

Acknowledgement

Feed-a-Gene

Introduction

Host and symbiont genes that alone and/or together affect a holobiont phenotype

Coevolved host and symbiont genes that affect a holobiont phenotype

Host genes and symbionts
that do not affect
a holobiont phenotype

Environmental microbes
that are not part of
the holobiont

Theis et al. (2016)

Introduction

Maltecca et al. (2019)

Goal

This study aimed to

use microbial and genetic relationships

to predict

feed efficiency related traits

in pigs

Materials and Methods

Experimental set-up

Materials and Methods

Microbiabilty

The fraction of the phenotypic variance explained by the microbial variance (Difford et al., 2016).

In formula:

$$m^2 = \sigma_m^2 / (\sigma_p^2)$$

Compare to heritability:

$$h^2 = \sigma_g^2 / (\sigma_p^2)$$

Materials and Methods

Models

$$y = Xb + Zm + Uc + e$$
 (1)
 $y = Xb + Wg + Uc + e$ (2)
 $y = Xb + Wg + Zm + Uc - e$ (3)

- y = vector of phenotypes (one record per sample)
- X = incidence matrix for the fixed effects for pen and co-variable weight at start experiment
- b = fixed effects
- Z = incidence matrix for OTU effects
- m = random effect estimate of OTU
- W = incidence matrix SNP effects
- = random effect estimates of SNP
- U = incidence matrix for common litter effect (foster dam in case of cross-fostering)
- c = random effect estimate of common litter
- e = random residuals estimate

Microbiability

Heritability

Microbiability and heritability combined

Accuracy

	Microbial Prediction				
Trait	r _m	97.5% CI			
ADG	0.45	0.38:0.51			
ADFI	0.46	0.39:0.52			
FCR	0.30	0.21:0.38			

Accuracy

	Microbial Prediction		Genomic Prediction		
Trait	r_{m}	97.5% CI	r_g	97.5% CI	
ADG	0.45	0.38:0.51	0.20	0.13:0.27	
ADFI	0.46	0.39:0.52	0.29	0.22:0.36	
FCR	0.30	0.21:0.38	0.13	0.05:0.22	

Accuracy

	Microbi	Microbial Prediction		Genomic Prediction		Microbial + Genomic Prediction	
Trait	r_{m}	97.5% CI	r_{g}	97.5% CI	r _{m+g}	97.5% CI	
ADG	0.45	0.38:0.51	0.20	0.13:0.27	0.49	0.42:0.54	
ADFI	0.46	0.39:0.52	0.29	0.22:0.36	0.50	0.43:0.56	
FCR	0.30	0.21:0.38	0.13	0.05:0.22	0.33	0.25:0.41	

Conclusions

- Variation in feed efficiency related traits is associated with variation in the fecal microbiome
- The fecal microbiome is a more accurate predictor of feed efficiency traits than the pig genotype
- Consequently, can we use the fecal microbiome to improve current selection?

YES, to improve phenotypic predictions

Questions?

