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Abstract

The quality of yield prediction is linked to that of leaf area. We first analysed the consequences of flowering time and 
environmental conditions on the area of individual leaves in 127 genotypes presenting contrasting flowering times 
in fields of Europe, Mexico, and Kenya. Flowering time was the strongest determinant of leaf area. Combined with a 
detailed field experiment, this experiment showed a large effect of flowering time on the final leaf number and on the 
distribution of leaf growth rate and growth duration along leaf ranks, in terms of both length and width. Equations with 
a limited number of genetic parameters predicted the beginning, end, and maximum growth rate (length and width) 
for each leaf rank. The genotype-specific environmental effects were analysed with datasets in phenotyping platforms 
that assessed the effects (i) of the amount of intercepted light on leaf width, and (ii) of temperature, evaporative de-
mand, and soil water potential on leaf elongation rate. The resulting model was successfully tested for 31 hybrids in 15 
European and Mexican fields. It potentially allows prediction of the vertical distribution of leaf area of a large number 
of genotypes in contrasting field conditions, based on phenomics and on sensor networks.

Keywords:   Drought, genetic variability, leaf growth, light, model, temperature, whole plant.

Introduction

Optimal use of genetic resources is required for food security in 
a changing climate (Tester and Langridge, 2010; IPCC, 2014). 
Genomic prediction can assess the performances of thousands 
of new varieties based on genotypic information, but faces the 
difficulty of large variations in yield depending on local envir-
onmental conditions (Technow et al., 2015; Millet et al., 2016). 

The rapid development of sensor networks and of environ-
mental grids makes it possible to characterize environmental 
conditions in any field (Chenu et  al., 2013; Harrison et  al., 
2014). This information can be combined with the genomic 
prediction of the sensitivity of individual genotypes to envir-
onmental conditions, thereby making possible the prediction of 
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the yield of hundreds of genotypes in hundreds of fields (Millet 
et al., 2019). However, poor prediction of leaf area is often a 
cause of inaccurate simulations, as shown by comparison of 27 
crop models (Martre et  al., 2015). This is particularly true if 
the aim of modelling is to predict the genotype×environment 
interaction in a range of climatic conditions, rather than to 
predict the yield of a reference genotype in this range (Parent 
and Tardieu, 2014). Indeed, current crop models do not handle 
all the richness of phenomic information that characterizes in-
dividual genotypes (Parent and Tardieu, 2014; Wu et al., 2019), 
in particular the genetic variability of leaf development, of leaf 
expansion, and of their sensitivity to environmental cues. We 
argued that the modelling of the growth dynamics of indi-
vidual leaves is necessary if one wants to take into account 
the genetic variability of individual processes, which is difficult 
to do in a ‘big leaf ’ model (Hammer et al., 2010; Parent and 
Tardieu, 2014).

Considerable genetic variability exists for the traits governing 
leaf area and plant architecture. First, the final leaf number (Nfinal) 
is closely related to the duration (number of plastochrons) from 
plant emergence to the floral transition of the shoot apex, but 
also to flowering time (Parent et al., 2018). Hence, flowering 
time indirectly affects final leaf area, the vertical distribution 
of leaf area, and that of light interception (Perez et al., 2019). 
Most models take these effects into account via the duration of 
leaf growth as a whole. The model of Lizaso et al. (2003) uses 
the leaf rank and the area of the largest leaf as input variables, 
so it indirectly takes into account the Nfinal and the duration 
between germination and flowering times. However, a more 
generic approach is needed to take into account the genetic 
control of leaf number. A second trait affecting leaf area and 
plant architecture is leaf elongation rate (LER) and its distribu-
tion along leaf ranks. It varies greatly between maize genotypes 
in panels of diversity or in populations of recombinant inbred 
lines, with strong genetic controls of both the maximum LER 
and response to water deficit (Welcker et al., 2011; Dignat et al., 
2013). The third trait driving leaf area is leaf width and its dis-
tribution, which also has a large genetic variability controlled 
by genome loci and environmental conditions that are essen-
tially independent of those controlling leaf elongation (Lacube 
et al., 2017). In Chenu et al. (2008), the effects of quantitative 
trait loci (QTLs) of responses of leaf elongation to soil water 
deficit were inserted into a model of leaf growth, resulting in 
simulations of leaf area in different climatic conditions (Chenu 
et  al., 2009). However, this study was a proof-of-concept 
study rather than an attempt to develop a multigenotype/
multienvironment model because it did not consider the gen-
etic and environmental variabilities either of plant develop-
ment or of leaf widening. In addition, this model involved a 
high number of genotypic parameters, some of which were 
conceptual rather than measureable in a phenotyping platform 
(e.g. the date of the end of juvenile phase).

We aimed here to develop a model able to simulate the gen-
etic variability of whole-plant leaf area in contrasting environ-
mental conditions, taking into account the genetic variability 
of underlying traits in a large range of maize genetic material, 
namely flowering time, the distribution of leaf elongation and 
widening, and the responses of these traits to environmental 

conditions such as temperature, light, evaporative demand, and 
soil water status. For that, we investigated the rules governing 
the diversity of the distributions of leaf length and width along 
leaf ranks and translated our findings into model equations. 
Photoperiodic effects were not analysed here because the tem-
perate genetic material is mostly photoperiod insensitive. A di-
versity panel of 127 lines with a large variability of flowering 
time was used to analyse, in five fields, the relationship between 
leaf rank and final leaf length and width (Table 1, Dataset B). 
A detailed study of two hybrids with contrasting leaf number 
(Dataset A) was analysed in one field for identification of the 
beginning and end of leaf elongation and widening at each 
leaf rank. Then we used a panel of 14 hybrids with a restricted 
window of flowering time to derive model parametrization, in 
two experiments in the field and in a phenotyping platform 
(Datasets C and D). Next, the model was tested for one of 
the 14 hybrids in 14 fields and for the 14 hybrids in one field 
(Datasets E and F). Finally, we tested the model for a limited 
number of lines with later flowering time in a field in Mexico. 
This resulted in a flexible model that applies to a large range 
of genotypes with contrasted earliness. This model was devel-
oped as an independent executable component in the BioMA 
software framework (http://www.biomamodelling.org), inter-
operable in different crop models, and is freely available to the 
whole community (Manceau et  al., 2020). This potentially 
allows one to compare the advantages of traits or associated 
alleles carried by real or virtual genotypes in a range of en-
vironmental conditions, and to define ideotypes for specific 
sets of environmental conditions (Rötter et al., 2015; Gouache 
et al., 2017; Parent et al., 2018; Tardieu et al., 2018).

Materials and methods

Time course of leaf development and growth in two hybrids 
(Dataset A)
A field experiment was carried out in Mauguio, France (Table 1, Dataset 
A) in a field (thousands of plants) sown with the two single cross-hybrids 
Déa and Volga that differ in flowering time and final leaf number (Nfinal) 
(16 and 19, respectively). For each hybrid, we labelled 500 plants which 
emerged on the same day. Among those, 15 plants were chosen as ref-
erences and scored every second day for the number of leaves which 
had appeared and those which were ligulated. Leaves were numbered 
acropetally from the plant base, and the first true leaf was labelled as 
leaf 1. Leaves 5 and 10 were labelled once fully expanded to facilitate 
counting the leaves of higher ranks. Ten plants of the 500 were selected 
every second day, with phenological stages similar to the mean of the 15 
reference plants of the corresponding hybrid. These plants were dissected 
so all leaves, including those hidden in the whorl, were made visible. The 
length of all leaves was measured as the distance between the leaf inser-
tion point and the leaf tip. Their width was measured as the maximum 
width of the considered leaf, observed a few centimetres from the leaf 
insertion point (Muller et al., 2001). Light was measured every hour with 
photosynthetic photon flux density (PPFD) sensors; air temperature and 
relative humidity were measured every fifth minute in ventilated shelters 
for calculation of air vapour pressure deficit (VPDair), and stored every 
hour. Meristem temperature was measured every hour with fine ther-
mocouples inserted in the apical meristem of 10 plants. The time courses 
of leaf length and width were calculated as a function of thermal time 
(°Cd) calculated as in the APSIM model (Hammer et al., 2010) with the 
smoothing function loess (local polynomial regression fitting), package 
‘stats’ in R (R Development Core Team, 2011), parameter ‘span’ set at 0.5. 
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The timings of the beginning and end of leaf elongation were estimated 
from these smoothed curves as 5% and 95% of final dimensions for each 
leaf rank (see Supplementary Fig. S4 at JXB online). A similar analysis was 
performed for leaf width.

Final leaf length and width in a diversity panel of 127 maize 
lines differing in final leaf number in contrasting environmental 
conditions (Dataset B)
We analysed 127 maize lines representative of the maize breeding pools 
(dent, flint, subtropical, and tropical, Supplementary Tables S1, S2) in 
six field experiments, four in France, one in Mexico, and one in Kenya 
(Dataset B, Table 1; Supplementary Tables S1, S2). Initially, nearly all lines 
were present in all sites, but severe problems of maladaptation were obvious 
in many genotypes that could not be retained in the analysis. Eventually, 
data from six subtropical and tropical lines were kept in Mexico and 
Kenya, and data from three subtropical lines were kept in Europe in add-
ition to temperate material (117 lines in total, Supplementary Table S2). 
Nfinal of these lines ranged from 12 to 25. In each experiment, the experi-
mental design was an alpha lattice with two replicates per treatment, clus-
tered by maturity groups (early, semi-early, and late) to avoid that plots 
with tall and short plants neighbour each other in the field. Each maturity 
group was sown at different dates, in such a way that flowering time was 
simultaneous (within 7 d) for all groups. Plots were 6 m long, with 0.8 
m between rows and a plant density of 5–7 plants m–2, without raw soil 
between plots. Light, air temperature, relative humidity (RH), and wind 
speed were measured as above at <300 m from each experiment, at 2 m 
height over a reference grass canopy. Soil water potential was measured 
every day with two series of tensiometers at 30, 60, and 90 cm depths in 
each field. The final length and width of every second leaf were measured 
in 10 plants per plot, with the same procedures as above. Genotypes were 
clustered according to Nfinal. Profiles of mean final leaf length and width 
were calculated for each class of Nfinal by using the smoothing function 
loess in R (span=0.75).

Parameters for leaf development and leaf expansion in 14 maize 
hybrids (Dataset C)
An experiment was carried out in the phenotyping platform PhenoArch 
(Montpellier, France, https://www6.montpellier.inra.fr/lepse/M3P), 
presented in detail in Alvarez Prado et al. (2018). We considered here 14 
maize F1 crosses of 14 dent lines with a flint tester, with a restricted range 
of flowering time, selected for maximizing the genetic diversity among 
the 254 hybrids of the experiment. Plants were grown in well-watered or 
water deficit conditions with two replicates per genotype and treatment 
(Table 1, Dataset C; details in Supplementary Table S3). For each plant, 
13 RGB images (2056×2454 pixels) were taken every night (one from 
the top and 12 side images with a 30° horizontal rotation) and processed 
as in Cabrera-Bosquet et al. (2016). Temperature and VPD were recorded 
every 15 min in eight sites of the greenhouse. Plants were grown in 9 
litre PVC pots filled with a substrate composed of a mixture of clay and 
organic compost (30/70 volume). In well-watered conditions, soil water 
content was maintained at retention capacity in each pot by applying 
the exact amount of water lost by transpiration, keeping the soil water 
potential at –0.05 MPa (Alvarez Prado et al., 2018). In the water deficit 
treatment, watering was withdrawn from the appearance of leaf 8 on-
wards, until soil water potential reached a target soil water potential of 
–0.4 MPa. This took from 5 d to 8 d depending on individual plants. Soil 
water potential was then maintained for several days by daily irrigation. 
A second dry-down period was applied to plants until soil water poten-
tial reached –0.6 MPa (Alvarez Prado et al., 2018). The number of leaves 
in which tips or ligules had appeared were scored every second day for 
all plants in the experiment. This allowed calculation of the genotypic 
parameters atip, btip, all1, and bll1 presented in Box 1, Equations 1–7. Leaf 
area was estimated by image analysis every second day as in Alvarez Prado 
et al. (2018). The increase in leaf area (m2 °Cd–1) in well-watered con-
ditions was considered as the maximum genotypic leaf expansion rate 
at the considered phenological stage. The sensitivity of leaf expansion Ta
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Box 1. Synthesis of equations and parameters of the model

Process Equation Parameter Description Value

Final leaf number Measured Nfinal Maximum number of leaves Genotypic
Tip appearance tttip: thermal time at the  

appearance of leaf n  
Equation 1:  
tttip(n)=atip×n+btip

atip Slope of the regression of thermal time with tip  
appearance (i.e. phyllochron, thermal time  
between subsequent leaf tip appearances)

Genotypic

btip Intercept of the regression of thermal time with tip 
appearance 

Genotypic

Beginning of linear 
expansion

ttbl: thermal time at the  
beginning of elongation  
Equation 2:  
If n≤Nbl_lim  
ttbl(n)=tttip(n)   
Equation 3:  
If n> Nbl_lim  
ttbl(n)=abl×n+bbl  
abl=kbl atip  
bbl=btip+Nbl_lim×atip×(1–kbl) 

kbl Ratio between leaf appearance and linear  
expansion for the last leaves

0.708

Nbl_lim Transition between first and last leaves for  
beginning of leaf linear expansion

6

Ligule appearance ttll: thermal time at the  
appearance of ligule  
Equation 4:  
If: n≤α ll×Nfinal  
ttll(n)=all1×n+bll1  
Equation 5:  
If: n>α ll×Nfinal  
ttll(n)=all2×n+bll2  
all2=kll×all1  
b112=bll1+all1×α ll×Nfinal×(1–kll)

all1 Slope of the regression of thermal time with 
ligulation (i.e. thermal time between subsequent 
leaf ligule appearances)

Genotypic

bll1 Intercept of the regression of thermal time with 
ligulation

Genotypic

Kblll Ratio between the two ligulation slopes with 
thermal time

0.454

α ll Transition between the two linear parts describing 
leaf ligulation with thermal time relative to Nfinal

0.52

End of linear  
expansion

ttel: thermal time at the end of 
linear elongation  
Equation 6:  
If n≤Nfinal–Nlast+1  
ttel(n)=ttll(n)–alag×n  
Equation 7:  
If n>Nfinal–Nlast+1  
ttel(n)=ttel(n–1) 

Nlast Number of last leaves that finish their expansion at 
the same thermal time

2

alag Relative thermal time difference per leaf between 
ligulation and end of expansion

5.4

Beginning and end of 
widening 

ttbeg,w and ttend,w: thermal time for 
beginning and end of widening  
Equation 8:  
ttbeg,w (n)=ttbl (n)   
Equation 9:  
ttend,w (n)=ttel (n)–lagw

lagw Thermal time lag between ends of leaf elongation 
and widening

39

Leaf  
elongation

L: leaf length  
Equation 10:  

L (n,d) =
d∑

emergence
LER (n)  

LER: leaf elongation rate  
LERnorm: normalized maximum leaf 
elongation rate (normalized by 
maximum rate of leaf 6)  

Equation 11:LERnorm(n) = θL∗e
−(n−BL)

2

2∗GL
2   

θL = 1

e

−(6−BL)
2

2∗GL
2

  

BL=β L×Nfinal  

GL=σ L×Nfinal 

a6 Maximum leaf elongation rate of leaf 6 Genotypic

b Sensitivity of leaf elongation rate to vapour  
pressure deficit

Genotypic

c Sensitivity of leaf elongation rate to soil water 
deficit

Genotypic

β  L Coefficient determining the rank of the leaf with 
maximum growth relative to final leaf number

0.68
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to soil water deficit (m2 °Cd–1 MPa–1) was calculated as the slope of the 
regression between the leaf expansion rate and soil water potential, over 
a period from the appearance of leaf 8 to that of leaf 14, normalized by 
leaf expansion rate in well-watered conditions in such a way that the 
y-intercept was 1 for all hybrids.

Our model uses parameters of elongation of leaf 6, which can be meas-
ured with high precision (Sadok et al., 2007), rather than parameters at 
the whole-plant scale that are easier to score at high throughput. We 
tested the correspondence between both methods, with an experiment 
performed in the phenotyping platform Phenodyn [Montpellier, France 
(Sadok et  al., 2007) https://www6.montpellier.inra.fr/lepse/M3P] on 
four of the 14 hybrids. Three plants of each hybrid were grown under 
either well-watered conditions or progressive water deficit. The LER of 
leaf 6, environmental conditions, and soil water content were measured 
every 15 min. Soil water potential was calculated from soil water content 
via a water release curve. The maximum LER of leaf 6 was estimated for 
each genotype as the mean LER of well-watered plants during the night 
(from 20.00 h to 06.00 h). The sensitivity of the LER to soil water poten-
tial was estimated for each hybrid by fitting a linear regression between 
the mean LER from 02.00 h to 06.00 h and the mean soil water potential 
sensed by plants for the same period of time. The two methods provided 
well-related sensitivities (Supplementary Fig. S1), so we used sensitivities 
obtained in the PhenoArch platform, which is less labour intensive, in the 
rest of the study after scaling values. Because the sensitivities of the LER 
to evaporative demand and soil water deficit are highly correlated (Parent 
et al., 2010), we used the relationship found in Welcker et al. (2011) to cal-
culate values of the genotypic parameter b (Box 1) from that of parameter 
c obtained as above (relationship b=0.69–2.3c, R2=0.44).

Final leaf number in the same 14 maize hybrids (Dataset D)
The Nfinal was measured in a field experiment in Saint Martin de Hinx 
(France) for four plants per hybrid (Dataset D, Table 1). Plants were grown 
in well-watered conditions at a density of 10 plants m–2. Leaf number 

was measured as above; its genotypic mean was calculated based on four 
plants. Details on environmental conditions are given in Supplementary 
Table S3.

Parameters for leaf widening in the same 14 maize hybrids 
(Datasets C and D)
Parameter values of leaf widening and sensitivity to intercepted radiation 
for the same 14 hybrids were calculated from Datasets C and D (Table 1; 
Supplementary Table S3 for environmental conditions). In both datasets, 
the final width of leaf 6 was measured as in Lacube et  al. (2017). The 
sensitivity to intercepted radiation (genotype-specific parameter rrad, Box 
1) was calculated by fitting a linear regression on final width versus inter-
cepted radiation during the period of time when the corresponding leaf 
was widening. We used this sensitivity to normalize the width of leaf 6 in 
all experiments. A genotype-specific width of leaf 6 was calculated for a 
reference intercepted radiation at a standard light of 1.5 MJ m–2 (param-
eter W6, Box 1), thereby removing the effect of intercepted radiation via 
Equation 12 (Box 1).

Model test (Datasets E and F)
A test of the model was performed based on two field datasets. In Dataset 
E (Table  1), the final leaf lengths and widths of all leaves of the ref-
erence hybrid B73×UH007 were measured in both water deficit and 
well-watered conditions in 14 experiments presented in Millet et  al. 
(2019), in eight field sites from 2011 to 2013 spread along a climatic 
transect in Europe (Supplementary Table S3). In Dataset F (Table 1), the 
14 parameterized hybrids were analysed in Mauguio in 2016, with the 
same measurements (hybrid names in Supplementary Table S4). In both 
cases, light, air temperature, RH, rainfall, and wind speed were meas-
ured every hour in each experiment. Light was measured with PPFD 
sensors or pyranometers depending on local practices; air temperature 
and RH were measured in ventilated shelters. Soil water potential was 

Process Equation Parameter Description Value

Equation 12:  

If ttbl<tt<ttel:  
LER(n)=LERnorm(n)×(a6+b VPD+cPSI)× ∆tt  
VPD: vapour pressure deficit (kPa)  
PSI: soil water potential (MPa)  
∆tt: equivalent thermal time of day d (°C.d)  
tt: cumulated thermal time at day d (°C.d)

σ L Coefficient determining the skewness 
of the curve or potential leaf growth 
relative to final leaf number

0.46

Leaf widening W: leaf width  
Equation 13:  
W(n,d)=Wbase(n)+RADeffect(d)   
Wbase: leaf width at intercepted light of 0.15 MJ  
RADeffect: effect of intercepted light on leaf width  
Equation 14:  

RADeffect(d) = rRAD ∗
Ä
RADi(d)− RADbase

ä  

RADi: mean daily plant intercepted radiation from 
ttbeg,w to tt  
Equation 15:  

W base(n) = W6∗e
−( n − BW)2

2∗GW
2   

BW= β  W×Nfinal  
GW=σ W×Nfinal 

RADbase Base value for radiation effect on leaf 
widening

0.15

W6 Base leaf width of leaf 6 Genotypic
rRAD Sensitivity of leaf widening to inter-

cepted radiation
Genotypic

β W Coefficient determining the rank of the 
leaf with maximum base width relative 
to final leaf number

0.41

σ W Coefficient determining the skewness 
of the curve of base width relative to 
final leaf number

0.69

Equations are presented with their respective numbers in the text, in which variable names are presented. Parameter names are the 
same as in the text. Parameter values are provided here when they are not genotype specific (common to all studied genotypes, 
white cells). They are indicated as ‘genotypic’ when they need to be measured for each genotype (grey cells).

Box 1. Continued
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measured from every second hour to every fourth day at 30, 60, and 
90 cm depths in watered and rainfed microplots sown with the refer-
ence hybrid B73×UH007 with three and two replicates, respectively. 
Meristem temperature (Tmeristem) was calculated every hour in each field, 
based on a simplified energy balance (Millet et al., 2016). The amount of 
light intercepted by the reference hybrid during a phenological phase 
was obtained in each experiment by simulations using the crop model 
APSIM with climatic data for the experiment as in Lacube et al. (2017).

Seventeen recombinant inbred lines of the population P1P2 resulting 
from a cross between two tropical lines with contrasting sensitivities to 
water deficit (Welcker et  al., 2007) were scored by CIMMYT for leaf 
length along the stem in a field in Mexico (Tlaltizapan), with the same 
protocol as described above. The design was an alpha lattice with three 
repetitions, and seven plants were measured per plot. Climatic conditions 
were recorded as above. The parameters for the model were obtained 
in the phenotyping platform PhenoArch, as presented in Welcker et al. 
(2011), except for Nfinal that was collected in the field.

Results

The genetic variability of the distributions of leaf length 
and width along leaf ranks primarily depended on 
flowering time

The analysis of 119 maize lines (Dataset B) presenting the 
Nfinal from 12 to 25 was performed in two temperate field 
sites. This revealed that the effect of the genetic variability of 
time to flowering was adequately represented by that of Nfinal 
(Fig. 1, R2=0.79), whereas the time elapsed between the ap-
pearance of successive leaves (phyllochron) was independent of 
flowering time in the same diversity panel (Supplementary Fig. 
S2). Our ability to predict flowering time from leaf number 
was further tested by a 5-fold cross-validation. We randomly 
split the dataset of 119 lines grown in two conditions (238 data 
points) into five subsets (47–48 data points each). A regression 
equation between Nfinal and flowering time was calculated on 
the training set of 190 plants (four subsets), and the estimated 
parameters were used to predict flowering time of the test set 
(fifth subset). Prediction accuracy of flowering time was good, 
with a root mean square error (RMSE) of flowering time of 
71.6 °Cd (equivalent to 4–5 d around flowering) and a coef-
ficient (CV) of the RMSE of 7.8% (Supplementary Fig. S3). 
Hence, the genetic variability of flowering time was expressed 
as that of leaf number in further analyses.

 We used the well-watered plots (five sites in France, Mexico, 
and Kenya) to analyse the effect of Nfinal on the distributions of 

leaf lengths and widths along leaf ranks (Fig. 2). The distribu-
tion of leaf length presented a common bell shape in all studied 
cases, with a maximum leaf length at about half of the Nfinal 
(Fig. 2A). The length of this longest leaf increased with Nfinal. 
For example, the maximum length was 62 cm, on leaf 9, for 
plants presenting 14 leaves, whereas it was 88 cm, on leaf 16, for 
lines presenting 26 leaves. The leaves at ranks 1–10 were longer 
in the earliest hybrids (those presenting the smallest Nfinal) than 
in the latest hybrids, but this did not compensate for the effect 
of the Nfinal on the cumulated leaf length per plant. The leaf 
with a maximum width was located at a rank slightly higher 
than that with maximum leaf length (Fig. 2C). Notably, the 
width of the widest leaf in a given plant, observed at a leaf rank 
that increased with Nfinal, did not present a consistent relation-
ship with Nfinal, contrary to the case of leaf length.

The time courses of leaf tip and ligule number were 
used for modelling leaf development

Modelling the expansion of individual leaves requires iden-
tification of the dates at which leaf elongation and widening 
begin and end, for each leaf rank on the stem of plants pre-
senting different the final number of leaves. Direct observa-
tion of these dates involves daily dissection and measurement 
of all leaves that grow inside the plant whorl, an unfeasible 
task for hundreds of genotypes. Conversely, the dates of leaf 
tip and ligule appearance can be monitored for thousands of 
plants in a phenotyping platform and are consistent with those 
measured in the field (Millet et al., 2019). Our model there-
fore considered the latter information to infer the timing of 
elongation and widening. We linked the dates of beginning of 
leaf elongation to those of leaf tip appearance, and the date of 
end of leaf elongation with those of ligule appearance, based 
on Dataset A (Table 1) involving two hybrids presenting con-
trasting flowering times and Nfinal.
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The time course of leaf length followed similar patterns for 
all leaves of the two studied genotypes (Fig.  3A, B), with a 
linear increase during most of the period of elongation, sur-
rounded by periods of acceleration and deceleration. This 
linear increase was consistent with the constant LER measured 
in a phenotyping platform (Dignat et al., 2013) and with the 
anatomy of the elongating zone in maize leaves (Tardieu et al., 
2000). For modelling purposes, we therefore approximated the 
time courses observed in Fig. 3A and B as three-domain linear 
curves (Supplementary Fig. S4). Leaf length was considered as 
null in a first domain, as equal to the maximum leaf length in 
the third domain, and to follow a linear increase in the inter-
mediate domain. The dates for transition between these linear 
domains were calculated based on regressions of the progres-
sion of leaf length, with limits set at 5% and 95% of the final 
length of the leaf of the considered rank (n). We then related 
these dates to the appearance of leaf tips and ligules for every 
leaf rank on the stem. In both studied genotypes, leaf tips ap-
peared sequentially (Fig. 4A, B) with a stable appearance rate. 
The thermal time from plant emergence to leaf tip appear-
ance (tttip) was therefore calculated from leaf rank n and the 
two genotypic parameters of the linear regression, namely the 
thermal time between subsequent leaf tip appearances (atip) and 
the intercept of the regression (btip; Box 1, Equation 1).

 The beginning of linear elongation occurred simultaneously, 
for the first leaves which appeared, with leaf tip appearance (Box 
1, Equation 2) and then diverged at a common leaf rank for both 
genotypes (named Nbl_lim hereafter, considered non-genotypic 
and equal to 6)—when the tips of the sixth leaf appeared in the 
whorl (Fig. 4A, B). For leaves at ranks higher than Nbl_lim, leaf 
tip appearance occurred after the beginning of linear elongation. 
The delay between these two events increased linearly with leaf 
rank, with a slope kbl that was common to both hybrids, and con-
sidered as non-genotypic (Box 1, Equation 3).

The progress with time of the end of leaf elongation 
was approximated with a segmented-linear curve with two 
breakpoints (Fig. 4A, B). The first breakpoint was common 
to that of ligule appearance in both hybrids, at leaf rank 7 

in the 16-leaf hybrid and leaf rank 9 for the 19-leaf hy-
brid (Fig. 4A, B). It was therefore simulated as (n=α ll Nfinal), 
where α ll is non-genotypic. Both the slope (α ll1) and inter-
cept (bll1) of the relationship between thermal time and 
ligule appearance at ranks lower than this breakpoint were 
considered as genotype dependent (Box 1, Equation 4). 
Because the ratio between the slopes before and after the 
breakpoint was common for both hybrids, we considered 
this ratio (kll) as common to all hybrids (Box 1, Equation 5). 
The last two leaves (Nlast) stopped elongation simultaneously 
in both genotypes, thereby creating a second breakpoint in 
the progression of the end of leaf elongation. The thermal 
time from plant emergence to the end of linear elongation 
(ttel) of a leaf at rank n was modelled based on these observa-
tions (Box 1, Equations 6, 7).

The time course of leaf widening was similar to that of 
elongation but ending before it (Supplementary Fig. S4), as 
presented earlier (Lacube et  al., 2017). Hence, the beginning 
of widening (ttbeg,w) was considered as common with that of 
elongation, and the end of widening (ttend,w) was considered 
to occur 39 °Cd before that of elongation (lagw 39 °Cd; non-
genotypic, Lacube et al., 2017; Box 1, Equations 7, 8).
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Overall, five genotypic parameters needed to be measured 
for the simulation of the timing of the growth of all leaves of a 
plant, namely the Nfinal, the parameters of the regressions between 
thermal time and leaf tip appearance (atip and btip), and those 
between thermal time and ligule appearance (all1 and bll1). The 
thermal time between the beginning and end of leaf elongation 
of each leaf defined the duration of leaf elongation (Fig. 4C, D).

The distribution of maximum leaf elongation rate 
along the stem was modelled with genotypic and 
environmental effects

LER at a given time depends on a maximum rate, itself de-
pending on the considered leaf rank and genotype, and en-
vironmental effects (Welcker et al., 2011; Lacube et al., 2017).

The genotypic effect was taken into account via one parameter 
per genotype, the maximum LER of leaf 6 that can be measured 
on a phenotyping platform (Welcker et al., 2011). This rate ranged 
from 4.07 mm °Cd–1 to 6.17 mm °Cd–1 in the diversity panel of 
Dataset B (Supplementary Table S4), and showed a clear genetic 
correlation with final leaf length (Dignat et al., 2013).

The effect of leaf rank was analysed (Fig. 4E, F) for hybrids 
showing different Nfinal. The maximum LER (LERmax ex-
pressed per unit of thermal time) was calculated for each leaf 
rank based on its time course (Fig. 3; Supplementary Fig. S4). 
It was then normalized (LERnorm) by the maximum rate of leaf 
6 (a6) of the considered genotype. In both studied hybrids, the 
distribution of normalized rates along leaf ranks showed a bell-
shaped curve (Fig. 4E, F), fitted with a beta function with three 
parameters: θ L, the maximum relative LER; BL, the rank of the 
leaf with the highest growth rate; and GL, the curvature of the 
curve, all depending on Nfinal (Box 1, Equation 11).

The resulting distribution of leaf length along leaf ranks 
was obtained for the two hybrids in Fig. 4G and H. The two 
parameters driving the shape (BL and GL, Equation 11 in Box 
1) were considered as non-genotypic and dependent on Nfinal 
only. This was tested with the distributions of leaf length for 
genotypes differing in Nfinal, presented in Fig. 2A. Considering 
BL and GL as linearly related to Nfinal allowed us to reproduce 
the shapes of the observed distributions (Fig.  2B). This was 
achieved only if the LER of leaf 6 decreased with the duration 
from emergence to flowering time, confirming a tendency ob-
served in previous studies (Dignat et al., 2013).

The actual leaf elongation rate was modelled based 
on environmental conditions during the growth of the 
considered leaf cohort

Although a model taking into account the temporal vari-
ation of water potentials along the plant and circadian 
rhythms provides insights into the diurnal variations of LER 
(Caldeira et al., 2014; Tardieu et al., 2015), it cannot be used 
at this stage for a large number of hybrids because of the 
number of parameters and the complexity of their measure-
ments with current phenotyping methods. Hence, we kept 
a formalism in which the time course of the leaf elongation 
rate is modelled by considering regressions of the LER with 
temperature, evaporative demand, and soil water potential 

(Welcker et al., 2011). Notably, light was taken into account 
only via its effects on meristem temperature and evaporative 
demand because we found no indication for a direct effect 
(Salah and Tardieu, 1996; Lacube et  al., 2017). During the 
period of elongation (from ttbl to ttel), the elongation rate of 
any growing leaf during day d was then calculated from that 
of leaf 6, the distribution of the normalized LER along leaf 
ranks, and the effects of evaporative demand and soil water 
potential (Box 1, Equation 12).

The distribution of leaf width along leaf ranks was 
modelled with genotypic and environmental effects

In the same way as for leaf length, we considered a reference 
distribution of leaf width (Wbase) along leaf ranks, which de-
pends on genotype and leaf rank, and an environmental ef-
fect that depends on intercepted light (RADeffect) (Box 1, 
Equation 13).

The genotypic effect was taken into account via the width 
of leaf 6 (W6), which can be measured on a phenotyping plat-
form (Lacube et al., 2017), and ranged from 66 mm to 83 mm 
in a panel of hybrids (dataset C). 

The reference distribution Wbase was calculated based on 
the response of leaf width to intercepted radiation (geno-
typic parameter rRAD, the sensitivity of leaf widening to 
intercepted radiation, Box 1, Equation 14). Indeed, leaf 
width has a strong positive sensitivity to whole-plant inter-
cepted radiation (RADi) but no response to evaporative de-
mand (Lacube et al., 2017). For the two hybrids of Dataset 
A, we first calculated the reference distribution of width 
along leaf ranks by removing the effect of intercepted ra-
diation (Supplementary Fig. S5). The same was performed 
on genotypes of Dataset B (Fig. 5), resulting in a common 
distribution of leaf width for the five experiments of the 
dataset. Indeed, measured leaf widths greatly differed be-
tween experiments, but differences were accounted for by 
the intercepted radiation. Notably, the distributions of leaf 
width were obtained in experiments carried out in France, 
Mexico, and Kenya, suggesting a wide relevance of the 
mechanism of control of leaf width presented in Lacube 
et  al. (2017). Figure  5 also shows that the distribution of 
leaf width can be considered as a stable trait of a given 
genotype. Then, these distributions were formalized by a 
beta function (Box 1, Equation 15), similar to that used 
for the LERmax, with parameters depending on Nfinal and a 
genotype-specific effect considered via the reference width 
of leaf 6 (W6).

Overall, our model considered only two genotypic 
parameters to calculate the widths of individual leaves, 
namely the sensitivity to intercepted light and the reference 
width of leaf 6.  These parameter values can be inferred 
from measurements of one leaf in two light conditions. The 
model was used to simulate the distributions of leaf width 
along leaf ranks, observed for genotypes with Nfinal ranging 
from 13 to 29 (Fig. 2C). As for leaf length, considering Bw 
and Gw (Equation 15, Box 1)  as linearly related to Nfinal 
allowed us to reproduce the shapes of the observed distri-
butions (Fig. 2D).
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The resulting model accounted for genotypic and 
environmental effects in independent datasets

The model was first tested on final leaf length and width of 
14 hybrids, with Nfinal ranging from 15 to 17 (Fig. 6, Dataset 
F). The 10 genotypic parameters were obtained for each 
hybrid (i) in the platform PhenoArch (Dataset C, Table 1) 
for the slopes and intercepts of the relationship of leaf ap-
pearance and ligulation with thermal time (atip, btip, all1, and 
bll1), LERmax of leaf 6 (a6), and sensitivities of leaf elong-
ation to evaporative demand (b) and to soil water deficit 
(c); (ii) in the field Dataset D for the Nfinal, the reference 
width of leaf 6 (W6); and (iii) in Lacube et  al., (2017) for 
the leaf widening sensitivity to plant intercepted radiation 
(rRAD), which was considered here as genotype independent. 
Parameter values are summarized in Supplementary Table 
S4. The same protocol was applied to 17 lines of the popu-
lation P1P2 (Welcker et al., 2007; Dataset G) for which leaf 
length along leaf ranks and Nfinal were measured in a field 
in Mexico, with parameters a, b, and c collected in the plat-
form Phenodyn (Welcker et al., 2011).

The distributions of leaf length and width were similar for ob-
served and simulated data. As in Dataset B, the length of the longest 
leaf increased with Nfinal and was located at a higher rank for the 
latest genotypes. The same tendency was observed, for Nfinal from 
19 to 23, in the experiment in Mexico (Supplementary Fig. S6). 
It was not observed for leaf width, consistent with the shapes 
presented in Fig. 2. Simulated leaf length and width averaged for 
leaves 9–11 accounted for observed length and width at the same 
ranks in Dataset F (r2=0.58 and 0.87 for length and width, re-
spectively). The same was observed for the experiment in Dataset 
G for leaves 15–17. Notably, the regression applied to hybrids 
with different Nfinal. This was due to genotypic differences in sen-
sitivity measured in the greenhouse, which accounted for geno-
typic differences in the field.

We then considered the leaf length and width of plants of the 
reference hybrid B73×UH007, measured in 14 field experi-
ments under well-watered conditions but contrasting evapora-
tive demand and light (Dataset E, Table 1). The environmental 

conditions sensed by plants during leaf growth resulted in ap-
preciable differences in measured leaf lengths along the stem, 
but less so for leaf width (Supplementary Fig. S7). The mean 
length of ranks 9–11 across sites was adequately simulated 
(r2=0.66). The same applied to leaf width, with a looser correl-
ation (r2=0.44).

Discussion

Process-based crop simulation models help the decision for 
crop×environment×management interaction (Muller and 
Martre, 2019), thereby requiring simulation of hundreds 
of genotypes in thousands of environment×management 
scenarios under present and future conditions (Parent et  al., 
2018). This requires a dialogue between model formalisms 
and phenomic methods (Wang et  al., 2019) for measuring 
genotype-dependent model parameters of hundreds of geno-
types in phenotyping facilities (Tardieu et al., 2017). This study 
applies this approach.

The rules for simulating leaf growth in a wide genetic 
diversity of flowering time and environmental conditions 
were established based on experimental data, rather than on 
theoretical laws that are not available at this scale of plant 
organization. As presented previously, we considered as 
‘metamechanisms’ those response curves to environmental 
conditions or developmental relationships which are valid 
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Nerac (light green), Le Magneraud (green), Tlaltizapan (blue), and Kiboko 
(pink). Circles represent the calculated width for an intercepted light of 1.5 
MJ m–2 d–1 during the period of widening of the corresponding leaf; that is, 
removing the effect of intercepted light from observed data. Dashed line, 
overall profile fitted by the smoothing function loess() of R (span=0.65). 
Grey shading shows the confidence interval.
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across a large range of conditions, involving both indoor 
and field conditions (Tardieu and Parent, 2017; Tardieu 
et al., 2018). This required the use of four datasets: (i) five 
field experiments with 127 maize lines showing contrasting 
leaf numbers; (ii) one field experiment with lines with 
higher Nfinal; (iii) one experiment in a phenotyping plat-
form; and (iv) one low-throughput field experiment with 
two genotypes for detailed time courses of leaf length and 
width. On one hand, it can be considered that the model 
presented here is based on a considerable amount of data 
for both establishment and testing of the model. However, 
we acknowledge that some of the rules proposed here are 
fragile, in particular (i) for the decisions as to whether a 
particular parameter is genotype dependent or can be con-
sidered as valid at the whole-species level; (ii) for the rules 
about synchronisms of leaf stages with the timing of elong-
ation of individual leaves; and (iii) the model was partly es-
tablished on lines and tested on hybrids. Another feature of 
the model is that we relied on a dynamic approach for leaf 
elongation, based on previous work of Welcker et al. (2011), 
but on a statistical approach for leaf width (Lacube et  al., 
2017). In spite of these shortcuts, this model is the first,to 
our knowledge, to allow simulatation of the leaf dimensions 
of all leaves of a wide range of genotypes under contrasting 
environmental conditions (Tardieu and Parent, 2017). The 
simplification of Lizaso et  al. (2003), who considered the 
dimension and rank of the largest leaf for simulations, is 
efficient, but cannot be used unless measurements are car-
ried out in every field and every genotype to be simulated. 
In contrast, we show here that our model is robust enough 
to apply to new fields, based on 10 generic parameters that 
can be considered as genotype dependent (i.e. independent 
from the environment in which the model is used) and can 
be measured at high throughput in a phenotyping platform.

The limited number of genotypic parameters was a neces-
sary condition for designing a model in which parameters are 
directly estimated via measurements of traits presenting a short 
‘phenotypic distance’ with parameters (Tardieu et  al., 2018). 
Limiting the number of parameters was based on different 
arguments. (i) It was, in some cases, based on experimental 
results. This is the case for the response of growth and develop-
ment processes to temperature, common to genotypes with di-
verse origins, in particular either tropical or temperate (Parent 
and Tardieu, 2012). (ii) In other cases, it was based on an ex-
perimentally established genetic correlation, as in the case of 
the sensitivities of leaf elongation rate to soil water deficit and 
evaporative demand (Welcker et al., 2011). (iii) In many cases, 
it was a deliberate exercise, for example in the relationship be-
tween the genotypic leaf number and the parameters control-
ling the distribution of leaf width or length along leaf ranks. 
(iv) Finally, we acknowledge that in some case this choice was 
linked to the absence of available data, so the parsimony prin-
ciple led us to consider that parameters did not differ between 
genotypes.

It is probably useful to re-affirm here that the purpose 
of this model was not to improve predictions for a standard 
genotype. If this was the case, a model based on a big leaf 
approach is more parsimonious. Indeed, the improved 

generality of our model will not mechanically translate to 
more accurate predictions of leaf area for one genotype. 
Our aims were here (i) to better analyse and simulate the 
genotype×environment interaction for leaf area. In par-
ticular, we used a preliminary version of this model to simu-
late the consequences of climate change on yield if farmers 
made the best possible use of the diversity of flowering time 
in each field in current and future conditions (Parent et al., 
2018). (ii) A second possible use of this model is to simulate 
the consequences of plant architecture traits on light inter-
ception. We have recently shown that changes in distribution 
of leaf area along leaf ranks allowed a genetic progress of 
the amount of light intercepted by the canopy layer hosting 
maize ears (Perez et  al., 2019). Finally, the 10 genotype-
dependent parameters of the model may be predicted via 
genomic prediction based on a set of platform experiments 
such as those in Dataset C, thereby allowing one to predict 
the leaf area of hundreds of genotypes from their genotypic 
markers in hundreds of fields, as recently carried out for 
flowering time (Li et al., 2018) or for the responses of yield 
to environmental conditions (Millet et al., 2019).

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Sensitivity of leaf elongation rate to soil water poten-

tial at the single-leaf level (Phenodyn platform) and sensitivity 
of the leaf expansion rate at the whole-plant level (PhenoArch 
platform).

Fig. S2. Relationship between the thermal time from emer-
gence to flowering and the final leaf number or the phyllochron 
for 114 maize lines in two field sites (Dataset B).

Fig. S3. Cross-validation of prediction of flowering time 
from final leaf number.

Fig. S4. Time courses of leaf length and width of leaf 6 for 
two maize hybrids with different final leaf numbers (Dataset A).

Fig. S5. Profiles of leaf width for two maize hybrids with 
different final leaf number (Dataset A).

Fig. S6. Distributions of leaf length along leaf ranks on the stem, 
observed versus simulated in 17 hybrids (Dataset G, Mexico).

Fig. S7. Observed and simulated distributions of final leaf 
length and width for the maize hybrid B73×UH007, in 14 
field experiments (with contrasting evaporative demand and 
light intensities (Dataset E).

Table S1. Summary of field trials of Dataset B.
Table S2. Presence of each genotype in each field trial for 

Dataset B.
Table S3. Summary of experiments used for model param-

eterization and validation.
Table S4. Parameter values for the 14 hybrids used in model 

validation.

Acknowledgements

This work was supported by the European project FP7-244374 (DROPS) 
and the Agence Nationale de la Recherche projects ANR-10-BTBR-01 
(Amaizing) and ANR-11-INBS-0012 (Phenome).

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/18/5577/5856143 by Bibliotheek der user on 08 D

ecem
ber 2020



Flowering time and leaf growth  |  5587

References
Alvarez  Prado  S, Cabrera-Bosquet  L, Grau  A, Coupel-Ledru  A, 
Millet EJ, Welcker C, Tardieu F. 2018. Phenomics allows identification 
of genomic regions affecting maize stomatal conductance with conditional 
effects of water deficit and evaporative demand. Plant, Cell & Environment 
41, 314–326.

Cabrera-Bosquet  L, Fournier  C, Brichet  N, Welcker  C, Suard  B, 
Tardieu  F. 2016. High-throughput estimation of incident light, light inter-
ception and radiation-use efficiency of thousands of plants in a phenotyping 
platform. New Phytologist 212, 269–281.

Caldeira  CF, Jeanguenin  L, Chaumont  F, Tardieu  F. 2014. 
Circadian rhythms of hydraulic conductance and growth are enhanced 
by drought and improve plant performance. Nature Communications 
5, 5365.

Chenu K, Chapman SC, Hammer GL, McLean G, Salah HB, Tardieu F. 
2008. Short-term responses of leaf growth rate to water deficit scale up to 
whole-plant and crop levels: an integrated modelling approach in maize. 
Plant, Cell & Environment 31, 378–391.

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL. 
2009. Simulating the yield impacts of organ-level quantitative trait loci as-
sociated with drought response in maize: a ‘gene-to-phenotype’ modeling 
approach. Genetics 183, 1507–1523.

Chenu K, Deihimfard R, Chapman SC. 2013. Large-scale characteriza-
tion of drought pattern: a continent-wide modelling approach applied to the 
Australian wheatbelt—spatial and temporal trends. New Phytologist 198, 
801–820.

Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F. 2013. The 
growths of leaves, shoots, roots and reproductive organs partly share 
their genetic control in maize plants. Plant, Cell & Environment 36, 
1105–1119.

Gouache  D, Bogard  M, Pegard  M, et  al. 2017. Bridging the gap 
between ideotype and genotype: challenges and prospects for mod-
elling as exemplified by the case of adapting wheat (Triticum aestivum 
L.) phenology to climate change in France. Field Crops Research 202, 
108–121.

Hammer  GL, van  Oosterom  E, McLean  G, Chapman  SC, Broad  I, 
Harland  P, Muchow  RC. 2010. Adapting APSIM to model the physi-
ology and genetics of complex adaptive traits in field crops. Journal of 
Experimental Botany 61, 2185–2202.

Harrison  MT, Tardieu  F, Dong  Z, Messina  CD, Hammer  GL. 2014. 
Characterizing drought stress and trait influence on maize yield under cur-
rent and future conditions. Global Change Biology 20, 867–878.

IPCC. 2014. Summary for policymakers. In: Field  CB, Barros  VR, 
Dokken DJ, et al., eds. Climate change 2014: impacts, adaptation, and 
vulnerability. Part A: global and sectoral aspects. Contribution of working 
group II to the fifth assessment report of the intergovernmental panel on 
climate change. Cambridge, UK and New York, USA: Cambridge University 
Press, 1–32.

Lacube S, Fournier C, Palaffre C, Millet EJ, Tardieu F, Parent B. 2017. 
Distinct controls of leaf widening and elongation by light and evaporative 
demand in maize. Plant, Cell & Environment 40, 2017–2028.

Li X, Guo T, Mu Q, Li X, Yu J. 2018. Genomic and environmental deter-
minants and their interplay underlying phenotypic plasticity. Proceedings of 
the National Academy of Sciences, USA 115, 6679–6684.

Lizaso  JI, Batchelor  WD, Westgate  ME. 2003. A leaf area model to 
simulate cultivar-specific expansion and senescence of maize leaves. Field 
Crops Research 80, 1–17.

Manceau L, Lacube S, Parent B, Tardieu F. 2020. SiriusQuality-BioMa-
MaizeLAI-Component. https://doi.org/10.5281/zenodo.3569347

Martre P, Wallach D, Asseng S, et al. 2015. Multimodel ensembles of 
wheat growth: many models are better than one. Global Change Biology 
21, 911–925.

Millet  EJ, Kruijer  W, Coupel-Ledru  A, Alvarez  Prado  S, Cabrera-
Bosquet  L, Lacube  S, Charcosset  A, Welcker  C, van  Eeuwijk  F, 
Tardieu F. 2019. Genomic prediction of maize yield across European envir-
onmental conditions. Nature Genetics 51, 952–956.

Millet EJ, Welcker C, Kruijer W, et al. 2016. Genome-wide analysis of 
yield in Europe: allelic effects vary with drought and heat scenarios. Plant 
Physiology 172, 749–764.

Muller  B, Martre  P. 2019. Plant and crop simulation models: powerful 
tools to link physiology, genetics, and phenomics. Journal of Experimental 
Botany 70, 2339–2344.

Muller B, Reymond M, Tardieu F. 2001. The elongation rate at the base of 
a maize leaf shows an invariant pattern during both the steady-state elong-
ation and the establishment of the elongation zone. Journal of Experimental 
Botany 52, 1259–1268.

Parent B, Leclere M, Lacube S, Semenov MA, Welcker C, Martre P, 
Tardieu F. 2018. Maize yields over Europe may increase in spite of cli-
mate change, with an appropriate use of the genetic variability of 
flowering time. Proceedings of the National Academy of Sciences, USA 
115, 10642–10647.

Parent B, Suard B, Serraj R, Tardieu F. 2010. Rice leaf growth and water 
potential are resilient to evaporative demand and soil water deficit once 
the effects of root system are neutralized. Plant, Cell & Environment 33, 
1256–1267.

Parent B, Tardieu F. 2012. Temperature responses of developmental pro-
cesses have not been affected by breeding in different ecological areas for 
17 crop species. New Phytologist 194, 760–774.

Parent  B, Tardieu  F. 2014. Can current crop models be used in the 
phenotyping era for predicting the genetic variability of yield of plants sub-
jected to drought or high temperature? Journal of Experimental Botany 65, 
6179–6189.

Perez  RPA, Fournier  C, Cabrera-Bosquet  L, Artzet  S, Pradal  C, 
Brichet N, Chen TW, Chapuis R, Welcker C, Tardieu F. 2019. Changes 
in the vertical distribution of leaf area enhanced light interception efficiency 
in maize over generations of selection. Plant, Cell & Environment 42, 
2105–2119.

R Development Core Team. 2011. R: a language and environment for stat-
istical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rötter  RP, Tao  F, Höhn  JG, Palosuo  T. 2015. Use of crop simulation 
modelling to aid ideotype design of future cereal cultivars. Journal of 
Experimental Botany 66, 3463–3476.

Sadok  W, Naudin  P, Boussuge  B, Muller  B, Welcker  C, Tardieu  F. 
2007. Leaf growth rate per unit thermal time follows QTL-dependent daily 
patterns in hundreds of maize lines under naturally fluctuating conditions. 
Plant, Cell & Environment 30, 135–146.

Salah HBH, Tardieu F. 1996. Quantitative analysis of the combined effects 
of temperature, evaporative demand and light on leaf elongation rate in well-
watered field and laboratory-grown maize plants. Journal of Experimental 
Botany 47, 1689–1698.

Tardieu  F, Cabrera-Bosquet  L, Pridmore  T, Bennett  M. 2017. 
Plant phenomics, from sensors to knowledge. Current Biology 27, 
R770–R783.

Tardieu F, Parent B. 2017. Predictable ‘meta-mechanisms’ emerge from 
feedbacks between transpiration and plant growth and cannot be simply 
deduced from short-term mechanisms. Plant, Cell & Environment 40, 
846–857.

Tardieu F, Reymond M, Hamard P, Granier C, Muller B. 2000. Spatial 
distributions of expansion rate, cell division rate and cell size in maize leaves: 
a synthesis of the effects of soil water status, evaporative demand and tem-
perature. Journal of Experimental Botany 51, 1505–1514.

Tardieu  F, Simonneau  T, Muller  B. 2018. The physiological basis of 
drought tolerance in crop plants: a scenario-dependent probabilistic ap-
proach. Annual Review of Plant Biology 69, 733–759.

Tardieu  F, Simonneau  T, Parent  B. 2015. Modelling the coordination 
of the controls of stomatal aperture, transpiration, leaf growth, and ab-
scisic acid: update and extension of the Tardieu–Davies model. Journal of 
Experimental Botany 66, 2227–2237.

Technow F, Messina CD, Totir LR, Cooper M. 2015. Integrating crop 
growth models with whole genome prediction through approximate 
bayesian computation. PLoS One 10, e0130855.

Tester M, Langridge P. 2010. Breeding technologies to increase crop pro-
duction in a changing world. Science 327, 818–822.

Wang E, Brown HE, Rebetzke GJ, Zhao Z, Zheng B, Chapman SC. 
2019. Improving process-based crop models to better capture 
genotype×environment×management interactions. Journal of Experimental 
Botany 70, 2389–2401.

Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F. 2007. 
Are source and sink strengths genetically linked in maize plants subjected 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/18/5577/5856143 by Bibliotheek der user on 08 D

ecem
ber 2020

https://doi.org/10.5281/zenodo.3569347


5588  |  Lacube et al.

to water deficit? A QTL study of the responses of leaf growth and of an-
thesis–silking interval to water deficit. Journal of Experimental Botany 58, 
339–349.

Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, 
Tardieu  F. 2011. A common genetic determinism for sensitivities to soil 

water deficit and evaporative demand: meta-analysis of quantitative trait loci 
and introgression lines of maize. Plant Physiology 157, 718–729.

Wu  A, Hammer  GL, Doherty  A, von  Caemmerer  S, Farquhar  GD. 
2019. Quantifying impacts of enhancing photosynthesis on crop yield. 
Nature Plants 5, 380–388.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/18/5577/5856143 by Bibliotheek der user on 08 D

ecem
ber 2020


