an assumed lognormal distri-
bution, the empirical uncertainty distribution of the sampling variance
showed very strong positive skew. For these fields the median sampling
variance is a more sensible and practical prediction of the sampling
variance of the estimated mean than the mean of this uncertainty
distribution.

Analytical results for the sixteen fields showed very large differences
in the mean NO3-N concentration, their within-field variance, and in the
coefficient of variation. As a result there are large differences in the
sample sizes needed to be assured of a maximum allowable expanded
measurement uncertainty. If a 50% expanded measurement uncertainty
is acceptable, based on the median of the uncertainty distribution, the
required sample size varied from less than five to more than 50. For six
fields using a sample size of fifteen borings per field, which is common
practice in Flanders, results in an expanded measurement uncertainty of
more than 50%.

The gain in precision due to the geographical stratification was
rather limited for most fields due to the generally weak spatial structure.

Supplementary material

The R script and the data can be downloaded from https://github.co
m/DickBrus/GeodermaPaper2021_HofmanBrus.
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