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A B S T R A C T   

The detection of fraudulent additions to milk powder is an ongoing research subject for governmental agencies, 
industry and academia. Current developments steer towards the application of so-called fingerprint approaches, 
describing authentic, reference samples with spectroscopy and using one-class classification (OCC) to identify 
“out-of-class”, or adulterated samples. Within this article we describe the application of a novel, portable device 
hyphenating ultraviolet–visible, fluorescence and near-infrared spectroscopy in combination with OCC model
ling to discriminate authentic skimmed milk powders from adulterated ones. As adulterated samples we analyzed 
skimmed milk powder with the addition of plant protein powder, whey powder, starch, lactose, glucose, fructose 
as well as non-protein nitrogen like ammonium chloride, ammonium nitrate, melamine and urea in different 
concentrations. After fusion of the classification results from the three spectral techniques and several models 
two scenarios are presented. 100% (scenario 1) or 80% (scenario 2) of the authentic skimmed milk powders were 
correctly identified as “in-class”, whereas respectively 64% or 86% of the adulterated samples were correctly 
classified as “out-of-class”. In brief, this article provides insights in the application of novel, portable devices that 
may be applied in a non-invasive manner and gives an outlook on data handling and a new data fusion strategy.   

1. Introduction 

In food authenticity and food safety testing, targeted analysis of 
hazardous compounds is increasingly replaced with fingerprinting 
analysis (Gao et al., 2019; Riedl, Esslinger, & Fauhl-Hassek, 2015). Data 
from authentic or reference samples are collected and are described as 
one group or class via multivariate statistics. By choice, all samples that 
show abnormal fingerprints are identified and may be flagged for further 
in-depth analyses (Callao & Ruisánchez, 2018; Rodionova & Pomer
antsev, 2020). In addition to the shift of analytical methodology in food 
fraud detection, measurements are preferred to be performed on-site 
and in a non-invasive and fast manner. This drives the development of 
portable devices that carry miniaturized optical spectrometers (Croc
ombe, 2018; Ellis, Muhamadali, Haughey, Elliott, & Goodacre, 2015; 
McGrath et al., 2018; Yeong, Jern, Yao, Hannan, & Hoon, 2019). The 
approach to measure fraudulent additions to food with benchtop optical 
spectroscopy has been investigated thoroughly and is currently in place 
in multiple governmental agencies, food industry and respective 
academia. In particular milk powders’ authenticity and safety have been 

investigated using near-infrared (NIR) (Cattaneo & Holroyd, 2013; 
Pasquini, 2018) or mid-infrared (MID) spectroscopy (Romero Gonzalez, 
Cobuccio, & Delatour, 2019) as well as Raman spectroscopy (Kar
unathilaka, Farris, Mossoba, Moore, & Yakes, 2017). Behkami, Zain, 
Gholami, and Khir (2019) even used the combination of ultra
violet–visible and NIR radiation with a benchtop, hyphenated, 
three-sensor device to classify the origin of spray-dried cow milk. 
So-called hyphenated devices may combine multiple sensors and tech
nologies such as spectrometers covering multiple wavelengths or Raman 
within one device (Crocombe, 2018). The combination of the data, i.e. 
fusion of spectra or statistical output is then believed to give a more 
accurate fingerprint of the sample (Callao & Ruisánchez, 2018). Besides 
hyphenated sensors, the application of miniaturized sensors in portable 
devices is of current interest. For example, Karunathilaka, Yakes, He, 
Brückner, and Mossoba (2018) examined the performance of two 
portable Raman spectrometers identifying melamine addition in milk 
powders. Nevertheless, literature on the application of miniaturized 
devices and the usage of hyphenated devices with different sensors is 
lacking. For fast spectroscopic applications in food sensing, data needs to 
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be assessed by multivariate statistics. Targeted multivariate classifica
tion and regression models are the common method of choice (e.g. linear 
Partial Least Square Discriminant Analysis or Regression or non-linear 
Support Vector Machine Classification or Regression) in spectroscopy. 
In targeted analysis, both classes of products (authentic versus adulter
ated) or a range of the interested analyte, e.g., adulterant or food 
component in the authentic food commodity, are required as input for 
these type of models. However, when dealing with food integrity issues 
of an unknown origin, such supervised approaches tend to fail or over
look emerging threats. By means of multivariate one-class classification 
(OCC) this problem can be tackled, as only the ‘authentic’ product is 
considered in the multivariate model and defined with an appropriate 
uncertainty limit. The latter may be used to reduce the number of false 
positive or false negative classifications in accordance with the needs. 
Using OCC, any abnormalities may be flagged, provided that they have 
any contribution to the response of the optical sensor(s). 

In this work we present the application of a portable, hyphenated, 
optical device developed and built during the EU-H2020 project ‘Phas
maFood’ for the detection of skimmed milk powder (SMP) fraud. The 
prototype records a NIR, visible (VIS) and fluorescence (FLUO) spectrum 
and captures a RGB-camera picture in addition. The data acquired from 
the different approaches originate from the same sample at the same 
time and the same spot. The data were processed using OCC strategies. 
Optimized approaches for multivariate data fusion are presented in 
detail. The accuracy of fraud detection using the OCC approach was 
tested on multiple adulterants that are of concern to governmental 
agencies, industry and academia. Different scenarios are presented to 
illustrate the flexible application of different class limits for the 
authentic class. 

2. Materials & methods 

2.1. Materials and sample collection 

In January and March 2019, 14 skimmed milk powders (SMPs), and 
in November 2017, 6 SMPs were purchased directly from producers 
within the Netherlands, Belgium and Germany or were acquired from 
the routine national SMP intervention program of the Netherlands Food 
and Consumer Product Safety Authority (NVWA). All were stored at 
− 18 ◦C in the dark and were shielded from hygroscopic conditions to the 
best of our abilities. The SMPs from 2017, further named ‘old SMPs’, 
were used in blends with the ones from 2019 in this report. This is not a 
common case of food fraud but may be an issue of food integrity, as 
SMPs stored for a period of more than three months show a change in 
phospholipids which is accompanied by a sensory change (Romeu-Na
dal, Chávez-Servín, Castellote, Rivero, & López-Sabater, 2007). Various 
plant protein powders (total 16 unique samples) originating from soy 
(4), pumpkin, hemp (2), rice, pea (5), a pea/rice/hemp plant protein mix 
as well as whey protein (5) were purchased from Pursana NV (Haarlem, 
the Netherlands), Pulsin (Gloucester, UK), Mattisson Healthcare BV (De 
Meern, the Netherlands), Biotona (Oostkamp, Belgium), Myprotein 
(Manchester, UK), Lucovitaal (Uden, the Netherlands) and Bulkpowders 
(Colchester, UK). Starch from Merck KGaA (Darmstadt, Germany) and 
fructose, glucose and lactose (sugars) from Sigma Aldrich (St Louis, MO, 
USA) were used as fillers. Ammonium chloride (99.8% w/w), ammo
nium nitrate (>95% w/w) and urea (99.5% w/w) from Merck and mel
amine (99% w/w) from Sigma Aldrich were used as non-protein nitrogen 
to adulterate the SMPs. 

To obtain the SMP reference values following chemicals were used: 
boric acid (for analysis), sodium hydroxide solution (30%), sulphuric 
acid (95–97% w/w, nitrogen-free), ammonia solution (25%), congo red 
from Merck, diethyl ether (>99.5% w/w) petroleum ether (boiling point 
30–60 ◦C, PEC grade) from Actu-All Chemicals (Oss, the Netherlands), 
hydrochloric acid (0.1 mol/L) from Boom B.V. (Meppel, the 
Netherlands), L-Tryptophan and sucrose from Duchefa Biochemie B.V. 
(Haarlem, the Netherlands), Special Kjeltabs No. 4, AB04 from 

Thompson & Capper Ltd. (Runcorn, UK), and ethanol (96 ± 2% (V/V)) 
from Klinipath, (Amsterdam, the Netherlands). 

2.2. Reference values for SMPs 

To approve if the SMPs meet the EU composition specifications, they 
were analyzed using the reference methods in the European legislation 
(Regulation (EU) 2018/150). Relevant provisions from this regulation 
for this research include protein, moisture and fat content. The protein 
content was analyzed in accordance with ISO 8968-1, using nitrogen 
determination by the Kjeldahl principle and conversion to crude protein 
by means of calculation. The fat content (ISO 1736) and moisture con
tent (ISO 5537) of the SMPs were analyzed gravimetrically according to 
standard procedures. 

2.3. Preparation of adulterated samples 

All adulterated samples were prepared by dry-blending as detailed in 
the overview in Table 1. To ensure homogeneous samples, the con
tainers with the mixtures were manually shaken 1 min, checked visually 
and if necessary shaken again. To SMP from the year 2019, old SMPs 
were added in a ratio of 10, 25 and 50% (w/w). Whey and plant protein, 
sugars and starch were mixed in a ratio of 10, 25 and 50% (w/w) with 
2019 SMPs. These fillers have been fraudulently added to SMPs in the 
past, to increase the volume at low costs (Amaral, Mafra, Pissard, Pierna, 
& Baeten, 2018; Nascimento, Santos, Pereira-Filho, & Rocha, 2017). 
Samples with the addition of non-protein nitrogen were blends in 1, 2 
and 5% (w/w) ratio, only ammonium chloride was blended in a ratio of 
0.1, 1, and 2% (w/w). This way, the apparent protein content in the 
adulterated samples increased in comparison to the authentic SMPs (see 
Table 1). According to Nascimento et al. (2017), this common type of 
adulteration is used because the non-protein nitrogen cannot be distin
guished by the legal reference methods like Kjeldahl and Dumas used for 
determining total protein content in skimmed milk powders. It is 
acknowledged that the dry-blending method employed in this study 
commonly overestimates NIR detection capabilities in wet-blended 

Table 1 
Overview of prepared adulterated samples.   

Diluent/Adulterant Concentration of 
diluent/adulterant in % 
(w/w) of the prepared 
sample 

Increase in 
apparent 
protein 
content in % 

Filler Old SMPs 
(purchased in 2017) 

10, 25, 50 none 

Plant protein 
powders 

10, 25, 50 n.d. 

Starch and sugars 10, 25, 50 n.d. 
Whey protein 
powder 

10, 25, 50 n.d. 

Adulterant 
(non-protein 
nitrogen) 

Ammonium 
chloride  

0.1 0.13 
1 1.33 
2 2.65 

Ammonium nitrate  1 1.89 
2 3.77 
5 9.44 

Melamine  1 3.91 
2 7.81 
5 19.53 

Urea  1 2.63 
2 5.26 
5 13.15 

n.d. not determined. 
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samples as a result of matrix effects (Scholl, 2017). Each adulterated 
sample was prepared 3 times, each with a different randomly chosen 
2019 SMP. This way the genuine variety of skimmed milk powders, i.e., 
protein, moisture and fat content, were covered. In addition to the 14 
authentic samples this resulted in 154 adulterated SMP samples. The 
latter was divided in 3 classes, namely: old SMP and mixes (1, 23 sam
ples), fillers and mixes (2, 87 samples), non-protein nitrogen mixes (3, 
33 samples). 

2.4. Optical multi-sensor measurements using the ‘PhasmaFood’ sensor 

Optical multi-sensor measurement data was acquired using the 
prototype portable, hyphenated, optical sensor ‘PhasmaFood’ (type I, 
Fraunhofer IPMS, Dresden, Germany and WINGS ICT solutions, Athens, 
Greece). The hyphenated sensor was equipped with a miniaturized 
commercial UV-VIS spectrometer (range 320–889 nm, 288 individual 
wavelengths recorded, C12880, Hamamatsu, Japan), a prototype in- 
house developed miniaturized NIR sensor (range 939–1833 nm, 895 
individual wavelengths recorded, MEMS-type, Fraunhofer IPMS, Patent 
no. WO 2003069289 A1, Pügner, Knobbe, and Grüger (2016)), and a 
miniaturized RGB-camera (MU9PC-MH, CMOS, Ximea, Münster, Ger
many). The UV-VIS spectrometer was used for both fluorescence and 
diffuse reflectance VIS spectroscopy. The NIR and UV-VIS sensing 
front-ends together with their respective light sources are positioned in a 
circular integrated setup as displayed in Fig. 1. The RGB-sensor is 
positioned as the central sensor and was in this study solely used to 
check the positioning of the sample and the focus of the illumination. 
The ‘PhasmaFood’ sensor was operated by a custom-build ‘PhasmaFood’ 
Android application (developed by VizLore Labs Foundation, Novi Sad, 
Serbia). Data was sent to an online cloud repository associated with this 
application. The settings of the individual sensors were optimized for 
SMP powders targeting short acquisition times with an appropriate 
signal-to-noise ratio (SNR) and no saturation of the signal. Illumination 
currents of the VIS and FLU lamps were 1 mA and 8 mA respectively and 
integration time 55 μs for both sensors. The NIR microlamps illumina
tion current was set at 800–900 mA, being warmed up for at least 5 s 
before conducting the measurement (integration time 5 s). As integra
tion times of the NIR were not changeable, the number of measurements 
was increased and illumination conditions were changed to increase the 
SNR. During one measurement cycle of around 1 min 10 VIS spectra, and 
255 NIR spectra were acquired in diffuse reflectance mode and 10 
fluorescence spectra under UV illumination (365 nm). The ‘Phasma
Food’ sensors were calibrated prior to SMP measurement by conducting 
a 99% diffuse reflectance and dark acquisition measurement of a white 
standard material (Spectralex White Diffuser WDF-030-95, Lake Pho
tonics, Uhldingen-Muehlhofen, Germany). Spectral measurements were 
corrected as follows:  

• VIS and NIR: (raw sample data – dark acquisition sample data)/(99% 
diffuse reflectance white standard data – dark acquisition white 
standard data)  

• FLUO: raw sample data – dark acquisition sample data 

Samples were transferred to 5 cm diameter plastic petri dishes and 
homogenized using a spoon (Fig. 1). The layer thickness of 1 cm was 
chosen in order to prevent acquiring spectral data which did not origi
nate from the sample but for example the underlying laboratory table. 
The ‘PhasmaFood’ sensor node was positioned on top of the Petri dish by 
means of a customized spacer (Fig. 1) allowing approximately 3 cm 
between the sample surface and the sensor and light modules. 

All 168 samples (14 SMP and 154 adulterated samples) were 
measured in triplicate on three different days, yielding 9 measurements 
per sample and are summed up 1512 sample spectra per sensor. Between 
the three days, several days of storage were included to cover a total 
storage period of 3 months for every sample. In the sensor extreme 
wavelengths for VIS and NIR the sensor response was irregular or noisy, 
and these regions of the spectra were discarded. VIS wavelengths from 
400 to 740, fluorescence signals from 340 to 780 nm, and NIR wave
lengths from 1020 to 1833 nm were found suitable for further data 
analysis. 

2.5. Multivariate data analysis 

VIS, FLUO and NIR data was downloaded from the ‘PhasmaFood’ 
cloud repository. All data analysis was conducted using R 3.6.1 (R Core 
Team, 2018). Spectral outliers within each set of 9 measurements per 
sample and per sensor were identified using Euclidian distance of each 
scan to the sample mean. Visually divergent distances were dubbed 
outliers, resulting in 3, 7 and 3 spectra to be discarded for VIS, FLUO, 
and NIR, respectively. As no outliers were exclusively found for one 
sample, no sample was excluded from further analysis. The dataset 
available for multivariate analysis, therefore, consisted of 1509 spectra 
of 129 spectral points (VIS), plus 1505 spectra of 200 spectral points 
(FLUO) and 1509 spectra of 814 spectral points (NIR). On this dataset, 
one-class modelling was performed. That is, the spectral properties of 
only the SMP samples were modelled, yielding class distances for all 
spectra being predicted. A threshold was set to determine whether a 
sample (spectrum) fits into the class of SMP or not. 

A systematic screening of data preprocessing and one-class classifi
cation algorithms was performed (Fig. 2A and B), separately for the data 
for each sensor. Each combination of preprocessing and classification 
algorithm was evaluated using a 40 times repeated random cross vali
dation (80% split) on the target class (authentic SMP), where sample 
replicates were kept together in test/training sets. Performance was 
evaluated calculating ‘area under the receiver operating characteristic’ 
(AUROC) of the target class SMP against each of the classes mentioned in 
section 2.3 (Fig. 2C). Ten models, detailed in Table 2, jointly covering 
the highest obtained AUROCs for each of the classes were selected 
manually and used in the decision scheme (as described below). 
Throughout model screening, preprocessing steps were executed in the 
order from left to right as in Table 2. A high-level approach was chosen 
to fuse the data from different sensors (and multiple models) together, 

Fig. 1. Pictures and schematic diagram of the ‘PhasmaFood’ device: left the sensing node, middle top the handling of the prototype, middle bottom the customized 
spacer for measurements of solid samples, right the schematic diagram. 
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which means that the model results were combined, rather than the raw 
spectral data (low-level) or extracted spectral features (mid-level data 
fusion). As reported by Callao and Ruisánchez (2018), high-level data 
fusion is recommended when dealing with a large amount of data and 
differing database sizes. The final classification was based upon a simple 
decision tree (scheme), i.e., if two or more out of the 10 models (Table 2) 
classified a sample as ‘out-of-class’ it was flagged as ’not within the SMP 
class’. The median class distances of sample triplicates were used for 
further calculations. 

3. Results and discussion 

3.1. SMP reference samples 

All SMPs were investigated in accordance with EU regulations. SMPs 
included in the study had protein contents between 31.7 and 38.2% 
(Average 34.6% ± 1.8) and fat contents in a range of 0.37–0.76% 
(Average 0.56% ± 0.16). Both fat and protein content were all within 
the respective legal limits for SPMs. The moisture contents were be
tween 3.58 and 5.10% (Average 4.07 ± 0.41). Whereas most SMPs from 
2019 met the criteria set in the Regulation (EU) 2016/1238 for public 
storage of SMPs, the ones that were stored for a longer period (old SMPs) 

had all moisture contents above 4.00%. The 14 genuine SMP samples do 
not fully account for the natural diversity in SMP available on the 
market, as only limited geographic location and production years have 
been included. Therefore, the application range of this specific sample 
set is limited to the geographical origin and production years as 
described in section 2.1 (USPC, 2019). 

3.2. Raw spectral dataset 

The spectral data (white and dark corrected) prior to processing are 
displayed in Fig. 3 for the three types of measurements resulting from 
the ‘PhasmaFood’ sensor. The FLUO reflectance spectra immediately 
showed high variability throughout the spectra amongst the different 
classes of samples (SMPs (black), fillers including old SMPs and mixes 
(green) and non-protein nitrogen mixes (red)). Striking to observe was 
the sensitivity towards porphyrin-based structures, i.e. chlorophylls and 
their derivatives, that are present in most plant protein powders 
(Tetenkin, 2003). Furthermore, differences in FLUO emittance between 
SMPs and other white protein powders (soy, whey) and chemical ni
trogen enhancers was observable. The VIS diffuse reflectance data pro
vided complementary data to the FLUO sensors by means of subtle 
changes in the yellow hue of the powders and thus provided a more 

Fig. 2. Detailed multivariate statistics processes (A), exemplary spectral data processing, model generation and optimization for one spectroscopic approach (B), 
evaluation of performance results, decision on final models and data fusion (C). 

J. Müller-Maatsch et al.                                                                                                                                                                                                                       



Food Control 121 (2021) 107744

5

quantitative insight in the types of powders present. In comparison to 
the first two spectroscopic approaches, the NIR data majorly represents 
the general macro-composition of the powders (protein, fat, moisture, 
carbohydrates). Hence, it may give specific information on chemical 
bonds present non-protein nitrogen enhancers. Differences between the 
sensors’ abilities may be observed by comparing the median line of the 
respective raw spectra (thick line) in Fig. 3. Both the VIS and FLUO 
sensors are able to detect most differences between authentic SMPs and 
ones with fillers. However, only the NIR is clearly able to detect dif
ferences between the authentic SMPs and the fillers and old SMPs and 
mixes thereof with SMP (class 1 and 2) and non-protein nitrogen mixes 
with SMP (class 3). 

3.3. OCC of skimmed milk powders – Threshold decision 

All chosen OCC models yielded class distances for each spectrum 
predicted. To turn these class distances into one OCC model, a decision 
threshold was applied. It was possible to choose thresholds such that all 
(authentic) SMPs were classified correctly (scenario 1, Table 3), or such 
that there is an optimal balance between SMPs being predicted “in-class” 
and adulterated or other samples being predicted as “out-of-class” 
(scenario 2, Table 4). In the first scenario, thresholds were such that no 
false negative classifications appear, that means all SMPs were correctly 
identified. On the other hand, that led to more false positive classifica
tions, when an adulterated sample was wrongly identified as SMP. For 
both the mixes of old and fresh milk powders as well as the powders with 
added non-protein nitrogen this leads to unacceptable low classification 
rates of 19% and 12%, respectively. From the powders with filler ad
ditions, 89% were identified correctly as adulterated. To improve the 
correct classification rate and decrease the number of false positive 
classifications, in the second scenario the number of correctly identified 
authentic SMPs was set via the thresholds to approximately 80%. This 
way, one out of five SMPs were identified wrongly as adulterated. We 
believe that this may be more in the interest of an industrial player as 
65%, 60%, and 99%, of mixes with old SMP, non-protein nitrogen or 
fillers were correctly flagged as “adulterated”. This could make this 
technique an effective screening tool, requiring additional methods for 
confirmation of all flagged samples. It is worth mentioning that in both 
scenarios the fusion of classifications from the three different sensing 
approaches led to a better overall detection rate. However, this food 
commodity leans heavily on the performance of NIR technology, which 

is in accordance with literature results on applying solely NIR in SMP 
fraud detection. For other food commodities the combination of models 
may differ. In section 3.4 and 3.5, scenario 2 will be detailed further. 

3.4. Detection of filler additions to SMPs in scenario 2 

In Fig. 4, the fused classifications are presented as function of con
centration of filler added. All results were normalized using the 
thresholds, so every classification below 1 is classified as “in-class” 
whereas every classification above 1 is “out-of- class”. In some cases, 
fresh SMP might be mixed with one that has been in storage for a longer 
period. Only 65% of the skimmed milk powders adulterated with old 
SMPs, ones that have been stored for over a year, were detected, evenly 
distributed over the different concentrations. Hence, no clear separation 
was observed. In order to simulate volume increments at low costs, SMPs 
were adulterated with plant protein powders, whey powders, sugars or 
starch that are cheaper than fresh skimmed milk powder. The ‘Phas
maFood’ device flagged 99% of these adulterations correctly as “adul
terated”. Within this group, 99% of SMPs with added plant proteins, and 
100% of SMPs with added whey, sugars and starch were classified 
correctly, respectively. The samples containing plant proteins which 
were wrongly classified as authentic SMP, were mixtures of 10% plant 
protein addition. As visualized in Fig. 4, the overall detection of 10% 
fillers mixed in SMPs scored lower fused class distances than the addi
tion in higher concentrations. Protein powders from plants may contain 
traces of secondary metabolites (i.e. (degradation products of) 
porphyrin structures), that result in a fluorescent or VIS signal deviating 
from the one of a pure SMP as outlined in the raw data section. There
fore, the detection of a possible adulteration may be based on all three 
sensors. When whey, starch or sugar are added the mixtures did not 
differ visually from SMP. Hence, their detection relied on the NIR sensor 
to detect differences in protein composition (Table 4). Interestingly, in 
the case of lactose addition, the increased levels of lactose were detected 
by the sensor-OCC model combination. Results on the detection accu
racy of starch and sugar addition are in agreement with previous reports 
using near-infrared approaches (Capuano, Boerrigter-Eenling, Koot, & 
van Ruth, 2015). It is worth mentioning that in the present experiment 
both the visible and the fluorescence approach added some information 
and increased the correct classification rate for this specific type of 
adulteration after the data fusion step (Table 4). 

Table 2 
Overview of the picked models with the calculated AUROCs.  

Sensor Pre-processing Algorithm AUROC  

SNV Derivative Subset DWT  SMP vs class 1 SMP vs class 2 SMP vs class 3 SMP vs all 

VIS – 1st 3rd – SIMCA (3PCs) 0.53 0.86 0.54 0.69 
VIS DT – 4th – PCAresid (3PCs) 0.63 0.86 0.55 0.72 
FLUO – 1st 4th – Mahalanobis 0.56 0.58 0.55 0.57 
FLUO – 2nd 4th – kNN (2neighbors) 0.52 0.54 0.57 0.55 
NIR SNV – (full) la8 (3–5) SIMCA (3PCs) 0.64 0.92 0.60 0.76 
NIR – 1st 4th – kNN (2neighbors) 0.65 0.89 0.61 0.76 
NIR – – (full) d2 (5–7) PCAresid (3PCs) 0.62 0.89 0.59 0.79 
NIR DT – 4th – SIMCA (3PCs) 0.64 0.89 0.60 0.75 
NIR – – (full) la8 (3–5) PCAresid (3PCs) 0.63 0.91 0.62 0.76 
NIR – 1st 4th – OCSVM 0.63 0.89 0.61 0.75 

Abbreviations and details: SNV: Standard Normal Variate (SNV), R-package ‘prospectr’ (Stevens & Ramirez-Lopez, 2013). SNV-DT: Detrend, SNV followed by baseline 
correction (Stevens & Ramirez-Lopez, 2013). Derivative: 1st or 2nd derivative (Savitzky-Golay) with an 11-point filter length using R-package ‘signal’ (Signal de
velopers, 2013).Subset: Each spectrum was modelled in full, and as 4 quarter sections with equal lengths. Number indicates the quarter (3rd or 4th) section being 
modelled (sorted by increasing wavelength).DWT: Discrete wavelet transformation. The spectrum (section) was spline-interpolated to 128 points (DWT requires a 
power of 2). Then, either a d2 (Daubechies, filter length 2) or a la8 (Least Asymmetric, filter length 8) transformation was applied, and the indicated wavelet co
efficients were returned, using R-package ‘wavelets’ (Aldrich, 2019).SIMCA: Soft Independent Modelling of Class Analogies (SIMCA), using R-package ‘mdatools’ 
(Kucheryavskiy, 2020). The number of components is selected using a 5-fold (inner loop) cross validation.PCAresid: Principal Components Analysis (PCA) residual, 
calculating the sample residuals (Q residuals). The number of components is selected using a 5-fold (inner loop) cross validation.Mahalanobis: The Mahalanobis 
distance was calculated using means and covariance of the training set.kNN: distance to the k-Nearest Neighbor (kNN), using R-package ‘kknn’ (Schliep & 
Hechenbichler, 2016). The number of neighbors is selected using a 5-fold (inner loop) cross validation.OCSVM: One Class Support Vector Machine (OCSVM) with 
radial basis kernel and automatic parameter estimation, using R-package ‘kernlab’ (Karatzoglou, Smola, & Hornik, 2004). 
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3.5. Detection of non-protein nitrogen addition to SMPs in scenario 2 

In contrast to the fillers, non-protein nitrogen was added in lower 
concentrations to simulate an increased apparent protein content of up 
to 20% (Table 1). 42%, 75%, 67% and 56% of ammonium chloride, 
ammonium nitrate, melamine and urea additions were classified 
correctly, respectively. Fig. 5 shows that more classifications were cor
rect when the concentrations increased. However, it is obvious that the 
detection of these non-protein nitrogen additions remains challenging. 
The addition of non-protein nitrogen to milk powder and other milk 
products has been investigated with multiple approaches (Cattaneo & 

Fig. 3. Raw data of the three respective spectroscopic approaches (FLUO, VIS 
and NIR) before processing plotted in sample classes: authentic SMPs in black, 
fillers including old SMPs and mixes in green and non-protein nitrogen mixes in 
red (dashed). The thick lines represent the median of the respective spectra, 
while the range depicts all spectra between the respective maximum and 
minimum spectrum. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 3 
Correctly identified samples in %, when applying the thresholds that lead to 
100% correct identification of the authentic class (SMP) as described for sce
nario 1.   

Combination 
(Decision treea) 

Only 
NIRb 

Only 
FLUOc 

Only 
VISd 

SMP 100% 100% 100% 100% 
Old SMP (10,25,50, 100%) 19% 6% 4% 3% 
Adulterated with fillers 

(10,25,50, 100%) 
89% 58% 5% 80% 

Adulterated with non-protein 
nitrogen (0.1,1,2,5%) 

12% 4% 5% 2% 

All old SMPs, adulterants 
(fillers and non-protein 
nitrogen), adulterated 
samples 

64% 43% 5% 51%  

a If two or more out of the 10 models (Table 2) classified a sample as ‘out-of- 
class’ it was flagged as ‘not within the SMP class’. The median class distances of 
sample triplicates were used for the calculations. 

b If two or more out of the 6 NIR models (Table 2) classified a sample as ‘out- 
of-class’ it was flagged as ‘not within the SMP class’. The median class distances 
of sample triplicates were used for the calculations. 

c If two out of the 2 FLUO models (Table 2) classified a sample as ‘out-of-class’ 
it was flagged as ‘not within the SMP class’. The median class distances of sample 
triplicates were used for the calculations. 

d If two out of the 2 VIS models (Table 2) classified a sample as ‘out-of-class’ it 
was flagged as ‘not within the SMP class’. The median class distances of sample 
triplicates were used for the calculations. 

Table 4 
Correctly identified samples in %, when applying the thresholds that lead to 
around 80% correct identification of the authentic class (SMP) as described for 
scenario 2.   

Combination 
(Decision treea) 

Only 
NIRb 

Only 
FLUOc 

Only 
VISd 

SMP 80% 80% 80% 80% 
Old SMP (10,25,50, 100%) 65% 54% 22% 36% 
Adulterated with fillers 

(10,25,50, 100%) 
99% 92% 25% 93% 

Adulterated with non-protein 
nitrogen (0.1,1,2,5%) 

60% 41% 24% 27% 

All old SMPs, adulterants 
(fillers and non-protein 
nitrogen), adulterated 
samples 

86% 77% 25% 70%  

a If two or more out of the 10 models (Table 2) classified a sample as ‘out-of- 
class’ it was flagged as ‘not within the SMP class’. The median class distances of 
sample triplicates were used for the calculations. 

b If two or more out of the 6 NIR models (Table 2) classified a sample as ‘out- 
of-class’ it was flagged as ‘not within the SMP class’. The median class distances 
of sample triplicates were used for the calculations. 

c If two out of the 2 FLUO models (Table 2) classified a sample as ‘out-of-class’ 
it was flagged as ‘not within the SMP class’. The median class distances of sample 
triplicates were used for the calculations. 

d If two out of the 2 VIS models (Table 2) classified a sample as ‘out-of-class’ it 
was flagged as ‘not within the SMP class’. The median class distances of sample 
triplicates were used for the calculations. 
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Holroyd, 2013; Poonia et al., 2017). For example, Karunathilaka, Yakes, 
He, Chung, and Mossoba (2018) examined melamine, dicyandiamide, 
aminotriazole, biuret, and cyanuric acid and observed good classifica
tion results (non-targeted SIMCA approach) when applying two 
bench-top devices. Their application of a hand-held infrared instrument 

led to lower correct classification results, due to the devices’ lower 
resolution and limited spectral range. Further, is it important to keep in 
mind that most reports on very good results with spectroscopic ap
proaches might be misleading due to not-randomized experimental 
design as outlined recently by Pasquini (2018). To overcome this issue, 
in this study different SMPs (with deviating moisture content) were 
adulterated with non-protein nitrogen. This might be the reason for the 
lower detection rate than in previous reports on the detection of adul
terated milk powders with spectroscopic approaches. We believe, 
however, that there is great potential in the usage of hyphenated sensors 
and fusing several classification results as may be seen in Table 4. 

4. Conclusion 

For the first time, we report the usage of a novel, portable, hy
phenated sensor in the detection of food fraud that generates informa
tion from different spectroscopic approaches at the same time from the 
same sample and spot. By combining three miniaturized spectroscopic 
approaches, VIS, fluorescence and NIR, detection of adulterations in 
skimmed milk powder was possible with an overall accuracy of 86%. 
The fusion of the classification results from ten OCC models for three 
different optical approaches improved the overall classification accu
racy. The multivariate statistics approach used enables a tailored 
application of different thresholds to balance the false negative or false 
positive classifications targeting the needs of the respective operators 
such as governmental agencies, industry and academia. For example, 
when the correct classification rate for skimmed milk powder was set at 
about 80%, 99% of SMP samples with added plant protein, whey, sugars 
and starch to SMP were identified correctly. However, correct classifi
cation of skimmed milk powders with low concentrations (<5% w/w) of 
non-protein nitrogen remained challenging as only 60% of these adul
terated samples were identified correctly. We believe that this report on 
a novel, portable, hyphenated device and data fusion attempt will sup
port the fight against food fraud. Further research will be conducted 
using the ‘PhasmaFood’ device on other food commodities or developing 
further hyphenated devices. 
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